The small heat shock-related protein, HSP20, is a cAMP that is involved in airway smooth muscle relaxation

American Journal of Physiology - Lung Cellular and Molecular F 294, L69-L78

DOI: 10.1152/ajplung.00235.2007

Citation Report

#	Article	IF	Citations
1	Embracing emerging paradigms of G protein-coupled receptor agonism and signaling to address airway smooth muscle pathobiology in asthma. Naunyn-Schmiedeberg's Archives of Pharmacology, 2008, 378, 149-169.	3.0	50
2	Small heat shock proteins in smooth muscle. , 2008, 119, 44-54.		96
3	Actin cytoskeletal dynamics in smooth muscle: a new paradigm for the regulation of smooth muscle contraction. American Journal of Physiology - Cell Physiology, 2008, 295, C576-C587.	4.6	305
4	HSP20 phosphorylation and airway smooth muscle relaxation. Cell Health and Cytoskeleton, 2009, Volume 1, 27-42.	0.7	15
5	Cell Permeant Peptide Analogues of the Small Heat Shock Protein, HSP20, Reduce TGF- \hat{l}^2 1-Induced CTGF Expression in Keloid Fibroblasts. Journal of Investigative Dermatology, 2009, 129, 590-598.	0.7	58
6	Crystal Structures of α-Crystallin Domain Dimers of αB-Crystallin and Hsp20. Journal of Molecular Biology, 2009, 392, 1242-1252.	4.2	262
7	The small heat shock protein, HSPB6, in muscle function and disease. Cell Stress and Chaperones, 2010, 15, 1-11.	2.9	84
8	Internalization and Intracellular Trafficking of a PTD-Conjugated Anti-Fibrotic Peptide, AZX100, in Human Dermal Keloid Fibroblasts. Journal of Pharmaceutical Sciences, 2010, 99, 3100-3121.	3.3	26
9	RGD-dependent binding of TP508 to integrin $\hat{l}\pm\nu\hat{l}^2$ 3 mediates cell adhesion and induction of nitric oxide. Thrombosis and Haemostasis, 2010, 104, 172-182.	3.4	3
10	Treatment with transducible phosphopeptide analogues of the small heat shock–related protein, HSP20, after experimental subarachnoid hemorrhage: prevention and reversal of delayed decreases in cerebral perfusion. Journal of Neurosurgery, 2010, 112, 631-639.	1.6	16
11	Oxidant Sensing by Protein Kinases A and G Enables Integration of Cell Redox State with Phosphoregulation. Sensors, 2010, 10, 2731-2751.	3.8	15
12	Sildenafil inhibits chronically hypoxic upregulation of canonical transient receptor potential expression in rat pulmonary arterial smooth muscle. American Journal of Physiology - Cell Physiology, 2010, 298, C114-C123.	4.6	56
13	Phosphorylated HSP20 modulates the association of thin-filament binding proteins: caldesmon with tropomyosin in colonic smooth muscle. American Journal of Physiology - Renal Physiology, 2010, 299, G1164-G1176.	3.4	10
14	Ethanol Attenuates Contraction of Primary Cultured Rat Airway Smooth Muscle Cells. American Journal of Respiratory Cell and Molecular Biology, 2010, 43, 539-545.	2.9	11
15	The emerging role of HSP20 as a multifunctional protective agent. Cellular Signalling, 2011, 23, 1447-1454.	3.6	67
16	A novel small molecule target in human airway smooth muscle for potential treatment of obstructive lung diseases: a staged high-throughput biophysical screening. Respiratory Research, 2011, 12, 8.	3.6	21
17	Suppression by heat shock protein 20 of hepatocellular carcinoma cell proliferation via inhibition of the mitogenâ€activated protein kinases and AKT pathways. Journal of Cellular Biochemistry, 2011, 112, 3430-3439.	2.6	30
18	Acetylation of Heat Shock Protein 20 (Hsp20) Regulates Human Myometrial Activity. Journal of Biological Chemistry, 2011, 286, 34346-34355.	3.4	52

#	ARTICLE	IF	Citations
19	TAS2R activation promotes airway smooth muscle relaxation despite \hat{l}^2 (sub>2-adrenergic receptor tachyphylaxis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L304-L311.	2.9	76
20	Cellular Physiology of Gastrointestinal Smooth Muscle. , 2012, , 489-509.		6
21	Differential Regulation of Airway Smooth Muscle Cell Migration by E-Prostanoid Receptor Subtypes. American Journal of Respiratory Cell and Molecular Biology, 2013, 48, 322-329.	2.9	33
22	Emerging targets for novel therapy of asthma. Current Opinion in Pharmacology, 2013, 13, 324-330.	3.5	47
23	cAMP regulation of airway smooth muscle function. Pulmonary Pharmacology and Therapeutics, 2013, 26, 112-120.	2.6	177
24	Active Components of Ginger Potentiate ÄŸ-Agonist Induced Relaxation of Airway Smooth Muscle by Modulating Cytoskeletal Regulatory Proteins. American Journal of Respiratory Cell and Molecular Biology, 2013, 50, 130820090808003.	2.9	31
25	Targeting protein–protein interactions within the cyclic AMP signaling system as a therapeutic strategy for cardiovascular disease. Future Medicinal Chemistry, 2013, 5, 451-464.	2.3	47
26	The Role of Actin Filament Dynamics in the Myogenic Response of Cerebral Resistance Arteries. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1-12.	4.3	113
27	Detecting Disulfide-Bound Complexes and the Oxidative Regulation of Cyclic Nucleotide-Dependent Protein Kinases by H2O2. Methods in Enzymology, 2013, 528, 111-128.	1.0	13
28	Role of Cyclic Nucleotide-Dependent Actin Cytoskeletal Dynamics: [Ca2+]i and Force Suppression in Forskolin-Pretreated Porcine Coronary Arteries. PLoS ONE, 2013, 8, e60986.	2.5	14
29	Direct Association of Heat Shock Protein 20 (HSPB6) with Phosphoinositide 3-kinase (PI3K) in Human Hepatocellular Carcinoma: Regulation of the PI3K Activity. PLoS ONE, 2013, 8, e78440.	2.5	20
30	Cytoskeletal Reorganization Evoked by Rho-associated kinase- and Protein Kinase C-catalyzed Phosphorylation of Cofilin and Heat Shock Protein 27, Respectively, Contributes to Myogenic Constriction of Rat Cerebral Arteries. Journal of Biological Chemistry, 2014, 289, 20939-20952.	3.4	48
31	The cardioprotective role of small heat-shock protein 20. Biochemical Society Transactions, 2014, 42, 270-273.	3.4	17
32	Prostaglandin E ₂ â€Dependent Blockade of Actomyosin and Stress Fibre Formation Is Mediated Through S1379 Phosphorylation of ROCK2. Journal of Cellular Biochemistry, 2014, 115, 1516-1527.	2.6	6
33	Airway smooth muscle. Current Opinion in Pulmonary Medicine, 2014, 20, 66-72.	2.6	21
34	Crosstalk between beta-2-adrenoceptor and muscarinic acetylcholine receptors in the airway. Current Opinion in Pharmacology, 2014, 16, 72-81.	3.5	44
35	Phosphorylation of heat shock protein 40 (Hsp40/DnaJB1) by mitogen-activated protein kinase-activated protein kinase 5 (MK5/PRAK). International Journal of Biochemistry and Cell Biology, 2014, 47, 29-37.	2.8	21
36	Contribution of small heat shock proteins to muscle development and function. FEBS Letters, 2014, 588, 517-530.	2.8	47

#	Article	IF	CITATIONS
37	\hat{l}^2 -Agonist-mediated Relaxation of Airway Smooth Muscle Is Protein Kinase A-dependent. Journal of Biological Chemistry, 2014, 289, 23065-23074.	3.4	66
38	Heat shock protein 20 (HSPB6) regulates apoptosis in human hepatocellular carcinoma cells: Direct association with Bax. Oncology Reports, 2014, 32, 1291-1295.	2.6	30
39	HSPB6 (Hsp20) as a Versatile Molecular Regulator. Heat Shock Proteins, 2015, , 229-253.	0.2	0
40	Decreased Expression of Heat Shock Protein 20 in Colorectal Cancer and Its Implication in Tumorigenesis. Journal of Cellular Biochemistry, 2015, 116, 277-286.	2.6	24
41	Heat shock protein 20 (HSPB6) regulates TNF- $\hat{l}\pm$ -induced intracellular signaling pathway in human hepatocellular carcinoma cells. Archives of Biochemistry and Biophysics, 2015, 565, 1-8.	3.0	13
42	Phosphorylated Heat Shock Protein 20 (HSPB6) Regulates Transforming Growth Factor-α-Induced Migration and Invasion of Hepatocellular Carcinoma Cells. PLoS ONE, 2016, 11, e0151907.	2.5	25
43	Heat Shock–Related Protein 20 Peptide Decreases Human Airway Constriction Downstream of β ₂ -Adrenergic Receptor. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 225-233.	2.9	4
44	Structural Basis for the Interaction of a Human Small Heat Shock Protein with the 14-3-3 Universal Signaling Regulator. Structure, 2017, 25, 305-316.	3.3	101
45	Molecular characterization and SNP identification in HSPB6 gene in Karan Fries (Bos taurus x Bos) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 50
46	Cardiac cAMP Microdomains and Their Modulation Using Disruptor Peptides. Cardiac and Vascular Biology, 2017, , 161-173.	0.2	0
47	Airway smooth muscle tone increases actin filamentogenesis and contractile capacity. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L442-L451.	2.9	8
48	CXCL1 is upregulated during the development of ileus resulting in decreased intestinal contractile activity. Neurogastroenterology and Motility, 2020, 32, e13757.	3.0	16
49	Agonist Effects of Propranolol on Non-Tumor Human Breast Cells. Cells, 2020, 9, 1036.	4.1	7
50	Genetic polymorphism in HSPB6 gene and their association with heat tolerance traits in Indian Karan Fries (<i>Bos taurus x Bos indicus</i>) cattle. Animal Biotechnology, 2022, 33, 1416-1427.	1.5	6
51	Cooperativity between βâ€agonists and câ€Abl inhibitors in regulating airway smooth muscle relaxation. FASEB Journal, 2021, 35, e21674.	0.5	7
52	Autocrine regulation of airway smooth muscle contraction by diacylglycerol kinase. Journal of Cellular Physiology, 2021, , .	4.1	4
53	Role of RhoA/Rho-kinase and Calcium Sensitivity in Airway Smooth Muscle Functions., 2014,, 285-307.		1
54	Papaverine Prevents Vasospasm by Regulation of Myosin Light Chain Phosphorylation and Actin Polymerization in Human Saphenous Vein. PLoS ONE, 2016, 11, e0154460.	2.5	14

#	Article	IF	CITATIONS
55	Inhibition of ABCC1 Decreases cAMP Egress and Promotes Human Airway Smooth Muscle Cell Relaxation. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 96-106.	2.9	6
56	Molecular characterization and polymorphism detection in HSPB6 gene in Sahiwal cattle. Indian Journal of Animal Research, 2015, , .	0.1	2
57	Actin Filament Dynamics During Vascular Smooth Muscle Contraction. , 2016, , 145-164.		1
59	Airway smooth muscle and airway hyperresponsiveness in asthma: mechanisms of airway smooth muscle dysfunction. Minerva Medica, 2022, 113, .	0.9	11
60	Insights on Human Small Heat Shock Proteins and Their Alterations in Diseases. Frontiers in Molecular Biosciences, 2022, 9, 842149.	3. 5	34
61	Epinephrine evokes shortening of human airway smooth muscle cells following β ₂ adrenergic receptor desensitization. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 323, L142-L151.	2.9	2
62	The Role of Small Heat Shock Proteins in Protein Misfolding Associated Motoneuron Diseases. International Journal of Molecular Sciences, 2022, 23, 11759.	4.1	5
63	Genetic polymorphism in HSPB6 gene and their association with heat tolerance in Sahiwal cattle. Indian Journal of Animal Sciences, 2022, 92, .	0.2	O
65	Membrane Adhesion Junctions Regulate Airway Smooth Muscle Function and Phenotype. Physiological Reviews, 0, , .	28.8	0
66	Pro-Relaxant EP Receptors Functionally Partition to Different Pro-Contractile Receptors in Airway Smooth Muscle. American Journal of Respiratory Cell and Molecular Biology, 0, , .	2.9	1