Using Dietary Exposure and Physiologically Based Phar Modeling in Human Risk Extrapolations for Acrylamide

Journal of Agricultural and Food Chemistry 56, 6031-6038

DOI: 10.1021/jf073042g

Citation Report

#	Article	IF	CITATIONS
1	Acrylamide: Consideration of species differences and nonlinear processes in estimating risk and safety for human ingestion. Food and Chemical Toxicology, 2009, 47, 760-768.	3.6	30
2	Potatoes and Human Health. Critical Reviews in Food Science and Nutrition, 2009, 49, 823-840.	10.3	418
4	Food Safety. Clinical Reviews in Allergy and Immunology, 2010, 39, 95-141.	6.5	115
5	Metabolomic analysis of urine from rats chronically dosed with acrylamide using NMR and LC/MS. Metabolomics, 2010, 6, 550-563.	3.0	20
6	Preweaning behaviors, developmental landmarks, and acrylamide and glycidamide levels after pre- and postnatal acrylamide treatment in rats. Neurotoxicology and Teratology, 2010, 32, 373-382.	2.4	21
7	Validation of a database on acrylamide for use in epidemiological studies. European Journal of Clinical Nutrition, 2010, 64, 534-540.	2.9	30
8	Processing Issues. , 2010, , 383-410.		1
9	A Systems Biology Approach to Assess the Impact of Pesticides on the Nervous SystemaaDisclaimer: The views presented in this overview do not necessarily reflect those of the U.S. FDA, 2010, , 793-797.		O
10	Metabolism and Biomarkers of Heterocyclic Aromatic Amines in Molecular Epidemiology Studies: Lessons Learned from Aromatic Amines. Chemical Research in Toxicology, 2011, 24, 1169-1214.	3.3	252
11	32P-HPLC analysis of N1-(2-carboxy-2-hydroxyethyl)deoxyadenosine: A DNA adduct of the acrylamide-derived epoxide glycidamide. Toxicology Letters, 2011, 207, 18-24.	0.8	9
12	Recent Insights in Acrylamide as Carcinogen in Foodstuffs. Advances in Molecular Toxicology, 2012, 6, 163-193.	0.4	15
14	Effects of acrylamide exposure on serum hormones, gene expression, cell proliferation, and histopathology in male reproductive tissues of Fischer 344 rats. Toxicology Letters, 2012, 211, 135-143.	0.8	62
15	Comparison of acrylamide intake from Western and guideline based diets using probabilistic techniques and linear programming. Food and Chemical Toxicology, 2012, 50, 877-883.	3.6	20
16	Tumorigenicity of acrylamide and its metabolite glycidamide in the neonatal mouse bioassay. International Journal of Cancer, 2012, 131, 2008-2015.	5.1	44
17	Analysis and risk assessment of ethyl carbamate in various fermented foods. European Food Research and Technology, 2013, 236, 891-898.	3.3	21
18	Carcinogenicity of acrylamide in B6C3F1 mice and F344/N rats from a 2-year drinking water exposure. Food and Chemical Toxicology, 2013, 51, 149-159.	3.6	97
19	Effects of Lipoic Acid on Acrylamide Induced Testicular Damage. Materia Socio-medica, 2014, 26, 208.	0.7	43
20	Risk assessment, formation, and mitigation of dietary acrylamide: Current status and future prospects. Food and Chemical Toxicology, 2014, 69, 1-12.	3.6	103

#	Article	IF	CITATIONS
21	Current issues in dietary acrylamide: formation, mitigation and risk assessment. Journal of the Science of Food and Agriculture, 2014, 94, 9-20.	3.5	145
22	Modern methodologies and tools for human hazard assessment of chemicals. EFSA Journal, 2014, 12, 3638.	1.8	62
23	Scientific Opinion on acrylamide in food. EFSA Journal, 2015, 13, 4104.	1.8	360
24	Quantitative global sensitivity analysis of a biologically based dose-response pregnancy model for the thyroid endocrine system. Frontiers in Pharmacology, 2015, 6, 107.	3.5	22
25	Potential Association of Urinary $\langle i \rangle N \langle i \rangle 7$ -(2-Carbamoyl-2-hydroxyethyl) Guanine with Dietary Acrylamide Intake of Smokers and Nonsmokers. Chemical Research in Toxicology, 2015, 28, 43-50.	3.3	18
26	Acrylamide: inhibition of formation in processed food and mitigation of toxicity in cells, animals, and humans. Food and Function, 2015, 6, 1752-1772.	4.6	107
27	Carcinogenic and neurotoxic risks of acrylamide and heavy metals from potato and corn chips consumed by the Lebanese population. Journal of Food Composition and Analysis, 2015, 42, 91-97.	3.9	45
28	Effects of low dose acrylamide on the rat reproductive organs structure, fertility and gene integrity. Asian Pacific Journal of Reproduction, 2015, 4, 179-187.	0.4	22
29	Acrylamide induces specific DNA adduct formation and gene mutations in a carcinogenic target site, the mouse lung. Mutagenesis, 2015, 30, 227-235.	2.6	25
30	Burden of disease of dietary exposure to acrylamide in Denmark. Food and Chemical Toxicology, 2016, 90, 151-159.	3.6	31
31	Protective effect of carnosic acid against acrylamide-induced toxicity in RPE cells. Food and Chemical Toxicology, 2017, 108, 543-553.	3.6	34
32	Somatosensory Neurotoxicity: Agents and Assessment Methodology. , 2018, , 319-337.		1
33	Estimation of long-term dietary exposure to acrylamide of the Japanese people. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2018, 35, 1689-1702.	2.3	13
34	Acrylamide levels and dietary exposure from foods in the United States, an update based on 2011-2015 data. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2019, 36, 1475-1490.	2.3	57
35	Incorporating Exogenous and Endogenous Exposures into Dietary Risk Assessment of Nitrates and Nitrites in Vegetables: A Probabilistic Integrated Toxicokinetic Modeling Approach. Journal of Agricultural and Food Chemistry, 2020, 68, 1079-1090.	5.2	8
36	Exposure to acrylamide inhibits uterine decidualization via suppression of cyclin D3/p21 and apoptosis in mice. Journal of Hazardous Materials, 2020, 388, 121785.	12.4	18
37	Effect of carnosic acid on acrylamide induced neurotoxicity: <i>inÂvivo</i> and <i>inÂvitro</i> experiments. Drug and Chemical Toxicology, 2022, 45, 1528-1535.	2.3	13
38	Risk assessment of predicted serum concentrations of bisphenol A in children and adults following treatment with dental composite restoratives, dental sealants, or orthodontic adhesives using physiologically based pharmacokinetic modeling. Regulatory Toxicology and Pharmacology, 2021, 120, 104839.	2.7	8

3

#	Article	IF	CITATIONS
39	Vitamin E and 5-amino salicylic acid ameliorates acrylamide-induced peripheral neuropathy by inhibiting caspase-3 and inducible nitric oxide synthase immunoexpression. Journal of Chemical Neuroanatomy, 2021, 113, 101935.	2.1	5
40	Does the food processing contaminant acrylamide cause developmental neurotoxicity? A review and identification of knowledge gaps. Reproductive Toxicology, 2021, 101, 93-114.	2.9	20
41	Somatosensory Neurotoxicity: Agents and Assessment Methodology*., 2010, , 315-336.		1
42	Prenatal and perinatal acrylamide disrupts the development of cerebellum in rat: Biochemical and morphological studies. Toxicology and Industrial Health, 2011, 27, 291-306.	1.4	59
43	Investigation of genotoxic and cytotoxic effects of acrylamide in HEK293 cell line. Journal of Cancer Prevention & Current Research, 2018, 9, .	0.1	8
44	Toxic effect of acrylamide on the development of hippocampal neurons of weaning rats. Neural Regeneration Research, 2017, 12, 1648.	3.0	30
46	Cigarette smoking is associated with acrylamide exposure among the U.S. population: NHANES 2011 \hat{a} €"2016. Environmental Research, 2022, 209, 112774.	7.5	8
47	Processing issues. , 2022, , 229-257.		2
49	Acrylamide: perspectives from international, national, and regional exposure assessments. Current Opinion in Food Science, 2022, 47, 100891.	8.0	6
50	Dynamic assessment of the relationship between oxidative stress and apoptotic pathway in embryonic fibroblast cells exposed to glycidamide: possible protective role of hesperidin. Environmental Science and Pollution Research, 2023, 30, 53295-53308.	5.3	0
51	Reconstructing population exposures to acrylamide from human monitoring data using a pharmacokinetic framework. Chemosphere, 2023, 331, 138798.	8.2	0
52	Eugenol alleviates acrylamide-induced rat testicular toxicity by modulating AMPK/p-AKT/mTOR signaling pathway and blood–testis barrier remodeling. Scientific Reports, 2024, 14, .	3.3	O