CW lasing of current injection blue GaN-based vertical of

Applied Physics Letters 92, DOI: 10.1063/1.2908034

Citation Report

#	Article	IF	CITATIONS
1	High-reflectivity ultraviolet AlN/AlGaN distributed Bragg reflectors grown by metalorganic chemical vapor deposition. Journal of Crystal Growth, 2008, 310, 4871-4875.	1.5	11
2	Room temperature polariton lasing in a GaNâ^•AlGaN multiple quantum well microcavity. Applied Physics Letters, 2008, 93, .	3.3	267
3	Spectral dynamics of 405 nm (Al,In)GaN laser diodes grown on GaN and SiC substrate. Optics Express, 2008, 16, 6833.	3.4	39
4	Blue-green optically pumped GaN-based vertical cavity surface emitting laser. Electronics Letters, 2008, 44, 972.	1.0	8
5	Room-Temperature CW Lasing of a GaN-Based Vertical-Cavity Surface-Emitting Laser by Current Injection. Applied Physics Express, 0, 1, 121102.	2.4	151
6	Low threshold lasing of GaN-based vertical cavity surface emitting lasers with an asymmetric coupled quantum well active region. Applied Physics Letters, 2008, 93, 191118.	3.3	10
7	Room-Temperature Continuous-Wave Lasing of A Violet GaN-Based Vertical-Cavity Surface-Emitting Laser by Current Injection. The Review of Laser Engineering, 2009, 37, 673-677.	0.0	0
8	Enhancement of carrier focusing GaN based vertical cavity surface emitting lasers and polariton lasers. Applied Physics Letters, 2009, 94, 091105.	3.3	1
9	Room temperature polariton lasing in III-nitride microcavities: a comparison with blue GaN-based vertical cavity surface emitting lasers. , 2009, , .		20
10	Highly Reflective GaN-Based Air-Gap Distributed Bragg Reflectors Fabricated Using AlInN Wet Etching. Applied Physics Express, 2009, 2, 121003.	2.4	10
11	Improvement in Lasing Characteristics of GaN-based Vertical-Cavity Surface-Emitting Lasers Fabricated Using a GaN Substrate. Applied Physics Express, 0, 2, 052101.	2.4	75
12	Development of GaN-Based Vertical-Cavity Surface-Emitting Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 850-860.	2.9	28
13	HRTEM investigation of high-reflectance AlN/GaN distributed Bragg-reflectors by inserting AlN/GaN superlattice. Journal of Crystal Growth, 2009, 311, 3089-3092.	1.5	10
14	Temperature dependent gain characteristics in GaN-based vertical-cavity surface-emitting lasers. Optics Express, 2009, 17, 20149.	3.4	3
15	InGaN/GaN multiple quantum well solar cells with long operating wavelengths. Applied Physics Letters, 2009, 94, .	3.3	321
16	Design optimization of GaN-based VCSELs. , 2009, , .		0
17	Recent Progress and Hot Technologies of Vertical-Cavity Surface Emitting Lasers. The Review of Laser Engineering, 2009, 37, 649-656.	0.0	0
18	Blue GaN-based vertical cavity surface emitting lasers by CW current injection at 77K. Proceedings of SPIE, 2009, , .	0.8	1

#	Article	IF	CITATIONS
19	Design of a silicon avalanche photodiode pixel with integrated laser diode using back-illuminated crystallographically etched silicon-on-sapphire with monolithically integrated microlens for dual-mode passive and active imaging arrays. Proceedings of SPIE, 2010, , .	0.8	1
20	Investigation of wavelength-dependent efficiency droop in InGaN light-emitting diodes. Applied Physics B: Lasers and Optics, 2010, 98, 779-789.	2.2	48
21	Wide Bandgap Semiconductor-Based Surface-Emitting Lasers: Recent Progress in GaN-Based Vertical Cavity Surface-Emitting Lasers and GaN-/ZnO-Based Polariton Lasers. Proceedings of the IEEE, 2010, 98, 1220-1233.	21.3	12
22	Strain profiling of AllnN/GaN distributed Bragg reflectors using in situ curvature measurements and ex situ X-ray diffraction. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 528, 58-64.	5.6	8
23	High Power Blue-Violet Superluminescent Light Emitting Diodes with InGaN Quantum Wells. Applied Physics Express, 2010, 3, 061002.	2.4	31
24	Ultraviolet GaN-based microdisk laser with AlN/AlGaN distributed Bragg reflector. Applied Physics Letters, 2010, 96, 151115.	3.3	20
25	GaN-based surface-emitting laser with two-dimensional photonic crystal acting as distributed-feedback grating and optical cladding. Applied Physics Letters, 2010, 97, .	3.3	30
26	Strain evaluation in AllnN/GaN Bragg mirrors by <i>in situ</i> curvature measurements and <i>ex situ</i> x-ray grazing incidence and transmission scattering. Applied Physics Letters, 2010, 97, .	3.3	21
27	Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature. Applied Physics Letters, 2010, 97, .	3.3	140
28	Room temperature photonic crystal band-edge lasing from nanopillar array on GaN patterned by nanosphere lithography. Journal of Applied Physics, 2010, 107, 063104.	2.5	12
29	InGaN/GaN multiple quantum well concentrator solar cells. Applied Physics Letters, 2010, 97, .	3.3	179
30	Light Emission Enhancement of GaN-Based Photonic Crystal With Ultraviolet AlN/AlGaN Distributed Bragg Reflector. Journal of Lightwave Technology, 2010, , .	4.6	1
31	Optical properties of InGaN quantum dots in monolithic pillar microcavities. Applied Physics Letters, 2010, 96, 251906.	3.3	9
32	CW current injection of GaN-based vertical cavity surface emitting laser with hybrid mirrors at room temperature. , 2010, , .		0
33	A novel class of coherent light emitters: polariton lasers. Semiconductor Science and Technology, 2011, 26, 014030.	2.0	24
34	High Q microcavity light emitting diodes with buried AlN current apertures. Applied Physics Letters, 2011, 99, 041101.	3.3	19
35	Oriented polaritons in strongly-coupled asymmetric double quantum well microcavities. Applied Physics Letters, 2011, 98, .	3.3	43
36	Demonstration of Blue and Green GaN-Based Vertical-Cavity Surface-Emitting Lasers by Current Injection at Room Temperature. Applied Physics Express, 2011, 4, 072103.	2.4	167

#	Article	IF	CITATIONS
37	Enhanced Output Power of GaN-Based Resonance Cavity Light-Emitting Diodes With Optimized ITO Design. Journal of Lightwave Technology, 2011, 29, 3757-3763.	4.6	2
38	Low-threshold lasing action in photonic crystal slabs enabled by Fano resonances. Optics Express, 2011, 19, 1539.	3.4	88
39	Expanding into blue and green. Nature Photonics, 2011, 5, 521-522.	31.4	2
40	Bragg polariton luminescence from a GaN membrane embedded in all dielectric microcavity. Applied Physics Letters, 2011, 98, 221101.	3.3	10
41	Characteristics of Current-Injected GaN-Based Vertical-Cavity Surface-Emitting Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 1594-1602.	2.9	30
42	Properties of monolithic InGaN quantum dot pillar microcavities. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 1573-1575.	1.8	0
43	Microphotoluminescence studies on GaNâ€based airpost pillar microcavities containing InGaN quantum wells and quantum dots. Physica Status Solidi (B): Basic Research, 2011, 248, 1756-1764.	1.5	2
44	Growth and characterization of nitrideâ€based distributed Bragg reflectors. Physica Status Solidi (B): Basic Research, 2011, 248, 1748-1755.	1.5	20
45	Electroluminescence from InGaN quantum dots in a fully monolithic GaN/AlInN cavity. Journal of Crystal Growth, 2011, 320, 28-31.	1.5	5
46	Enhanced conversion efficiency of InGaN multiple quantum well solar cells grown on a patterned sapphire substrate. Applied Physics Letters, 2011, 98, .	3.3	36
47	Lasing in metal-coated GaN nanostripe at room temperature. Applied Physics Letters, 2011, 98, 131110.	3.3	13
48	High-Q whispering-gallery mode lasing from nanosphere-patterned GaN nanoring arrays. Applied Physics Letters, 2011, 98, .	3.3	16
49	Nitride-Based LEDs and Superluminescent LEDs. , 2011, , 28-100.		4
50	High-reflectivity AlN/GaN distributed Bragg reflectors grown on sapphire substrates by MOCVD. Semiconductor Science and Technology, 2011, 26, 055013.	2.0	12
51	Tunable Light Emission from GaN-Based Photonic Crystal with Ultraviolet AlN/AlGaN Distributed Bragg Reflector. Japanese Journal of Applied Physics, 2011, 50, 04DG09.	1.5	4
52	Stress Relaxation in Low-Strain AlInN/GaN Bragg Mirrors. Japanese Journal of Applied Physics, 2011, 50, 031002.	1.5	0
53	Resonant-cavity blue light-emitting diodes fabricated by two-step substrate transfer technique. Electronics Letters, 2011, 47, 986.	1.0	9
54	Superluminescent light emitting diodes: the best out of two worlds. Proceedings of SPIE, 2012, , .	0.8	18

			2
#	ARTICLE	IF	CITATIONS
55	Demonstration of Nonpolar GaN-Based Vertical-Cavity Surface-Emitting Lasers. Applied Physics Express, 2012, 5, 092104.	2.4	104
56	Growth of II–VI and III-nitride quantum-dot microcavity systems. , 2012, , 447-484.		1
57	Transparent Conductive Distributed Bragg Reflectors Composed of High and Low Refractive Index Transparent Conductive Films. Japanese Journal of Applied Physics, 2012, 51, 052602.	1.5	1
58	Blue 6-ps short-pulse generation in gain-switched InGaN vertical-cavity surface-emitting lasers via impulsive optical pumping. Applied Physics Letters, 2012, 101, .	3.3	12
59	Single-mode whispering gallery lasing from metal-clad GaN nanopillars. Optics Letters, 2012, 37, 374.	3.3	24
60	Sub-wavelength GaN-based membrane high contrast grating reflectors. Optics Express, 2012, 20, 20551.	3.4	38
61	GaN blue VCSELs and photonic crystal lasers. , 2012, , .		0
62	Blue monolithic II-VI-based vertical-cavity surface-emitting laser. Applied Physics Letters, 2012, 100, 121102.	3.3	6
63	Holographic arrays based on semiconductor microstructures. Physical Review B, 2012, 86, .	3.2	1
64	Recent advances on CW current injection blue VCSELs. , 2012, , .		5
65	3-D Simulation of Current Spreading in Semiconductor Light-Emitting and Laser Diodes Using Nonlinear Boundary Method. IEEE Journal of Quantum Electronics, 2012, 48, 1085-1094.	1.9	0
66	Continuous Wave Operation of GaN Vertical Cavity Surface Emitting Lasers at Room Temperature. IEEE Journal of Quantum Electronics, 2012, 48, 1107-1112.	1.9	108
67	Generic picture of the emission properties of III-nitride polariton laser diodes: Steady state and current modulation response. Physical Review B, 2012, 86, .	3.2	25
68	High reflectance membrane-based distributed Bragg reflectors for GaN photonics. Applied Physics Letters, 2012, 101, .	3.3	52
69	Design of a high sensitivity emitter-detector avalanche photodiode imager using very high transmittance, back-illuminated, silicon-on-sapphire. Optical Engineering, 2012, 51, 063206.	1.0	2
70	GaN-Based VCSELs. Springer Series in Optical Sciences, 2013, , 403-427.	0.7	3
71	All-dielectric GaN microcavity: Strong coupling and lasing at room temperature. Applied Physics Letters, 2013, 102, 101113.	3.3	52
72	Optimization of Annealing Process for Improved InGaN Solar Cell Performance. Journal of Electronic Materials, 2013, 42, 3467-3470.	2.2	4

#	Article	IF	CITATIONS
73	Vertical cavity surface emitting lasers (VCSELs). , 2013, , 316-340.		3
74	GaN-Based Vertical Cavities with All Dielectric Reflectors by Epitaxial Lateral Overgrowth. Japanese Journal of Applied Physics, 2013, 52, 08JH03.	1.5	6
75	Ultraviolet GaN photodetectors on Si via oxide buffer heterostructures with integrated short period oxide-based distributed Bragg reflectors and leakage suppressing metal-oxide-semiconductor contacts. Journal of Applied Physics, 2014, 116, 083108.	2.5	5
76	Room temperature continuous wave lasing of electrically injected GaN-based vertical cavity surface emitting lasers. Applied Physics Letters, 2014, 104, .	3.3	78
77	Numerical analysis on current and optical confinement of III-nitride vertical-cavity surface-emitting lasers. , 2014, , .		2
78	Design and lasing characteristics of GaN vertical elongated cavity surface emitting lasers. Proceedings of SPIE, 2014, , .	0.8	6
79	Fabrication and characteristics of a GaN-based microcavity laser with shallow etched mesa. Applied Physics Express, 2014, 7, 062101.	2.4	5
80	Enhanced ultraviolet GaN photo-detector response on Si(111) via engineered oxide buffers with embedded Y2O3/Si distributed Bragg reflectors. Applied Physics Letters, 2014, 104, .	3.3	22
81	Nonpolar III-nitride vertical-cavity surface emitting lasers with a polarization ratio of 100% fabricated using photoelectrochemical etching. Applied Physics Letters, 2014, 105, .	3.3	54
82	GaN-based vertical-cavity laser performance improvements using tunnel-junction-cascaded active regions. Applied Physics Letters, 2014, 105, 011116.	3.3	13
83	Numerical analysis on current and optical confinement of III-nitride vertical-cavity surface-emitting lasers. Optics Express, 2014, 22, 9789.	3.4	19
84	Design and fabrication of a InGaN vertical-cavity surface-emitting laser with a composition-graded electron-blocking layer. Laser Physics Letters, 2014, 11, 085002.	1.4	7
85	A Laser Diode Driver with Hyperbolic Time Dependent Current in 0.35µm BiCMOS Technology. , 2015, , .		0
86	Smooth e-beam-deposited tin-doped indium oxide for III-nitride vertical-cavity surface-emitting laser intracavity contacts. Journal of Applied Physics, 2015, 118, .	2.5	24
87	Solar Cells with InGaN/GaN and InP/InGaAsP and InGaP/GaAs Multiple Quantum Wells. , 2015, , .		2
88	Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers fabricated using epitaxial lateral overgrowth. Applied Physics Express, 2015, 8, 062702.	2.4	75
89	Three-Dimensional Quantum Confinement of Charge Carriers in Self-Organized AlGaN Nanowires: A Viable Route to Electrically Injected Deep Ultraviolet Lasers. Nano Letters, 2015, 15, 7801-7807.	9.1	80
90	Control of optical loss in GaN-based planar cavities. Superlattices and Microstructures, 2015, 88, 561-566.	3.1	7

#	Article	IF	Citations
91	Growth of AlInN/GaN distributed Bragg reflectors with improved interface quality. Journal of Crystal Growth, 2015, 414, 105-109.	1.5	22
92	Fabrication of SiC membrane HCG blue reflector using nanoimprint lithography. Proceedings of SPIE, 2015, , .	0.8	3
93	Status and future of GaN-based vertical-cavity surface-emitting lasers. Proceedings of SPIE, 2015, , .	0.8	8
94	Advances in Illâ€nitride semiconductor microdisk lasers. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 960-973.	1.8	48
95	In x Ga 1â^' x N/GaN Multiple Quantum Well Solar Cells with Conversion Efficiency of 3.77%. Chinese Physics Letters, 2015, 32, 088401.	3.3	6
96	Optically pumped GaN vertical cavity surface emitting laser with high index-contrast nanoporous distributed Bragg reflector. Optics Express, 2015, 23, 11023.	3.4	34
97	Whispering gallery mode lasing in optically isolated III-nitride nanorings. Optics Letters, 2015, 40, 2564.	3.3	11
98	Examination of the temperature related structural defects of InGaN/GaN solar cells. Superlattices and Microstructures, 2015, 86, 379-389.	3.1	10
99	Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture. Applied Physics Letters, 2015, 107, .	3.3	85
100	An electrically injected AlGaN nanowire laser operating in the ultraviolet-C band. Applied Physics Letters, 2015, 107, .	3.3	78
101	Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact. Applied Physics Letters, 2015, 107, .	3.3	122
102	High reflectivity III-nitride UV-C distributed Bragg reflectors for vertical cavity emitting lasers. Journal of Applied Physics, 2016, 120, .	2.5	18
103	Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture. Applied Physics Letters, 2016, 108, 031111.	3.3	39
104	GaN-based vertical-cavity surface emitting lasers with sub-milliamp threshold and small divergence angle. Applied Physics Letters, 2016, 109, .	3.3	46
105	Strain management of AlGaN-based distributed Bragg reflectors with GaN interlayer grown by metalorganic chemical vapor deposition. Applied Physics Letters, 2016, 109, .	3.3	14
106	Hybrid ZnO/GaN distributed Bragg reflectors grown by plasma-assisted molecular beam epitaxy. APL Materials, 2016, 4, 086106.	5.1	7
107	Optically pumped vertical-cavity surface-emitting laser at 374.9 nm with an electrically conducting n-type distributed Bragg reflector. Applied Physics Express, 2016, 9, 111002.	2.4	21
108	High reflectance dielectric distributed Bragg reflectors for near ultra-violet planar microcavities: SiO2/HfO2 versus SiO2/SiNx. Journal of Applied Physics, 2016, 120, .	2.5	6

#	Article	IF	CITATIONS
109	Analysis of Threshold Currents and Transverse Modes in Nitride VCSELs With Different Resonators. IEEE Journal of Quantum Electronics, 2016, 52, 1-7.	1.9	8
110	Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers. Optics Express, 2016, 24, 15546.	3.4	57
111	Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors. Applied Physics Express, 2016, 9, 102101.	2.4	78
112	Lateral carrier confinement of GaN-based vertical-cavity surface-emitting diodes using boron ion implantation. Japanese Journal of Applied Physics, 2016, 55, 122101.	1.5	26
113	Milliwattâ€class GaNâ€based blue verticalâ€cavity surfaceâ€emitting lasers fabricated by epitaxial lateral overgrowth. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1170-1176.	1.8	65
114	Progress and challenges in electrically pumped GaN-based VCSELs. Proceedings of SPIE, 2016, , .	0.8	8
115	Metalorganic chemical vapor phase epitaxy of narrow-band distributed Bragg reflectors realized by GaN:Ge modulation doping. Journal of Crystal Growth, 2016, 440, 6-12.	1.5	11
116	Comparison of nonpolar III-nitride vertical-cavity surface-emitting lasers with tunnel junction and ITO intracavity contacts. Proceedings of SPIE, 2016, , .	0.8	8
117	Continuous wave operation of high power GaN-based blue vertical-cavity surface-emitting lasers using epitaxial lateral overgrowth. Proceedings of SPIE, 2016, , .	0.8	3
118	High-performance AlGaN-based solar-blind avalanche photodiodes with dual-periodic III–nitride distributed Bragg reflectors. Applied Physics Express, 2017, 10, 034302.	2.4	10
119	Electrically conductive ZnO/GaN distributed Bragg reflectors grown by hybrid plasma-assisted molecular beam epitaxy. Proceedings of SPIE, 2017, , .	0.8	1
120	Optimization of growth and fabrication techniques to enhance the InGaN/GaN multiple quantum well solar cells performance. Superlattices and Microstructures, 2017, 109, 194-200.	3.1	13
121	Structural, optical and electronic properties of a Mg incorporated GaN nanowall network. RSC Advances, 2017, 7, 25998-26005.	3.6	16
122	Wurtzite spin lasers. Physical Review B, 2017, 95, .	3.2	21
123	Defects in III-nitride microdisk cavities. Semiconductor Science and Technology, 2017, 32, 033002.	2.0	5
124	High-temperature operation of GaN-based vertical-cavity surface-emitting lasers. Applied Physics Express, 2017, 10, 112101.	2.4	31
125	Simultaneous blue and green lasing of GaN-based vertical-cavity surface-emitting lasers. Semiconductor Science and Technology, 2017, 32, 105012.	2.0	7
126	Effect of compositional interlayers on the vertical electrical conductivity of Si-doped AlN/GaN distributed Bragg reflectors grown on SiC. Applied Physics Express, 2017, 10, 055501.	2.4	4

#	Article	IF	CITATIONS
127	Monolithically Integrated Semiconductor Lasers. Optical and Fiber Communications Reports, 2017, , 81-115.	0.1	0
128	Nonpolar GaN-based vertical-cavity surface-emitting lasers. , 2017, , .		1
129	High Reflectivity Hybrid AlGaN/Silver Distributed Bragg Reflectors for Use in the UV-Visible Spectrum. IEEE Journal of Quantum Electronics, 2017, 53, 1-8.	1.9	6
130	Ultracompact Multilayer Fabry–Perot Filter Deposited in a Micropit. Journal of Lightwave Technology, 2017, 35, 4973-4979.	4.6	6
131	Optical properties and resonant cavity modes in axial InGaN/GaN nanotube microcavities. Optics Express, 2017, 25, 28246.	3.4	22
132	Electrically Pumped III-N Microcavity Light Emitters Incorporating an Oxide Confinement Aperture. Nanoscale Research Letters, 2017, 12, 15.	5.7	9
133	Nanoporous distributed Bragg reflectors on free-standing nonpolar <i>m</i> -plane GaN. Applied Physics Letters, 2018, 112, .	3.3	34
134	Reduction of Lasing Threshold of GaN-Based Vertical-Cavity Surface-Emitting Lasers by Using Short Cavity Lengths. IEEE Transactions on Electron Devices, 2018, 65, 2504-2508.	3.0	4
135	Enhancement of slope efficiency and output power in GaN-based vertical-cavity surface-emitting lasers with a SiO2-buried lateral index guide. Applied Physics Letters, 2018, 112, .	3.3	52
136	A GaNâ€Based VCSEL with a Convex Structure for Optical Guiding. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700648.	1.8	35
137	Improvement of Slope Efficiency and Output Power in GaN-Based VCSELs with SiO <inf>2</inf> -Buried Lateral Index Guide. , 2018, , .		0
138	Lasing Action in GaN-Based VCSELs with top High-Contrast Grating Reflectors. , 2018, , .		0
139	High-output-power and high-temperature operation of blue GaN-based vertical-cavity surface-emitting laser. Applied Physics Express, 2018, 11, 112101.	2.4	55
140	Green Vertical-Cavity Surface-Emitting Lasers Based on Combination of Blue-Emitting Quantum Wells and Cavity-Enhanced Recombination. IEEE Transactions on Electron Devices, 2018, 65, 4401-4406.	3.0	8
141	Vertical Electrical Conductivity of ZnO/GaN Multilayers for Application in Distributed Bragg Reflectors. IEEE Journal of Quantum Electronics, 2018, 54, 1-6.	1.9	1
142	Forty years of vertical-cavity surface-emitting laser: Invention and innovation. Japanese Journal of Applied Physics, 2018, 57, 08PA01.	1.5	75
143	Ultralow-threshold continuous-wave lasing assisted by a metallic optofluidic cavity exploiting continuous pump. Optics Letters, 2018, 43, 847.	3.3	6
144	Thermal properties of GaN-based semiconductor-metal subwavelength grating VCSELs and novel current injection scheme. Journal Physics D: Applied Physics, 2018, 51, 285102.	2.8	10

#	Article	IF	CITATIONS
145	GaN-based vertical-cavity surface-emitting lasers with AlInN/GaN distributed Bragg reflectors. Reports on Progress in Physics, 2019, 82, 012502.	20.1	40
146	IIIâ€Nitride Micro‣EDs for Efficient Emissive Displays. Laser and Photonics Reviews, 2019, 13, 1900141.	8.7	93
147	Watt-class blue vertical-cavity surface-emitting laser arrays. Applied Physics Express, 2019, 12, 091004.	2.4	35
148	In-phase supermode operation in GaN-based vertical-cavity surface-emitting laser. Applied Physics Letters, 2019, 115, .	3.3	21
149	Thermal Design Considerations for III-N Vertical-Cavity Surface-Emitting Lasers Using Electro-Opto-Thermal Numerical Simulations. IEEE Journal of Quantum Electronics, 2019, 55, 1-8.	1.9	6
150	Formation mechanism and separation of the mesoporous GaN Distributed Bragg reflectors from sapphire substrate. Materials Research Express, 2019, 6, 115096.	1.6	1
151	Influence of Resonator Length on Performance of Nitride TJ VCSEL. IEEE Journal of Quantum Electronics, 2019, 55, 1-9.	1.9	5
152	Demonstration of polarization control GaN-based micro-cavity lasers using a rigid high-contrast grating reflector. Scientific Reports, 2019, 9, 13055.	3.3	12
153	Size effect of nanocavity on the performance of InGaN/GaN nanorod based plasmonic nanolaser. Journal of Luminescence, 2019, 208, 279-283.	3.1	5
154	GaN-based vertical-cavity surface-emitting lasers using n-type conductive AlInN/GaN bottom distributed Bragg reflectors with graded interfaces. Japanese Journal of Applied Physics, 2019, 58, SCCC01.	1.5	15
155	A review on the latest progress of visible GaN-based VCSELs with lateral confinement by curved dielectric DBR reflector and boron ion implantation. Japanese Journal of Applied Physics, 2019, 58, SC0806.	1.5	36
156	Design and Fabrication of the Reliable GaN Based Vertical-Cavity Surface-Emitting Laser via Tunnel Junction. Crystals, 2019, 9, 187.	2.2	11
157	Observation of single optical site of Eu and Mg codoped GaN grown by NH3-source molecular beam epitaxy. Journal of Applied Physics, 2019, 125, .	2.5	6
158	Thermal transport of nanoporous gallium nitride for photonic applications. Journal of Applied Physics, 2019, 125, .	2.5	17
159	Distributed Bragg Reflectors for GaN-Based Vertical-Cavity Surface-Emitting Lasers. Applied Sciences (Switzerland), 2019, 9, 1593.	2.5	50
160	GaN-based Vertical-Cavity Surface-Emitting Lasers Incorporating Dielectric Distributed Bragg Reflectors. Applied Sciences (Switzerland), 2019, 9, 733.	2.5	15
161	Sub-milliampere-threshold continuous wave operation of GaN-based vertical-cavity surface-emitting laser with lateral optical confinement by curved mirror. Applied Physics Express, 2019, 12, 044004.	2.4	30
162	High-Power GaN-Based Vertical-Cavity Surface-Emitting Lasers with AllnN/GaN Distributed Bragg Reflectors. Applied Sciences (Switzerland), 2019, 9, 416.	2.5	42

#	Article	IF	CITATIONS
163	Stress relaxation in semipolar and nonpolar III-nitride heterostructures by formation of misfit dislocations of various origin. Journal of Applied Physics, 2019, 126, .	2.5	10
164	Origin of Blue Luminescence in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/Math/MathML">display="inline" overflow="scroll"><mml:mi>Mg</mml:mi> </mml:math> -Doped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mi>Ca</mml:mi><mml:mi mathvariant="normal">N</mml:mi>.</mml:math 	3.8	19
165	Physical Review Applied, 2019, 11, . Inhomogeneous Current Injection and Filamentary Lasing of Semipolar (2021Â⁻) Blue GaNâ€Based Verticalâ€Cavity Surfaceâ€Emitting Lasers with Buried Tunnel Junctions. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900718.	1.8	14
166	Multiwavelength GaNâ€Based Surfaceâ€Emitting Lasers and Their Design Principles. Annalen Der Physik, 2020, 532, 1900308.	2.4	5
167	An electrically pumped surface-emitting semiconductor green laser. Science Advances, 2020, 6, eaav7523.	10.3	70
168	Cavity designs for nitride VCSELs with dielectric DBRs operating efficiently at different temperatures. Optics and Laser Technology, 2020, 132, 106482.	4.6	6
169	Room-temperature operation of c-plane GaN vertical cavity surface emitting laser on conductive nanoporous distributed Bragg reflector. Applied Physics Letters, 2020, 117, .	3.3	30
170	Highly Reflective Periodic Nanostructure Based on Thermal Evaporated Tungsten Oxide and Calcium Fluoride for Advanced Photonic Applications. ACS Applied Nano Materials, 2020, 3, 10978-10985.	5.0	5
173	Enhancing the lateral current injection by modulating the doping type in the p-type hole injection layer for InGaN/GaN vertical cavity surface emitting lasers. Optics Express, 2020, 28, 18035.	3.4	6
174	Dislocationâ€Free and Atomically Flat GaN Hexagonal Microprisms for Device Applications. Small, 2020, 16, 1907364.	10.0	10
175	Development of microLED. Applied Physics Letters, 2020, 116, .	3.3	152
176	Room-temperature continuous-wave operation of green vertical-cavity surface-emitting lasers with a curved mirror fabricated on {20â^21} semi-polar GaN. Applied Physics Express, 2020, 13, 041002.	2.4	27
177	Electrically Injected GaN-Based Vertical-Cavity Surface-Emitting Lasers with TiO ₂ High-Index-Contrast Grating Reflectors. ACS Photonics, 2020, 7, 861-866.	6.6	21
178	Anti-guiding and guiding effects in GaN-based vertical-cavity surface-emitting lasers. AlP Advances, 2020, 10, 025204.	1.3	3
179	High Responsivity and Wavelength Selectivity of GaNâ€Based Resonant Cavity Photodiodes. Advanced Optical Materials, 2020, 8, 1901276.	7.3	24
180	GaN-based vertical cavity surface emitting lasers with lateral optical confinements and conducting distributed Bragg reflectors. Japanese Journal of Applied Physics, 2020, 59, SGGE08.	1.5	12
181	Effects of Lateral Optical Confinement In GaN VCSELs With Double Dielectric DBRs. IEEE Photonics Journal, 2020, 12, 1-8.	2.0	8
182	A review on the low external quantum efficiency and the remedies for GaN-based micro-LEDs. Journal Physics D: Applied Physics, 2021, 54, 153002.	2.8	42

#	ARTICLE	IF	CITATIONS
183	Dynamic characteristics and device degradation of GaN-based vertical-cavity surface-emitting laser with an AlInN/GaN distributed Bragg reflector. Japanese Journal of Applied Physics, 2021, 60, SBBE01.	1.5	4
184	Study of surface roughness of lifted-off epitaxial lateral overgrown GaN layers for the n-DBR mirror of a III-nitride vertical-cavity surface emitting laser. Applied Physics Express, 2021, 14, 031002.	2.4	4
185	AlGaN-Based Deep Ultraviolet Vertical-Cavity Surface-Emitting Laser. IEEE Electron Device Letters, 2021, 42, 375-378.	3.9	19
186	Challenges and Advancement of Blue III-Nitride Vertical-Cavity Surface-Emitting Lasers. Micromachines, 2021, 12, 676.	2.9	6
187	Nearly total optical transmission of linearly polarized light through transparent electrode composed of GaSb monolithic high-contrast grating integrated with gold. Nanophotonics, 2021, 10, 3823-3830.	6.0	4
188	Artificially formed resistive ITO/p-GaN junction to suppress the current spreading and decrease the surface recombination for GaN-based micro-light emitting diodes. Optics Express, 2021, 29, 31201.	3.4	16
189	Monolithic high-index contrast grating mirror for a GaN-based vertical-cavity surface-emitting laser. Photonics Research, 2021, 9, 2214.	7.0	3
190	Electro-Optical Numerical Modeling for the Design of UVA Nitride-Based Vertical-Cavity Surface-Emitting Laser Diodes. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-6.	2.9	0
191	Nanolasers Incorporating Co _{<i>x</i>} Ga _{0.6–<i>x</i>} ZnSe _{0.4} Nanoparticle Arrays with Wavelength Tunability at Room Temperature. ACS Applied Materials & Interfaces, 2021, 13, 6975-6986.	8.0	13
192	A comparative study of thermal characteristics of GaN-based VCSELs with three different typical structures. Semiconductor Science and Technology, 2018, 33, 015016.	2.0	24
193	Porous semiconductor compounds. Semiconductor Science and Technology, 2020, 35, 103001.	2.0	33
194	Purcell-Effect-Enhanced Radiative Rate of Eu 3+ Ions in GaN Microdisks. Physical Review Applied, 2020, 14, .	3.8	12
195	Development of nanopore-based near ultraviolet vertical-cavity surface emitting lasers. , 2019, , .		3
196	VCSEL: born small and grown big. , 2020, , .		12
197	Polarization-pinned emission of a continuous-wave optically pumped nonpolar GaN-based VCSEL using nanoporous distributed Bragg reflectors. Optics Express, 2019, 27, 9495.	3.4	10
198	Transparent electrode employing deep–subwavelength monolithic high-contrast grating integrated with metal. Optics Express, 2020, 28, 28383.	3.4	4
199	Fabrication and properties of high quality InGaN-based LEDs with highly reflective nanoporous GaN mirrors. Photonics Research, 2018, 6, 1144.	7.0	18
200	Vertical-cavity surface-emitting lasers for data communication and sensing. Photonics Research, 2019, 7, 121.	7.0	155

#	Article	IF	CITATIONS
201	Nano-height cylindrical waveguide in GaN-based vertical-cavity surface-emitting lasers. Applied Physics Express, 2020, 13, 082005.	2.4	14
202	Room-temperature continuous-wave operations of GaN-based vertical-cavity surface-emitting lasers with buried GaInN tunnel junctions. Applied Physics Express, 2020, 13, 111003.	2.4	12
203	High-quality AllnN/GaN distributed Bragg reflectors grown by metalorganic vapor phase epitaxy. Applied Physics Express, 2020, 13, 125504.	2.4	12
204	Stress Relaxation in Low-Strain AlInN/GaN Bragg Mirrors. Japanese Journal of Applied Physics, 2011, 50, 031002.	1.5	1
205	Transparent Conductive Distributed Bragg Reflectors Composed of High and Low Refractive Index Transparent Conductive Films. Japanese Journal of Applied Physics, 2012, 51, 052602.	1.5	3
206	III-Nitride Light-Emitting Devices. Photonics, 2021, 8, 430.	2.0	18
207	GaN-based Blue Vertical Cavity and Photonic Crystal Surface Emitting Laser. , 2009, , .		0
208	Novel blue continuous-wave current-injected light source. SPIE Newsroom, 2009, , .	0.1	0
209	Tunable Light Emission from GaN-Based Photonic Crystal with Ultraviolet AlN/AlGaN Distributed Bragg Reflector. Japanese Journal of Applied Physics, 2011, 50, 04DG09.	1.5	0
210	Characteristics of an Electrically Pumped GaN-based Microcavity Light Emitter with an AlN Current Blocking Layer. , 2012, , .		0
211	The Future Prospects of Room-Temperature Polariton Lasers. Springer Series in Solid-state Sciences, 2012, , 329-348.	0.3	0
212	VCSEL Swept Light Sources. , 2015, , 659-686.		0
213	Monolityczna siatka HCG jako zwierciadÅ,o w azotkowym laserze VCSEL. Elektronika, 2016, 1, 37-40.	0.0	1
214	Development of GaN-Based Resonant Cavity Light Emitting Diodes. Optoelectronics, 2017, 07, 127-140.	0.0	0
215	PoczÄ…tek i rozwój póÅ,przewodnikowych laserów VCSEL. Przeglad Elektrotechniczny, 2017, 1, 3-10.	0.2	0
216	GaN-Based Surface-Emitting Lasers. Series in Optics and Optoelectronics, 2017, , 557-594.	0.0	0
217	GaN vertical-cavity surface-emitting laser with a high-contrast grating reflector. , 2018, , .		1
218	Metalized monolithic high-contrast grating as a mirror for GaN-based VCSELs. , 2018, , .		0

		CITATION REPORT		
#	ARTICLE	2010	IF	CITATIONS
219	Influence of Al ion implantation on electrical and optical properties in nitride TJ VCSEL. ,	2019,,.		0
220	WpÅ,yw niedokÅ,adnoÅ›ci wykonania wybranych elementów azotkowego lasera VCSE charakterystyki emisyjne. Przeglad Elektrotechniczny, 2019, 1, 129-132.	L na jego	0.2	0
221	Polarization control of GaN-based micro-caivty lasers with top high-contrast grating reflection 2019, , .	ctors. ,		0
222	Optical microprism cavities based on dislocation-free GaN. Applied Physics Letters, 2020), 117, 231107.	3.3	0
223	Low-resistivity vertical current transport across AlInN/GaN interfaces. Japanese Journal o Physics, 2021, 60, 010905.	f Applied	1.5	1
224	Sputtering AlN/InxAl1â [~] xN distributed Bragg reflector across the full visible range on Si substrates. Optics Letters, 2020, 45, 6711.	and SiO2	3.3	0
225	Aperture diameter dependences in GaN-based vertical-cavity surface-emitting lasers witl cylindrical waveguide formed by BCl ₃ dry etching. Applied Physics Express,		2.4	3
226	GaN-based vertical-cavity surface-emitting laser incorporating a TiO2 high-index-contras 2020, , .	t grating. ,		0
227	Nonpolar GaN-based VCSELs with lattice-matched nanoporous distributed Bragg reflect 2020, , .	or mirrors. ,		1
228	Design of GaN surface-emitting laser based on angular-symmetry-breaking concentric-rigrating. , 2020, , .	ng surface		0
229	Low-threshold wavelength-tunable ultraviolet vertical-cavity surface-emitting lasers fron nm. Fundamental Research, 2021, 1, 684-690.	1 376 to 409	3.3	7
230	GaN Blue Vertical-Cavity Surface-Emitting Lasers Using Nanoporous Distributed Bragg R 2021, , .	eflectors. ,		0
231	Narrow Emission of Blue GaN-Based Vertical-Cavity Surface-Emitting Lasers With a Curv Photonics Journal, 2022, 14, 1-5.	ed Mirror. IEEE	2.0	6
232	Use of electrochemistry in mini-/micro-LEDs and VCSELs. , 2022, , .			0
233	Performance Analyses of Photonic-Crystal Surface-Emitting Laser: Toward High-Speed C Communication. Nanoscale Research Letters, 2022, 17, .	ptical	5.7	8
234	High-quality n-type conductive Si-doped AlInN/GaN DBRs with hydrogen cleaning. Applie Express, 2022, 15, 112007.	d Physics	2.4	3
235	Fabrication of GaN-air channels for embedded photonic structures. Materials Science in Semiconductor Processing, 2023, 155, 107234.		4.0	1
236	Highly efficient operation and uniform characteristics of curved mirror vertical-cavity surface-emitting lasers. Applied Physics Express, 2023, 16, 012006.		2.4	7

#	Article	IF	CITATIONS
237	High-quality AlGaN epitaxial structures and realization of UVC vertical-cavity surface-emitting lasers. Science China Materials, 2023, 66, 1978-1988.	6.3	1
238	Lattice-matched AlInN/GaN bottom DBR impact on GaN-based vertical-cavity-surface-emitting laser diodes: systematical investigations. Applied Optics, 2023, 62, 3431.	1.8	1
239	GaN-Based VCSELs with A Monolithic Curved Mirror: Challenges and Prospects. Photonics, 2023, 10, 470.	2.0	4
240	GeSn/Ge Multiquantum-Well Vertical-Cavity Surface-Emitting p-i-n Structures and Diode Emitters on a 200 mm Ge-on-Insulator Platform. ACS Photonics, 2023, 10, 1716-1725.	6.6	3
241	In situ cavity length control of GaN-based vertical-cavity surface-emitting lasers with in situ reflectivity spectra measurements. Japanese Journal of Applied Physics, 2023, 62, 066504.	1.5	2
242	N-type conducting AlInN/GaN distributed Bragg reflectors with AlGaN graded layers. Japanese Journal of Applied Physics, 2023, 62, SN1012.	1.5	0
243	Current spreading structure of GaN-based vertical-cavity surface-emitting lasers. Optics Letters, 2023, 48, 5141.	3.3	0
244	Vertical Cavity Surface-emitting Lasers - an encyclopedia article. , 2006, , .		0
245	Blue Lasers - an encyclopedia article. , 2005, , .		0
246	Demonstration of III-nitride vertical-cavity surface-emitting lasers with a topside dielectric curved mirror. Applied Physics Express, 0, , .	2.4	0
247	Green-wavelength GaN-based photonic-crystal surface-emitting lasers. Applied Physics Express, 2024, 17, 012002.	2.4	0