Gaussian process modelling of latent chemical species: a transcription factor activities

Bioinformatics

24, i70-i75

DOI: 10.1093/bioinformatics/btn278

Citation Report

#	Article	IF	CITATIONS
1	Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics. Bioinformatics, 2009, 25, 2937-2944.	1.8	75
2	Switching regulatory models of cellular stress response. Bioinformatics, 2009, 25, 1280-1286.	1.8	25
3	Gaussian process regression bootstrapping: exploring the effects of uncertainty in time course data. Bioinformatics, 2009, 25, 1300-1306.	1.8	62
4	The ABC of reverse engineering biological signalling systems. Molecular BioSystems, 2009, 5, 1925.	2.9	42
5	Ranking of gene regulators through differential equations and Gaussian processes. , 2010, , .		1
6	A Robust Bayesian Two-Sample Test for Detecting Intervals of Differential Gene Expression in Microarray Time Series. Journal of Computational Biology, 2010, 17, 355-367.	0.8	84
7	Estimating replicate time shifts using Gaussian process regression. Bioinformatics, 2010, 26, 770-776.	1.8	16
8	Model-based method for transcription factor target identification with limited data. Proceedings of the United States of America, 2010, 107, 7793-7798.	3.3	87
9	Markov chain Monte Carlo algorithms for Gaussian processes. , 0, , 295-316.		9
11	A Simple Approach to Ranking Differentially Expressed Gene Expression Time Courses through Gaussian Process Regression. BMC Bioinformatics, 2011, 12, 180.	1.2	72
12	Reconstructing genome-wide regulatory network of E. coli using transcriptome data and predicted transcription factor activities. BMC Bioinformatics, 2011, 12, 233.	1.2	54
13	Cancer Systems Biology. , 2011, , 533-565.		1
14	tigre: Transcription factor inference through gaussian process reconstruction of expression for bioconductor. Bioinformatics, 2011, 27, 1026-1027.	1.8	4
15	Reconstructing transcription factor activities in hierarchical transcription network motifs. Bioinformatics, 2011, 27, 2873-2879.	1.8	16
16	Gaussian process modelling for <i>bicoid</i> mRNA regulation in spatio-temporal Bicoid profile. Bioinformatics, 2012, 28, 366-372.	1.8	13
17	Identifying targets of multiple co-regulating transcription factors from expression time-series by Bayesian model comparison. BMC Systems Biology, 2012, 6, 53.	3.0	20
18	Smooth functional tempering for nonlinear differential equation models. Statistics and Computing, 2012, 22, 429-443.	0.8	31
19	A method to identify differential expression profiles of time-course gene data with Fourier transformation. BMC Bioinformatics, 2013, 14, 310.	1.2	13

CITATION REPORT

#	Article	IF	CITATIONS
20	Hierarchical Bayesian modelling of gene expression time series across irregularly sampled replicates and clusters. BMC Bioinformatics, 2013, 14, 252.	1.2	77
21	Linear Latent Force Models Using Gaussian Processes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35, 2693-2705.	9.7	91
22	Mining Regulatory Network Connections by Ranking Transcription Factor Target Genes Using Time Series Expression Data. Methods in Molecular Biology, 2013, 939, 59-67.	0.4	0
23	Sorad: a systems biology approach to predict and modulate dynamic signaling pathway response from phosphoproteome time-course measurements. Bioinformatics, 2013, 29, 1283-1291.	1.8	12
24	Latent force models for describing transcriptional regulation processes in the embryo development problem for the Drosophila melanogaster. , 2014, 2014, 338-41.		1
25	Inference of RNA Polymerase II Transcription Dynamics from Chromatin Immunoprecipitation Time Course Data. PLoS Computational Biology, 2014, 10, e1003598.	1.5	24
26	Mechanistic Hierarchical Gaussian Processes. Journal of the American Statistical Association, 2014, 109, 894-904.	1.8	9
27	Inference of sigma factor controlled networks by using numerical modeling applied to microarray time series data of the germinating prokaryote. Nucleic Acids Research, 2014, 42, 748-763.	6.5	19
28	Spatial batch optimal design based on self-learning gaussian process models for LPCVD processes. Chinese Journal of Chemical Engineering, 2015, 23, 1958-1964.	1.7	1
29	Gaussian process test for high-throughput sequencing time series: application to experimental evolution. Bioinformatics, 2015, 31, 1762-1770.	1.8	41
30	Identifying latent dynamic components in biological systems. IET Systems Biology, 2015, 9, 193-203.	0.8	5
31	Effect of environmental stress on regulation of gene expression in the yeast. Physica A: Statistical Mechanics and Its Applications, 2015, 430, 224-235.	1.2	0
32	Genome-wide modeling of transcription kinetics reveals patterns of RNA production delays. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13115-13120.	3.3	75
33	Self-active and recursively selective Gaussian process models for nonlinear distributed parameter systems. Chemical Engineering Science, 2015, 123, 125-136.	1.9	7
34	Detecting time periods of differential gene expression using Gaussian processes: an application to endothelial cells exposed to radiotherapy dose fraction. Bioinformatics, 2015, 31, 728-735.	1.8	28
35	Biophysically Motivated Regulatory Network Inference: Progress and Prospects. Human Heredity, 2016, 81, 62-77.	0.4	29
36	Modelling transcriptional regulation with fractional order differential equation using Gaussian Process. , 2016, , .		1
37	Fast machine-learning online optimization of ultra-cold-atom experiments. Scientific Reports, 2016, 6, 25890.	1.6	149

		CITATION REPORT		
#	Article		IF	Citations
38	Inferring the perturbation time from biological time course data. Bioinformatics, 2016,	32, 2956-2964.	1.8	18
39	A Bayesian approach to calibrating high-throughput virtual screening results and applic organic photovoltaic materials. Materials Horizons, 2016, 3, 226-233.	cation to	6.4	70
40	Bayes procedures for adaptive inference in inverse problems for the white noise model Theory and Related Fields, 2016, 164, 771-813.	. Probability	0.9	34
41	Computational inference of gene regulatory networks: Approaches, limitations and op Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 41-52.	portunities.	0.9	96
42	Developmentally regulated long non-coding RNAs in Xenopus tropicalis. Developmenta 426, 401-408.	al Biology, 2017,	0.9	17
43	Temporal clustering analysis of endothelial cell gene expression following exposure to conventional radiotherapy dose fraction using Gaussian process clustering. PLoS ONE, e0204960.	a 2018, 13,	1.1	4
44	Gaussian processes for unconstraining demand. European Journal of Operational Resea	arch, 2019, 275,	3.5	5
45	Switched Latent Force Models for Reverse-Engineering Transcriptional Regulation in Go Data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16,		1.9	4
46	Maximum Likelihood Estimation and Uncertainty Quantification for Gaussian Process A of Deterministic Functions. SIAM-ASA Journal on Uncertainty Quantification, 2020, 8, 9	Approximation 926-958.	1.1	10
47	A New Approximation Approach for Transient Differential Equation Models. Frontiers ir 8, .	n Physics, 2020,	1.0	9
48	Physically-Inspired Gaussian Process Models for Post-Transcriptional Regulation in Dros IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 656-6	sophila. 666.	1.9	5
50	Gaussian Process. , 2011, , 428-439.			3
51	Modeling Gene Regulation Networks Using Ordinary Differential Equations. Methods in Biology, 2012, 802, 185-197.	n Molecular	0.4	41
53	Multiplicative Latent Force Models. Springer Proceedings in Mathematics and Statistic	s, 2019, , 53-61.	0.1	0
55	Integrating Scientific Knowledge with Machine Learning for Engineering and Environm ACM Computing Surveys, 2023, 55, 1-37.	ental Systems.	16.1	106
56	Fractional order transcriptional regulation model for Hela cell BPI gene of cervical canc	er. , 2021, , .		0
61	Quasi-Monte Carlo Approximations for Exponentiated Quadratic Kernel in Latent Force Journal of Modelling and Simulation, 2022, 10, 349-390.	? Models. Open	0.7	1
62	Correlation-based sparse inverse Cholesky factorization for fast Gaussian-process infer Statistics and Computing, 2023, 33, .	ence.	0.8	2

ARTICLE

IF CITATIONS