An Argonaute Transports siRNAs from the Cytoplasm te

Science 321, 537-541 DOI: 10.1126/science.1157647

Citation Report

#	Article	IF	CITATIONS
2	Small RNAs with 5â€2-Polyphosphate Termini Associate with a Piwi-Related Protein and Regulate Gene Expression in the Single-Celled Eukaryote Entamoeba histolytica. PLoS Pathogens, 2008, 4, e1000219.	2.1	65
3	RNA Interference in the Nucleus. Science, 2008, 321, 496-497.	6.0	8
4	RNA interference and retinoblastoma-related genes are required for repression of endogenous siRNA targets in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20386-20391.	3.3	29
5	The endogenous siRNA pathway is involved in heterochromatin formation in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21258-21263.	3.3	137
6	Requirement for the ERI/DICER Complex in Endogenous RNA Interference and Sperm Development in <i>Caenorhabditis elegans</i> . Genetics, 2009, 183, 1283-1295.	1.2	123
7	Expanded RNA-binding activities of mammalian Argonaute 2. Nucleic Acids Research, 2009, 37, 7533-7545.	6.5	113
8	Export of RNA silencing from <i>C. elegans</i> tissues does not require the RNA channel SID-1. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2283-2288.	3.3	110
9	Regulation of Heterochromatin Assembly on Unpaired Chromosomes during Caenorhabditis elegans Meiosis by Components of a Small RNA-Mediated Pathway. PLoS Genetics, 2009, 5, e1000624.	1.5	82
10	A Role for Dynein in the Inhibition of Germ Cell Proliferative Fate. Molecular and Cellular Biology, 2009, 29, 6128-6139.	1.1	30
11	MicroRNAs with a nucleolar location. Rna, 2009, 15, 1705-1715.	1.6	166
12	Many roads to maturity: microRNA biogenesis pathways and their regulation. Nature Cell Biology, 2009, 11, 228-234.	4.6	2,328
13	siRNA vs. shRNA: Similarities and differences. Advanced Drug Delivery Reviews, 2009, 61, 746-759.	6.6	500
14	Origins and Mechanisms of miRNAs and siRNAs. Cell, 2009, 136, 642-655.	13.5	4,279
15	The Argonaute CSR-1 and Its 22G-RNA Cofactors Are Required for Holocentric Chromosome Segregation. Cell, 2009, 139, 123-134.	13.5	416
16	Distinct Argonaute-Mediated 22G-RNA Pathways Direct Genome Surveillance in the C. elegans Germline. Molecular Cell, 2009, 36, 231-244.	4.5	449
17	Naturally occurring antisense RNA: function and mechanisms of action. Current Opinion in Nephrology and Hypertension, 2009, 18, 343-349.	1.0	45
18	MicroRNA: Biogenesis, Function and Role in Cancer. Current Genomics, 2010, 11, 537-561.	0.7	1,372
19	Defining Features and Exploring Chemical Modifications to Manipulate RNAa Activity. Current Pharmaceutical Biotechnology, 2010, 11, 518-526.	0.9	67

ATION REDO

#	Article	IF	CITATIONS
20	MicroRNA expression in Sézary syndrome: identification, function, and diagnostic potential. Blood, 2010, 116, 1105-1113.	0.6	131
21	High-throughput experimental studies to identify miRNA targets directly, with special focus on the mammalian brain. Brain Research, 2010, 1338, 122-130.	1.1	20
22	Allosteric regulation of Argonaute proteins by miRNAs. Nature Structural and Molecular Biology, 2010, 17, 144-150.	3.6	60
23	Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nature Structural and Molecular Biology, 2010, 17, 997-1003.	3.6	448
24	Small regulatory RNAs inhibit RNA polymerase II during the elongation phase of transcription. Nature, 2010, 465, 1097-1101.	13.7	283
25	Involvement of argonaute proteins in gene silencing and activation by RNAs complementary to a non-coding transcript at the progesterone receptor promoter. Nucleic Acids Research, 2010, 38, 7736-7748.	6.5	154
26	Expansion of the miRNA Pathway in the Hemipteran Insect Acyrthosiphon pisum. Molecular Biology and Evolution, 2010, 27, 979-987.	3.5	56
27	Deep Sequencing of Human Nuclear and Cytoplasmic Small RNAs Reveals an Unexpectedly Complex Subcellular Distribution of miRNAs and tRNA 3′ Trailers. PLoS ONE, 2010, 5, e10563.	1.1	265
28	Human tRNA-derived small RNAs in the global regulation of RNA silencing. Rna, 2010, 16, 673-695.	1.6	583
29	Distinct Phases of siRNA Synthesis in an Endogenous RNAi Pathway in C. elegans Soma. Molecular Cell, 2010, 37, 679-689.	4.5	177
30	Additional layers of gene regulatory complexity from recently discovered microRNA mechanisms. International Journal of Biochemistry and Cell Biology, 2010, 42, 1236-1242.	1.2	13
31	Small RNA-mediated gene silencing pathways in C. elegans. International Journal of Biochemistry and Cell Biology, 2010, 42, 1306-1315.	1.2	50
32	MacroRNA underdogs in a microRNA world: Evolutionary, regulatory, and biomedical significance of mammalian long non-protein-coding RNA. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2010, 1799, 597-615.	0.9	200
33	The Tetrahymena Argonaute-Binding Protein Giw1p Directs a Mature Argonaute-siRNA Complex to the Nucleus. Cell, 2010, 140, 692-703.	13.5	82
34	Cloning Argonaute-Associated Small RNAs from Caenorhabditis elegans. Methods in Molecular Biology, 2011, 725, 251-280.	0.4	22
36	Diversity and Biotechnology of Ectomycorrhizae. Soil Biology, 2011, , .	0.6	4
37	The Many Faces of RNAi. Developmental Cell, 2011, 20, 148-161.	3.1	316
38	Gatekeepers for Piwi–piRNA complexes to enter the nucleus. Current Opinion in Genetics and Development, 2011, 21, 484-490.	1.5	29

#	Article	IF	CITATIONS
39	Inhibition of hepatitis B virus (HBV) by LNA-mediated nuclear interference with HBV DNA transcription. Biochemical and Biophysical Research Communications, 2011, 409, 430-435.	1.0	10
40	How old are RNA Networks?. Advances in Experimental Medicine and Biology, 2011, 722, 255-273.	0.8	4
41	Intercellular and systemic movement of RNA silencing signals. EMBO Journal, 2011, 30, 3553-3563.	3.5	279
42	Small RNA-Induced Transcriptional Gene Regulation in Mammals. Progress in Molecular Biology and Translational Science, 2011, 102, 11-46.	0.9	9
43	Nucleocytoplasmic Transport of MicroRNAs and Related Small RNAs. Traffic, 2011, 12, 1468-1474.	1.3	36
44	miRWalk – Database: Prediction of possible miRNA binding sites by "walking―the genes of three genomes. Journal of Biomedical Informatics, 2011, 44, 839-847.	2.5	1,551
45	Subcellular Fate and Off-Target Effects of siRNA, shRNA, and miRNA. Pharmaceutical Research, 2011, 28, 2996-3015.	1.7	169
46	Gold glitters everywhere: nucleus microRNAs and their functions. Frontiers in Biology, 2011, 6, 69-75.	0.7	4
47	Nuclear and cytoplasmic localization of neural stem cell microRNAs. Rna, 2011, 17, 675-686.	1.6	105
48	<i>mut-16</i> and other <i>mutator</i> class genes modulate 22G and 26G siRNA pathways in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1201-1208.	3.3	128
49	Nucleus-localized Antisense Small RNAs with 5′-Polyphosphate Termini Regulate Long Term Transcriptional Gene Silencing in Entamoeba histolytica G3 Strain. Journal of Biological Chemistry, 2011, 286, 44467-44479.	1.6	51
50	Efficient Silencing of Endogenous MicroRNAs Using Artificial MicroRNAs in Arabidopsis thaliana. Molecular Plant, 2011, 4, 157-170.	3.9	72
51	Alternate approaches to repress endogenous microRNA activity in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2011, 6, 349-359.	1.2	12
52	Nuclear RNAi maintains heritable gene silencing in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19683-19688.	3.3	177
53	Functional specialization of Piwi proteins in Paramecium tetraurelia from post-transcriptional gene silencing to genome remodelling. Nucleic Acids Research, 2011, 39, 4249-4264.	6.5	82
54	A Pre-mRNA–Associating Factor Links Endogenous siRNAs to Chromatin Regulation. PLoS Genetics, 2011, 7, e1002249.	1.5	138
55	The ERI-6/7 Helicase Acts at the First Stage of an siRNA Amplification Pathway That Targets Recent Gene Duplications. PLoS Genetics, 2011, 7, e1002369.	1.5	74
56	Direct evidence of nuclear Argonaute distribution during transcriptional silencing links the actin cytoskeleton to nuclear RNAi machinery in human cells. Nucleic Acids Research, 2012, 40, 1579-1595.	6.5	69

#	Article	IF	CITATIONS
57	Extremely stable Piwi-induced gene silencing in <i>Caenorhabditis elegans</i> . EMBO Journal, 2012, 31, 3422-3430.	3.5	197
58	PIWI Associated siRNAs and piRNAs Specifically Require the Caenorhabditis elegans HEN1 Ortholog henn-1. PLoS Genetics, 2012, 8, e1002616.	1.5	124
59	Promoter-associated small double-stranded RNA interacts with heterogeneous nuclear ribonucleoprotein A2/B1 to induce transcriptional activation. Biochemical Journal, 2012, 447, 407-416.	1.7	64
60	Differential Impact of the HEN1 Homolog HENN-1 on 21U and 26G RNAs in the Germline of Caenorhabditis elegans. PLoS Genetics, 2012, 8, e1002702.	1.5	96
61	MicroRNA-mediated mRNA Translation Activation in Quiescent Cells and Oocytes Involves Recruitment of a Nuclear microRNP. Scientific Reports, 2012, 2, 842.	1.6	134
62	siRNAs targeted to certain polyadenylation sites promote specific, RISC-independent degradation of messenger RNAs. Nucleic Acids Research, 2012, 40, 6223-6234.	6.5	10
63	Expanding the action of duplex RNAs into the nucleus: redirecting alternative splicing. Nucleic Acids Research, 2012, 40, 1240-1250.	6.5	74
64	MicroRNA profiling in murine liver after partial hepatectomy. International Journal of Molecular Medicine, 2012, 29, 747-55.	1.8	36
65	<i>Caenorhabditis elegans</i> Small RNA Pathways Make Their Mark on Chromatin. DNA and Cell Biology, 2012, 31, S-17-S-33.	0.9	8
66	MicroRNAs Micromanage Themselves. Circulation Research, 2012, 111, 1395-1397.	2.0	7
67	The RDE-10/RDE-11 complex triggers RNAi-induced mRNA degradation by association with target mRNA in <i>C. elegans</i> . Genes and Development, 2012, 26, 846-856.	2.7	27
68	New insights into siRNA amplification and RNAi. RNA Biology, 2012, 9, 1045-1049.	1.5	33
69	Protection from Feed-Forward Amplification in an Amplified RNAi Mechanism. Cell, 2012, 151, 885-899.	13.5	70
70	RNAi in fission yeast finds new targets and new ways of targeting at the nuclear periphery: Figure 1 Genes and Development, 2012, 26, 741-745.	2.7	6
71	Use of Forward Genetic Screens to Identify Genes Required for RNA-Directed DNA Methylation in Arabidopsis thaliana. Cold Spring Harbor Symposia on Quantitative Biology, 2012, 77, 195-204.	2.0	22
72	Dye selection for live cell imaging of intact siRNA. Biological Chemistry, 2012, 393, 23-35.	1.2	13
73	The miR-35-41 Family of MicroRNAs Regulates RNAi Sensitivity in Caenorhabditis elegans. PLoS Genetics, 2012, 8, e1002536.	1,5	37
74	Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes and Development, 2012, 26, 2361-2373.	2.7	305

#	Article	IF	CITATIONS
75	Cytoplasmic Assembly and Selective Nuclear Import of Arabidopsis ARGONAUTE4/siRNA Complexes. Molecular Cell, 2012, 46, 859-870.	4.5	193
76	A Detour to Mature. Molecular Cell, 2012, 46, 719-721.	4.5	0
77	piRNAs Initiate an Epigenetic Memory of Nonself RNA in the C.Âelegans Germline. Cell, 2012, 150, 65-77.	13.5	539
78	CCDC-55 is required for larval development and distal tip cell migration in Caenorhabditis elegans. Mechanisms of Development, 2012, 128, 548-559.	1.7	8
79	RNA interference in <i>Caenorhabditis elegans</i> : Uptake, mechanism, and regulation. Parasitology, 2012, 139, 560-573.	0.7	50
80	Argonaute and the Nuclear RNAs: New Pathways for RNA-Mediated Control of Gene Expression. Nucleic Acid Therapeutics, 2012, 22, 3-16.	2.0	57
81	Amplification of siRNA in Caenorhabditis elegans generates a transgenerational sequence-targeted histone H3 lysine 9 methylation footprint. Nature Genetics, 2012, 44, 157-164.	9.4	239
82	A nuclear Argonaute promotes multigenerational epigenetic inheritance and germline immortality. Nature, 2012, 489, 447-451.	13.7	450
83	Mechanism of Small RNA Movement. , 2012, , 99-130.		3
84	The Caenorhabditis elegans RDE-10/RDE-11 Complex Regulates RNAi by Promoting Secondary siRNA Amplification. Current Biology, 2012, 22, 881-890.	1.8	49
85	The Karyopherin Sal3 is Required for Nuclear Import ofÂthe Core <scp>RNA</scp> Interference Pathway Protein <scp>Rdp</scp> 1. Traffic, 2012, 13, 520-531.	1.3	4
86	Small RNA pyrosequencing in the protozoan parasite Entamoeba histolytica reveals strain-specific small RNAs that target virulence genes. BMC Genomics, 2013, 14, 53.	1.2	27
87	Endogenous Nuclear RNAi Mediates Behavioral Adaptation to Odor. Cell, 2013, 154, 1010-1022.	13.5	74
88	The C.Âelegans CSR-1 Argonaute Pathway Counteracts Epigenetic Silencing to Promote Germline Gene Expression. Developmental Cell, 2013, 27, 656-663.	3.1	206
89	Gene Silencing and Polycomb Group Proteins: An Overview of their Structure, Mechanisms and Phylogenetics. OMICS A Journal of Integrative Biology, 2013, 17, 283-296.	1.0	36
90	RNAi pathways contribute to developmental history-dependent phenotypic plasticity in <i>C. elegans</i> . Rna, 2013, 19, 306-319.	1.6	49
91	Multiple small RNA pathways regulate the silencing of repeated and foreign genes in <i>C. elegans</i> . Genes and Development, 2013, 27, 2678-2695.	2.7	35
92	RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nature Reviews Genetics, 2013, 14, 100-112.	7.7	871

~			n	
		ION		
ι.	ТАТ	IUN	IX F.F	PORT

#	Article	IF	CITATIONS
93	Identification of small RNA pathway genes using patterns of phylogenetic conservation and divergence. Nature, 2013, 493, 694-698.	13.7	138
94	Nuclear organisation and RNAi in fission yeast. Current Opinion in Cell Biology, 2013, 25, 372-377.	2.6	6
95	Small RNAs, RNAi and the Inheritance of Gene Silencing in Caenorhabditis elegans. Journal of Genetics and Genomics, 2013, 40, 153-160.	1.7	36
96	Argonaute proteins: functional insights and emerging roles. Nature Reviews Genetics, 2013, 14, 447-459.	7.7	871
97	Environmental RNA interference in animals. Science Bulletin, 2013, 58, 4418-4425.	1.7	4
98	Biology and Mechanisms of Short RNAs in Caenorhabditis elegans. Advances in Genetics, 2013, 83, 1-69.	0.8	72
99	The Nuclear Argonaute NRDE-3 Contributes to Transitive RNAi in <i>Caenorhabditis elegans</i> . Genetics, 2013, 194, 117-131.	1.2	17
100	Circulating nucleic acids: possible inherited effects. Biological Journal of the Linnean Society, 2013, 110, 931-948.	0.7	12
101	Impaired complex IV activity in response to loss of LRPPRC function can be compensated by mitochondrial hyperfusion. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2967-76.	3.3	63
102	In-Silico Algorithms for the Screening of Possible microRNA Binding Sites and Their Interactions. Current Genomics, 2013, 14, 127-136.	0.7	63
103	Optimizations of SiRNA Design for the Activation of Gene Transcription by Targeting the TATA-Box Motif. PLoS ONE, 2014, 9, e108253.	1.1	10
104	Transgenerational functions of small RNA pathways in controlling gene expression in <i>C. elegans</i> . Epigenetics, 2014, 9, 37-44.	1.3	15
105	Nuclear RNAi Contributes to the Silencing of Off-Target Genes and Repetitive Sequences in <i>Caenorhabditis elegans</i> . Genetics, 2014, 197, 121-132.	1.2	27
106	Homeland security in the <i>C. elegans</i> germ line. Epigenetics, 2014, 9, 62-74.	1.3	21
107	From early lessons to new frontiers: the worm as a treasure trove of small RNA biology. Frontiers in Genetics, 2014, 5, 416.	1.1	49
108	Neuronal Migration Is Regulated by Endogenous RNAi and Chromatin-Binding Factor ZFP-1/AF10 in Caenorhabditis elegans. Genetics, 2014, 197, 207-220.	1.2	8
109	The MicroRNA Biology of the Mammalian Nucleus. Molecular Therapy - Nucleic Acids, 2014, 3, e188.	2.3	171
110	Complex coding of endogenous siRNA, transcriptional silencing and H3K9 methylation on native targets of germline nuclear RNAi in C. elegans. BMC Genomics, 2014, 15, 1157.	1.2	52

#	Article	IF	CITATIONS
111	C. elegans epigenetic regulation in development and aging. Briefings in Functional Genomics, 2014, 13, 223-234.	1.3	28
112	MicroRNA and Drug Delivery. , 2014, , 359-403.		0
113	Expression of an expanded CGG-repeat RNA in a single pair of primary sensory neurons impairs olfactory adaptation in Caenorhabditis elegans. Human Molecular Genetics, 2014, 23, 4945-4959.	1.4	8
114	Guest list or black list: heritable small RNAs as immunogenic memories. Trends in Cell Biology, 2014, 24, 212-220.	3.6	42
115	Direct transcriptional regulation by nuclear microRNAs. International Journal of Biochemistry and Cell Biology, 2014, 54, 304-311.	1.2	78
116	Contribution of natural antisense transcription to an endogenous siRNA signature in human cells. BMC Genomics, 2014, 15, 19.	1.2	40
117	Assembly and function of small RNA – Argonaute protein complexes. Biological Chemistry, 2014, 395, 611-629.	1.2	72
118	Importin 8 Regulates the Transport of Mature MicroRNAs into the Cell Nucleus. Journal of Biological Chemistry, 2014, 289, 10270-10275.	1.6	119
119	A nuclear perspective on RNAi pathways in metazoans. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 223-233.	0.9	18
120	Nematode endogenous small RNA pathways. Worm, 2014, 3, e28234.	1.0	26
121	Cellular microRNAs up-regulate transcription via interaction with promoter TATA-box motifs. Rna, 2014, 20, 1878-1889.	1.6	103
122	piRNAs: from biogenesis to function. Development (Cambridge), 2014, 141, 3458-3471.	1.2	350
123	MicroRNA Directly Enhances Mitochondrial Translation during Muscle Differentiation. Cell, 2014, 158, 607-619.	13.5	385
124	Endogenous siRNAs: regulators of internal affairs. Biochemical Society Transactions, 2014, 42, 1174-1179.	1.6	65
125	Import routes and nuclear functions of Argonaute and other small RNA-silencing proteins. Trends in Biochemical Sciences, 2014, 39, 420-431.	3.7	61
126	Ancient Endo-siRNA Pathways Reveal NewÂTricks. Current Biology, 2014, 24, R703-R715.	1.8	66
127	RNA Mapping. Methods in Molecular Biology, 2014, , .	0.4	4
128	<i>Mad2</i> Checkpoint Gene Silencing Using Epidermal Growth Factor Receptor-Targeted Chitosan Nanoparticles in Non-Small Cell Lung Cancer Model. Molecular Pharmaceutics, 2014, 11, 3515-3527.	2.3	55

#	Article	IF	CITATIONS
129	The anti-miR21 antagomir, a therapeutic tool for colorectal cancer, has a potential synergistic effect by perturbing an angiogenesis-associated miR30. Frontiers in Genetics, 2014, 4, 301.	1.1	27
130	E. coli OxyS non-coding RNA does not trigger RNAi in C. elegans. Scientific Reports, 2015, 5, 9597.	1.6	18
131	Non-Coding RNA: Sequence-Specific Guide for Chromatin Modification and DNA Damage Signaling. Frontiers in Genetics, 2015, 6, 320.	1.1	22
132	The Biology of CNAPS. Advances in Predictive, Preventive and Personalised Medicine, 2015, , 15-41.	0.6	2
133	Swiss army knives: non-canonical functions of nuclear Drosha and Dicer. Nature Reviews Molecular Cell Biology, 2015, 16, 417-430.	16.1	88
134	Importin-β facilitates nuclear import of human GW proteins and balances cytoplasmic gene silencing protein levels. Nucleic Acids Research, 2015, 43, 7447-7461.	6.5	52
135	RNA-mediated epigenetic regulation of gene expression. Nature Reviews Genetics, 2015, 16, 71-84.	7.7	832
136	A Ribonuclease Coordinates siRNA Amplification and mRNA Cleavage during RNAi. Cell, 2015, 160, 407-419.	13.5	71
137	A review of transgenerational epigenetics for RNAi, longevity, germline maintenance and olfactory imprinting in Caenorhabditis elegans. Journal of Experimental Biology, 2015, 218, 41-49.	0.8	33
138	Primary and secondary siRNA synthesis triggered by RNAs from food bacteria in the ciliate Paramecium tetraurelia. Nucleic Acids Research, 2015, 43, 1818-1833.	6.5	27
139	The TATA-box motif and its impact on transcriptional gene regulation by miRNAs. Biomolecular Concepts, 2015, 6, 157-161.	1.0	1
140	The Nrde Pathway Mediates Small-RNA-Directed Histone H3 Lysine 27 Trimethylation in Caenorhabditis elegans. Current Biology, 2015, 25, 2398-2403.	1.8	109
141	Differentially expressed miRNAs in trisomy 21 placentas. Prenatal Diagnosis, 2016, 36, 775-784.	1.1	22
142	Argonaute: The executor of small RNA function. Journal of Genetics and Genomics, 2016, 43, 481-494.	1.7	64
143	Plastic germline reprogramming of heritable small RNAs enables maintenance or erasure of epigenetic memories. RNA Biology, 2016, 13, 1212-1217.	1.5	15
144	A transgenerational role of the germline nuclear RNAi pathway in repressing heat stress-induced transcriptional activation in C. elegans. Epigenetics and Chromatin, 2016, 9, 3.	1.8	94
145	RNA silencing movement in plants. Journal of Integrative Plant Biology, 2016, 58, 328-342.	4.1	43
146	Regulation of mammalian transcription and splicing by Nuclear RNAi. Nucleic Acids Research, 2016, 44, 524-537.	6.5	104

#	Article	IF	CITATIONS
147	A Tunable Mechanism Determines the Duration of the Transgenerational Small RNA Inheritance in C.Âelegans. Cell, 2016, 165, 88-99.	13.5	129
148	Stable Heritable Germline Silencing Directs Somatic Silencing at an Endogenous Locus. Molecular Cell, 2017, 65, 659-670.e5.	4.5	38
149	RdRP-synthesized antisense ribosomal siRNAs silence pre-rRNA via the nuclear RNAi pathway. Nature Structural and Molecular Biology, 2017, 24, 258-269.	3.6	52
150	Natural Variation in the Distribution and Abundance of Transposable Elements Across the Caenorhabditis elegans Species. Molecular Biology and Evolution, 2017, 34, 2187-2202.	3.5	61
151	RNA Activation. Advances in Experimental Medicine and Biology, 2017, , .	0.8	1
152	A new layer of rRNA regulation by small interference RNAs and the nuclear RNAi pathway. RNA Biology, 2017, 14, 1492-1498.	1.5	16
153	MORC-1 Integrates Nuclear RNAi and Transgenerational Chromatin Architecture to Promote Germline Immortality. Developmental Cell, 2017, 41, 408-423.e7.	3.1	69
154	The RNAi Inheritance Machinery of <i>Caenorhabditis elegans</i> . Genetics, 2017, 206, 1403-1416.	1.2	129
155	Early Developmental Exposure to dsRNA Is Critical for Initiating Efficient Nuclear RNAi in C.Âelegans. Cell Reports, 2017, 18, 2969-2978.	2.9	13
156	Artificial and natural RNA interactions between bacteria and <i>C. elegans</i> . RNA Biology, 2017, 14, 415-420.	1.5	15
157	Transgenerational Diapause as an Avoidance Strategy against Bacterial Pathogens in <i>CaenorhabditisÂelegans</i> . MBio, 2017, 8, .	1.8	55
158	Principles of Transgenerational Small RNA Inheritance in Caenorhabditis elegans. Current Biology, 2017, 27, R720-R730.	1.8	135
159	The Helicase Aquarius/EMB-4 Is Required to Overcome Intronic Barriers to Allow Nuclear RNAi Pathways to Heritably Silence Transcription. Developmental Cell, 2017, 42, 241-255.e6.	3.1	61
160	SID-1 Functions in Multiple Roles To Support Parental RNAi in <i>Caenorhabditis elegans</i> . Genetics, 2017, 207, 547-557.	1.2	40
161	Decoupling the downstream effects of germline nuclear RNAi reveals that H3K9me3 is dispensable for heritable RNAi and the maintenance of endogenous siRNA-mediated transcriptional silencing in Caenorhabditis elegans. Epigenetics and Chromatin, 2017, 10, 6.	1.8	67
162	The double-stranded RNA binding protein RDE-4 can act cell autonomously during feeding RNAi in C. elegans. Nucleic Acids Research, 2017, 45, 8463-8473.	6.5	11
163	Conservation and diversification of small RNA pathways within flatworms. BMC Evolutionary Biology, 2017, 17, 215.	3.2	18
164	PcG Proteins in Caenorhabditis elegans. , 2017, , 289-315.		1

#	Article	IF	CITATIONS
165	A team of heterochromatin factors collaborates with small RNA pathways to combat repetitive elements and germline stress. ELife, 2017, 6, .	2.8	87
166	<i>C. elegans</i> ADARs antagonize silencing of cellular dsRNAs by the antiviral RNAi pathway. Genes and Development, 2018, 32, 271-282.	2.7	42
167	A Neuronal piRNA Pathway Inhibits Axon Regeneration in C.Âelegans. Neuron, 2018, 97, 511-519.e6.	3.8	55
168	Repressive Chromatin in <i>Caenorhabditis elegans</i> : Establishment, Composition, and Function. Genetics, 2018, 208, 491-511.	1.2	82
169	Arabidopsis ARGONAUTE 1 Binds Chromatin to Promote Gene Transcription in Response to Hormones and Stresses. Developmental Cell, 2018, 44, 348-361.e7.	3.1	121
170	Intergenerational Transmission of Gene Regulatory Information in Caenorhabditis elegans. Trends in Genetics, 2018, 34, 54-64.	2.9	47
171	Functions and mechanisms of epigenetic inheritance in animals. Nature Reviews Molecular Cell Biology, 2018, 19, 774-790.	16.1	335
172	Transgenerational Epigenetic Inheritance Is Negatively Regulated by the HERI-1 Chromodomain Protein. Genetics, 2018, 210, 1287-1299.	1.2	35
173	The spatial and temporal dynamics of nuclear RNAi-targeted retrotransposon transcripts in <i>Caenorhabditis elegans</i> . Development (Cambridge), 2018, 145, .	1.2	11
174	Comprehensive Evolutionary Analysis of the Major RNA-Induced Silencing Complex Members. Scientific Reports, 2018, 8, 14189.	1.6	18
175	Erroneous ribosomal RNAs promote the generation of antisense ribosomal siRNA. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10082-10087.	3.3	39
176	ZNFX-1 Functions within Perinuclear Nuage to Balance Epigenetic Signals. Molecular Cell, 2018, 70, 639-649.e6.	4.5	84
177	A Cytoplasmic Argonaute Protein Promotes the Inheritance of RNAi. Cell Reports, 2018, 23, 2482-2494.	2.9	74
178	<scp>GTSF</scp> â€l is required for formation of a functional <scp>RNA</scp> â€dependent <scp>RNA</scp> Polymerase complex in <i>Caenorhabditis elegans</i> . EMBO Journal, 2018, 37, .	3.5	23
179	Spatiotemporal regulation of liquid-like condensates in epigenetic inheritance. Nature, 2018, 557, 679-683.	13.7	166
180	Targeted Chromosomal Rearrangements via Combinatorial Use of CRISPR/Cas9 and Cre/ <i>LoxP</i> Technologies in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2018, 8, 2697-2707.	0.8	9
181	The <i>Caenorhabditis elegans</i> Ortholog of TDP-43 Regulates the Chromatin Localization of the Heterochromatin Protein 1 Homolog HPL-2. Molecular and Cellular Biology, 2018, 38, .	1.1	14
182	lin-4 and the NRDE pathway are required to activate a transgenic lin-4 reporter but not the endogenous lin-4 locus in C. elegans. PLoS ONE, 2018, 13, e0190766.	1.1	4

#	Article	IF	CITATIONS
183	METHIONINE SYNTHASE1 Is Involved in Chromatin Silencing by Maintaining DNA and Histone Methylation. Plant Physiology, 2019, 181, 249-261.	2.3	23
184	Chromatin Compaction by Small RNAs and the Nuclear RNAi Machinery in C. elegans. Scientific Reports, 2019, 9, 9030.	1.6	19
185	P Granules Protect RNA Interference Genes from Silencing by piRNAs. Developmental Cell, 2019, 50, 716-728.e6.	3.1	85
186	Gene silencing by double-stranded RNA from C. elegans neurons reveals functional mosaicism of RNA interference. Nucleic Acids Research, 2019, 47, 10059-10071.	6.5	4
187	Function and Evolution of Nematode RNAi Pathways. Non-coding RNA, 2019, 5, 8.	1.3	49
188	Heritable generational epigenetic effects through small noncoding RNA. , 2019, , 185-212.		1
189	Should dsRNA treatments applied in outdoor environments be regulated?. Environment International, 2019, 132, 104856.	4.8	13
190	Piwi/PRG-1 Argonaute and TGF-β Mediate Transgenerational Learned Pathogenic Avoidance. Cell, 2019, 177, 1827-1841.e12.	13.5	199
191	Multigenerational Regulation of the <i>Caenorhabditis elegans</i> Chromatin Landscape by Germline Small RNAs. Annual Review of Genetics, 2019, 53, 289-311.	3.2	37
192	Interplay between small RNA pathways shapes chromatin landscapes in C. elegans. Nucleic Acids Research, 2019, 47, 5603-5616.	6.5	20
193	The meiotic phosphatase GSP-2/PP1 promotes germline immortality and small RNA-mediated genome silencing. PLoS Genetics, 2019, 15, e1008004.	1.5	5
194	Inter-generational consequences for growing <i>Caenorhabditis elegans</i> in liquid. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180125.	1.8	16
195	Maternal and zygotic gene regulatory effects of endogenous RNAi pathways. PLoS Genetics, 2019, 15, e1007784.	1.5	19
196	Identification of functional long non-coding RNAs in C. elegans. BMC Biology, 2019, 17, 14.	1.7	30
197	Functional Characterization of Entamoeba histolytica Argonaute Proteins Reveals a Repetitive DR-Rich Motif Region That Controls Nuclear Localization. MSphere, 2019, 4, .	1.3	10
198	Intergenerational and transgenerational epigenetic inheritance in animals. Nature Cell Biology, 2019, 21, 143-151.	4.6	365
199	PLP-1 is essential for germ cell development and germline gene silencing in <i>C. elegans</i> . Development (Cambridge), 2020, 147, .	1.2	3
200	A Small-RNA-Mediated Feedback Loop Maintains Proper Levels of 22G-RNAs in C.Âelegans. Cell Reports, 2020, 33, 108279.	2.9	7

#	Article	IF	CITATIONS
201	A Conserved NRDE-2/MTR-4 Complex Mediates Nuclear RNAi in <i>Caenorhabditis elegans</i> . Genetics, 2020, 216, 1071-1085.	1.2	12
202	CDE-1 suppresses the production of risiRNA by coupling polyuridylation and degradation of rRNA. BMC Biology, 2020, 18, 115.	1.7	11
203	A Family of Argonaute-Interacting Proteins Gates Nuclear RNAi. Molecular Cell, 2020, 78, 862-875.e8.	4.5	11
204	poly(UG)-tailed RNAs in genome protection and epigenetic inheritance. Nature, 2020, 582, 283-288.	13.7	88
205	Natural cryptic variation in epigenetic modulation of an embryonic gene regulatory network. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13637-13646.	3.3	20
206	RNAi pathways repress reprogramming of C. elegans germ cells during heat stress. Nucleic Acids Research, 2020, 48, 4256-4273.	6.5	32
207	Small RNAs in the Transgenerational Inheritance of Epigenetic Information. Trends in Genetics, 2020, 36, 203-214.	2.9	65
208	Long noncoding RNA 2193 regulates meiosis through global epigenetic modification and cytoskeleton organization in pig oocytes. Journal of Cellular Physiology, 2020, 235, 8304-8318.	2.0	21
209	Argonaute NRDE-3 and MBT domain protein LIN-61 redundantly recruit an H3K9me3 HMT to prevent embryonic lethality and transposon expression. Genes and Development, 2021, 35, 82-101.	2.7	16
210	Harnessing the power of genetics: fast forward genetics in Caenorhabditis elegans. Molecular Genetics and Genomics, 2021, 296, 1-20.	1.0	17
211	ZSPâ€1 is a Z granule surface protein required for Z granule fluidity and germline immortality in <i>Caenorhabditis elegans</i> . EMBO Journal, 2021, 40, e105612.	3.5	17
213	C. elegans orthologs MUT-7/CeWRN-1 of Werner syndrome protein regulate neuronal plasticity. ELife, 2021, 10, .	2.8	4
214	Germ granule dysfunction is a hallmark and mirror of Piwi mutant sterility. Nature Communications, 2021, 12, 1420.	5.8	16
215	Imaging of native transcription and transcriptional dynamics <i>in vivo</i> using a tagged Argonaute protein. Nucleic Acids Research, 2021, 49, e86-e86.	6.5	9
219	Mating can initiate stable RNA silencing that overcomes epigenetic recovery. Nature Communications, 2021, 12, 4239.	5.8	16
220	piRNAs coordinate poly(UG) tailing to prevent aberrant and perpetual gene silencing. Current Biology, 2021, 31, 4473-4485.e3.	1.8	23
222	Antisense ribosomal siRNAs inhibit RNA polymerase I-directed transcription in <i>C. elegans</i> . Nucleic Acids Research, 2021, 49, 9194-9210.	6.5	17
223	RNAi-directed knockdown induces nascent transcript degradation and premature transcription termination in the nucleus. Cell Discovery, 2021, 7, 79.	3.1	9

~			_	
CI	ΓΑΤΙ	ION	REI	PORT

#	Article	IF	CITATIONS
224	piRNAs and endo-siRNAs: Small molecules with large roles in the nervous system. Neurochemistry International, 2021, 148, 105086.	1.9	1
225	Cues from mRNA splicing prevent default Argonaute silencing in C.Âelegans. Developmental Cell, 2021, 56, 2636-2648.e4.	3.1	8
226	Epigenetic Control of Germline Development. Advances in Experimental Medicine and Biology, 2013, 757, 373-403.	0.8	4
227	Small RNA Library Cloning Procedure for Deep Sequencing of Specific Endogenous siRNA Classes in Caenorhabditis elegans. Methods in Molecular Biology, 2014, 1173, 59-70.	0.4	2
228	miRWalk Database for miRNA–Target Interactions. Methods in Molecular Biology, 2014, 1182, 289-305.	0.4	259
229	RNAa Induced by TATA Box-Targeting MicroRNAs. Advances in Experimental Medicine and Biology, 2017, 983, 91-111.	0.8	7
230	How do histone modifications contribute to transgenerational epigenetic inheritance in <i>C. elegans</i> ?. Biochemical Society Transactions, 2020, 48, 1019-1034.	1.6	19
238	Mitochondrial dysfunction induces RNA interference in C. elegans through a pathway homologous to the mammalian RIG-I antiviral response. PLoS Biology, 2020, 18, e3000996.	2.6	10
239	Endogenous RNAi pathways in C. elegans. WormBook, 2014, , 1-49.	5.3	121
240	Argonaute protein as a linker to command center of physiological processes. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 2013, 25, 430-41.	0.7	6
241	Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. ELife, 2015, 4, .	2.8	185
242	Developmental programming modulates olfactory behavior in C. elegans via endogenous RNAi pathways. ELife, 2016, 5, .	2.8	36
243	Transcriptional adaptation in Caenorhabditis elegans. ELife, 2020, 9, .	2.8	32
244	Endogenous siRNAs promote proteostasis and longevity in germline-less Caenorhabditis elegans. ELife, 2020, 9, .	2.8	13
246	Small RNAs in epigenetic inheritance: from mechanisms to trait transmission. FEBS Letters, 2021, 595, 2953-2977.	1.3	25
247	Systemic RNAi in C. elegans from the Viewpoint of RNA as Extracellular Signals. Nucleic Acids and Molecular Biology, 2010, , 69-92.	0.2	0
248	RNA Silencing in Ectomycorrhizal Fungi. Soil Biology, 2011, , 177-206.	0.6	0
256	ZNFX-1 Engages Argonaute Proteins to Promote the Stable Inheritance of Epigenetic States in <i>C. Elegans</i> . SSRN Electronic Journal, 0, , .	0.4	0

ARTICLE IF CITATIONS # Two Piwis with Ago-like functions silence somatic genes at the chromatin level. RNA Biology, 2021, 18, 271 1.5 5 757-769. Nuage condensates: accelerators or circuit breakers for sRNA silencing pathways?. Rna, 2022, 28, 58-66. 1.6 Small RNA pathways in the nematode Ascaris in the absence of piRNAs. Nature Communications, 2022, 274 5.8 11 13, 837. Dual roles for nuclear RNAi Argonautes in <i>Caenorhabditis elegans</i> dosage compensation. 1.2 Genetics, 2022, 221, . Mutation, selection, and the prevalence of the <i>Caenorhabditis elegans</i> heat-sensitive mortal 276 0.8 4 germline phenotype. G3: Genes, Genomes, Genetics, 2022, 12, . Mechanisms of epigenetic regulation by C. elegans nuclear RNA interference pathways. Seminars in Cell and Developmental Biology, 2022, 127, 142-154. 2.3 279 MUT-7 Provides Molecular Insight into the Werner Syndrome Exonuclease. Cells, 2021, 10, 3457. 1.8 0 Labelling of Active Transcription Sites with Argonaute NRDE-3â€"Image Active Transcription Sites in 0.2 vivo in Čaenorhabditis elegans. Bio-protocol, 2022, 12, . The Caenorhabditis elegans TDRD5/7-like protein, LOTR-1, interacts with the helicase ZNFX-1 to balance 282 1.5 7 epigenetic signals in the germline. PLoS Genetics, 2022, 18, e1010245. The conserved helicase ZNFX-1 memorializes silenced RNAs in perinuclear condensates. Nature Cell 284 4.6 Biology, 2022, 24, 1129-1140. PIWI-Interacting RNA (piRNA) and Epigenetic Editing in Environmental Health Sciences. Current 288 3.2 4 Environmental Health Reports, 2022, 9, 650-660. Beyond rRNA: nucleolar transcription generates a complex network of RNAs with multiple roles in maintaining cellular homeostasis. Genes and Development, 2022, 36, 876-886. Structural and functional organization of germ plasm condensates. Biochemical Journal, 2022, 479, 290 1.7 4 2477-2495. A conserved RNAi molecule Ago2 involved in antiviral immunity of oyster Crassostrea gigas. 294 1.0 Developmental and Comparative Immunology, 2023, 142, 104668. A comprehensive survey of C. elegans argonaute proteins reveals organism-wide gene regulatory 296 2.8 29 networks and functions. ELife, 0, 12, . Differentially Expressed Genes Associated with Body Size Changes and Transposable Element Insertions between <i>Caenorhabditis elegans</i> and Its Sister Species, <i>Caenorhabditis 298 inopinata </i>. Genome Biology and Evolution, 2023, 15, .