Mapping of a Novel Susceptibility Locus Suggests a Role Tuberculosis

American Journal of Respiratory and Critical Care Medicine 178, 203-207

DOI: 10.1164/rccm.200710-1554oc

Citation Report

#	Article	IF	CITATIONS
1	Genetic studies of African populations: an overview on disease susceptibility and response to vaccines and therapeutics. Human Genetics, 2008, 123, 557-598.	3.8	79
2	South Africa: from species cradle to genomic applications. Nature Reviews Genetics, 2008, 9, S19-S23.	16.3	39
3	Identification of Tuberculosis Susceptibility Genes with Human Macrophage Gene Expression Profiles. PLoS Pathogens, 2008, 4, e1000229.	4.7	134
4	Genome Scan of M. tuberculosis Infection and Disease in Ugandans. PLoS ONE, 2008, 3, e4094.	2.5	113
5	Polymorphic Exact Tandem Repeat A (PETRA): a Newly Defined Lineage of <i>Mycobacterium tuberculosis</i> in Israel Originating Predominantly in Sub-Saharan Africa. Journal of Clinical Microbiology, 2009, 47, 4006-4020.	3.9	11
6	No Evidence for Reduction in Dyspnea Following Lesions of the Right Insula. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 623-624.	5.6	0
7	Update in Tuberculosis 2008. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 337-343.	5.6	4
11	Analysis of genetic predisposition to pulmonary tuberculosis in native Russians. Russian Journal of Genetics, 2010, 46, 230-238.	0.6	3
12	Genome-wide analysis of the structure of the South African Coloured Population in the Western Cape. Human Genetics, 2010, 128, 145-153.	3.8	177
13	Current findings, challenges and novel approaches in human genetic susceptibility to tuberculosis. Tuberculosis, 2010, 90, 71-83.	1.9	201
14	Past, present and future directions in human genetic susceptibility to tuberculosis. FEMS Immunology and Medical Microbiology, 2010, 58, 3-26.	2.7	109
15	Association analysis of susceptibility candidate region on chromosome 5q31 for tuberculosis. Genes and Immunity, 2010, 11, 416-422.	4.1	20
16	Relatedness and HLA-DRB1 typing may discriminate the magnitude of the genetic susceptibility to tuberculosis using a household contact model. Journal of Epidemiology and Community Health, 2010, 64, 513-517.	3.7	8
17	Candidate genes versus genome-wide associations: which are better for detecting genetic susceptibility to infectious disease?. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1183-1188.	2.6	69
18	Genetic susceptibility to tuberculosis associated with cathepsin Z haplotype in a Ugandan household contact study. Human Immunology, 2011, 72, 426-430.	2.4	22
19	Host Genetics and Susceptibility to Infection. , 2011, , 32-39.		1
20	A Preliminary Study of Genetic Factors That Influence Susceptibility to Bovine Tuberculosis in the British Cattle Herd. PLoS ONE, 2011, 6, e18806.	2.5	28
21	Polymorphisms in MC3R promoter and CTSZ 3′UTR are associated with tuberculosis susceptibility. European Journal of Human Genetics, 2011, 19, 676-681.	2.8	38

ARTICLE IF CITATIONS # Knowledge gaining by human genetic studies on tuberculosis susceptibility. Journal of Human 23 2.3 33 Genetics, 2011, 56, 177-182. Genetic Epidemiology of Tuberculosis Susceptibility: Impact of Study Design. PLoS Pathogens, 2011, 7, 24 e1001189. Epiregulin (EREG) variation is associated with susceptibility to tuberculosis. Genes and Immunity, 2012, 26 4.1 16 13, 275-281. Comparative Analysis of a Putative Tuberculosis-Susceptibility Gene, <i>MC3R</i>, and Pseudogene Sequences in Cattle, African Buffalo, Hyena, Rhinoceros and Other African Bovids and Ruminants. Cytogenetic and Genome Research, 2012, 136, 117-122. Human Genetic Susceptibility to Tuberculosis: Time for a Bottom-Up Approach?. Journal of Infectious 28 4.0 9 Diseases, 2012, 205, 525-527. Modifier Gene Studies to Identify New Therapeutic Targets in Cystic Fibrosis. Current Pharmaceutical 29 Design, 2012, 18, 674-682. Genome-wide association studies of tuberculosis in Asians identify distinct at-risk locus for young 30 2.3 109 tuberculosis. Journal of Human Genetics, 2012, 57, 363-367. Innate Immune Gene Polymorphisms in Tuberculosis. Infection and Immunity, 2012, 80, 3343-3359. 2.2 258 Evolution, revolution and heresy in the genetics of infectious disease susceptibility. Philosophical 33 4.0 117 Transactions of the Royal Society B: Biological Sciences, 2012, 367, 840-849. DNA Sequence Variation and Regulation of Genes Involved in Pathogenesis of Pulmonary Tuberculosis. 34 2.7 Scandinavian Journal of Immunology, 2012, 75, 568-587. Melanocortin-3-receptor promoter polymorphism associated with tuberculosis susceptibility does 35 2 1.4 not influence protein expression. BMC Research Notes, 2013, 6, 99. The New Paradigm of Immunity to Tuberculosis. Advances in Experimental Medicine and Biology, 2013, , . 36 1.6 Hostâ€"Pathogen Specificity in Tuberculosis. Advances in Experimental Medicine and Biology, 2013, 783, 37 1.6 24 33-44. Genetic Determinants of Susceptibility to Mycobacterial Infections: IRF8, A New Kid on the Block. 1.6 Advances in Experimental Medicine and Biology, 2013, 783, 45-80. Associations of MC3R Polymorphisms With Physical Activity in South African Adolescents. Journal of 39 2.0 4 Physical Activity and Health, 2013, 10, 813-825. Association of <l>CTSZ</l> rs34069356 and <l>MC3R</l> rs6127698 gene polymorphisms with pulmonary tuberculosis. International Journal of Tuberculosis and Lung Disease, 1.2 2013, 17, 1224-1228. Control of Myeloid Cell Trafficking in Resolution. Journal of Innate Immunity, 2013, 5, 367-376. 41 3.8 29 Cathepsin X., 2013, , 1839-1844.

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
43	Functions of the DRY motif and intracellular loop 2 of human melanocortin 3 receptor. Journal of Molecular Endocrinology, 2014, 53, 319-330.	2.5	27
44	Tuberculosis and Genetics of Sub-Saharan Africa Human Population. Mycobacterial Diseases: Tuberculosis & Leprosy, 2014, 04, .	0.1	1
45	Association Analysis of Melanocortin 3 Receptor Polymorphisms with the Risk of Pulmonary Tuberculosis. Lung, 2014, 192, 857-862.	3.3	5
46	Association between human leukocyte antigen class II and pulmonary tuberculosis due to mycobacterium tuberculosis in Uganda. BMC Infectious Diseases, 2015, 16, 23.	2.9	21
47	The Role of Host Genetics (and Genomics) in Tuberculosis. Microbiology Spectrum, 2016, 4, .	3.0	31
48	Association of rs4331426 and rs2057178 with Risk of Tuberculosis: Evidence from a Meta-Analysis. Genetic Testing and Molecular Biomarkers, 2016, 20, 255-260.	0.7	2
49	The genetics of susceptibility to tuberculosis: Progress and challenges. Asian Pacific Journal of Tropical Disease, 2016, 6, 680-684.	0.5	4
50	Evidence for natural selection at the melanocortin-3 receptor gene in European and African populations. Acta Diabetologica, 2016, 53, 583-587.	2.5	4
51	FOXO3 rs12212067: T > G Association with Active Tuberculosis in Han Chinese Population. Inflammation, 2016, 39, 10-15.	3.8	15
52	Population structure and infectious disease risk in southern Africa. Molecular Genetics and Genomics, 2017, 292, 499-509.	2.1	21
53	The role of human host genetics in tuberculosis resistance. Expert Review of Respiratory Medicine, 2017, 11, 721-737.	2.5	16
54	A role for cathepsin Z in neuroinflammation provides mechanistic support for an epigenetic risk factor in multiple sclerosis. Journal of Neuroinflammation, 2017, 14, 103.	7.2	63
55	The Role of Host Genetics (and Genomics) in Tuberculosis. , 2017, , 411-452.		0
56	Neutrophils: Innate Effectors of TB Resistance?. Frontiers in Immunology, 2018, 9, 2637.	4.8	59
57	NELFCD and CTSZ loci are associated with jaundice-stage progression in primary biliary cholangitis in the Japanese population. Scientific Reports, 2018, 8, 8071.	3.3	8
58	Functional Analysis of Genetic Variations in Surfactant Protein D in Mycobacterial Infection and Their Association With Tuberculosis. Frontiers in Immunology, 2018, 9, 1543.	4.8	20
59	Human genetics of mycobacterial disease. Mammalian Genome, 2018, 29, 523-538.	2.2	27
60	Fine-mapping analysis of a chromosome 2 region linked to resistance to Mycobacterium tuberculosis infection in Uganda reveals potential regulatory variants. Genes and Immunity, 2019, 20, 473-483.	4.1	18

			_
#	ARTICLE	IF	CITATIONS
61	The Interplay of Human and Mycobacterium Tuberculosis Genomic Variability. Frontiers in Genetics, 2019, 10, 865.	2.3	29
62	An exome wide association study of pulmonary tuberculosis patients and their asymptomatic household contacts. Infection, Genetics and Evolution, 2019, 71, 76-81.	2.3	16
63	rs6127698 polymorphism in the MC3R gene and susceptibility to multifocal tuberculosis in southern Chinese Han population. Infection, Genetics and Evolution, 2020, 82, 104292.	2.3	4
64	Macrophage migration inhibitory factor -173 G>C single nucleotide polymorphism and its association with active pulmonary tuberculosis. PLoS ONE, 2020, 15, e0234565.	2.5	2
65	Genetics and evolution of tuberculosis pathogenesis: New perspectives and approaches. Infection, Genetics and Evolution, 2020, 81, 104204.	2.3	24
66	Macrophage migration inhibitory factor â^ 794 CATT5â^'8 microsatellite polymorphism and susceptibility of tuberculosis. Infection, 2021, 49, 457-461.	4.7	2
67	The landscape of different molecular modules in an immune microenvironment during tuberculosis infection. Briefings in Bioinformatics, 2021, 22, .	6.5	4
69	Meta-Analysis on the Associations of TLR2 Gene Polymorphisms with Pulmonary Tuberculosis Susceptibility among Asian Populations. PLoS ONE, 2013, 8, e75090.	2.5	18
70	Network Analysis of Human Genes Influencing Susceptibility to Mycobacterial Infections. PLoS ONE, 2016, 11, e0146585.	2.5	14
71	Sorcin induces gastric cancer cell migration and invasion contributing to STAT3 activation. Oncotarget, 2017, 8, 104258-104271.	1.8	25
73	Biomedical Importance of Host Genetic Factors in Infectious Diseases. , 0, , .		0
74	SEARCH OF TUBERCULOSIS SUSCEPTIBILITY GENES USING THE RESULTS OF GENOME-WIDE ASSOCIATION STUDY OF CROHN'S DISEASE. Bulletin of Siberian Medicine, 2013, 12, 61-68.	0.3	1
75	Human Genetics and Infection. , 2015, , 116-124.e3.		1
76	Intrigues of Immunogenetics in Tuberculosis Pathology and Management-Focused Researches that Could Impact Outcomes in Nigerian Populations. MOJ Biology and Medicine, 2017, 2, .	0.2	0
77	Lack of Association between rs4331426 Polymorphism in the Chr18q11.2 Locus and Pulmonary Tuberculosis in an Iranian Population. Biomedical and Environmental Sciences, 2016, 29, 516-20.	0.2	3
78	Host-pathogen genetic interactions underlie tuberculosis susceptibility in genetically diverse mice. ELife, 2022, 11, .	6.0	44
79	Capturing Genetic Diversity and Selection Signatures of the Endangered Kosovar Balusha Sheep Breed. Genes, 2022, 13, 866.	2.4	4
80	The immunogenetics of tuberculosis (TB) susceptibility. Immunogenetics, 0, , .	2.4	3

CITATION REPORT

		CITATION REPORT	
#	Article	IF	CITATIONS
81	Association of Toll-like Receptors 1, 2, 4, 6, 8, 9 and 10 Genes Polymorphisms and Susceptibility to Pulmonary Tuberculosis in Sudanese Patients. ImmunoTargets and Therapy, 0, Volume 12, 47-75.	5.8	6
82	Fulminant pulmonary tuberculosis in a previously healthy young woman from the Marshall Islands: Potential risk factors. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases, 2023, 31, 100351.	1.3	Ο
83	Diabetic and Nephropathy. , 2023, , 81-109.		0