Microneedle-Based Automated Therapy for Diabetes M

Journal of Diabetes Science and Technology 2, 1122-1129

DOI: 10.1177/193229680800200621

Citation Report

#	Article	IF	CITATIONS
1	Ultrafine hollow needle formation on silicon. Journal of Applied Physics, 2010, 107, 083711.	1.1	6
2	Micro Electromechanical Systems (MEMS) Based Microfluidic Devices for Biomedical Applications. International Journal of Molecular Sciences, 2011, 12, 3648-3704.	1.8	195
3	MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diabetes Research and Clinical Practice, 2011, 91, 94-100.	1.1	156
4	Skin penetration and fracture strength testing of silicon dioxide microneedles. Sensors and Actuators A: Physical, 2011, 170, 180-186.	2.0	15
5	Ultrafine Silicon Nano-wall Hollow Needles and Applications in Inclination Sensor and Gas Transport. Materials Research Society Symposia Proceedings, 2011, 1299, 1.	0.1	0
6	Microneedles for drug and vaccine delivery. Advanced Drug Delivery Reviews, 2012, 64, 1547-1568.	6.6	1,279
7	Use of Microneedle Array Devices for Continuous Glucose Monitoring: A Review. Diabetes Technology and Therapeutics, 2013, 15, 101-115.	2.4	108
8	Microneedles for drug delivery and monitoring. , 2013, , 185-230.		15
9	Recent advances in cortisol sensing technologies for point-of-care application. Biosensors and Bioelectronics, 2014, 53, 499-512.	5. 3	238
10	Microneedles for Transdermal Biosensing: Current Picture and Future Direction. Advanced Healthcare Materials, 2015, 4, 2606-2640.	3.9	173
11	Microneedle characterisation: the need for universal acceptance criteria and GMP specifications when moving towards commercialisation. Drug Delivery and Translational Research, 2015, 5, 313-331.	3.0	96
12	Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Materials Science and Engineering Reports, 2016, 104, 1-32.	14.8	582
13	Use of Drawing Lithography-Fabricated Polyglycolic Acid Microneedles for Transdermal Delivery of Itraconazole to a Human Basal Cell Carcinoma Model Regenerated on Mice. Jom, 2016, 68, 1128-1133.	0.9	14
15	Progress and challenges in macroencapsulation approaches for type 1 diabetes (T1D) treatment: Cells, biomaterials, and devices. Biotechnology and Bioengineering, 2016, 113, 1381-1402.	1.7	74
16	Microneedles for drug delivery: trends and progress. Drug Delivery, 2016, 23, 2338-2354.	2.5	146
17	Towards autonomous lab-on-a-chip devices for cell phone biosensing. Biosensors and Bioelectronics, 2016, 77, 1153-1167.	5.3	35
18	Fabrication of Microneedles. , 2017, , 305-323.		2
20	Safety of Microneedles for Transdermal Drug Delivery. Journal of Pharmacovigilance, 2018, 06, .	0.2	2

#	ARTICLE	IF	CITATIONS
21	Advances in the Design of Transdermal Microneedles for Diagnostic and Monitoring Applications. Small, 2018, 14, e1803186.	5.2	37
22	Blood sampling using microneedles as a minimally invasive platform for biomedical diagnostics. Applied Materials Today, 2018, 13, 144-157.	2.3	41
23	Minimally invasive technique for measuring transdermal glucose with a fluorescent biosensor. Analytical and Bioanalytical Chemistry, 2018, 410, 7249-7260.	1.9	16
25	Microneedles as Enhancer of Drug Absorption Through the Skin and Applications in Medicine and Cosmetology. Journal of Pharmacy and Pharmaceutical Sciences, 2018, 21, 73-93.	0.9	53
26	Editors' Choiceâ€"Reviewâ€"In Vivo and In Vitro Microneedle Based Enzymatic and Non-Enzymatic Continuous Glucose Monitoring Biosensors. ECS Journal of Solid State Science and Technology, 2018, 7, Q3159-Q3171.	0.9	30
27	Optimization Design and Fabrication of Polymer Micro Needle by Hot Embossing Method. International Journal of Precision Engineering and Manufacturing, 2019, 20, 631-640.	1.1	11
28	E-drug delivery: a futuristic approach. Drug Discovery Today, 2019, 24, 1023-1030.	3.2	21
29	Numerical simulation of a microfluidic system for regular glucose measurement., 2019,,.		1
30	Use of Hollow Microneedle Drug Delivery Systems in Treatment of Diabetes Mellitus. IFMBE Proceedings, 2020, , 575-580.	0.2	2
31	Towards a transdermal membrane biosensor for the detection of lactate in body fluids. Sensors and Actuators B: Chemical, 2020, 308, 127645.	4.0	17
32	Biosensing in dermal interstitial fluid using microneedle based electrochemical devices. Sensing and Bio-Sensing Research, 2020, 29, 100348.	2.2	83
33	Microneedle Technology: An Insight into Recent Advancements and Future Trends in Drug and Vaccine Delivery. Assay and Drug Development Technologies, 2021, 19, 97-114.	0.6	20
34	Injection molding for manufacturing of solid poly(l-lactide-co-glycolide) microneedles. MRS Advances, 2021, 6, 61-65.	0.5	9
35	Wearable patch delivery system for artificial pancreas health diagnostic-therapeutic application: A review. Biosensors and Bioelectronics, 2021, 189, 113384.	5.3	9
36	Printing amphotericin B on microneedles using matrixassisted pulsed laser evaporationÂ. International Journal of Bioprinting, 2017, 3, 147.	1.7	12
37	Innovations in Transdermal Drug Delivery System - A Review. International Journal for Pharmaceutical Research Scholars, 2012, 1, 1-10.	0.1	15
38	Microneedle – Future prospect for efficient drug delivery in diabetes management. Indian Journal of Pharmacology, 2019, 51, 4.	0.4	17
39	Microneedles: An Emerging Approach for Active Transdermal Delivery of Insulin. Journal of Bioequivalence & Bioavailability, 2013, 04, .	0.1	4

#	Article	IF	CITATIONS
40	Transdermal delivery of insulin across human skin in vitro with 3D printed hollow microneedles. Journal of Drug Delivery Science and Technology, 2022, 67, 102891.	1.4	13
41	Emergence of microneedles as a potential therapeutics in diabetes mellitus. Environmental Science and Pollution Research, 2022, 29, 3302-3322.	2.7	11
42	An update on microneedle-based systems for diabetes. Drug Delivery and Translational Research, 2022, 12, 2275-2286.	3.0	10
43	Design of the micropump and mass-transfer compartment of a microfluidic system for regular nonenzymatic glucose measurement. Biotechnology Reports (Amsterdam, Netherlands), 2022, 34, e00723.	2.1	4
44	Smart Devices in Healthcare Sector: Applications. , 2022, , 1023-1049.		0
45	Metallic Microneedles for Transdermal Drug Delivery: Applications, Fabrication Techniques and the Effect of Geometrical Characteristics. Bioengineering, 2023, 10, 24.	1.6	5
46	Cortisol detection methods for stress monitoring in connected health. Health Sciences Review, 2023, 6, 100079.	0.6	1