Translational activation by the noncoding RNA DsrA in processing in the <i>rpoS</i> $5\hat{a} \in 2$ -leader

Rna 14, 454-459 DOI: 10.1261/rna.603108

Citation Report

#	Article	IF	CITATIONS
1	Construction of a stress-induced system in Escherichia coli for efficient polyhydroxyalkanoates production. Applied Microbiology and Biotechnology, 2008, 79, 203-208.	1.7	54
2	YmdB: a stress-responsive ribonuclease-binding regulator of <i>E. coli</i> RNase III activity. Genes and Development, 2008, 22, 3497-3508.	2.7	66
3	Messenger RNA Turnover Processes inEscherichia coli, Bacillus subtilis, and Emerging Studies inStaphylococcus aureus. International Journal of Microbiology, 2009, 2009, 1-15.	0.9	64
4	Post-transcriptional regulation of <italic>NifA</italic> expression by Hfq and RNase E complex in <italic>Rhizobium leguminosarum</italic> bv. <italic>viciae</italic> . Acta Biochimica Et Biophysica Sinica, 2009, 41, 719-730.	0.9	17
5	Small noncoding RNA GcvB is a novel regulator of acid resistance in Escherichia coli. BMC Genomics, 2009, 10, 165.	1.2	73
7	Activation of gene expression by small RNA. Current Opinion in Microbiology, 2009, 12, 674-682.	2.3	236
9	Turn-over of the small non-coding RNA RprA in E. coli is influenced by osmolarity. Molecular Genetics and Genomics, 2010, 284, 307-318.	1.0	24
10	Overexpression of a natural chloroplast-encoded antisense RNA in tobacco destabilizes 5S rRNA and retards plant growth. BMC Plant Biology, 2010, 10, 213.	1.6	37
11	Computational prediction and transcriptional analysis of sRNAs in Nitrosomonas europaea. FEMS Microbiology Letters, 2010, 312, 46-54.	0.7	8
12	Stabilization of <i>Clostridium perfringens</i> collagenase mRNA by VRâ€RNAâ€dependent cleavage in 5′ leader sequence. Molecular Microbiology, 2010, 77, 1416-1428.	1.2	70
13	Small RNAs promote mRNA stability to activate the synthesis of virulence factors. Molecular Microbiology, 2010, 78, 1327-1331.	1.2	33
14	Translational activation of rpoS mRNA by the non-coding RNA DsrA and Hfq does not require ribosome binding. Nucleic Acids Research, 2010, 38, 1284-1293.	6.5	37
15	Mechanism of Positive Regulation by DsrA and RprA Small Noncoding RNAs: Pairing Increases Translation and Protects <i>rpoS</i> mRNA from Degradation. Journal of Bacteriology, 2010, 192, 5559-5571.	1.0	125
16	Requirement of the CsdA DEAD-box helicase for low temperature riboregulation of <i>rpoS</i> mRNA. RNA Biology, 2010, 7, 796-802.	1.5	40
17	The RpoS-Mediated General Stress Response in <i>Escherichia coli</i> . Annual Review of Microbiology, 2011, 65, 189-213.	2.9	775
19	Analysis of Escherichia coli RNase E and RNase III activity in vivo using tiling microarrays. Nucleic Acids Research, 2011, 39, 3188-3203.	6.5	112
20	Accessibility and Evolutionary Conservation Mark Bacterial Small-RNA Target-Binding Regions. Journal of Bacteriology, 2011, 193, 1690-1701.	1.0	76
21	Structural flexibility of RNA as molecular basis for Hfq chaperone function. Nucleic Acids Research, 2012, 40, 8072-8084.	6.5	29

#	Article	IF	CITATIONS
22	ncRNAs and thermoregulation: A view in prokaryotes and eukaryotes. FEBS Letters, 2012, 586, 4061-4069.	1.3	15
23	RNase III initiates rapid degradation of <i>proU</i> mRNA upon hypo-osmotic stress in <i>Escherichia coli</i> . RNA Biology, 2012, 9, 98-109.	1.5	17
24	Thermosensing to adjust bacterial virulence in a fluctuating environment. Future Microbiology, 2013, 8, 85-105.	1.0	33
25	Bacterial helicases in post-transcriptional control. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 878-883.	0.9	17
26	Gene expression control by selective RNA processing and stabilization in bacteria. FEMS Microbiology Letters, 2013, 344, 104-113.	0.7	30
27	Escherichia coli YmdB regulates biofilm formation independently of its role as an RNase III modulator. BMC Microbiology, 2013, 13, 266.	1.3	21
28	The Virulence of Salmonella enterica Serovar Typhimurium in the Insect Model Galleria mellonella Is Impaired by Mutations in RNase E and RNase III. Applied and Environmental Microbiology, 2013, 79, 6124-6133.	1.4	60
29	Duplex formation between the sRNA DsrA andrpoSmRNA is not sufficient for efficient RpoS synthesis at low temperature. RNA Biology, 2013, 10, 1834-1841.	1.5	14
30	Antisense regulation by transposonâ€derived RNAs in the hyperthermophilic archaeon <i>Sulfolobus solfataricus</i> . EMBO Reports, 2013, 14, 527-533.	2.0	28
31	Complex Intra-Operonic Dynamics Mediated by a Small RNA in Streptomyces coelicolor. PLoS ONE, 2014, 9, e85856.	1.1	25
32	Small RNAs in the control of RpoS, CsgD, and biofilm architecture of <i>Escherichia coli</i> . RNA Biology, 2014, 11, 494-507.	1.5	146
33	Functional Conservation of RNase III-like Enzymes: Studies on a Vibrio vulnificus Ortholog of Escherichia coli RNase III. Current Microbiology, 2014, 68, 413-418.	1.0	0
34	<i>Clostridium difficile</i> Hfq can replace <i>Escherichia coli</i> Hfq for most of its function. Rna, 2014, 20, 1567-1578.	1.6	23
35	The role of RNases in the regulation of small RNAs. Current Opinion in Microbiology, 2014, 18, 105-115.	2.3	104
36	Multiple ways to regulate translation initiation in bacteria: Mechanisms, regulatory circuits, dynamics. Biochimie, 2015, 114, 18-29.	1.3	55
37	Target activation by regulatory RNAs in bacteria. FEMS Microbiology Reviews, 2015, 39, 362-378.	3.9	183
40	Genome-wide mRNA processing in methanogenic archaea reveals post-transcriptional regulation of ribosomal protein synthesis. Nucleic Acids Research, 2017, 45, 7285-7298.	6.5	35
41	RNase III Processing of rRNA in the Lyme Disease Spirochete Borrelia burgdorferi. Journal of Bacteriology, 2018, 200, .	1.0	19

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
42	The fight for invincibility: Environmental stress response mechanisms and Aeromonas hydrophila. Microbial Pathogenesis, 2018, 116, 135-145.	1.3	70
43	Transcript decay mediated by RNase III in Borrelia burgdorferi. Biochemical and Biophysical Research Communications, 2020, 529, 386-391.	1.0	6
44	Postâ€ŧranscriptional regulation is involved in the coldâ€active methanolâ€based methanogenic pathway of a psychrophilic methanogen. Environmental Microbiology, 2021, 23, 3773-3788.	1.8	6
45	Toward a Comprehensive Analysis of Posttranscriptional Regulatory Networks: a New Tool for the Identification of Small RNA Regulators of Specific mRNAs. MBio, 2021, 12, .	1.8	12
46	Mechanisms for Hfq-Independent Activation of by DsrA, a Small RNA, in. Molecules and Cells, 2019, 42, 426-439.	1.0	3
47	RNase III Participates in the Adaptation to Temperature Shock and Oxidative Stress in Escherichia coli. Microorganisms, 2022, 10, 699.	1.6	3
49	Key players in regulatory RNA realm of bacteria. Biochemistry and Biophysics Reports, 2022, 30, 101276.	0.7	3