Do phosphorus requirements for RNA limit genome size

Genome 51, 685-691 DOI: 10.1139/g08-053

Citation Report

#	Article	IF	CITATIONS
1	Genome size as a determinant of growth and life-history traits in crustaceans. Biological Journal of the Linnean Society, 0, 98, 393-399.	0.7	31
2	Can phosphorus limitation contribute to the maintenance of sex? A test of a key assumption. Journal of Evolutionary Biology, 2009, 22, 1359-1363.	0.8	25
3	Maximizing growth rate at low temperatures: RNA:DNA allocation strategies and life history traits of Arctic and temperate Daphnia. Polar Biology, 2010, 33, 1255-1262.	0.5	19
4	Genome streamlining and the elemental costs of growth. Trends in Ecology and Evolution, 2010, 25, 75-80.	4.2	127
5	The relationship between relative growth rate and whole-plant C : N : P stoichiometry in plant seedlings grown under nutrient-enriched conditions. Journal of Plant Ecology, 2011, 4, 147-156.	1.2	31
6	SENSITIVITY TO PHOSPHORUS LIMITATION INCREASES WITH PLOIDY LEVEL IN A NEW ZEALAND SNAIL. Evolution; International Journal of Organic Evolution, 2012, 67, no-no.	1.1	27
7	The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: a review and perspectives. Biogeochemistry, 2012, 111, 1-39.	1.7	303
8	Temperatureâ€size relations from the cellularâ€genomic perspective. Biological Reviews, 2013, 88, 476-489.	4.7	88
9	Effect of phosphorus availability on the selection of species with different ploidy levels and genome sizes in a longâ€ŧerm grassland fertilization experiment. New Phytologist, 2013, 200, 911-921.	3.5	106
10	Can resource costs of polyploidy provide an advantage to sex?. Heredity, 2013, 110, 152-159.	1.2	22
12	Ecological stoichiometry: An elementary approach using basic principles. Limnology and Oceanography, 2013, 58, 2219-2236.	1.6	251
13	Multigenerational genomic responses to dietary phosphorus and temperature in Daphnia. Genome, 2014, 57, 439-448.	0.9	5
14	Variation in elemental stoichiometry and <scp>RNA</scp> : <scp>DNA</scp> in four phyla of benthic organisms from coral reefs. Functional Ecology, 2014, 28, 1299-1309.	1.7	8
15	Nucleic Acid Content in Crustacean Zooplankton: Bridging Metabolic and Stoichiometric Predictions. PLoS ONE, 2014, 9, e86493.	1.1	25
16	Nitrogen limitation as a driver of genome size evolution in a group of karst plants. Scientific Reports, 2015, 5, 11636.	1.6	45
17	Phosphorus use and excretion varies with ploidy level in <i>Daphnia</i> . Journal of Plankton Research, 0, , fbv095.	0.8	5
18	Ecophysiology of picophytoplankton in different water masses of the northern Bering Sea. Polar Biology, 2016, 39, 1381-1397.	0.5	6
19	Genome size in arthropods; different roles of phylogeny, habitat and life history in insects and crustaceans. Ecology and Evolution, 2017, 7, 5939-5947.	0.8	63

CITATION REPORT

#	Article	IF	CITATIONS
20	Comparative study of trophic and elemental characteristics of zooplankton in deep (500–3500â€ ⁻ m) and shallow (0–200â€ ⁻ m) layers. Deep-Sea Research Part I: Oceanographic Research Papers, 2018, 142, 107-115.	0.6	2
21	Genome size of chrysophytes varies with cell size and nutritional mode. Organisms Diversity and Evolution, 2018, 18, 163-173.	0.7	48
22	Bromeliaceae subfamilies show divergent trends of genome size evolution. Scientific Reports, 2019, 9, 5136.	1.6	25
23	Investigating the role of life-history traits in mammalian genomes. Animal Biology, 2020, 70, 121-130.	0.6	4
24	Is the evolution of carnivory connected with genome size reduction?. American Journal of Botany, 2020, 107, 1253-1259.	0.8	10
25	Divergent nucleic acid allocation in juvenile insects of different metamorphosis modes. Scientific Reports, 2021, 11, 10313.	1.6	4
26	Nutrient criteria to achieve New Zealand's riverine macroinvertebrate targets. PeerJ, 2021, 9, e11556.	0.9	6
28	The salmon louse genome may be much larger than sequencing suggests. Scientific Reports, 2022, 12, 6616.	1.6	3
30	How do tropical tree species maintain high growth rates on low-phosphorus soils?. Plant and Soil, 2022, 480, 31-56.	1.8	9