Aberrant Mucin Assembly in Mice Causes Endoplasmic Inflammation Resembling Ulcerative Colitis

PLoS Medicine

5, e54

DOI: 10.1371/journal.pmed.0050054

Citation Report

#	Article	IF	CITATIONS
1	Mucins in the mucosal barrier to infection. Mucosal Immunology, 2008, 1, 183-197.	2.7	953
2	XBP1 Links ER Stress to Intestinal Inflammation and Confers Genetic Risk for Human Inflammatory Bowel Disease. Cell, 2008, 134, 743-756.	13.5	1,225
3	Metagenomic Approaches for Defining the Pathogenesis of Inflammatory Bowel Diseases. Cell Host and Microbe, 2008, 3, 417-427.	5.1	423
4	Mucosal Glycan Foraging Enhances Fitness and Transmission of a Saccharolytic Human Gut Bacterial Symbiont. Cell Host and Microbe, 2008, 4, 447-457.	5.1	732
5	The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15064-15069.	3.3	1,657
6	Bacterial-mucosal interactions in inflammatory bowel disease—an alliance gone bad. American Journal of Physiology - Renal Physiology, 2008, 295, G1139-G1149.	1.6	91
8	Polymorphisms in E-cadherin (CDH1) result in a mis-localised cytoplasmic protein that is associated with Crohn's disease. Gut, 2009, 58, 1121-1127.	6.1	117
9	Enhanced sensitivity to DSS colitis caused by a hypomorphic <i>Mbtps1</i> mutation disrupting the ATF6-driven unfolded protein response. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3300-3305.	3.3	123
10	The protein disulfide isomerase AGR2 is essential for production of intestinal mucus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6950-6955.	3.3	336
11	Targeted Induction of Endoplasmic Reticulum Stress Induces Cartilage Pathology. PLoS Genetics, 2009, 5, e1000691.	1.5	127
12	Role of Epithelial Cells in Inflammatory Bowel Disease. Frontiers of Gastrointestinal Research, 2009, , 108-117.	0.1	O
13	Interleukin–18 is a crucial determinant of vulnerability of the mouse rectum to psychosocial stress. FASEB Journal, 2009, 23, 1797-1805.	0.2	16
14	Reduced mucin sulfonation and impaired intestinal barrier function in the hyposulfataemic NaS1 null mouse. Gut, 2009, 58, 910-919.	6.1	94
15	Primary immune deficiencies affecting lymphocyte differentiation: lessons from the spectrum of resulting infections. International Immunology, 2009, 21, 1003-1011.	1.8	19
16	Intestinal barrier dysfunction in inflammatory bowel diseases. Inflammatory Bowel Diseases, 2009, 15, 100-113.	0.9	506
17	The mucosal firewalls against commensal intestinal microbes. Seminars in Immunopathology, 2009, 31, 145-149.	2.8	95
18	Mucins in cancer: function, prognosis and therapy. Nature Reviews Cancer, 2009, 9, 874-885.	12.8	1,148
19	Intestinal mucosal barrier function in health and disease. Nature Reviews Immunology, 2009, 9, 799-809.	10.6	2,795

#	Article	IF	Citations
20	Overview of inflammatory bowel disease in Australia in the last 50â€fyears. Journal of Gastroenterology and Hepatology (Australia), 2009, 24, S63-8.	1.4	6
21	The immunopathogenesis of Crohn's disease: a three-stage model. Current Opinion in Immunology, 2009, 21, 506-513.	2.4	84
22	The Genetics of Crohn's Disease. Annual Review of Genomics and Human Genetics, 2009, 10, 89-116.	2.5	223
23	Intestinal Epithelial Cell Proteome from Wild-Type and TNF ^{î"ARE/WT} Mice: Effect of Iron on the Development of Chronic Ileitis. Journal of Proteome Research, 2009, 8, 3252-3264.	1.8	24
24	Endoplasmic reticulum stress in the intestinal epithelium and inflammatory bowel disease. Seminars in Immunology, 2009, 21, 156-163.	2.7	110
25	Functional Morphology of the Gastrointestinal Tract. Current Topics in Microbiology and Immunology, 2009, 337, 1-35.	0.7	35
26	Nutrigenomics and IBD. Journal of Clinical Gastroenterology, 2010, 44, S6-S9.	1.1	23
27	Endoplasmic reticulum stress: implications for inflammatory bowel disease pathogenesis. Current Opinion in Gastroenterology, 2010, 26, 318-326.	1.0	93
28	The characterization of the first anti-mouse Muc6 antibody shows an increased expression of the mucin in pancreatic tissue of Cftr-knockout mice. Histochemistry and Cell Biology, 2010, 133, 517-525.	0.8	24
29	Intestinal Goblet Cells and Mucins in Health and Disease: Recent Insights and Progress. Current Gastroenterology Reports, 2010, 12, 319-330.	1.1	1,067
30	Autophagy at the gut interface: Mucosal responses to stress and the consequences for inflammatory bowel diseases. Inflammatory Bowel Diseases, 2010, 16, 152-174.	0.9	23
31	Toll-like receptors in inflammatory bowel diseases: A decade later. Inflammatory Bowel Diseases, 2010, 16, 1583-1597.	0.9	282
32	Hostâ€bacteria interactions in the intestine: homeostasis to chronic inflammation. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2010, 2, 80-97.	6.6	36
33	Inflammation modulates the expression of the intestinal mucins MUC2 and MUC4 in gastric tumors. Oncogene, 2010, 29, 1753-1762.	2.6	65
34	Epithelial decision makers: in search of the 'epimmunome'. Nature Immunology, 2010, 11, 656-665.	7.0	252
35	Mechanisms of uric acid crystalâ€mediated autoinflammation. Immunological Reviews, 2010, 233, 218-232.	2.8	178
36	Ecabet sodium: A potential new agent in the management of distal colitis. Journal of Gastroenterology and Hepatology (Australia), 2010, 25, 1182-1184.	1.4	2
37	Stem cells as potential therapeutic targets for inflammatory bowel disease. Frontiers in Bioscience - Scholar, 2010, S2, 993-1008.	0.8	43

#	ARTICLE	IF	CITATIONS
38	Fucosyltransferase 2 (FUT2) non-secretor status is associated with Crohn's disease. Human Molecular Genetics, 2010, 19, 3468-3476.	1.4	329
39	Endoplasmic reticulum stress-induced transcription factor, CHOP, is crucial for dendritic cell IL-23 expression. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17698-17703.	3.3	270
40	Antitumoural immunity by virus-mediated immunogenic apoptosis inhibits metastatic growth of hepatocellular carcinoma. Gut, 2010, 59, 1416-1426.	6.1	48
41	Deficiency of Suppressor Enhancer Lin12 1 Like (SEL1L) in Mice Leads to Systemic Endoplasmic Reticulum Stress and Embryonic Lethality. Journal of Biological Chemistry, 2010, 285, 13694-13703.	1.6	76
42	The Interaction of Large Bowel Microflora with the Colonic Mucus Barrier. International Journal of Inflammation, 2010, 2010, 1-9.	0.9	25
43	Microbial Sensing by the Intestinal Epithelium in the Pathogenesis of Inflammatory Bowel Disease. International Journal of Inflammation, 2010, 2010, 1-12.	0.9	17
44	Downregulation of Th17 Cells in the Small Intestine by Disruption of Gut Flora in the Absence of Retinoic Acid. Journal of Immunology, 2010, 184, 6799-6806.	0.4	148
45	IL-22 ⁺ CD4 ⁺ T Cells Are Associated with Therapeutic <i>Trichuris trichiura</i> Infection in an Ulcerative Colitis Patient. Science Translational Medicine, 2010, 2, 60ra88.	5.8	180
46	Endoplasmic reticulum stress and intestinal inflammation. Mucosal Immunology, 2010, 3, 11-16.	2.7	125
47	The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Gut Microbes, 2010, 1, 51-54.	4.3	173
48	Epithelial-derived IL-33 and its receptor ST2 are dysregulated in ulcerative colitis and in experimental Th1/Th2 driven enteritis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8017-8022.	3.3	373
49	Intestinal Host-Microbe Interactions under Physiological and Pathological Conditions. International Journal of Inflammation, 2010, 2010, 1-8.	0.9	9
50	Muc2 Protects against Lethal Infectious Colitis by Disassociating Pathogenic and Commensal Bacteria from the Colonic Mucosa. PLoS Pathogens, 2010, 6, e1000902.	2.1	501
51	Abnormally expressed ER stress response chaperone Gp96 in CD favours adherent-invasive Escherichia coli invasion. Gut, 2010, 59, 1355-1362.	6.1	118
52	Genes and Environment: How Will Our Concepts on the Pathophysiology of IBD Develop in the Future?. Digestive Diseases, 2010, 28, 395-405.	0.8	65
53	The Unfolded Protein Response in Lung Disease. Proceedings of the American Thoracic Society, 2010, 7, 356-362.	3.5	33
54	ER stress and the unfolded protein response in intestinal inflammation. American Journal of Physiology - Renal Physiology, 2010, 298, G820-G832.	1.6	151
55	HIV Protease Inhibitors Induce Endoplasmic Reticulum Stress and Disrupt Barrier Integrity in Intestinal Epithelial Cells. Gastroenterology, 2010, 138, 197-209.	0.6	80

#	ARTICLE	IF	Citations
56	Mucin Gene Deficiency in Mice Impairs Host Resistance to an Enteric Parasitic Infection. Gastroenterology, 2010, 138, 1763-1771.e5.	0.6	162
57	Human Intestinal TFF3 Forms Disulfide-Linked Heteromers with the Mucus-Associated FCGBP Protein and Is Released by Hydrogen Sulfide. Journal of Proteome Research, 2010, 9, 3108-3117.	1.8	91
58	Molecular crosstalk of probiotic bacteria with the intestinal immune system: Clinical relevance in the context of inflammatory bowel disease. International Journal of Medical Microbiology, 2010, 300, 63-73.	1.5	92
59	Homeostasis and Inflammation in the Intestine. Cell, 2010, 140, 859-870.	13.5	671
60	Disruption of Paneth and goblet cell homeostasis and increased endoplasmic reticulum stress in Agr2â [^] /â [^] mice. Developmental Biology, 2010, 338, 270-279.	0.9	186
61	Inflammatory Bowel Disease. Annual Review of Immunology, 2010, 28, 573-621.	9.5	1,642
62	Mucolytic Bacteria With Increased Prevalence in IBD Mucosa Augment In Vitro Utilization of Mucin by Other Bacteria. American Journal of Gastroenterology, 2010, 105, 2420-2428.	0.2	1,086
63	The intestinal microbiota and chronic disorders of the gut. Nature Reviews Gastroenterology and Hepatology, 2011, 8, 523-531.	8.2	259
64	Depletion of luminal iron alters the gut microbiota and prevents Crohn's disease-like ileitis. Gut, 2011, 60, 325-333.	6.1	251
65	Autophagy, Microbial Sensing, Endoplasmic Reticulum Stress, and Epithelial Function in Inflammatory Bowel Disease. Gastroenterology, 2011, 140, 1738-1747.e2.	0.6	129
66	Altered Endoplasmic Reticulum Stress Affects Translation in Inactive Colon Tissue From Patients With Ulcerative Colitis. Gastroenterology, 2011, 141, 1024-1035.	0.6	86
67	The MUC13 cell-surface mucin protects against intestinal inflammation by inhibiting epithelial cell apoptosis. Gut, 2011, 60, 1661-1670.	6.1	119
68	Crohn's disease: NOD2, autophagy and ER stress converge. Gut, 2011, 60, 1580-1588.	6.1	188
69	Structure–function analysis of the tertiary bile acid TUDCA for the resolution of endoplasmic reticulum stress in intestinal epithelial cells. Biochemical and Biophysical Research Communications, 2011, 409, 610-615.	1.0	75
70	The intestinal epithelial barrier in the control of homeostasis and immunity. Trends in Immunology, 2011, 32, 256-264.	2.9	246
71	Microbiota–immune system interaction: an uneasy alliance. Current Opinion in Microbiology, 2011, 14, 99-105.	2.3	89
72	Enterocyte death and intestinal barrier maintenance in homeostasis and disease. Trends in Molecular Medicine, 2011, 17, 584-593.	3.5	121
73	The Commensal Microbiota and Enteropathogens in the Pathogenesis of Inflammatory Bowel Diseases. Gastroenterology, 2011, 140, 1720-1728.e3.	0.6	390

#	ARTICLE	IF	CITATIONS
74	Influence of Toll-like receptor 2 and interleukin 10 on the intestinal epithelial barrier and their roles in inflammatory bowel disease. Inmunologia (Barcelona, Spain: 1987), 2011, 30, 8-16.	0.1	2
75	Mucin Variable Number Tandem Repeat Polymorphisms and Severity of Cystic Fibrosis Lung Disease: Significant Association with MUC5AC. PLoS ONE, 2011, 6, e25452.	1.1	39
76	Active Transport of Bile Acids Decreases Mucin 2 in Neonatal Ileum: Implications for Development of Necrotizing Enterocolitis. PLoS ONE, 2011, 6, e27191.	1.1	45
77	Intestinal secretory cell ER stress and inflammation. Biochemical Society Transactions, 2011, 39, 1081-1085.	1.6	45
78	Impeded protein folding and function in active inflammatory bowel disease. Biochemical Society Transactions, 2011, 39, 1107-1111.	1.6	17
79	Changes in the mucosal barrier during acute and chronic <i>Trichuris muris</i> infection. Parasite Immunology, 2011, 33, 45-55.	0.7	74
80	Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nature Reviews Immunology, 2011, 11, 9-20.	10.6	345
81	Mucin dynamics and enteric pathogens. Nature Reviews Microbiology, 2011, 9, 265-278.	13.6	1,132
82	The unfolded protein response and its role in intestinal homeostasis and inflammation. Experimental Cell Research, 2011, 317, 2772-2779.	1.2	46
83	New IBD genetics: common pathways with other diseases. Gut, 2011, 60, 1739-1753.	6.1	504
84	Inflammation and cellular stress: a mechanistic link between immune-mediated and metabolically driven pathologies. European Journal of Nutrition, 2011, 50, 219-233.	1.8	70
85	How host defense is encoded in the mammalian genome. Mammalian Genome, 2011, 22, 1-5.	1.0	8
86	Hepatic endoplasmic reticulum stress in obesity: Deeper insights into processes, but are they relevant to nonalcoholic steatohepatitis?. Hepatology, 2011, 54, 2261-2266.	3.6	5
87	Genetics of childhood-onset inflammatory bowel disease. Inflammatory Bowel Diseases, 2011, 17, 346-361.	0.9	63
88	Colitis locus on chromosome 2 impacting the severity of early-onset disease in mice deficient in GPX1 and GPX2. Inflammatory Bowel Diseases, 2011, 17, 1373-1386.	0.9	29
89	Altered O-glycosylation profile of MUC2 mucin occurs in active ulcerative colitis and is associated with increased inflammation. Inflammatory Bowel Diseases, 2011, 17, 2299-2307.	0.9	243
90	Experimental Inflammatory Bowel Disease: Insights into the Host-Microbiota Dialog. Immunity, 2011, 34, 293-302.	6.6	142
91	Muc5ac: a critical component mediating the rejection of enteric nematodes. Journal of Experimental Medicine, 2011, 208, 893-900.	4.2	265

#	Article	IF	CITATIONS
92	Muc17 protects intestinal epithelial cells from enteroinvasive E. coli infection by promoting epithelial barrier integrity. American Journal of Physiology - Renal Physiology, 2011, 300, G1144-G1155.	1.6	32
93	Random mutagenesis of the mouse genome: a strategy for discovering gene function and the molecular basis of disease. American Journal of Physiology - Renal Physiology, 2011, 300, G1-G11.	1.6	20
94	An intestinal epithelial defect conferring ER stress results in inflammation involving both innate and adaptive immunity. Mucosal Immunology, 2011, 4, 354-364.	2.7	114
95	Crohn disease: A current perspective on genetics, autophagy and immunity. Autophagy, 2011, 7, 355-374.	4.3	94
96	Tumor Stress Inside Out: Cell-Extrinsic Effects of the Unfolded Protein Response in Tumor Cells Modulate the Immunological Landscape of the Tumor Microenvironment. Journal of Immunology, 2011, 187, 4403-4409.	0.4	73
97	The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host–microbial interactions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4659-4665.	3.3	1,084
98	Mucin Production during Prenatal and Postnatal Murine Lung Development. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 755-760.	1.4	48
99	Tumor necrosis factor receptor 1-dependent depletion of mucus in immature small intestine: a potential role in neonatal necrotizing enterocolitis. American Journal of Physiology - Renal Physiology, 2011, 301, G656-G666.	1.6	104
100	Serine Protease(s) Secreted by the Nematode Trichuris muris Degrade the Mucus Barrier. PLoS Neglected Tropical Diseases, 2012, 6, e1856.	1.3	99
101	Nuclear factor of activated T-cell c3 inhibition of mammalian target of rapamycin signaling through induction of regulated in development and DNA damage response 1 in human intestinal cells. Molecular Biology of the Cell, 2012, 23, 2963-2972.	0.9	20
102	The endoplasmic reticulum stress response in aging and age-related diseases. Frontiers in Physiology, 2012, 3, 263.	1.3	305
103	Endoplasmic Reticulum Stress Response Promotes Cytotoxic Phenotype of CD8αβ+ Intraepithelial Lymphocytes in a Mouse Model for Crohn's Disease-like Ileitis. Journal of Immunology, 2012, 189, 1510-1520.	0.4	31
104	The Endoplasmic Reticulum Stress Transducer OASIS Is involved in the Terminal Differentiation of Goblet Cells in the Large Intestine. Journal of Biological Chemistry, 2012, 287, 8144-8153.	1.6	57
105	Retinoic acid suppresses intestinal mucus production and exacerbates experimental enterocolitis. DMM Disease Models and Mechanisms, 2012, 5, 457-67.	1.2	76
106	Exposure of colonic epithelial cells to oxidative and endoplasmic reticulum stress causes rapid potassium efflux and calcium influx. Cell Biochemistry and Function, 2013, 31, 603-611.	1.4	6
107	Perspectives on Mucus Properties and FormationLessons from the Biochemical World. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a014159-a014159.	2.9	59
108	Yip1 domain family, member 6 (Yipf6) mutation induces spontaneous intestinal inflammation in mice. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12650-12655.	3.3	33
109	A function to every gene: a slimy molecule. , 0, , 164-172.		O

#	Article	IF	CITATIONS
110	Absence of ABCG2-mediated mucosal detoxification in patients with active inflammatory bowel disease is due to impeded protein folding. Biochemical Journal, 2012, 441, 87-93.	1.7	37
111	Endoplasmic Reticulum Stress and Inflammation. Digestive Diseases, 2012, 30, 341-346.	0.8	55
112	ER Stress and Inflammation. , 2012, , 257-279.		2
113	Induction of dsRNA-activated protein kinase links mitochondrial unfolded protein response to the pathogenesis of intestinal inflammation. Gut, 2012, 61, 1269-1278.	6.1	125
114	AGR2 Is Induced in Asthma and Promotes Allergen-Induced Mucin Overproduction. American Journal of Respiratory Cell and Molecular Biology, 2012, 47, 178-185.	1.4	102
115	Gut bacteria in health and disease: a survey on the interface between intestinal microbiology and colorectal cancer. Biological Reviews, 2012, 87, 701-730.	4.7	122
116	T Cell Transfer Model of Colitis: A Great Tool to Assess the Contribution of T Cells in Chronic Intestinal Inflammation. Methods in Molecular Biology, 2012, 844, 261-275.	0.4	54
117	Dysbiosis of Gut Microbiota (DOGMA) – A novel theory for the development of Polycystic Ovarian Syndrome. Medical Hypotheses, 2012, 79, 104-112.	0.8	195
118	Role of mucus layers in gut infection and inflammation. Current Opinion in Microbiology, 2012, 15, 57-62.	2.3	368
119	Fatty Acid Synthase Modulates Intestinal Barrier Function through Palmitoylation of Mucin 2. Cell Host and Microbe, 2012, 11, 140-152.	5.1	139
120	Nature of bacterial colonization influences transcription of mucin genes in mice during the first week of life. BMC Research Notes, 2012, 5, 402.	0.6	51
121	The interplay between endoplasmic reticulum stress and inflammation. Immunology and Cell Biology, 2012, 90, 260-270.	1.0	226
122	Techniques for Assessment of Interactions of Mucins with Microbes and Parasites In Vitro and In Vivo. Methods in Molecular Biology, 2012, 842, 297-312.	0.4	6
123	Commensal-Innate Immune Miscommunication in IBD Pathogenesis. Digestive Diseases, 2012, 30, 334-340.	0.8	14
124	Creating diseases to understand what prevents them: genetic analysis of inflammation in the gastrointestinal tract. Current Opinion in Immunology, 2012, 24, 678-685.	2.4	8
125	The endoplasmic reticulum: a sensor of cellular stress that modulates immune responses. Microbes and Infection, 2012, 14, 1293-1300.	1.0	21
126	ER Stress in Intestinal Inflammatory Disease. , 2012, , 281-298.		1
128	Microbes, intestinal inflammation and probiotics. Expert Review of Gastroenterology and Hepatology, 2012, 6, 81-94.	1.4	19

#	ARTICLE	IF	CITATIONS
129	Fast Renewal of the Distal Colonic Mucus Layers by the Surface Goblet Cells as Measured by In Vivo Labeling of Mucin Glycoproteins. PLoS ONE, 2012, 7, e41009.	1.1	156
130	Mucosal Immune System and M Cell-targeting Strategies for Oral Mucosal Vaccination. Immune Network, 2012, 12, 165.	1.6	74
131	Pathogenesis of Inflammatory Bowel Diseases. , 2012, , .		2
132	Phylotype-level 16S rRNA analysis reveals new bacterial indicators of health state in acute murine colitis. ISME Journal, 2012, 6, 2091-2106.	4.4	291
133	Mitochondria at the Interface Between Danger Signaling and Metabolism: Role of Unfolded Protein Responses in Chronic Inflammation. Inflammatory Bowel Diseases, 2012, 18, 1364-1377.	0.9	42
134	PKR protects colonic epithelium against colitis through the unfolded protein response and prosurvival signaling. Inflammatory Bowel Diseases, 2012, 18, 1735-1742.	0.9	41
135	Toll-Like Receptor–Gut Microbiota Interactions: Perturb at Your Own Risk!. Annual Review of Physiology, 2012, 74, 177-198.	5.6	132
136	Berberine Ameliorates Pro-inflammatory Cytokine-Induced Endoplasmic Reticulum Stress in Human Intestinal Epithelial Cells In Vitro. Inflammation, 2012, 35, 841-849.	1.7	47
137	Mucins in inflammatory bowel diseases and colorectal cancer. Journal of Gastroenterology and Hepatology (Australia), 2012, 27, 28-38.	1.4	159
138	Helminthic therapy: improving mucosal barrier function. Trends in Parasitology, 2012, 28, 187-194.	1.5	56
139	The UPR and lung disease. Seminars in Immunopathology, 2013, 35, 293-306.	2.8	58
140	Chemically Induced Intestinal Damage Models in Zebrafish Larvae. Zebrafish, 2013, 10, 184-193.	0.5	78
141	New therapeutic avenues in ulcerative colitis: thinking out of the box. Gut, 2013, 62, 1642-1652.	6.1	61
142	Recent advances in inflammatory bowel disease: mucosal immune cells in intestinal inflammation. Gut, 2013, 62, 1653-1664.	6.1	272
143	Microbes, the gut and ankylosing spondylitis. Arthritis Research and Therapy, 2013, 15, 214.	1.6	71
144	Endoplasmic reticulum stress as a pro-fibrotic stimulus. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 940-947.	1.8	120
145	<scp>A</scp> ntimicrobial peptides and gut microbiota in homeostasis and pathology. EMBO Molecular Medicine, 2013, 5, 1465-1483.	3.3	293
146	Have genome-wide association studies or knockout mice more reflected the true nature of inflammatory bowel disease?. Journal of Crohn's and Colitis, 2013, 7, 419-420.	0.6	1

#	Article	IF	CITATIONS
147	The gastrointestinal mucus system in health and disease. Nature Reviews Gastroenterology and Hepatology, 2013, 10, 352-361.	8.2	1,026
148	A new role for mucins in immunity: Insights from gastrointestinal nematode infection. International Journal of Biochemistry and Cell Biology, 2013, 45, 364-374.	1.2	91
149	The ER stress transducer IRE1 \hat{I}^2 is required for airway epithelial mucin production. Mucosal Immunology, 2013, 6, 639-654.	2.7	152
150	Ethanol and dietary unsaturated fat (corn oil/linoleic acid enriched) cause intestinal inflammation and impaired intestinal barrier defense in mice chronically fed alcohol. Alcohol, 2013, 47, 257-264.	0.8	55
151	The unfolded protein response and gastrointestinal disease. Seminars in Immunopathology, 2013, 35, 307-319.	2.8	74
152	Matrix metalloproteinase 13 modulates intestinal epithelial barrier integrity in inflammatory diseases by activating TNF. EMBO Molecular Medicine, 2013, 5, 1000-1016.	3.3	114
153	The Unfolded Protein Response and Chemical Chaperones Reduce Protein Misfolding and Colitis in Mice. Gastroenterology, 2013, 144, 989-1000.e6.	0.6	177
154	IL-10 Promotes Production of Intestinal Mucus by Suppressing Protein Misfolding and Endoplasmic Reticulum Stress in Goblet Cells. Gastroenterology, 2013, 144, 357-368.e9.	0.6	190
155	Cellâ€extrinsic effects of the tumor unfolded protein response on myeloid cells and T cells. Annals of the New York Academy of Sciences, 2013, 1284, 6-11.	1.8	18
156	Inflammatory Bowel Disease: Mechanisms, Redox Considerations, and Therapeutic Targets. Antioxidants and Redox Signaling, 2013, 19, 1711-1747.	2.5	207
157	Mucosal Healing in Ulcerative Colitis. Advances in Clinical Chemistry, 2013, 59, 101-123.	1.8	25
158	The unfolded protein response is activated in Helicobacter-induced gastric carcinogenesis in a non-cell autonomous manner. Laboratory Investigation, 2013, 93, 112-122.	1.7	31
159	Mucosal Barrier in Ulcerative Colitis and Crohn's Disease. Gastroenterology Research and Practice, 2013, 2013, 1-9.	0.7	117
160	Innate Immunity Modulation by the IL-33/ST2 System in Intestinal Mucosa. BioMed Research International, 2013, 2013, 1-13.	0.9	13
161	Dysregulated phosphatidylinositol signaling promotes endoplasmic-reticulum-stress-mediated intestinal mucosal injury and inflammation in zebrafish. DMM Disease Models and Mechanisms, 2014, 7, 93-106.	1.2	41
162	Quantification and Characterization of Mucosa-Associated and Intracellular Escherichia coli in Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2013, 19, 2326-2338.	0.9	40
163	Goblet cell compound exocytosis in the defense against bacterial invasion in the colon exposed to ischemia-reperfusion. Gut Microbes, 2013, 4, 232-235.	4.3	18
164	ER stress transcription factor Xbp1 suppresses intestinal tumorigenesis and directs intestinal stem cells. Journal of Experimental Medicine, 2013, 210, 2041-2056.	4.2	120

#	Article	IF	CITATIONS
165	A novel mouse model of veno-occlusive disease provides strategies to prevent thioguanine-induced hepatic toxicity. Gut, 2013, 62, 594-605.	6.1	48
166	Genome Reference and Sequence Variation in the Large Repetitive Central Exon of Human <i>MUC5AC</i> . American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 223-232.	1.4	32
167	Glucocorticoids alleviate intestinal ER stress by enhancing protein folding and degradation of misfolded proteins. Journal of Experimental Medicine, 2013, 210, 1201-1216.	4.2	88
168	Virulent Shigella flexneri Affects Secretion, Expression, and Glycosylation of Gel-Forming Mucins in Mucus-Producing Cells. Infection and Immunity, 2013, 81, 3632-3643.	1.0	33
169	Central Role of the Gut Epithelial Barrier in the Pathogenesis of Chronic Intestinal Inflammation: Lessons Learned from Animal Models and Human Genetics. Frontiers in Immunology, 2013, 4, 280.	2.2	337
170	CC Chemokine Ligand 20 and Its Cognate Receptor CCR6 in Mucosal T Cell Immunology and Inflammatory Bowel Disease: Odd Couple or Axis of Evil?. Frontiers in Immunology, 2013, 4, 194.	2.2	106
171	Ischaemia-induced mucus barrier loss and bacterial penetration are rapidly counteracted by increased goblet cell secretory activity in human and rat colon. Gut, 2013, 62, 250-258.	6.1	95
172	Linking membrane trafficking and intestinal homeostasis. Tissue Barriers, 2013, 1, e23119.	1.6	3
173	Role of Janus Kinase 3 in Mucosal Differentiation and Predisposition to Colitis. Journal of Biological Chemistry, 2013, 288, 31795-31806.	1.6	32
174	ADAR1 is essential for intestinal homeostasis and stem cell maintenance. Cell Death and Disease, 2013, 4, e599-e599.	2.7	62
175	Methyl donor deficiency affects small-intestinal differentiation and barrier function in rats. British Journal of Nutrition, 2013, 109, 667-677.	1.2	32
176	Mucin Function in Inflammatory Bowel Disease. Journal of Clinical Gastroenterology, 2013, 47, 106-111.	1.1	111
177	Cloning, Annotation and Developmental Expression of the Chicken Intestinal MUC2 Gene. PLoS ONE, 2013, 8, e53781.	1.1	37
178	Mice Overexpressing \hat{I}^2 -1,4-Galactosyltransferase I Are Resistant to TNF-Induced Inflammation and DSS-Induced Colitis. PLoS ONE, 2013, 8, e79883.	1.1	16
179	Pharmacology and clinical potential of guanylyl cyclase C agonists in the treatment of ulcerative colitis. Drug Design, Development and Therapy, 2013, 7, 351.	2.0	19
180	Combined NADPH Oxidase 1 and Interleukin 10 Deficiency Induces Chronic Endoplasmic Reticulum Stress and Causes Ulcerative Colitis-Like Disease in Mice. PLoS ONE, 2014, 9, e101669.	1.1	49
181	Intestinal barrier in inflammatory bowel disease. World Journal of Gastroenterology, 2014, 20, 1165.	1.4	309
182	Antimicrobial peptides and the enteric mucus layer act in concert to protect the intestinal mucosa. Gut Microbes, 2014, 5, 761-765.	4.3	94

#	Article	IF	CITATIONS
183	Roundoc Rx: Optimal Integrative Treatment for Ulcerative Colitis. Alternative and Complementary Therapies, 2014, 20, 167-175.	0.1	0
184	Influences of the colonic microbiome on the mucous gel layer in ulcerative colitis. Gut Microbes, 2014, 5, 277-476.	4.3	28
185	The Intestinal Mucus Layer is a Critical Component of the Gut Barrier that is Damaged During Acute Pancreatitis. Shock, 2014, 42, 264-270.	1.0	53
186	Preventive effect of the microalga <i>Chlamydomonas debaryana</i> on the acute phase of experimental colitis in rats. British Journal of Nutrition, 2014, 112, 1055-1064.	1.2	19
187	Inhibition of the Dephosphorylation of Eukaryotic Initiation Factor 2E Ameliorates Murine Experimental Colitis. Digestion, 2014, 90, 167-178.	1.2	17
188	Insights from immunology: New targets for new drugs?. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2014, 28, 411-420.	1.0	3
189	Shuttling of information between the mucosal and luminal environment drives intestinal homeostasis. FEBS Letters, 2014, 588, 4148-4157.	1.3	27
190	Selenoprotein S is a marker but not a regulator of endoplasmic reticulum stress in intestinal epithelial cells. Free Radical Biology and Medicine, 2014, 67, 265-277.	1.3	34
191	Inflammatory Bowel Diseases. , 2014, , 873-888.		0
192	The Colon. Toxicologic Pathology, 2014, 42, 67-81.	0.9	30
192 193	The Colon. Toxicologic Pathology, 2014, 42, 67-81. Endoplasmic Reticulum Stress and Oxidative Stress in Cell Fate Decision and Human Disease. Antioxidants and Redox Signaling, 2014, 21, 396-413.	0.9	30 962
	Endoplasmic Reticulum Stress and Oxidative Stress in Cell Fate Decision and Human Disease.		
193	Endoplasmic Reticulum Stress and Oxidative Stress in Cell Fate Decision and Human Disease. Antioxidants and Redox Signaling, 2014, 21, 396-413. Interleukinâ€23 Mediates the Intestinal Response to Microbial βâ€1,3â€Glucan and the Development of	2.5	962
193 194	Endoplasmic Reticulum Stress and Oxidative Stress in Cell Fate Decision and Human Disease. Antioxidants and Redox Signaling, 2014, 21, 396-413. Interleukinâ€23 Mediates the Intestinal Response to Microbial βâ€1,3â€Glucan and the Development of Spondyloarthritis Pathology in SKG Mice. Arthritis and Rheumatology, 2014, 66, 1755-1767. γδT-cell-deficient mice show alterations in mucin expression, glycosylation, and goblet cells but maintain an intact mucus layer. American Journal of Physiology - Renal Physiology, 2014, 306,	2.5	962 183
193 194 195	Endoplasmic Reticulum Stress and Oxidative Stress in Cell Fate Decision and Human Disease. Antioxidants and Redox Signaling, 2014, 21, 396-413. Interleukinâ€23 Mediates the Intestinal Response to Microbial βâ€1,3â€Glucan and the Development of Spondyloarthritis Pathology in SKG Mice. Arthritis and Rheumatology, 2014, 66, 1755-1767. γÎ⁻T-cell-deficient mice show alterations in mucin expression, glycosylation, and goblet cells but maintain an intact mucus layer. American Journal of Physiology - Renal Physiology, 2014, 306, G582-G593. Nuclear adenomatous polyposis coli suppresses colitis-associated tumorigenesis in mice.	2.5 2.9 1.6	962 183 27
193 194 195	Endoplasmic Reticulum Stress and Oxidative Stress in Cell Fate Decision and Human Disease. Antioxidants and Redox Signaling, 2014, 21, 396-413. Interleukinâ€23 Mediates the Intestinal Response to Microbial βâ€1,3â€Glucan and the Development of Spondyloarthritis Pathology in SKG Mice. Arthritis and Rheumatology, 2014, 66, 1755-1767. γδT-cell-deficient mice show alterations in mucin expression, glycosylation, and goblet cells but maintain an intact mucus layer. American Journal of Physiology - Renal Physiology, 2014, 306, G582-G593. Nuclear adenomatous polyposis coli suppresses colitis-associated tumorigenesis in mice. Carcinogenesis, 2014, 35, 1881-1890.	2.5 2.9 1.6	962 183 27
193 194 195 196	Endoplasmic Reticulum Stress and Oxidative Stress in Cell Fate Decision and Human Disease. Antioxidants and Redox Signaling, 2014, 21, 396-413. Interleukinâ€23 Mediates the Intestinal Response to Microbial βâ€1,3â€Glucan and the Development of Spondyloarthritis Pathology in SKG Mice. Arthritis and Rheumatology, 2014, 66, 1755-1767. γÎ⁻T-cell-deficient mice show alterations in mucin expression, glycosylation, and goblet cells but maintain an intact mucus layer. American Journal of Physiology - Renal Physiology, 2014, 306, G582-G593. Nuclear adenomatous polyposis coli suppresses colitis-associated tumorigenesis in mice. Carcinogenesis, 2014, 35, 1881-1890. The role of glycosylation in IBD. Nature Reviews Gastroenterology and Hepatology, 2014, 11, 588-600.	2.5 2.9 1.6 1.3	962 183 27 10 123

#	Article	IF	CITATIONS
201	Genomic ATG16L1 risk allele-restricted Paneth cell ER stress in quiescent Crohn's disease. Gut, 2014, 63, 1081-1091.	6.1	111
202	The impact of ageing on the intestinal epithelial barrier and immune system. Cellular Immunology, 2014, 289, 112-118.	1.4	89
203	The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunological Reviews, 2014, 260, 8-20.	2.8	895
204	Endoplasmic reticulum stress and unfolded protein response are involved in paediatric inflammatory bowel disease. Digestive and Liver Disease, 2014, 46, 788-794.	0.4	21
205	Dendritic cell–epithelial cell crosstalk in the gut. Immunological Reviews, 2014, 260, 118-128.	2.8	56
206	Human Breast Milk and the Gastrointestinal Innate Immune System. Clinics in Perinatology, 2014, 41, 423-435.	0.8	108
207	Epithelial gp130/Stat3 functions: An intestinal signaling node in health and disease. Seminars in Immunology, 2014, 26, 29-37.	2.7	54
209	Presentation of Microbial Signals via Maternal Cells: An Evolutionary Advantage of Mammals. , 2014, , 49-68.		0
210	Mucus Layers in Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2014, 20, 2124-2131.	0.9	111
211	Neutralizing IL-23 Is Superior to Blocking IL-17 in Suppressing Intestinal Inflammation in a Spontaneous Murine Colitis Model. Inflammatory Bowel Diseases, 2015, 21, 973-984.	0.9	40
212	Emerging treatments in Neurogastroenterology: Perspectives of guanylyl cyclase C agonists use in functional gastrointestinal disorders and inflammatory bowel diseases. Neurogastroenterology and Motility, 2015, 27, 1057-1068.	1.6	14
213	Aberrant Niche Signaling in the Etiopathogenesis of Ulcerative Colitis. Inflammatory Bowel Diseases, 2015, 21, 2549-2561.	0.9	8
214	Endoplasmic Reticulum Stress in Intestinal Epithelial Cell Function and Inflammatory Bowel Disease. Gastroenterology Research and Practice, 2015, 2015, 1-6.	0.7	68
215	Curcumin utilizes the anti-inflammatory response pathway to protect the intestine against bacterial invasion. Nutrition Research and Practice, 2015, 9, 117.	0.7	28
216	Pathogenesis of Crohn's disease. F1000prime Reports, 2015, 7, 44.	5.9	73
217	Mucosal barriology: The molecular machinery and physiological significance of multiple epithelial barriers. Inflammation and Regeneration, 2015, 35, 003-013.	1.5	1
218	Mitochondrial dysfunction in inflammatory bowel disease. Frontiers in Cell and Developmental Biology, 2015, 3, 62.	1.8	174
219	Disruptions of Host Immunity and Inflammation by Giardia Duodenalis: Potential Consequences for Co-Infections in the Gastro-Intestinal Tract. Pathogens, 2015, 4, 764-792.	1.2	60

#	Article	IF	CITATIONS
220	Mechanisms of Microbe–Host Interaction in Crohn's Disease: Dysbiosis vs. Pathobiont Selection. Frontiers in Immunology, 2015, 6, 555.	2.2	83
221	Role of endoplasmic reticulum stress and autophagy as interlinking pathways in the pathogenesis of inflammatory bowel disease. Current Opinion in Gastroenterology, 2015, 31, 81-88.	1.0	64
222	Phytonutrient diet supplementation promotes beneficial Clostridia species and intestinal mucus secretion resulting in protection against enteric infection. Scientific Reports, 2015, 5, 9253.	1.6	129
223	Microbial Sensing and Regulation of Mucosal Immune Responses by Intestinal Epithelial Cells. , 2015, , 571-590.		1
224	Vibrio vulnificus VvpE inhibits mucin 2 expression by hypermethylation via lipid raft-mediated ROS signaling in intestinal epithelial cells. Cell Death and Disease, 2015, 6, e1787-e1787.	2.7	18
225	Mucus mediated protection against acute colitis in adiponectin deficient mice. Journal of Inflammation, 2015, 12, 35.	1.5	14
226	Zebrafish as a model to study live mucus physiology. Scientific Reports, 2014, 4, 6653.	1.6	57
227	Emerging potential of natural products for targeting mucins for therapy against inflammation and cancer. Cancer Treatment Reviews, 2015, 41, 277-288.	3.4	24
228	The composition of the gut microbiota shapes the colon mucus barrier. EMBO Reports, 2015, 16, 164-177.	2.0	519
229	Nicotine-induced cellular stresses and autophagy in human cancer colon cells: A supportive effect on cell homeostasis via up-regulation of Cox-2 and PGE2 production. International Journal of Biochemistry and Cell Biology, 2015, 65, 239-256.	1.2	39
230	PERK Limits Drosophila Lifespan by Promoting Intestinal Stem Cell Proliferation in Response to ER Stress. PLoS Genetics, 2015, 11, e1005220.	1.5	86
231	TNFR1-induced lethal inflammation is mediated by goblet and Paneth cell dysfunction. Mucosal Immunology, 2015, 8, 828-840.	2.7	40
232	ATG16L1: A multifunctional susceptibility factor in Crohn disease. Autophagy, 2015, 11, 585-594.	4.3	100
233	New developments in goblet cell mucus secretion and function. Mucosal Immunology, 2015, 8, 712-719.	2.7	541
234	Core 2 Mucin-Type O-Glycan Is Related to EPEC and EHEC O157:H7 Adherence to Human Colon Carcinoma HT-29 Epithelial Cells. Digestive Diseases and Sciences, 2015, 60, 1977-1990.	1.1	16
235	eQTL mapping identifies insertion- and deletion-specific eQTLs in multiple tissues. Nature Communications, 2015, 6, 6821.	5. 8	18
236	Endoplasmic Reticulum Stress and Unfolded Protein Response in Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2015, 21, 636-644.	0.9	58
237	Protein tyrosine phosphatase SAP-1 protects against colitis through regulation of CEACAM20 in the intestinal epithelium. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4264-E4271.	3.3	39

#	Article	IF	CITATIONS
238	The Endoplasmic Reticulum Stress Sensor IRE1α in Intestinal Epithelial Cells Is Essential for Protecting against Colitis. Journal of Biological Chemistry, 2015, 290, 15327-15336.	1.6	54
239	Roles and regulation of the mucus barrier in the gut. Tissue Barriers, 2015, 3, e982426.	1.6	331
240	Alterations in the distal colon innervation in Winnie mouse model of spontaneous chronic colitis. Cell and Tissue Research, 2015, 362, 497-512.	1.5	33
241	Endoplasmic Reticulum Stress in Immunity. Annual Review of Immunology, 2015, 33, 107-138.	9.5	398
242	\hat{l}^2 -Arrestin2 encourages inflammation-induced epithelial apoptosis through ER stress/PUMA in colitis. Mucosal Immunology, 2015, 8, 683-695.	2.7	31
243	Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clinical and Experimental Immunology, 2015, 179, 363-377.	1.1	218
244	New players driving inflammation in monogenic autoinflammatory diseases. Nature Reviews Rheumatology, 2015, 11 , 11 -20.	3.5	57
245	Role of regulatory T cell in the pathogenesis of inflammatory bowel disease. World Journal of Gastroenterology, 2016, 22, 2195-2205.	1.4	140
246	Involvement of Reduced Microbial Diversity in Inflammatory Bowel Disease. Gastroenterology Research and Practice, 2016, 2016, 1-7.	0.7	82
247	Stem Cells in the Intestine: Possible Roles in Pathogenesis of Irritable Bowel Syndrome. Journal of Neurogastroenterology and Motility, 2016, 22, 367-382.	0.8	16
248	Inflammation Meets Metabolic Disease: Gut Feeling Mediated by GLP-1. Frontiers in Immunology, 2016, 7, 154.	2.2	95
249	The Mucosal Immune System and Its Regulation by Autophagy. Frontiers in Immunology, 2016, 7, 240.	2.2	75
250	Supplementation with Lactobacillus plantarum WCFS1 Prevents Decline of Mucus Barrier in Colon of Accelerated Aging Ercc1â ⁻ /Δ7 Mice. Frontiers in Immunology, 2016, 7, 408.	2.2	49
251	Therapeutic Potential to Modify the Mucus Barrier in Inflammatory Bowel Disease. Nutrients, 2016, 8, 44.	1.7	65
252	Bifidobacteria Prevent Tunicamycin-Induced Endoplasmic Reticulum Stress and Subsequent Barrier Disruption in Human Intestinal Epithelial Caco-2 Monolayers. PLoS ONE, 2016, 11, e0162448.	1.1	15
253	Effect of a Semi-Purified Oligosaccharide-Enriched Fraction from Caprine Milk on Barrier Integrity and Mucin Production of Co-Culture Models of the Small and Large Intestinal Epithelium. Nutrients, 2016, 8, 267.	1.7	26
254	Epithelial ER Stress in Crohn's Disease and Ulcerative Colitis. Inflammatory Bowel Diseases, 2016, 22, 984-993.	0.9	72
255	Function of Epithelial Barriers. , 2016, , 687-694.		1

#	Article	IF	CITATIONS
256	Fecal Microbiota and Metabolome in a Mouse Model of Spontaneous Chronic Colitis. Inflammatory Bowel Diseases, 2016, 22, 2767-2787.	0.9	41
257	Defective Intestinal Mucin-Type O-Glycosylation Causes Spontaneous Colitis-Associated Cancer in Mice. Gastroenterology, 2016, 151, 152-164.e11.	0.6	105
258	Endoplasmic reticulum stress is involved in the colonic epithelium damage induced by maternal separation. Journal of Pediatric Surgery, 2016, 51, 1001-1004.	0.8	25
259	Intrinsic Defense Mechanisms of the Intestinal Epithelium. Cell Host and Microbe, 2016, 19, 434-441.	5.1	107
260	Interferon-γ–Induced Unfolded Protein Response in Conjunctival Goblet Cells as a Cause of Mucin Deficiency in Sjögren Syndrome. American Journal of Pathology, 2016, 186, 1547-1558.	1.9	85
261	Food-grade titanium dioxide exposure exacerbates tumor formation in colitis associated cancer model. Food and Chemical Toxicology, 2016, 93, 20-31.	1.8	100
262	Cell Signaling and Stress Responses. Cold Spring Harbor Perspectives in Biology, 2016, 8, a006072.	2.3	334
263	Rectal prolapse in Winnie mice with spontaneous chronic colitis: changes in intrinsic and extrinsic innervation of the rectum. Cell and Tissue Research, 2016, 366, 285-299.	1.5	15
264	Immunological aspects of intestinal mucus and mucins. Nature Reviews Immunology, 2016, 16, 639-649.	10.6	613
265	Assessing Immune-Related Adverse Events of Efficacious Combination Immunotherapies in Preclinical Models of Cancer. Cancer Research, 2016, 76, 5288-5301.	0.4	82
266	TSLP production by dendritic cells is modulated by ILâ€1β and components of the endoplasmic reticulum stress response. European Journal of Immunology, 2016, 46, 455-463.	1.6	44
267	Protein Kinase D2 Protects against Acute Colitis Induced by Dextran Sulfate Sodium in Mice. Scientific Reports, 2016, 6, 34079.	1.6	14
268	Good Bugs, Bad Bugs in the Gut: The Role of Microbiota Dysbiosis in Chronic Gastrointestinal Consequences of Infection. American Journal of Gastroenterology Supplements (Print), 2016, 3, 25-32.	0.7	6
269	Human Intestinal Barrier Function in Health and Disease. Clinical and Translational Gastroenterology, 2016, 7, e196.	1.3	569
270	High Fat Diets Induce Colonic Epithelial Cell Stress and Inflammation that is Reversed by IL-22. Scientific Reports, 2016, 6, 28990.	1.6	243
271	GLP-1 Induces Barrier Protective Expression in Brunner's Glands and Regulates Colonic Inflammation. Inflammatory Bowel Diseases, 2016, 22, 2078-2097.	0.9	62
272	The unfolded protein response in immunity and inflammation. Nature Reviews Immunology, 2016, 16, 469-484.	10.6	581
273	Polymers in the gut compress the colonic mucus hydrogel. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7041-7046.	3.3	62

#	Article	IF	CITATIONS
274	DUSP10 regulates intestinal epithelial cell growth and colorectal tumorigenesis. Oncogene, 2016, 35, 206-217.	2.6	33
275	Methyl-deficient diet promotes colitis and SIRT1-mediated endoplasmic reticulum stress. Gut, 2016, 65, 595-606.	6.1	56
276	Mucosal Barrier Depletion and Loss of Bacterial Diversity are Primary Abnormalities in Paediatric Ulcerative Colitis. Journal of Crohn's and Colitis, 2016, 10, 462-471.	0.6	178
277	Epithelial Sel1L is required for the maintenance of intestinal homeostasis. Molecular Biology of the Cell, 2016, 27, 483-490.	0.9	36
278	MicroRNA 429 Regulates Mucin Gene Expression and Secretion in Murine Model of Colitis. Journal of Crohn's and Colitis, 2016, 10, 837-849.	0.6	28
279	Sulfide as a Mucus Barrier-Breaker in Inflammatory Bowel Disease?. Trends in Molecular Medicine, 2016, 22, 190-199.	3.5	205
280	Plasticity of the brush border â€" the yin and yang of intestinal homeostasis. Nature Reviews Gastroenterology and Hepatology, 2016, 13, 161-174.	8.2	78
281	Intestinal stem cells and intestinal homeostasis in health and in inflammation: A review. Surgery, 2016, 159, 1237-1248.	1.0	22
282	Gut inflammation and microbiome in spondyloarthritis. Rheumatology International, 2016, 36, 457-468.	1.5	14
283	The evolving paradigm of cell-nonautonomous UPR-based regulation of immunity by cancer cells. Oncogene, 2016, 35, 269-278.	2.6	35
284	Core 1– and 3–derived O-glycans collectively maintain the colonic mucus barrier and protect against spontaneous colitis in mice. Mucosal Immunology, 2017, 10, 91-103.	2.7	128
285	Regulation of intestinal homeostasis by the ulcerative colitis-associated gene RNF186. Mucosal Immunology, 2017, 10, 446-459.	2.7	55
286	The mucosal barrier at a glance. Journal of Cell Science, 2017, 130, 307-314.	1.2	179
287	Physiological roles of zinc transporters: molecular and genetic importance in zinc homeostasis. Journal of Physiological Sciences, 2017, 67, 283-301.	0.9	323
288	Colonic microbiota can promote rapid local improvement of murine colitis by thioguanine independently of T lymphocytes and host metabolism. Gut, 2017, 66, 59-69.	6.1	65
289	Bitter melon protects against ER stress in LS174T colonic epithelial cells. BMC Complementary and Alternative Medicine, 2017, 17, 2.	3.7	14
291	Alterations of colonic function in the <i>Winnie</i> mouse model of spontaneous chronic colitis. American Journal of Physiology - Renal Physiology, 2017, 312, G85-G102.	1.6	34
292	Expression of inositol-requiring enzyme $1\hat{l}^2$ is downregulated in colorectal cancer. Oncology Letters, 2017, 13, 1109-1118.	0.8	6

#	Article	IF	CITATIONS
293	An HDAC6 Inhibitor Confers Protection and Selectively Inhibits B-Cell Infiltration in DSS-Induced Colitis in Mice. Journal of Pharmacology and Experimental Therapeutics, 2017, 360, 140-151.	1.3	30
294	Enhancement of Antioxidative and Intestinal Anti-inflammatory Activities of Glycated Milk Casein after Fermentation with <i>Lactobacillus rhamnosus</i> 4B15. Journal of Agricultural and Food Chemistry, 2017, 65, 4744-4754.	2.4	21
295	Streptococcus thermophilus NCIMB 41856 ameliorates signs of colitis in an animal model of inflammatory bowel disease. Beneficial Microbes, 2017, 8, 605-614.	1.0	19
296	Short chain fatty acids ameliorate immune-mediated uveitis partially by altering migration of lymphocytes from the intestine. Scientific Reports, 2017, 7, 11745.	1.6	111
297	Cell Non-autonomous UPRER Signaling. Current Topics in Microbiology and Immunology, 2017, 414, 27-43.	0.7	6
298	Activation of Endoplasmic Reticulum Stress in Granulosa Cells from Patients with Polycystic Ovary Syndrome Contributes to Ovarian Fibrosis. Scientific Reports, 2017, 7, 10824.	1.6	70
299	The Unfolded Protein Response in the Immune Cell Development: Putting the Caretaker in the Driving Seat. Current Topics in Microbiology and Immunology, 2017, 414, 45-72.	0.7	3
300	Intestinal epithelial cell endoplasmic reticulum stress promotes MULT1 up-regulation and NKG2D-mediated inflammation. Journal of Experimental Medicine, 2017, 214, 2985-2997.	4.2	52
301	Acoustic stress induces long term severe intestinal inflammation in the mouse. Toxicology Letters, 2017, 280, 1-9.	0.4	11
302	TNFÎ \pm deficiency results in increased IL-1Î 2 in an early onset of spontaneous murine colitis. Cell Death and Disease, 2017, 8, e2993-e2993.	2.7	24
303	Accumulation of HLA-DR4 in Colonic Epithelial Cells Causes Severe Colitis in Homozygous HLA-DR4 Transgenic Mice. Inflammatory Bowel Diseases, 2017, 23, 2121-2133.	0.9	5
304	Circadian rhythm disruption impairs tissue homeostasis and exacerbates chronic inflammation in the intestine. FASEB Journal, 2017, 31, 4707-4719.	0.2	59
305	The role of barrier function, autophagy, and cytokines in maintaining intestinal homeostasis. Seminars in Cell and Developmental Biology, 2017, 61, 51-59.	2.3	45
306	Pathogenesis of Inflammatory Bowel Disease and Recent Advances in Biologic Therapies. Immune Network, 2017, 17, 25.	1.6	218
307	Dietary Green Pea Protects against DSS-Induced Colitis in Mice Challenged with High-Fat Diet. Nutrients, 2017, 9, 509.	1.7	35
308	Endoplasmic Reticulum Stress and Oxidative Stress: A Vicious Nexus Implicated in Bowel Disease Pathophysiology. International Journal of Molecular Sciences, 2017, 18, 771.	1.8	204
309	Intestinal Autophagy and Its Pharmacological Control in Inflammatory Bowel Disease. Frontiers in Immunology, 2016, 7, 695.	2.2	51
310	Interactions between Intestinal Microbiota and Host Immune Response in Inflammatory Bowel Disease. Frontiers in Immunology, 2017, 8, 942.	2.2	249

#	Article	IF	CITATIONS
311	Intestinal Epithelial Cell Endoplasmic Reticulum Stress and Inflammatory Bowel Disease Pathogenesis: An Update Review. Frontiers in Immunology, 2017, 8, 1271.	2.2	79
312	The Immune System Bridges the Gut Microbiota with Systemic Energy Homeostasis: Focus on TLRs, Mucosal Barrier, and SCFAs. Frontiers in Immunology, 2017, 8, 1353.	2.2	134
313	Gnotobiotics and Inflammatory Bowel Disease. , 2017, , 391-409.		0
314	Dextran sodium sulfate colitis murine model: An indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World Journal of Gastroenterology, 2017, 23, 6016-6029.	1.4	533
315	Mucus reduction promotes acetyl salicylic acid-induced small intestinal mucosal injury in rats. Biochemical and Biophysical Research Communications, 2018, 498, 228-233.	1.0	8
316	Aronia berry (Aronia mitschurinii †Viking') inhibits colitis in mice and inhibits T cell tumour necrosis factor-α secretion. Journal of Functional Foods, 2018, 44, 48-57.	1.6	20
317	Impaired IRE1α/XBP-1 pathway associated to DNA methylation might contribute to salivary gland dysfunction in Sjögren's syndrome patients. Rheumatology, 2018, 57, 1021-1032.	0.9	27
319	Gut Barrier Dysfunctionâ€"A Primary Defect in Twins with Crohn's Disease Predominantly Caused by Genetic Predisposition. Journal of Crohn's and Colitis, 2018, 12, 1200-1209.	0.6	27
320	The Onset and Progression of Chronic Colitis Parallels Increased Mucosal Serotonin Release via Enterochromaffin Cell Hyperplasia and Downregulation of the Serotonin Reuptake Transporter. Inflammatory Bowel Diseases, 2018, 24, 1021-1034.	0.9	22
321	Perinatal supplementation of 4-phenylbutyrate and glutamine attenuates endoplasmic reticulum stress and improves colonic epithelial barrier function in rats born with intrauterine growth restriction. Journal of Nutritional Biochemistry, 2018, 55, 104-112.	1.9	11
322	Bifidobacteria or Fiber Protects against Diet-Induced Microbiota-Mediated Colonic Mucus Deterioration. Cell Host and Microbe, 2018, 23, 27-40.e7.	5.1	477
323	ER-stress mobilization of death-associated protein kinase-1–dependent xenophagy counteracts mitochondria stress–induced epithelial barrier dysfunction. Journal of Biological Chemistry, 2018, 293, 3073-3087.	1.6	35
324	Intestinal mucin activates human dendritic cells and IL-8 production in a glycan-specific manner. Journal of Biological Chemistry, 2018, 293, 8543-8553.	1.6	23
325	Endoplasmic reticulum stress in pulmonary fibrosis. Matrix Biology, 2018, 68-69, 355-365.	1.5	162
326	High MUC2 Mucin Expression and Misfolding Induce Cellular Stress, Reactive Oxygen Production, and Apoptosis in Goblet Cells. American Journal of Pathology, 2018, 188, 1354-1373.	1.9	52
327	Colonic thioguanine pro-drug: Investigation of microbiome and novel host metabolism. Gut Microbes, 2018, 9, 175-178.	4.3	11
328	Expression of ATF6 as a marker of pre-cancerous atypical change in ulcerative colitis-associated colorectal cancer: a potential role in the management of dysplasia. Journal of Gastroenterology, 2018, 53, 631-641.	2.3	36
329	Genetic host factors in Helicobacter pylori -induced carcinogenesis: Emerging new paradigms. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1869, 42-52.	3.3	61

#	Article	IF	CITATIONS
330	Frontline defenders: goblet cell mediators dictate host-microbe interactions in the intestinal tract during health and disease. American Journal of Physiology - Renal Physiology, 2018, 314, G360-G377.	1.6	49
331	Protein Tyrosine Phosphatases: Regulators of CD4 T Cells in Inflammatory Bowel Disease. Frontiers in Immunology, 2018, 9, 2504.	2.2	23
332	Commensal Bacteria-Specific CD4+ T Cell Responses in Health and Disease. Frontiers in Immunology, 2018, 9, 2667.	2.2	52
333	Activated ATF6 Induces Intestinal Dysbiosis and Innate Immune Response to Promote Colorectal Tumorigenesis. Gastroenterology, 2018, 155, 1539-1552.e12.	0.6	85
334	Interplay between Endoplasmic Reticular Stress and Survivin in Colonic Epithelial Cells. Cells, 2018, 7, 171.	1.8	16
335	Mucins trigger dispersal of Pseudomonas aeruginosa biofilms. Npj Biofilms and Microbiomes, 2018, 4, 23.	2.9	52
336	Betulinic acid chemosensitizes breast cancer by triggering ER stress-mediated apoptosis by directly targeting GRP78. Cell Death and Disease, 2018, 9, 636.	2.7	100
337	Immune regulation of the unfolded protein response at the mucosal barrier in viral infection. Clinical and Translational Immunology, 2018, 7, e1014.	1.7	14
338	Mucosal Restitution and Repair., 2018, , 683-708.		0
339	Acute Exposure to Commonly Ingested Emulsifiers Alters Intestinal Mucus Structure and Transport Properties. Scientific Reports, 2018, 8, 10008.	1.6	68
340	Oxidative and endoplasmic reticulum stress in respiratory disease. Clinical and Translational Immunology, 2018, 7, e1019.	1.7	57
341	Regulation of Cytokine Production by the Unfolded Protein Response; Implications for Infection and Autoimmunity. Frontiers in Immunology, 2018, 9, 422.	2.2	127
342	Impact of Paneth Cell Autophagy on Inflammatory Bowel Disease. Frontiers in Immunology, 2018, 9, 693.	2.2	38
343	IRE1α Implications in Endoplasmic Reticulum Stress-Mediated Development and Pathogenesis of Autoimmune Diseases. Frontiers in Immunology, 2018, 9, 1289.	2.2	72
344	Endoplasmic reticulum stress-induced apoptosis in intestinal epithelial cells: a feed-back regulation by mechanistic target of rapamycin complex 1 (mTORC1). Journal of Animal Science and Biotechnology, 2018, 9, 38.	2.1	21
345	Ultraviolet Irradiation of Skin Alters the Faecal Microbiome Independently of Vitamin D in Mice. Nutrients, 2018, 10, 1069.	1.7	33
346	Mucus protectors: Promising therapeutic strategies for inflammatory bowel disease. Medical Hypotheses, 2018, 120, 55-59.	0.8	3
347	Goblet cells: multifaceted players in immunity at mucosal surfaces. Mucosal Immunology, 2018, 11, 1551-1557.	2.7	207

#	Article	IF	CITATIONS
348	MCC950, a specific small molecule inhibitor of NLRP3 inflammasome attenuates colonic inflammation in spontaneous colitis mice. Scientific Reports, 2018, 8, 8618.	1.6	208
349	Endoplasmic reticulum stress in autoimmune diseases: Can altered protein quality control and/or unfolded protein response contribute to autoimmunity? A critical review on Sjögren's syndrome. Autoimmunity Reviews, 2018, 17, 796-808.	2.5	28
350	Effect of dietary xylan on immune response, tight junction protein expression and bacterial community in the intestine of juvenile turbot (Scophthalmus maximus L.). Aquaculture, 2019, 512, 734361.	1.7	24
351	Exopolysaccharides from <i>Lactobacillus plantarum</i> NCU116 Enhances Colonic Mucosal Homeostasis by Controlling Epithelial Cell Differentiation and c-Jun/Muc2 Signaling . Journal of Agricultural and Food Chemistry, 2019, 67, 9831-9839.	2.4	34
352	Diet, lipids and colon cancer. International Review of Cell and Molecular Biology, 2019, 347, 105-144.	1.6	13
353	Composition of the Intestinal Microbiota Determines the Outcome of Virus-Triggered Colitis in Mice. Frontiers in Immunology, 2019, 10, 1708.	2.2	39
354	Negative Effects of a High-Fat Diet on Intestinal Permeability: A Review. Advances in Nutrition, 2020, 11 , 77-91.	2.9	382
355	Long-Term Culture Captures Injury-Repair Cycles of Colonic Stem Cells. Cell, 2019, 179, 1144-1159.e15.	13.5	140
356	VAMP8-mediated MUC2 mucin exocytosis from colonic goblet cells maintains innate intestinal homeostasis. Nature Communications, 2019, 10, 4306.	5.8	58
357	Docosahexaenoic and Eicosapentaenoic Acids Prevent Altered-Muc2 Secretion Induced by Palmitic Acid by Alleviating Endoplasmic Reticulum Stress in LS174T Goblet Cells. Nutrients, 2019, 11, 2179.	1.7	13
358	Indispensable role of the Ubiquitin-fold modifier 1-specific E3 ligase in maintaining intestinal homeostasis and controlling gut inflammation. Cell Discovery, 2019, 5, 7.	3.1	45
359	Engineering mucus to study and influence the microbiome. Nature Reviews Materials, 2019, 4, 134-145.	23.3	55
360	Bifidobacterium dentium Fortifies the Intestinal Mucus Layer via Autophagy and Calcium Signaling Pathways. MBio, $2019,10,1$	1.8	141
361	T-2 toxin inhibits the production of mucin via activating the IRE1/XBP1 pathway. Toxicology, 2019, 424, 152230.	2.0	35
362	Experimental models to study intestinal microbes–mucus interactions in health and disease. FEMS Microbiology Reviews, 2019, 43, 457-489.	3.9	114
363	Contribution of Non-immune Cells to Activation and Modulation of the Intestinal Inflammation. Frontiers in Immunology, 2019, 10, 647.	2.2	33
364	<i>Atg14</i> protects the intestinal epithelium from TNF-triggered villus atrophy. Autophagy, 2019, 15, 1990-2001.	4.3	19
365	Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis. Gut, 2019, 68, 2142-2151.	6.1	271

#	Article	IF	Citations
366	Age-associated Impairment of the Mucus Barrier Function is Associated with Profound Changes in Microbiota and Immunity. Scientific Reports, 2019, 9, 1437.	1.6	138
367	Anti-Inflammatory Activity of Isomaltodextrin in a C57BL/6NCrl Mouse Model with Lipopolysaccharide-Induced Low-Grade Chronic Inflammation. Nutrients, 2019, 11, 2791.	1.7	13
368	Distinct Subcellular Compartments of Dendritic Cells Used for Cross-Presentation. International Journal of Molecular Sciences, 2019, 20, 5606.	1.8	8
369	Quercetin Exposure Suppresses the Inflammatory Pathway in Intestinal Organoids from Winnie Mice. International Journal of Molecular Sciences, 2019, 20, 5771.	1.8	30
370	ER Stress and the UPR in Shaping Intestinal Tissue Homeostasis and Immunity. Frontiers in Immunology, 2019, 10, 2825.	2.2	75
371	A well-tolerated and rapidly acting thiopurine for IBD?. Drug Discovery Today, 2019, 24, 37-41.	3.2	14
372	Interactions Between Autophagy and the Unfolded Protein Response: Implications for Inflammatory Bowel Diseases, 2019, 25, 661-671.	0.9	19
373	The role of obesity in inflammatory bowel disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 63-72.	1.8	34
374	Dietary Prevention of Colitis by Aronia Berry is Mediated Through Increased Th17 and Treg. Molecular Nutrition and Food Research, 2019, 63, e1800985.	1.5	19
375	The Food Additive Maltodextrin Promotes Endoplasmic Reticulum Stress–Driven Mucus Depletion and Exacerbates Intestinal Inflammation. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7, 457-473.	2.3	84
376	Loss of Bcl-G, a Bcl-2 family member, augments the development of inflammation-associated colorectal cancer. Cell Death and Differentiation, 2020, 27, 742-757.	5.0	8
377	Identification of Key Pro-Survival Proteins in Isolated Colonic Goblet Cells of Winnie, a Murine Model of Spontaneous Colitis. Inflammatory Bowel Diseases, 2020, 26, 80-92.	0.9	5
378	Glutathione Sâ€transferase theta 1 protects against colitis through goblet cell differentiation via interleukinâ€22. FASEB Journal, 2020, 34, 3289-3304.	0.2	16
379	Melatonin restores Muc2 depletion induced by V. vulnificus $VvpM$ via melatonin receptor 2 coupling with $Gl\pm q$. Journal of Biomedical Science, 2020, 27, 21.	2.6	8
380	Enteroids Derived From Inflammatory Bowel Disease Patients Display Dysregulated Endoplasmic Reticulum Stress Pathways, Leading to Differential Inflammatory Responses and Dendritic Cell Maturation. Journal of Crohn's and Colitis, 2020, 14, 948-961.	0.6	30
381	Endoplasmic reticulum stress in autoimmune diseases. Immunobiology, 2020, 225, 151881.	0.8	16
382	A Specific Mutation in Muc2 Determines Early Dysbiosis in Colitis-Prone Winnie Mice. Inflammatory Bowel Diseases, 2020, 26, 546-556.	0.9	35
383	Interleukin-22 orchestrates a pathological endoplasmic reticulum stress response transcriptional programme in colonic epithelial cells. Gut, 2020, 69, 578-590.	6.1	84

#	Article	IF	Citations
384	Organoid Models of Colorectal Pathology: Do They Hold the Key to Personalized Medicine? A Systematic Review. Diseases of the Colon and Rectum, 2020, 63, 1559-1569.	0.7	5
385	Idebenone Protects against Spontaneous Chronic Murine Colitis by Alleviating Endoplasmic Reticulum Stress and Inflammatory Response. Biomedicines, 2020, 8, 384.	1.4	8
386	Gut microbial bile acid metabolite skews macrophage polarization and contributes to high-fat diet-induced colonic inflammation. Gut Microbes, 2020, 12, 1819155.	4.3	72
387	Activating Transcription Factor 6 Mediates Inflammatory Signals in Intestinal Epithelial Cells Upon Endoplasmic Reticulum Stress. Gastroenterology, 2020, 159, 1357-1374.e10.	0.6	73
388	FAM3D is essential for colon homeostasis and host defense against inflammation associated carcinogenesis. Nature Communications, 2020, 11, 5912.	5.8	38
389	Bacterially Derived Tryptamine Increases Mucus Release by Activating a Host Receptor in a Mouse Model of Inflammatory Bowel Disease. IScience, 2020, 23, 101798.	1.9	29
390	Inhibition of MAN2A1 Enhances the Immune Response to Anti–PD-L1 in Human Tumors. Clinical Cancer Research, 2020, 26, 5990-6002.	3.2	28
391	Oral administration of Korean propolis extract ameliorates DSS-induced colitis in BALB/c mice. International Journal of Medical Sciences, 2020, 17, 1984-1991.	1.1	11
392	Modulating the Microbiome and Immune Responses Using Whole Plant Fibre in Synbiotic Combination with Fibre-Digesting Probiotic Attenuates Chronic Colonic Inflammation in Spontaneous Colitic Mice Model of IBD. Nutrients, 2020, 12, 2380.	1.7	19
393	Intestinal Immune Homeostasis and Inflammatory Bowel Disease: A Perspective on Intracellular Response Mechanisms. Gastrointestinal Disorders, 2020, 2, 246-266.	0.4	4
394	Puerarin Rebuilding the Mucus Layer and Regulating Mucin-Utilizing Bacteria to Relieve Ulcerative Colitis. Journal of Agricultural and Food Chemistry, 2020, 68, 11402-11411.	2.4	43
395	Lasso Peptide Microcin J25 Effectively Enhances Gut Barrier Function and Modulates Inflammatory Response in an Enterotoxigenic Escherichia coli-Challenged Mouse Model. International Journal of Molecular Sciences, 2020, 21, 6500.	1.8	23
396	Elevated adenomatous polyposis coli in goblet cells is associated with inflammation in mouse and human colon. Experimental Physiology, 2020, 105, 2154-2167.	0.9	1
397	Streptococcus Thermophilus UASt-09 Upregulates Goblet Cell Activity in Colonic Epithelial Cells to a Greater Degree than other Probiotic Strains. Microorganisms, 2020, 8, 1758.	1.6	9
398	Purgative/laxative actions of <i>Clobularia alypum</i> aqueous extract on gastrointestinalâ€physiological function and against loperamideâ€induced constipation coupled to oxidative stress and inflammation in rats. Neurogastroenterology and Motility, 2020, 32, e13858.	1.6	22
399	Unraveling mucin domains in cancer and metastasis: when protectors become predators. Cancer and Metastasis Reviews, 2020, 39, 647-659.	2.7	24
400	Mucus layer modeling of human colonoids during infection with enteroaggragative E. coli. Scientific Reports, 2020, 10, 10533.	1.6	29
401	Ccr6 Deficiency Attenuates Spontaneous Chronic Colitis in Winnie. Gastrointestinal Disorders, 2020, 2, 27-47.	0.4	1

#	Article	IF	CITATIONS
402	Lactobacillus rhamnosus GG supplementation modulates the gut microbiota to promote butyrate production, protecting against deoxynivalenol exposure in nude mice. Biochemical Pharmacology, 2020, 175, 113868.	2.0	61
403	The Impact of Age and Luminal Preservation on the Development of Intestinal Preservation Injury in Rats. Transplantation, 2020, 104, e8-e15.	0.5	4
404	Wnt/βâ€cateninâ€mediated heat exposure inhibits intestinal epithelial cell proliferation and stem cell expansion through endoplasmic reticulum stress. Journal of Cellular Physiology, 2020, 235, 5613-5627.	2.0	35
405	Dietary High Sodium Fluoride Impairs Digestion and Absorption Ability, Mucosal Immunity, and Alters Cecum Microbial Community of Laying Hens. Animals, 2020, 10, 179.	1.0	5
406	Winnie-APCMin/+ Mice: A Spontaneous Model of Colitis-Associated Colorectal Cancer Combining Genetics and Inflammation. International Journal of Molecular Sciences, 2020, 21, 2972.	1.8	9
407	Intestinal barrier function and metabolic/liver diseases. Liver Research, 2020, 4, 81-87.	0.5	22
408	Role of melatonin in intestinal mucosal injury induced by restraint stress in mice. Pharmaceutical Biology, 2020, 58, 342-351.	1.3	18
409	Inhibition of APE1/Ref-1 Redox Signaling Alleviates Intestinal Dysfunction and Damage to Myenteric Neurons in a Mouse Model of Spontaneous Chronic Colitis. Inflammatory Bowel Diseases, 2021, 27, 388-406.	0.9	26
410	Citrus flavonoids and the intestinal barrier: Interactions and effects. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 225-251.	5. 9	36
411	Intestinal Phospholipid Disequilibrium Initiates an ER Stress Response That Drives Goblet Cell Necroptosis and Spontaneous Colitis in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 999-1021.	2.3	20
412	<i>Bifidobacterium dentium</i> -derived y-glutamylcysteine suppresses ER-mediated goblet cell stress and reduces TNBS-driven colonic inflammation. Gut Microbes, 2021, 13, 1-21.	4.3	41
413	The Laetiporus sulphureus Fermented Product Enhances the Antioxidant Status, Intestinal Tight Junction, and Morphology of Broiler Chickens. Animals, 2021, 11, 149.	1.0	11
414	Gut microbiota shape the inflammatory response in mice with an epithelial defect. Gut Microbes, 2021, 13, 1-18.	4.3	11
415	Common contributing factors to COVID-19 and inflammatory bowel disease. Toxicology Reports, 2021, 8, 1616-1637.	1.6	8
416	CHCHD2: The Power House's Potential Prognostic Factor for Cancer?. Frontiers in Cell and Developmental Biology, 2020, 8, 620816.	1.8	5
417	Microbe–Mucus Interface in the Pathogenesis of Colorectal Cancer. Cancers, 2021, 13, 616.	1.7	22
418	Fecal Microbiota Transplantation Shows Marked Shifts in the Multi-Omic Profiles of Porcine Post-weaning Diarrhea. Frontiers in Microbiology, 2021, 12, 619460.	1.5	11
419	A Combined Phytochemical and Network Pharmacology Approach to Reveal the Effective Substances and Mechanism of <i>Eomecon chionantha</i> Hance for the Treatment of Ulcerative Colitis. Natural Product Communications, 2021, 16, 1934578X2199296.	0.2	1

#	Article	IF	Citations
420	Exploring Mucin as Adjunct to Phage Therapy. Microorganisms, 2021, 9, 509.	1.6	12
421	Colitis Linked to Endoplasmic Reticulum Stress Induces Trypsin Activity Affecting Epithelial Functions. Journal of Crohn's and Colitis, 2021, 15, 1528-1541.	0.6	5
422	Mucosal Epithelial Jak Kinases in Health and Diseases. Mediators of Inflammation, 2021, 2021, 1-17.	1.4	11
423	Suppression of ELF4 in ulcerative colitis predisposes host to colorectal cancer. IScience, 2021, 24, 102169.	1.9	13
424	Results of the Seventh Scientific Workshop of ECCO: Precision Medicine in IBDâ€"Prediction and Prevention of Inflammatory Bowel Disease. Journal of Crohn's and Colitis, 2021, 15, 1443-1454.	0.6	33
425	PPARÎ ³ : The Central Mucus Barrier Coordinator in Ulcerative Colitis. Inflammatory Bowel Diseases, 2021, 27, 732-741.	0.9	10
426	Emc3 maintains intestinal homeostasis by preserving secretory lineages. Mucosal Immunology, 2021, 14, 873-886.	2.7	9
427	The role of cGAS/STING in intestinal immunity. European Journal of Immunology, 2021, 51, 785-797.	1.6	22
428	Increased Listeria monocytogenes Dissemination and Altered Population Dynamics in Muc2-Deficient Mice. Infection and Immunity, 2021, 89, .	1.0	11
429	The role of mucosal barriers in human gut health. Archives of Pharmacal Research, 2021, 44, 325-341.	2.7	33
430	Evolution and function of the epithelial cell-specific ER stress sensor IRE1 \hat{i}^2 . Mucosal Immunology, 2021, 14, 1235-1246.	2.7	19
431	Endoplasmic reticulum stress in the acute intestinal epithelial injury of necrotizing enterocolitis. Pediatric Surgery International, 2021, 37, 1151-1160.	0.6	7
432	Specific NLRP3 inflammasome inhibitors: promising therapeutic agents for inflammatory diseases. Drug Discovery Today, 2021, 26, 1394-1408.	3.2	21
433	Human AGR2 Deficiency Causes Mucus Barrier Dysfunction and Infantile Inflammatory Bowel Disease. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 1809-1830.	2.3	26
434	Roles of XBP1s in Transcriptional Regulation of Target Genes. Biomedicines, 2021, 9, 791.	1.4	89
435	Short-Chain Naphthoquinone Protects Against Both Acute and Spontaneous Chronic Murine Colitis by Alleviating Inflammatory Responses. Frontiers in Pharmacology, 2021, 12, 709973.	1.6	1
436	A literature review on large intestinal hyperelastic constitutive modeling. Clinical Biomechanics, 2021, 88, 105445.	0.5	8
437	Organoids and Their Use in Modeling Gut Epithelial Cell Lineage Differentiation and Barrier Properties During Intestinal Diseases. Frontiers in Cell and Developmental Biology, 2021, 9, 732137.	1.8	8

#	Article	IF	Citations
438	Characterization of Skeletal Phenotype and Associated Mechanisms With Chronic Intestinal Inflammation in the <i>Winnie </i> Mouse Model of Spontaneous Chronic Colitis. Inflammatory Bowel Diseases, 2022, 28, 259-272.	0.9	2
439	Consequence of distinctive expression of MUC2 in colorectal cancers: How much is actually bad?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188579.	3.3	13
440	Gut Microbiota and Dietary Factors as Modulators of the Mucus Layer in Inflammatory Bowel Disease. International Journal of Molecular Sciences, 2021, 22, 10224.	1.8	13
441	Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Frontiers in Nutrition, 2021, 8, 718356.	1.6	98
442	Metformin Exerts Anti-inflammatory and Mucus Barrier Protective Effects by Enriching Akkermansia muciniphila in Mice With Ulcerative Colitis. Frontiers in Pharmacology, 2021, 12, 726707.	1.6	33
443	\hat{l}^2 -Glucan Extracted from Highland Barley Alleviates Dextran Sulfate Sodium-Induced Ulcerative Colitis in C57BL/6J Mice. Molecules, 2021, 26, 5812.	1.7	18
444	Dysbiosis Triggers ACF Development in Genetically Predisposed Subjects. Cancers, 2021, 13, 283.	1.7	7
445	Assessing Inflammatory Disease at Mucosal Surfaces in Murine Genetic Models. Methods in Molecular Biology, 2012, 900, 433-441.	0.4	7
446	Mucin Methods: Genes Encoding Mucins and Their Genetic Variation with a Focus on Gel-Forming Mucins. Methods in Molecular Biology, 2012, 842, 1-26.	0.4	9
447	NADPH and Glutathione Redox Link TCA Cycle Activity to Endoplasmic Reticulum Homeostasis. IScience, 2020, 23, 101116.	1.9	51
448	Oral Delivery of \hat{l}^2 -Lactoglobulin-Nanosphere-Encapsulated Resveratrol Alleviates Inflammation in Winnie Mice with Spontaneous Ulcerative Colitis. Molecular Pharmaceutics, 2021, 18, 627-640.	2.3	39
449	3-Sulfogalactosyl–dependent adhesion of Escherichia coli HS multivalent adhesion molecule is attenuated by sulfatase activity. Journal of Biological Chemistry, 2017, 292, 19792-19803.	1.6	16
450	Changes in dietary fiber intake in mice reveal associations between colonic mucin <i>O</i> -glycosylation and specific gut bacteria. Gut Microbes, 2020, 12, 1802209.	4.3	25
452	Intercellular transmission of the unfolded protein response promotes survival and drug resistance in cancer cells. Science Signaling, 2017, 10, .	1.6	84
453	Mucin Production during Prenatal and Postnatal Murine Lung Development. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 755-760.	1.4	40
454	Loss of intestinal core 1–derived O-glycans causes spontaneous colitis in mice. Journal of Clinical Investigation, 2011, 121, 1657-1666.	3.9	285
455	Endoplasmic reticulum stress in the pathogenesis of fibrotic disease. Journal of Clinical Investigation, 2018, 128, 64-73.	3.9	132
456	Role of Chemokine Ligand CCL20 and its Receptor CCR6 in Intestinal Inflammation. Immunology and Infectious Diseases, 2013, 1, 30-37.	0.1	3

#	Article	IF	CITATIONS
457	Zinc Transporter SLC39A7/ZIP7 Promotes Intestinal Epithelial Self-Renewal by Resolving ER Stress. PLoS Genetics, 2016, 12, e1006349.	1.5	80
458	Animal Models of Inflammatory Bowel Disease at the Dawn of the New Genetics Era. PLoS Medicine, 2008, 5, e198.	3.9	20
459	Mucin Dynamics in Intestinal Bacterial Infection. PLoS ONE, 2008, 3, e3952.	1.1	184
460	Bacteria Penetrate the Inner Mucus Layer before Inflammation in the Dextran Sulfate Colitis Model. PLoS ONE, 2010, 5, e12238.	1.1	288
461	Involvement of Endoplasmic Reticulum Stress in Inflammatory Bowel Disease: A Different Implication for Colonic and Ileal Disease?. PLoS ONE, 2011, 6, e25589.	1.1	63
462	Zebrafish Agr2 Is Required for Terminal Differentiation of Intestinal Goblet Cells. PLoS ONE, 2012, 7, e34408.	1.1	31
463	Commensal Akkermansia muciniphila Exacerbates Gut Inflammation in Salmonella Typhimurium-Infected Gnotobiotic Mice. PLoS ONE, 2013, 8, e74963.	1.1	389
464	Regulation of the Expression of Chaperone gp96 in Macrophages and Dendritic Cells. PLoS ONE, 2013, 8, e76350.	1.1	10
465	Endoplasmic Reticulum Stress, Unfolded Protein Response and Altered T Cell Differentiation in Necrotizing Enterocolitis. PLoS ONE, 2013, 8, e78491.	1.1	26
466	Increased Susceptibility to Dextran Sulfate Sodium-Induced Colitis in the Endoplasmic Reticulum Stress Transducer OASIS Deficient Mice. PLoS ONE, 2014, 9, e88048.	1.1	35
467	Role of the Protein Tyrosine Phosphatase Shp2 in Homeostasis of the Intestinal Epithelium. PLoS ONE, 2014, 9, e92904.	1.1	28
468	Proteomic Characterization of Middle Ear Fluid Confirms Neutrophil Extracellular Traps as a Predominant Innate Immune Response in Chronic Otitis Media. PLoS ONE, 2016, 11, e0152865.	1.1	38
469	Roles of Endoplasmic Reticulum Stress in Immune Responses. Molecules and Cells, 2018, 41, 705-716.	1.0	121
470	MUC2 mucin deficiency alters inflammatory and metabolic pathways in the mouse intestinal mucosa. Oncotarget, 2017, 8, 71456-71470.	0.8	38
471	Interaction between Microbes and Host Intestinal Health: Modulation by Dietary Nutrients and Gut-Brain-Endocrine-Immune Axis. Current Protein and Peptide Science, 2015, 16, 592-603.	0.7	116
472	Characterisation of colonic dysplasia-like epithelial atypia in murine colitis. World Journal of Gastroenterology, 2016, 22, 8334.	1.4	10
473	Intestinal permeability in the pathogenesis of liver damage: From non-alcoholic fatty liver disease to liver transplantation. World Journal of Gastroenterology, 2019, 25, 4814-4834.	1.4	101
474	Molecular mechanisms of intestinal inflammation leading to colorectal cancer. AIMS Biophysics, 2017, 4, 152-177.	0.3	3

#	Article	IF	CITATIONS
476	Novel topical therapies for distal colitis. World Journal of Gastrointestinal Pharmacology and Therapeutics, 2010, 1, 87.	0.6	11
477	Probiotics in inflammatory bowel disease: Pathophysiological background and clinical applications. World Journal of Immunology, 2013, 3, 31.	0.5	8
478	The Effects of Sulfated Secondary Bile Acids on Intestinal Barrier Function and Immune Response in an Inflammatory $\langle i \rangle$ in vitro $\langle i \rangle$ Human Intestinal Model. SSRN Electronic Journal, $0, , .$	0.4	0
479	High-fat diet aggravates colitis-associated carcinogenesis by evading ferroptosis in the ER stress-mediated pathway. Free Radical Biology and Medicine, 2021, 177, 156-166.	1.3	23
480	Understanding the Epithelial Barrier in Inflammatory Bowel Disease. , 2012, , 75-84.		0
481	Protein Kinases and Ulcerative Colitis. , 0, , .		0
482	Intestinal Host-Microbiome Interactions., 0,,.		0
483	Inflammatory Bowel Disease Models in Animals. , 2013, , 1-20.		0
484	Endoplasmic Reticulum Stress-Associated gp96 Chaperone is a Host Receptor for Adherent-Invasive E. coli. Heat Shock Proteins, 2013, , 339-352.	0.2	0
485	Cell-Nonautonomous ER Stress-Mediated Dysregulation of Immunity by Cancer Cells. , 2015, , 397-429.		0
486	Immune Response After Campylobacter spp. Infection in Poultry., 2016,, 59-74.		0
487	Inflammatory Bowel Disease Models in Animals. , 2016, , 643-659.		0
488	Physiological understanding of host-microbial pathogen interactions in the gut. Korean Journal of Veterinary Research, 2016, 56, 57-66.	0.1	0
489	The Intestinal Microbiome, the Immune System and Spondyloarthropathy., 2017,, 145-165.		0
493	Heat shock protein 5 and inflammatory bowel disease. World Chinese Journal of Digestology, 2020, 28, 802-806.	0.0	0
494	Altered Mucus Barrier Integrity and Increased Susceptibility to Colitis in Mice upon Loss of Telocyte Bone Morphogenetic Protein Signalling. Cells, 2021, 10, 2954.	1.8	5
496	The Role of the Microbiome and Intestinal Mucosal Barrier in the Development and Progression of Non-Alcoholic Fatty Liver Disease. Russian Journal of Gastroenterology Hepatology Coloproctology, 2020, 30, 42-48.	0.2	0
497	Endoplasmic reticulum stress and associated ROS in disease pathophysiology applications. , 2020, , 265-297.		0

#	Article	IF	CITATIONS
498	Crosstalk Between ER Stress, Autophagy and Inflammation. Frontiers in Medicine, 2021, 8, 758311.	1.2	58
500	Cyanidin-3-O-glucoside downregulates ligation-activated endoplasmic reticulum stress and alleviates induced periodontal destruction in rats. Archives of Oral Biology, 2022, 134, 105313.	0.8	4
501	Intestinal mucus barrier: a missing piece of the puzzle in food allergy. Trends in Molecular Medicine, 2022, 28, 36-50.	3.5	27
502	Novel protocol to observe the intestinal tuft cell using transmission electron microscopy. Biology Open, 2022, 11, .	0.6	3
503	Neuroinflammation as an etiological trigger for depression comorbid with inflammatory bowel disease. Journal of Neuroinflammation, 2022, 19, 4.	3.1	34
504	Anti-inflammatory properties of Fu brick tea water extract contribute to the improvement of diarrhea in mice. Beverage Plant Research, 2022, 2, 1-7.	0.6	5
505	Implication of Intestinal Barrier Dysfunction in Gut Dysbiosis and Diseases. Biomedicines, 2022, 10, 289.	1.4	81
506	The effects of sulfated secondary bile acids on intestinal barrier function and immune response in an inflammatory in vitro human intestinal model. Heliyon, 2022, 8, e08883.	1.4	10
507	Effects of Cadmium Exposure on Gut Villi in Danio rerio. International Journal of Molecular Sciences, 2022, 23, 1927.	1.8	9
508	Endoplasmic Reticulum Stress in Colonic Mucosa of Ulcerative Colitis Patients Is Mediated by PERK and IRE1 Pathway Activation. Mediators of Inflammation, 2022, 2022, 1-13.	1.4	8
509	Successful Manipulation of the Gut Microbiome to Treat Spontaneous and Induced Murine Models of Colitis., 2022, 1, 359-374.		1
510	EPA and DHA differentially coordinate the crosstalk between host and gut microbiota and block DSS-induced colitis in mice by a reinforced colonic mucus barrier. Food and Function, 2022, 13, 4399-4420.	2.1	10
511	Organellar homeostasis and innate immune sensing. Nature Reviews Immunology, 2022, 22, 535-549.	10.6	49
512	The Unfolded Protein Response at the Tumor-Immune Interface. Frontiers in Immunology, 2022, 13, 823157.	2.2	11
513	STIM1 Deficiency In Intestinal Epithelium Attenuates Colonic Inflammation and Tumorigenesis by Reducing ER Stress of Goblet Cells. Cellular and Molecular Gastroenterology and Hepatology, 2022, 14, 193-217.	2.3	12
514	Endoplasmic Reticulum Stress of Gut Enterocyte and Intestinal Diseases. Frontiers in Molecular Biosciences, 2022, 9, 817392.	1.6	4
515	Divergent Adaptations in Autonomic Nerve Activity and Neuroimmune Signaling Associated With the Severity of Inflammation in Chronic Colitis. Inflammatory Bowel Diseases, 2022, 28, 1229-1243.	0.9	8
516	The barrier and beyond: Roles of intestinal mucus and mucin-type O-glycosylation in resistance and tolerance defense strategies guiding host-microbe symbiosis. Gut Microbes, 2022, 14, 2052699.	4.3	26

#	Article	IF	CITATIONS
517	Role of Mucin 2 Glycoprotein and L-fucose in Interaction of Immunity and Microbiome within the Experimental Model of Inflammatory Bowel Disease. Biochemistry (Moscow), 2022, 87, 301-318.	0.7	6
518	In vivo models of mucin biosynthesis and function. Advanced Drug Delivery Reviews, 2022, 184, 114182.	6.6	17
519	Mucins Dynamics in Physiological and Pathological Conditions. International Journal of Molecular Sciences, 2021, 22, 13642.	1.8	22
520	MUC2 and related bacterial factors: Therapeutic targets for ulcerative colitis. EBioMedicine, 2021, 74, 103751.	2.7	56
521	Colon targeted chitosan-melatonin nanotherapy for preclinical Inflammatory Bowel Disease., 2022, 136, 212796.		9
522	Mammalian Neuraminidases in Immune-Mediated Diseases: Mucins and Beyond. Frontiers in Immunology, 2022, 13, 883079.	2.2	6
523	Secreted NF-κB suppressive microbial metabolites modulate gut inflammation. Cell Reports, 2022, 39, 110646.	2.9	22
526	Mesenchymal stem cell treatment for enteric neuropathy in the Winnie mouse model of spontaneous chronic colitis. Cell and Tissue Research, 2022, , $1.$	1.5	3
527	Self-Renewal and Cancers of the Gastric Epithelium: An Update and the Role of the Lectin TFF1 as an Antral Tumor Suppressor. International Journal of Molecular Sciences, 2022, 23, 5377.	1.8	5
529	Phytoestrogen arctigenin preserves the mucus barrier in inflammatory bowel diseases by inhibiting goblet cell apoptosis via the <scp>ERβ</scp> / <scp>TRIM21</scp> / <scp>PHB1</scp> pathway. Phytotherapy Research, 2022, 36, 3248-3264.	2.8	5
530	Carnosol Maintains Intestinal Barrier Function and Mucosal Immune Homeostasis in DSS-Induced Colitis. Frontiers in Nutrition, 2022, 9, .	1.6	2
532	Inclusion of Mannan-Oligosaccharides in Diets for Tropical Gar Atractosteus tropicus Larvae: Effects on Growth, Digestive Enzymes, and Expression of Intestinal Barrier Genes. Fishes, 2022, 7, 127.	0.7	7
533	Acinetobacter calcoaceticus is Well Adapted to Withstand Intestinal Stressors and Modulate the Gut Epithelium. Frontiers in Physiology, 2022, 13, .	1.3	10
535	JiangShi (僵å°): a widely distributed Mucin-like protein essential for Drosophila development. G3: Genes, Genomes, Genetics, 0, , .	0.8	1
536	Tissue-specific immunity in helminth infections. Mucosal Immunology, 2022, 15, 1212-1223.	2.7	20
538	Incorporation of Fructooligosaccharides in Diets Influence Growth Performance, Digestive Enzyme Activity, and Expression of Intestinal Barrier Function Genes in Tropical Gar (Atractosteus tropicus) Larvae. Fishes, 2022, 7, 137.	0.7	8
539	Phenotyping of Fecal Microbiota of Winnie, a Rodent Model of Spontaneous Chronic Colitis, Reveals Specific Metabolic, Genotoxic, and Pro-inflammatory Properties. Inflammation, 2022, 45, 2477-2497.	1.7	1
540	XBP1: An Adaptor in the Pathogenesis of Atherosclerosis. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
541	Leaky Gut in IBD: Intestinal Barrier–Gut Microbiota Interaction. Journal of Microbiology and Biotechnology, 2022, 32, 825-834.	0.9	22
542	Molecular Effects of Chronic Exposure to Palmitate in Intestinal Organoids: A New Model to Study Obesity and Diabetes. International Journal of Molecular Sciences, 2022, 23, 7751.	1.8	2
543	Potent CCR3 Receptor Antagonist, SB328437, Suppresses Colonic Eosinophil Chemotaxis and Inflammation in the Winnie Murine Model of Spontaneous Chronic Colitis. International Journal of Molecular Sciences, 2022, 23, 7780.	1.8	7
544	Mucus interaction to improve gastrointestinal retention and pharmacokinetics of orally administered nano-drug delivery systems. Journal of Nanobiotechnology, 2022, 20, .	4.2	40
545	A gutâ€centric view of aging: Do intestinal epithelial cells contribute to ageâ€associated microbiota changes, inflammaging, and immunosenescence?. Aging Cell, 2022, 21, .	3.0	15
546	Cellular Immunology: Innate Immunity Function of Epithelial Barriers. , 2022, , .		0
547	Sleep Loss and the Unfolded Protein Response. Translational Medicine Research, 2022, , 127-147.	0.0	0
548	Goblet cells need some stress. Journal of Clinical Investigation, 2022, 132, .	3.9	7
549	The role of goblet cells and mucus in intestinal homeostasis. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 785-803.	8.2	108
550	Rectally Administrated Thioguanine for Distal Ulcerative Colitis: A Multicenter Case Series. Inflammatory Bowel Diseases, 2023, 29, 1000-1004.	0.9	3
551	The disulfide catalyst <scp>QSOX1</scp> maintains the colon mucosal barrier by regulating Golgi glycosyltransferases. EMBO Journal, 2023, 42, .	3.5	14
552	Impact of administration route on nanocarrier biodistribution in a murine colitis model. Journal of Experimental Nanoscience, 2022, 17, 599-616.	1.3	0
553	Based on 16S rDNA Amplicon Sequencing and Flow Cytometry, the Relationship between Pueraria Improving Immunity and Intestinal Microorganism Was Analyzed. Hans Journal of Food and Nutrition Science, 2022, 11, 277-289.	0.0	0
554	Endoplasmic Reticulum Stress and Oxidative Stress in Inflammatory Diseases. DNA and Cell Biology, 2022, 41, 924-934.	0.9	15
556	Agr2-associated ER stress promotes adherent-invasive E.Âcoli dysbiosis and triggers CD103+ dendritic cell IL-23-dependent ileocolitis. Cell Reports, 2022, 41, 111637.	2.9	3
557	GABA increases susceptibility to DSS-induced colitis in mice. Journal of Functional Foods, 2022, 99, 105339.	1.6	1
559	X-box Binding Protein 1: An Adaptor in the Pathogenesis of Atherosclerosis. , 2022, .		0
560	The Oral-Gut Axis: Periodontal Diseases and Gastrointestinal Disorders. Inflammatory Bowel Diseases, 2023, 29, 1153-1164.	0.9	11

#	Article	IF	CITATIONS
561	Upper gut heat shock proteins HSP70 and GRP78 promote insulin resistance, hyperglycemia, and non-alcoholic steatohepatitis. Nature Communications, 2022, 13 , .	5.8	8
562	Molecular Targets to Alleviate Enteric Neuropathy and Gastrointestinal Dysfunction. Advances in Experimental Medicine and Biology, 2022, , 221-228.	0.8	1
563	Akkermansia deficiency and mucin depletion are implicated in intestinal barrier dysfunction as earlier event in the development of inflammation in interleukin- 10 -deficient mice. Frontiers in Microbiology, $0,13,.$	1.5	3
564	Gut inflammation and adaptive immunity amplify acetaminophen toxicity in bowel and liver. Journal of Gastroenterology and Hepatology (Australia), 0, , .	1.4	0
565	\hat{l}^2 (2 → 1)- \hat{l}^2 (2 → 6) branched graminan-type fructans and \hat{l}^2 (2 → 1) linear fructans impact mucus-related and endoplasmic reticulum stress-related genes in goblet cells and attenuate inflammatory responses in a fructan dependent fashion. Food and Function, 2023, 14, 1338-1348.	2.1	4
566	PolygonumÂtinctorium leaf extract ameliorates high-fat diet-induced intestinal epithelial damage in mice. Experimental and Therapeutic Medicine, 2023, 25, .	0.8	1
567	"Platelet-coated bullets―biomimetic nanoparticles to ameliorate experimental colitis by targeting endothelial cells. , 2023, 148, 213378.		0
568	ERdj5 protects goblet cells from endoplasmic reticulum stress-mediated apoptosis under inflammatory conditions. Experimental and Molecular Medicine, 2023, 55, 401-412.	3.2	3
569	Stressing out over mucus secretion. Cell Host and Microbe, 2023, 31, 327-328.	5.1	1
570	<i>Lactobacillus rhamnosus</i> i> and <i>L. plantarum</i> Combination Treatment Ameliorated Colitis Symptoms in a Mouse Model by Altering Intestinal Microbial Composition and Suppressing Inflammatory Response. Molecular Nutrition and Food Research, 2023, 67, .	1.5	9
571	Milk-derived extracellular vesicles protect intestinal barrier integrity in the gut-liver axis. Science Advances, 2023, 9, .	4.7	21
573	Role of mucosal immunity and epithelial–vascular barrier in modulating gut homeostasis. Internal and Emergency Medicine, 2023, 18, 1635-1646.	1.0	6