Correlated patterns of tracheal compression and convected beetle

Journal of Experimental Biology 211, 3409-3420

DOI: 10.1242/jeb.019877

Citation Report

#	Article	IF	CITATIONS
1	Use of synchrotron tomography to image naturalistic anatomy in insects. Proceedings of SPIE, 2008, , .	0.8	17
3	Effects of flow rate and temperature on cyclic gas exchange in tsetse flies (Diptera, Glossinidae). Journal of Insect Physiology, 2010, 56, 513-521.	0.9	21
4	Pump out the volumeâ€"The effect of tracheal and subelytral pressure pulses on convective gas exchange in a dung beetle, Circellium bacchus (Fabricus). Journal of Insect Physiology, 2010, 56, 551-558.	0.9	17
5	Tradeoffs between metabolic rate and spiracular conductance in discontinuous gas exchange of Samia cynthia (Lepidoptera, Saturniidae). Journal of Insect Physiology, 2010, 56, 536-542.	0.9	40
6	Issues of convection in insect respiration: Insights from synchrotron X-ray imaging and beyond. Respiratory Physiology and Neurobiology, 2010, 173, S65-S73.	0.7	59
7	External and internal structure of weevils (Insecta: Coleoptera) investigated with phase-contrast X-ray imaging. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 620, 589-593.	0.7	3
8	Mechanical properties of tracheal tubes in the American cockroach (<i>Periplaneta americana</i>). Smart Materials and Structures, 2011, 20, 094017.	1.8	16
9	Microscale Flow Pumping Inspired by Rhythmic Tracheal Compressions in Insects. , 2011, , .		2
10	Can Oxygen Set Thermal Limits in an Insect and Drive Gigantism?. PLoS ONE, 2011, 6, e22610.	1.1	90
11	The evolutionary consequences of oxygenic photosynthesis: a body size perspective. Photosynthesis Research, 2011, 107, 37-57.	1.6	107
12	Gas exchange patterns of <i>Pterostichus niger</i> (Carabidae) in dry and moist air. Physiological Entomology, 2011, 36, 62-67.	0.6	4
13	Control of Breathing in Invertebrate Model Systems. , 2012, 2, 1745-1766.		5
14	Flow transport in a microchannel induced by moving wall contractions: a novel micropumping mechanism. Acta Mechanica, 2012, 223, 463-480.	1.1	28
15	Subsurface behaviours facilitate respiration by a physical gill in an adult giant water bug, Abedus herberti. Animal Behaviour, 2012, 83, 747-753.	0.8	3
16	Stokeslets-meshfree computations and theory for flow in a collapsible microchannel. Theoretical and Computational Fluid Dynamics, 2013, 27, 681-700.	0.9	14
17	A bioinspired pumping model for flow in a microtube with rhythmic wall contractions. Journal of Fluids and Structures, 2013, 42, 187-204.	1.5	26
18	Dynamics of tracheal compression in the horned passalus beetle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 304, R621-R627.	0.9	17
19	Coordinated ventilation and spiracle activity produce unidirectional airflow in the hissing cockroach, <i>Gromphadorhina portentosa </i> i> Journal of Experimental Biology, 2013, 216, 4473-82.	0.8	21

#	Article	IF	CITATIONS
20	Selective pumping in a network: insect-style microscale flow transport. Bioinspiration and Biomimetics, 2013, 8, 026004.	1.5	25
21	Anaerobic Metabolism at Thermal Extremes: A Metabolomic Test of the Oxygen Limitation Hypothesis in an Aquatic Insect. Integrative and Comparative Biology, 2013, 53, 609-619.	0.9	86
22	How Locusts Breathe. Physiology, 2013, 28, 18-27.	1.6	56
23	Respiratory Systems., 2013, , 445-474.		O
24	Variation in the mechanical properties of tracheal tubes in the American cockroach. Smart Materials and Structures, 2014, 23, 057001.	1.8	1
25	Predicting Performance and Plasticity in the Development of Respiratory Structures and Metabolic Systems. Integrative and Comparative Biology, 2014, 54, 307-322.	0.9	13
26	A three-dimensional model for flow pumping in a microchannel inspired by insect respiration. Acta Mechanica, 2014, 225, 493-507.	1.1	21
27	Effects of VR System Fidelity on Analyzing Isosurface Visualization of Volume Datasets. IEEE Transactions on Visualization and Computer Graphics, 2014, 20, 513-522.	2.9	67
28	Structure of tracheae and the functional implications for collapse in the American cockroach. Bioinspiration and Biomimetics, 2015, 10, 066011.	1.5	14
29	Estimation of Instantaneous Gas Exchange in Flow-Through Respirometry Systems: A Modern Revision of Bartholomew's Z-Transform Method. PLoS ONE, 2015, 10, e0139508.	1.1	10
30	Paleontological baselines for evaluating extinction risk in the modern oceans. Science, 2015, 348, 567-570.	6.0	111
31	Mechanistic origins of bombardier beetle (Brachinini) explosion-induced defensive spray pulsation. Science, 2015, 348, 563-567.	6.0	63
32	Neuromechanical pumping: boundary flexibility and traveling depolarization waves drive flow within valveless, tubular hearts. Japan Journal of Industrial and Applied Mathematics, 2015, 32, 829-846.	0.5	5
33	Bare-Hand Volume Cracker for Raw Volume Data Analysis. Frontiers in Robotics and Al, $2016, 3, .$	2.0	2
34	Recovering signals in physiological systems with large datasets. Biology Open, 2016, 5, 1163-1174.	0.6	2
35	Gas Exchange Models for a Flexible Insect Tracheal System. Acta Biotheoretica, 2016, 64, 161-196.	0.7	10
36	Anisotropic shrinkage of insect air sacs revealed in vivo by X-ray microtomography. Scientific Reports, 2016, 6, 32380.	1.6	20
37	Multigenerational Effects of Rearing Atmospheric Oxygen Level on the Tracheal Dimensions and Diffusing Capacities of Pupal and Adult Drosophila melanogaster. Advances in Experimental Medicine and Biology, 2016, 903, 285-300.	0.8	5

3

#	Article	IF	Citations
38	Microscale Gaseous Slip Flow in the Insect Trachea and Tracheoles. Acta Biotheoretica, 2017, 65, 211-231.	0.7	0
39	The tracheal system in postâ€embryonic development of holometabolous insects: a case study using the mealworm beetle. Journal of Anatomy, 2018, 232, 997-1015.	0.9	29
40	X-ray computed tomography study of the flight-adapted tracheal system in the blowfly Calliphora vicina analysing the ventilation mechanism and flow-directing valves. Journal of Experimental Biology, 2018, 221, .	0.8	12
41	The mechanisms underlying the production of discontinuous gas exchange cycles in insects. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2018, 188, 195-210.	0.7	12
42	Visualisation of insect tracheal systems by lactic acid immersion. Journal of Microscopy, 2018, 271, 230-236.	0.8	5
43	Why do models of insect respiratory patterns fail?. Journal of Experimental Biology, 2018, 221, .	0.8	20
44	Slip flow in a microchannel driven by rhythmic wall contractions. Acta Mechanica, 2018, 229, 4113-4129.	1.1	9
45	Rhythmic abdominal pumping movements in praying Mantises (Insecta: Mantodea). Fragmenta Entomologica, 2019, 51, 29-40.	0.4	1
46	Pumping flow model in a microchannel with propagative rhythmic membrane contraction. Physics of Fluids, 2019, 31, .	1.6	23
47	Functional compartmentalization in the hemocoel of insects. Scientific Reports, 2019, 9, 6075.	1.6	11
48	Insect Mouthparts. Zoological Monographs, 2019, , .	1.1	32
49	The Insect Circulatory System: Structure, Function, and Evolution. Annual Review of Entomology, 2020, 65, 121-143.	5.7	47
50	Tracheal branching in ants is area-decreasing, violating a central assumption of network transport models. PLoS Computational Biology, 2020, 16, e1007853.	1.5	10
51	Frequency-specific, valveless flow control in insect-mimetic microfluidic devices. Bioinspiration and Biomimetics, 2021, 16, 036004.	1.5	4
52	Viscoelastic fluid flow driven by non-propagative membrane contraction. Journal of Physics: Conference Series, 2021, 1849, 012018.	0.3	0
53	Critical P2 and insect flight: The role of tracheal volume in the Oogenesis-Flight Syndrome. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2021, 254, 110873.	0.8	2
54	Size constrains oxygen delivery capacity within but not between bumble bee castes. Journal of Insect Physiology, 2021, 134, 104297.	0.9	1
55	Hierarchical Microstructures and Functions of the Lepidopteran Proboscis Cuticle. Zoological Monographs, 2019, , 315-334.	1.1	4

#	Article	IF	CITATIONS
56	Evolution of the Mechanisms Underlying Insect Respiratory Gas Exchange. Advances in Insect Physiology, 2015, , 1-24.	1.1	18
57	Phase Contrast Imaging Reveals Low Lung Volumes and Surface Areas in the Developing Marsupial. PLoS ONE, 2013, 8, e53805.	1.1	6
59	Patterns of Tracheal Compression in the Thorax of the Ground Beetle,. Yale Journal of Biology and Medicine, 2018, 91, 409-430.	0.2	0
61	Postembryonic development of the tracheal system of beetles in the context of aptery and adaptations towards an arid environment. PeerJ, 0, 10, e13378.	0.9	O
62	Study of entropy generation and heat flow through a microtube induced by the membrane-based thermofluidics systems. Thermal Science and Engineering Progress, 2022, 34, 101395.	1.3	11
63	Respiratory systems. , 2023, , 439-469.		O
64	Transient membrane kinematic model for viscoplastic fluids: periodic contraction in the microchannel. European Physical Journal: Special Topics, 2023, 232, 817-826.	1.2	2
65	Isometric spiracular scaling in scarab beetles $\hat{a}\in \hat{a}$ implications for diffusive and advective oxygen transport. ELife, 0, 11, .	2.8	1
66	Comparative Anatomy of the Insect Tracheal System Part 1: Introduction, Apterygotes, Paleoptera, Polyneoptera. Bulletin of the American Museum of Natural History, 2023, 459, .	1.2	3
67	Adult and Larval Tracheal Systems Exhibit Different Molecular Architectures in Drosophila. International Journal of Molecular Sciences, 2023, 24, 5628.	1.8	3