GPR56 Regulates Pial Basement Membrane Integrity an

Journal of Neuroscience 28, 5817-5826 DOI: 10.1523/jneurosci.0853-08.2008

Citation Report

#	Article	IF	CITATIONS
1	G12/G13-mediated signalling in mammalian physiology and disease. Trends in Pharmacological Sciences, 2008, 29, 582-589.	4.0	127
2	A developmental and genetic classification for midbrain-hindbrain malformations. Brain, 2009, 132, 3199-3230.	3.7	262
3	The Development of Developmental Neuroscience. Journal of Neuroscience, 2009, 29, 12735-12747.	1.7	9
4	GPR56-Regulated Granule Cell Adhesion Is Essential for Rostral Cerebellar Development. Journal of Neuroscience, 2009, 29, 7439-7449.	1.7	85
5	MARCKS modulates radial progenitor placement, proliferation and organization in the developing cerebral cortex. Development (Cambridge), 2009, 136, 2965-2975.	1.2	65
6	Tubulin-related cortical dysgeneses: microtubule dysfunction underlying neuronal migration defects. Trends in Genetics, 2009, 25, 555-566.	2.9	162
7	Controlling cell surface dynamics and signaling: How CD82/KAI1 suppresses metastasis. Cellular Signalling, 2009, 21, 196-211.	1.7	91
8	Genetic basis in epilepsies caused by malformations of cortical development and in those with structurally normal brain. Human Genetics, 2009, 126, 173-193.	1.8	56
9	Mutations in the β-tubulin gene TUBB2B result in asymmetrical polymicrogyria. Nature Genetics, 2009, 41, 746-752.	9.4	330
10	Diversifying microtubules in brain development. Nature Genetics, 2009, 41, 638-640.	9.4	4
11	Narcolepsy and the T-cell receptor. Nature Genetics, 2009, 41, 640-641.	9.4	3
12	Basal process and cell divisions of neural progenitors in the developing brain. Development Growth and Differentiation, 2009, 51, 251-261.	0.6	58
13	Bilateral frontoparietal polymicrogyria (BFPP) syndrome secondary to a 16q12.1â€q21 chromosome deletion involving GPR56 gene. Clinical Genetics, 2009, 76, 573-576.	1.0	12
14	Role of G12 proteins in oncogenesis and metastasis. British Journal of Pharmacology, 2009, 158, 32-40.	2.7	59
15	Chapter 1 GPR56 and Its Related Diseases. Progress in Molecular Biology and Translational Science, 2009, 89, 1-13.	0.9	19
16	Molecular regulation of neuronal migration during neocortical development. Molecular and Cellular Neurosciences, 2009, 42, 11-22.	1.0	61
17	GPR56 is highly expressed in neural stem cells but downregulated during differentiation. NeuroReport, 2009, 20, 918-922.	0.6	23
18	Current concepts of polymicrogyria. Neuroradiology, 2010, 52, 479-487.	1.1	117

#	Article	IF	CITATIONS
19	GPR56 Plays varying roles in endogenous cancer progression. Clinical and Experimental Metastasis, 2010, 27, 241-249.	1.7	32
20	Neuronal migration mechanisms in development and disease. Current Opinion in Neurobiology, 2010, 20, 68-78.	2.0	219
21	Neural tube defects and impaired neural progenitor cell proliferation in <i>Gβ1</i> â€deficient mice. Developmental Dynamics, 2010, 239, 1089-1101.	0.8	55
22	GPR56 is essential for testis development and male fertility in mice. Developmental Dynamics, 2010, 239, 3358-3367.	0.8	47
23	Primary cellular meningeal defects cause neocortical dysplasia and dyslamination. Annals of Neurology, 2010, 68, 454-464.	2.8	26
24	Meningeal gyrations. Annals of Neurology, 2010, 68, 421-423.	2.8	0
25	Genetic malformations of the human frontal lobe. Epilepsia, 2010, 51, 13-16.	2.6	7
26	MRI analysis of sulcation morphology in polymicrogyria. Epilepsia, 2010, 51, 17-22.	2.6	37
27	Abnormal development of the human cerebral cortex. Journal of Anatomy, 2010, 217, 312-323.	0.9	21
28	The βâ€ŧubulin gene <i>TUBB2B</i> is involved in a large spectrum of neuronal migration disorders. Clinical Genetics, 2010, 77, 34-35.	1.0	10
29	Abl Family Tyrosine Kinases Are Essential for Basement Membrane Integrity and Cortical Lamination in the Cerebellum. Journal of Neuroscience, 2010, 30, 14430-14439.	1.7	44
30	Cdc42 and Gsk3 modulate the dynamics of radial glial growth, inter-radial glial interactions and polarity in the developing cerebral cortex. Development (Cambridge), 2010, 137, 4101-4110.	1.2	76
31	Clinical and imaging heterogeneity of polymicrogyria: a study of 328 patients. Brain, 2010, 133, 1415-1427.	3.7	215
32	GPR56-related bilateral frontoparietal polymicrogyria: further evidence for an overlap with the cobblestone complex. Brain, 2010, 133, 3194-3209.	3.7	125
33	Basal enrichment within neuroepithelia suggests novel function(s) for Celsr1 protein. Molecular and Cellular Neurosciences, 2010, 44, 210-222.	1.0	34
34	Specific expression of GPR56 by human cytotoxic lymphocytes. Journal of Leukocyte Biology, 2011, 90, 735-740.	1.5	104
35	Development and Dysgenesis of the Cerebral Cortex: Malformations of Cortical Development. Neuroimaging Clinics of North America, 2011, 21, 483-543.	0.5	56
36	The N Terminus of the Adhesion G Protein-coupled Receptor GPR56 Controls Receptor Signaling Activity. Journal of Biological Chemistry, 2011, 286, 28914-28921.	1.6	153

	Сітаті	CITATION REPORT	
#	Article	IF	CITATIONS
37	What disorders of cortical development tell us about the cortex: one plus one does not always make two. Current Opinion in Genetics and Development, 2011, 21, 333-339.	1.5	151
38	A Novel GPR56 Mutation Causes Bilateral Frontoparietal Polymicrogyria. Pediatric Neurology, 2011, 45, 49-53.	1.0	23
40	Malformations of human cerebral cortex. , 0, , 346-362.		0
41	Cellâ€autonomous and cellâ€toâ€cell signalling events in normal and altered neuronal migration. European Journal of Neuroscience, 2011, 34, 1595-1608.	1.2	21
42	G protein–coupled receptor modulation with pepducins: moving closer to the clinic. Annals of the New York Academy of Sciences, 2011, 1226, 34-49.	1.8	39
43	Seizure susceptibility in polymicrogyria: Clinical and experimental approaches. Epilepsy Research, 2011, 96, 1-10.	0.8	18
44	GPR56 Regulates VEGF Production and Angiogenesis during Melanoma Progression. Cancer Research, 2011, 71, 5558-5568.	0.4	100
45	G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12925-12930.	3.3	235
46	Disease-associated GPR56 Mutations Cause Bilateral Frontoparietal Polymicrogyria via Multiple Mechanisms. Journal of Biological Chemistry, 2011, 286, 14215-14225.	1.6	68
47	Three-Dimensional Regulation of Radial Clial Functions by Lis1-Nde1 and Dystrophin Glycoprotein Complexes. PLoS Biology, 2011, 9, e1001172.	2.6	36
48	COL4A1 Mutations Cause Ocular Dysgenesis, Neuronal Localization Defects, and Myopathy in Mice and Walker-Warburg Syndrome in Humans. PLoS Genetics, 2011, 7, e1002062.	1.5	121
49	Cobblestone lissencephaly: neuropathological subtypes and correlations with genes of dystroglycanopathies. Brain, 2012, 135, 469-482.	3.7	151
50	GPR56 in cancer progression: current status and future perspective. Future Oncology, 2012, 8, 431-440.	1.1	27
51	A Radial Glia-Specific Role of RhoA in Double Cortex Formation. Neuron, 2012, 73, 911-924.	3.8	157
52	Peritrigonal and temporo-occipital heterotopia with corpus callosum and cerebellar dysgenesis. Neurology, 2012, 79, 1244-1251.	1.5	31
53	Adhesion G Protein-Coupled Receptors: Signaling, Pharmacology, and Mechanisms of Activation. Molecular Pharmacology, 2012, 82, 777-783.	1.0	108
55	A developmental and genetic classification for malformations of cortical development: update 2012. Brain, 2012, 135, 1348-1369.	3.7	849
56	Developmental disorders of the midbrain and hindbrain. Frontiers in Neuroanatomy, 2012, 6, 7.	0.9	40

#	Article	IF	CITATIONS
57	Characterization of G protein oupled receptor 56 protein expression in the mouse developing neocortex. Journal of Comparative Neurology, 2012, 520, 2930-2940.	0.9	33
58	Human Developmental Genetics. , 2013, , 1-63.		5
59	Genetic Disorders of Cerebral Cortical Development. , 2013, , 1-26.		0
60	Integrative Mechanisms of Oriented Neuronal Migration in the Developing Brain. Annual Review of Cell and Developmental Biology, 2013, 29, 299-353.	4.0	134
61	Radial Microcolumnar Cortical Architecture: Maturational Arrest or Cortical Dysplasia?. Pediatric Neurology, 2013, 48, 259-270.	1.0	38
62	The G protein-coupled receptor GPRC5B contributes to neurogenesis in the developing mouse neocortex. Development (Cambridge), 2013, 140, 4335-4346.	1.2	34
63	GPR56 and the Developing Cerebral Cortex: Cells, Matrix, and Neuronal Migration. Molecular Neurobiology, 2013, 47, 186-196.	1.9	52
64	Shear Stress–Dependent Downregulation of the Adhesion-G Protein–Coupled Receptor CD97 on Circulating Leukocytes upon Contact with Its Ligand CD55. Journal of Immunology, 2013, 190, 3740-3748.	0.4	67
65	β2 and γ3 laminins are critical cortical basement membrane components: Ablation of Lamb2 and Lamc3 genes disrupts cortical lamination and produces dysplasia. Developmental Neurobiology, 2013, 73, 209-229.	1.5	64
66	Hindbrain Tangential Migration. , 2013, , 345-362.		4
67	Progress in demystification of adhesion G protein-coupled receptors. Biological Chemistry, 2013, 394, 937-950.	1.2	41
68	Neuronal Migration Disorders. , 2013, , 481-494.		3
69	Conventional magnetic resonance imaging and diffusion tensor imaging studies in children with novel GPR56 mutations: further delineation of a cobblestone-like phenotype. Neurogenetics, 2013, 14, 77-83.	0.7	23
70	Autosomal recessive bilateral frontal polymicrogyria with ectopia lentis and chorioretinal dystrophy. Annals of Indian Academy of Neurology, 2013, 16, 678.	0.2	1
71	Sticky Signaling—Adhesion Class G Protein–Coupled Receptors Take the Stage. Science Signaling, 2013, 6, re3.	1.6	226
72	Gâ€protein coupled receptor 56 promotes myoblast fusion through serum response factor―and nuclear factor of activated Tâ€cellâ€mediated signalling but is not essential for muscle development <i>inÂvivo</i> . FEBS Journal, 2013, 280, 6097-6113.	2.2	39
73	Small Rho-GTPases and cortical malformations. Small GTPases, 2013, 4, 51-56.	0.7	24
74	Maintenance of the hematopoietic stem cell pool in bone marrow niches by EVI1-regulated GPR56. Leukemia, 2013, 27, 1637-1649.	3.3	76

#	Article	IF	CITATIONS
75	GPR56 Functions Together with $\hat{l}\pm 3\hat{l}^21$ Integrin in Regulating Cerebral Cortical Development. PLoS ONE, 2013, 8, e68781.	1.1	70
76	Mechanism for Adhesion G Protein-Coupled Receptor GPR56-Mediated RhoA Activation Induced By Collagen III Stimulation. PLoS ONE, 2014, 9, e100043.	1.1	65
77	Polymicrogyria: A common and heterogeneous malformation of cortical development. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2014, 166, 227-239.	0.7	94
78	G protein-coupled receptor 56 regulates matrix production and motility of lung fibroblasts. Experimental Biology and Medicine, 2014, 239, 686-696.	1.1	8
79	Mutations in tubulin genes are frequent causes of various foetal malformations of cortical development including microlissencephaly. Acta Neuropathologica Communications, 2014, 2, 69.	2.4	106
80	Assessment of fetal midbrain and hindbrain in midâ€sagittal cranial plane by threeâ€dimensional multiplanar sonography. Part 2: application of nomograms to fetuses with posterior fossa malformations. Ultrasound in Obstetrics and Gynecology, 2014, 44, 581-587.	0.9	15
81	Understanding cadherin <scp>EGF LAG</scp> sevenâ€pass Gâ€ŧype receptors. Journal of Neurochemistry, 2014, 131, 699-711.	2.1	45
82	Evolutionarily Dynamic Alternative Splicing of <i>GPR56</i> Regulates Regional Cerebral Cortical Patterning. Science, 2014, 343, 764-768.	6.0	238
83	G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15756-15761.	3.3	95
84	Polymicrogyria: pathology, fetal origins and mechanisms. Acta Neuropathologica Communications, 2014, 2, 80.	2.4	91
85	Malformations of cortical development: clinical features and genetic causes. Lancet Neurology, The, 2014, 13, 710-726.	4.9	382
86	Cellular and Axonal Constituents of Neocortical Molecular Layer Heterotopia. Developmental Neuroscience, 2014, 36, 477-489.	1.0	11
87	Defects in neural guidepost structures and failure to remove leptomeningeal cells from the septal midline behind the interhemispheric fusion defects in Netrin1 deficient mice. International Journal of Developmental Neuroscience, 2015, 47, 206-215.	0.7	9
88	Agonistic Antibodies Reveal the Function of GPR56 in Human Glioma U87-MG Cells. Biological and Pharmaceutical Bulletin, 2015, 38, 594-600.	0.6	26
89	Indomethacin induced gene regulation in the rat hippocampus. Molecular Brain, 2015, 8, 59.	1.3	5
90	Morphological and functional aspects of progenitors perturbed in cortical malformations. Frontiers in Cellular Neuroscience, 2015, 9, 30.	1.8	42
91	Cerebellar Cysts in Children: a Pattern Recognition Approach. Cerebellum, 2015, 14, 308-316.	1.4	23
92	From genes to folds: a review of cortical gyrification theory. Brain Structure and Function, 2015, 220, 2475-2483.	1.2	119

#	Article	IF	CITATIONS
93	Huntington's disease biomarker progression profile identified by transcriptome sequencing in peripheral blood. European Journal of Human Genetics, 2015, 23, 1349-1356.	1.4	79
94	The adhesion GPCR Gpr56 regulates oligodendrocyte development via interactions with Gα12/13 and RhoA. Nature Communications, 2015, 6, 6122.	5.8	119
95	Expression and immunoaffinity purification of recombinant soluble human GPR56 protein for the analysis of GPR56 receptor shedding by ELISA. Protein Expression and Purification, 2015, 109, 85-92.	0.6	9
96	Deletion of RIC8A in neural precursor cells leads to altered neurogenesis and neonatal lethality of mouse. Developmental Neurobiology, 2015, 75, 984-1002.	1.5	4
97	International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G Protein–Coupled Receptors. Pharmacological Reviews, 2015, 67, 338-367.	7.1	392
98	High-level Gpr56 expression is dispensable for the maintenance and function of hematopoietic stem and progenitor cells in mice. Stem Cell Research, 2015, 14, 307-322.	0.3	26
99	Malformations of Cortical Development and Epilepsy. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a022392-a022392.	2.9	104
100	The adhesion G protein-coupled receptor GPR56 is a cell-autonomous regulator of oligodendrocyte development. Nature Communications, 2015, 6, 6121.	5.8	116
101	Tethered agonists: a new mechanism underlying adhesion G protein-coupled receptor activation. Journal of Receptor and Signal Transduction Research, 2015, 35, 220-223.	1.3	17
102	Genetic Causes of Intellectual Disability: TheÂGenes Controlling Cortical Development. , 2016, , 43-64.		0
103	<scp>D</scp> egree of <scp>C</scp> ajal– <scp>R</scp> etzius Cell Mislocalization Correlates with the Severity of Structural Brain Defects in Mouse Models of Dystroglycanopathy. Brain Pathology, 2016, 26, 465-478.	2.1	13
104	Dynamic mRNA Transport and Local Translation in Radial Glial Progenitors of the Developing Brain. Current Biology, 2016, 26, 3383-3392.	1.8	126
105	Adhesion G protein-coupled receptors in nervous system development and disease. Nature Reviews Neuroscience, 2016, 17, 550-561.	4.9	87
106	The emerging role of the tubulin code: From the tubulin molecule to neuronal function and disease. Cytoskeleton, 2016, 73, 521-550.	1.0	116
107	Cerebral cortex expansion and folding: what have we learned?. EMBO Journal, 2016, 35, 1021-1044.	3.5	262
108	Adhesion G Protein-Coupled Receptor G1 (ADGRG1/GPR56) and Pancreatic Î ² -Cell Function. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 4637-4645.	1.8	53
109	Structural Basis for Regulation of GPR56/ADGRG1 by Its Alternatively Spliced Extracellular Domains. Neuron, 2016, 91, 1292-1304.	3.8	92
110	Adhesion GPCRs Govern Polarity of Epithelia and Cell Migration. Handbook of Experimental Pharmacology, 2016, 234, 249-274.	0.9	9

#	Article	IF	CITATIONS
111	Adhesion GPCR Function in Pulmonary Development and Disease. Handbook of Experimental Pharmacology, 2016, 234, 309-327.	0.9	11
112	Heart Development, Angiogenesis, and Blood-Brain Barrier Function Is Modulated by Adhesion GPCRs. Handbook of Experimental Pharmacology, 2016, 234, 351-368.	0.9	9
113	Adhesion GPCR-Related Protein Networks. Handbook of Experimental Pharmacology, 2016, 234, 147-178.	0.9	19
114	Adhesion G Protein-coupled Receptors. Handbook of Experimental Pharmacology, 2016, , .	0.9	7
115	Tangential migration of glutamatergic neurons and cortical patterning during development: Lessons from Cajalâ€Retzius cells. Developmental Neurobiology, 2016, 76, 847-881.	1.5	68
116	The histopathology of polymicrogyria: a series of 71 brain autopsy studies. Developmental Medicine and Child Neurology, 2016, 58, 39-48.	1.1	67
117	Cystic Malformations Within the Posterior Fossa. Current Radiology Reports, 2016, 4, 1.	0.4	3
118	Neuronal migration disorders: Focus on the cytoskeleton and epilepsy. Neurobiology of Disease, 2016, 92, 18-45.	2.1	82
119	Singleâ€cell transcriptomics and functional target validation of brown adipocytes show their complex roles in metabolic homeostasis. FASEB Journal, 2016, 30, 81-92.	0.2	39
120	Genetic animal models of malformations of cortical development and epilepsy. Journal of Neuroscience Methods, 2016, 260, 73-82.	1.3	38
121	Divergence and inheritance of neocortical heterotopia in inbred and genetically-engineered mice. Neuroscience Letters, 2017, 638, 175-180.	1.0	3
122	Bi-allelic variants in <i>COL3A1</i> encoding the ligand to GPR56 are associated with cobblestone-like cortical malformation, white matter changes and cerebellar cysts. Journal of Medical Genetics, 2017, 54, 432-440.	1.5	34
123	Moving messages in the developing brain—emerging roles for <scp>mRNA</scp> transport and local translation in neural stem cells. FEBS Letters, 2017, 591, 1526-1539.	1.3	29
124	GPR56/ADGRG1 Inhibits Mesenchymal Differentiation and Radioresistance in Glioblastoma. Cell Reports, 2017, 21, 2183-2197.	2.9	56
125	Adhesion Gâ€protein coupled receptors and extracellular matrix proteins: Roles in myelination and glial cell development. Developmental Dynamics, 2017, 246, 275-284.	0.8	27
126	GPR56/ADGRG1 regulates development and maintenance of peripheral myelin. Journal of Experimental Medicine, 2018, 215, 941-961.	4.2	51
127	Genetics and mechanisms leading to human cortical malformations. Seminars in Cell and Developmental Biology, 2018, 76, 33-75.	2.3	87
128	Ectopic brain tissue in the trigeminal nerve presenting as rapid-onset trigeminal neuralgia: case report. Journal of Neurosurgery, 2018, 129, 1063-1066.	0.9	0

#	Article	IF	CITATIONS
129	The roles of dystroglycan in the nervous system: insights from animal models of muscular dystrophy. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	52
130	Unravelling the genetic architecture of autosomal recessive epilepsy in the genomic era. Journal of Neurogenetics, 2018, 32, 295-312.	0.6	7
131	The adhesion receptor GPR56 is activated by extracellular matrix collagen III to improve β-cell function. Cellular and Molecular Life Sciences, 2018, 75, 4007-4019.	2.4	47
132	Microglial transglutaminase-2 drives myelination and myelin repair via GPR56/ADGRG1 in oligodendrocyte precursor cells. ELife, 2018, 7, .	2.8	86
133	The Activation and Signaling Mechanisms of GPR56/ADGRG1 in Melanoma Cell. Frontiers in Oncology, 2018, 8, 304.	1.3	19
134	The Adhesion G-Protein-Coupled Receptor, GPR56/ADGRG1, Inhibits Cell–Extracellular Matrix Signaling to Prevent Metastatic Melanoma Growth. Frontiers in Oncology, 2018, 8, 8.	1.3	28
135	Memo1-Mediated Tiling of Radial Glial Cells Facilitates Cerebral Cortical Development. Neuron, 2019, 103, 836-852.e5.	3.8	46
136	Arrestinâ€independent constitutive endocytosis of GPR125/ADGRA3. Annals of the New York Academy of Sciences, 2019, 1456, 186-199.	1.8	21
137	Memo1 Tiles the Radial Glial Cell Grid. Neuron, 2019, 103, 750-752.	3.8	0
138	Adhesion G protein-coupled receptors: opportunities for drug discovery. Nature Reviews Drug Discovery, 2019, 18, 869-884.	21.5	56
138 139	Adhesion G protein-coupled receptors: opportunities for drug discovery. Nature Reviews Drug Discovery, 2019, 18, 869-884. Heterotopic Brain Tissue in the Spinal Canal: a Report of an Unusual Case with a Review of the Literature. Indian Journal of Surgery, 2019, 81, 587-590.	21.5 0.2	56 O
138 139 140	Adhesion G protein-coupled receptors: opportunities for drug discovery. Nature Reviews Drug Discovery, 2019, 18, 869-884. Heterotopic Brain Tissue in the Spinal Canal: a Report of an Unusual Case with a Review of the Literature. Indian Journal of Surgery, 2019, 81, 587-590. Beyond the Ligand: Extracellular and Transcellular G Protein–Coupled Receptor Complexes in Physiology and Pharmacology. Pharmacological Reviews, 2019, 71, 503-519.	21.5 0.2 7.1	56 O 36
138 139 140 141	Adhesion G protein-coupled receptors: opportunities for drug discovery. Nature Reviews Drug Discovery, 2019, 18, 869-884. Heterotopic Brain Tissue in the Spinal Canal: a Report of an Unusual Case with a Review of the Literature. Indian Journal of Surgery, 2019, 81, 587-590. Beyond the Ligand: Extracellular and Transcellular G Protein–Coupled Receptor Complexes in Physiology and Pharmacological Reviews, 2019, 71, 503-519. Sijunzi decoction may decrease apoptosis via stabilization of the extracellular matrix following cerebral ischaemiaâ€reperfusion in rats. Experimental and Therapeutic Medicine, 2019, 18, 2805-2812.	21.5 0.2 7.1 0.8	56 0 36 6
138 139 140 141 142	Adhesion C protein-coupled receptors: opportunities for drug discovery. Nature Reviews Drug Discovery, 2019, 18, 869-884. Heterotopic Brain Tissue in the Spinal Canal: a Report of an Unusual Case with a Review of the Literature. Indian Journal of Surgery, 2019, 81, 587-590. Beyond the Ligand: Extracellular and Transcellular G Protein–Coupled Receptor Complexes in Physiology and Pharmacological Reviews, 2019, 71, 503-519. Sijunzi decoction may decrease apoptosis via stabilization of the extracellular matrix following cerebral ischaemiaâ€reperfusion in rats. Experimental and Therapeutic Medicine, 2019, 18, 2805-2812. Spatiotemporal Regulation of Rho GTPases in Neuronal Migration. Cells, 2019, 8, 568.	 21.5 0.2 7.1 0.8 1.8 	 56 0 36 6 19
 138 139 140 141 142 143 	Adhesion G protein-coupled receptors: opportunities for drug discovery. Nature Reviews Drug Discovery, 2019, 18, 869-884. Heterotopic Brain Tissue in the Spinal Canal: a Report of an Unusual Case with a Review of the Literature. Indian Journal of Surgery, 2019, 81, 587-590. Beyond the Ligand: Extracellular and Transcellular G Protein–Coupled Receptor Complexes in Physiology and Pharmacological Reviews, 2019, 71, 503-519. Sijunzi decoction may decrease apoptosis via stabilization of the extracellular matrix following cerebral ischaemia†reperfusion in rats. Experimental and Therapeutic Medicine, 2019, 18, 2805-2812. Spatiotemporal Regulation of Rho GTPases in Neuronal Migration. Cells, 2019, 8, 568. Adhesion G-protein coupled receptors: Implications for metabolic function. , 2019, 198, 123-134.	21.5 0.2 7.1 0.8 1.8	 56 0 36 6 19 16
 138 139 140 141 142 143 144 	Adhesion G protein-coupled receptors: opportunities for drug discovery. Nature Reviews Drug Discovery, 2019, 18, 869-884. Heterotopic Brain Tissue in the Spinal Canal: a Report of an Unusual Case with a Review of the Literature. Indian Journal of Surgery, 2019, 81, 587-590. Beyond the Ligand: Extracellular and Transcellular G Protein–Coupled Receptor Complexes in Physiology and Pharmacological Reviews, 2019, 71, 503-519. Sijunzi decoction may decrease apoptosis via stabilization of the extracellular matrix following cerebral ischaemia†reperfusion in rats. Experimental and Therapeutic Medicine, 2019, 18, 2805-2812. Spatiotemporal Regulation of Rho GTPases in Neuronal Migration. Cells, 2019, 8, 568. Adhesion G-protein coupled receptors: Implications for metabolic function. , 2019, 198, 123-134. Approach to the Diagnosis of Cortical Developmental Disorders and their Clinical Genetics. , 2019, 76-85.	21.5 0.2 7.1 0.8 1.8	 56 0 36 6 19 16 0
 138 139 140 141 142 143 144 145 	Adhesion C protein-coupled receptors: opportunities for drug discovery. Nature Reviews Drug Discovery, 2019, 18, 869-884. Heterotopic Brain Tissue in the Spinal Canal: a Report of an Unusual Case with a Review of the Literature. Indian Journal of Surgery, 2019, 81, 587-590. Beyond the Ligand: Extracellular and Transcellular C Proteinâć"Coupled Receptor Complexes in Physiology and Pharmacology. Pharmacological Reviews, 2019, 71, 503-519. Sijunzi decoction may decrease apoptosis via stabilization of the extracellular matrix following cerebral ischaemia†reperfusion in rats. Experimental and Therapeutic Medicine, 2019, 18, 2805-2812. Spatiotemporal Regulation of Rho GTPases in Neuronal Migration. Cells, 2019, 8, 568. Adhesion G-protein coupled receptors: Implications for metabolic function. , 2019, 198, 123-134. Approach to the Diagnosis of Cortical Developmental Disorders and their Clinical Genetics. , 2019, , 76-85. Overlap of polymicrogyria, hydrocephalus, and Joubert syndrome in a family with novel truncating mutations in ADCRG1/CPR56 and KIAA0556. Neurogenetics, 2019, 20, 91-98.	 21.5 0.2 7.1 0.8 1.8 0.7 	 56 0 36 6 19 16 0 17

~	_
CITATION	REDUDT
CHAHON	KLFOKI

#	Article	IF	CITATIONS
147	Prolidase enzyme is required for extracellular matrix integrity and impacts on postnatal cerebellar cortex development. Journal of Comparative Neurology, 2020, 528, 65-84.	0.9	6
148	Subarachnoid cerebrospinal fluid is essential for normal development of the cerebral cortex. Seminars in Cell and Developmental Biology, 2020, 102, 28-39.	2.3	6
149	GPR56: An adhesion GPCR involved in brain development, neurological disorders and cancer. Brain Research, 2020, 1747, 147055.	1.1	14
150	Local gene regulation in radial glia: Lessons from across the nervous system. Traffic, 2020, 21, 737-748.	1.3	16
151	Brain Dysfunction in LAMA2-Related Congenital Muscular Dystrophy: Lessons From Human Case Reports and Mouse Models. Frontiers in Molecular Neuroscience, 2020, 13, 118.	1.4	17
152	Definitions and classification of malformations of cortical development: practical guidelines. Brain, 2020, 143, 2874-2894.	3.7	145
153	Extracellular Control of Radial Glia Proliferation and Scaffolding During Cortical Development and Pathology. Frontiers in Cell and Developmental Biology, 2020, 8, 578341.	1.8	25
154	Cobblestone Malformation in LAMA2 Congenital Muscular Dystrophy (MDC1A). Journal of Neuropathology and Experimental Neurology, 2020, 79, 998-1010.	0.9	6
155	A splicing isoform of GPR56 mediates microglial synaptic refinement via phosphatidylserine binding. EMBO Journal, 2020, 39, e104136.	3.5	103
156	The polymicrogyria-associated GPR56 promoter preferentially drives gene expression in developing GABAergic neurons in common marmosets. Scientific Reports, 2020, 10, 21516.	1.6	10
157	Hindbrain tangential migration. , 2020, , 381-402.		1
158	Cortical Malformations: Lessons in Human Brain Development. Frontiers in Cellular Neuroscience, 2019, 13, 576.	1.8	65
159	Cell typeâ€specific evaluation of ADGRG1 / GPR56 function in developmental central nervous system myelination. Glia, 2021, 69, 413-423.	2.5	17
160	Anti-GPR56 monoclonal antibody potentiates GPR56-mediated Src-Fak signaling to modulate cell adhesion. Journal of Biological Chemistry, 2021, 296, 100261.	1.6	19
161	The role of GPR56/ADGRG1 in health and disease. Biomedical Journal, 2021, 44, 534-547.	1.4	25
162	Identification of a novel variant in GPR56/ADGRG1 gene through whole exome sequencing in a consanguineous Pakistani family. Journal of Clinical Neuroscience, 2021, 94, 8-12.	0.8	1
163	Adhesion G protein-coupled receptors in glioblastoma. Neuro-Oncology Advances, 2021, 3, vdab046.	0.4	7
165	Adhesion-GPCRs in the Male Reproductive Tract. Advances in Experimental Medicine and Biology, 2010, 706, 179-188.	0.8	5

		CITATION R	EPORT	
#	Article		IF	CITATIONS
166	Adhesion-GPCRs in the CNS. Advances in Experimental Medicine and Biology, 2010, 70)6, 87-97.	0.8	8
167	GPR56 Interacts with Extracellular Matrix and Regulates Cancer Progression. Advances Experimental Medicine and Biology, 2010, 706, 98-108.	in	0.8	8
168	Tubulin-Related Malformations of Cortical Development. , 2012, , 315-341.			1
169	Malformations of Cortical Development. , 2012, , 202-231.			7
172	Identification of Novel Glial Genes by Single-Cell Transcriptional Profiling of Bergmann from Mouse Cerebellum. PLoS ONE, 2010, 5, e9198.	Glial Cells	1.1	75
173	Loss of Col3a1, the Gene for Ehlers-Danlos Syndrome Type IV, Results in Neocortical D PLoS ONE, 2012, 7, e29767.	yslamination.	1.1	36
174	Disease-Associated Mutations Prevent GPR56-Collagen III Interaction. PLoS ONE, 2012	., 7, e29818.	1.1	50
175	Please eat (only part) of me: synaptic phosphatidylserine cues microglia to feast. EMBC 39, e105924.	D Journal, 2020,	3.5	6
176	The G-protein coupled receptor 56, expressed in colonic stem and cancer cells, binds p promote proliferation and carcinogenesis. Oncotarget, 2017, 8, 40606-40619.	rogastrin to	0.8	34
177	More Than Mortar: Clia as Architects of Nervous System Development and Disease. Fro and Developmental Biology, 2020, 8, 611269.	ontiers in Cell	1.8	33
178	GNG5 Controls the Number of Apical and Basal Progenitors and Alters Neuronal Migrat Cortical Development. Frontiers in Molecular Biosciences, 2020, 7, 578137.	tion During	1.6	7
179	GPR56/ADGRG1., 2016, , 1-8.			Ο
180	Neuro-Ophthalmologic Manifestations of Systemic and Intracranial Disease. , 2016, , 6	49-776.		0
181	GPR56/ADGRG1., 2018,, 2217-2224.			0
183	Ariadne's Thread in the Developing Cerebral Cortex: Mechanisms Enabling the Guid Radial Glia Basal Process during Neuron Migration. Cells, 2021, 10, 3.	ling Role of the	1.8	8
185	GPR56 gene down-regulation in patients with Klinefelter Syndrome: a candidate for inf Minerva Endocrinology, 2022, 46, .	ertility?.	0.6	0
186	Malformations of Cortical Development. , 2021, , 1-237.			1
187	Adhesion GPCR GPR56 Expression Profiling in Human Tissues. Cells, 2021, 10, 3557.		1.8	6

#	Article	IF	CITATIONS
190	Adhesion G protein-coupled receptors: structure, signaling, physiology, and pathophysiology. Physiological Reviews, 2022, 102, 1587-1624.	13.1	14
191	Microglial GPR56 is the molecular target of maternal immune activation-induced parvalbumin-positive interneuron deficits. Science Advances, 2022, 8, eabm2545.	4.7	14
193	Loss of BAF (mSWI/SNF) chromatin-remodeling ATPase Brg1 causes multiple malformations of cortical development in mice. Human Molecular Genetics, 2022, 31, 3504-3520.	1.4	1
194	The Novel Immune Checkpoint GPR56 Is Expressed on Tumor-Infiltrating Lymphocytes and Selectively Upregulated upon TCR Signaling. Cancers, 2022, 14, 3164.	1.7	7
195	Functions of G proteinâ $\in \mathfrak{c}$ oupled receptor 56 in health and disease. Acta Physiologica, 0, , .	1.8	6
196	Adhesion G protein-coupled receptor gluing action guides tissue development and disease. Journal of Molecular Medicine, 2022, 100, 1355-1372.	1.7	2
198	Adgrg1 is a New Transcriptional Target of Hand1 During Trophoblast Giant Cell Differentiation. Journal of Reproductive Immunology, 2022, , 103753.	0.8	0
199	Research models of neurodevelopmental disorders: The right model in the right place. Frontiers in Neuroscience, 0, 16, .	1.4	1
200	<scp>GPR56 S4</scp> variant is required for microgliaâ€mediated synaptic pruning. Glia, 2023, 71, 560-570.	2.5	3
202	<scp>GPR56</scp> Câ€terminal fragment mediates signal received by Nâ€terminal fragment of another adhesion <scp>GPCR</scp> Latrophilin1 in neurons. Genes To Cells, 0, , .	0.5	0
203	Non-muscle myosins control radial glial basal endfeet to mediate interneuron organization. PLoS Biology, 2023, 21, e3001926.	2.6	4
204	Subcellular mRNA localization and local translation of Arhgap11a in radial glial progenitors regulates cortical development. Neuron, 2023, 111, 839-856.e5.	3.8	4