

Proceedings of the National Academy of Sciences of the Unite 105, 5638-5643

DOI: 10.1073/pnas.0711301105

Citation Report

#	Article	IF	CITATIONS
1	Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO Journal, 2008, 27, 2214-2221.	3.5	445
2	Complex Genetics Control Natural Variation in <i>Arabidopsis thaliana</i> Resistance to <i>Botrytis cinerea</i> . Genetics, 2008, 180, 2237-2250.	1.2	104
3	Activation of MAPK Kinase 9 Induces Ethylene and Camalexin Biosynthesis and Enhances Sensitivity to Salt Stress in Arabidopsis. Journal of Biological Chemistry, 2008, 283, 26996-27006.	1.6	335
4	Mitogen-Activated Protein Kinase Cascades and Ethylene: Signaling, Biosynthesis, or Both?: Figure 1 Plant Physiology, 2009, 149, 1207-1210.	2.3	85
5	The <i>Colletotrichum orbiculare ssd1</i> Mutant Enhances <i>Nicotiana benthamiana</i> Basal Resistance by Activating a Mitogen-Activated Protein Kinase Pathway Â. Plant Cell, 2009, 21, 2517-2526.	3.1	47
6	Mitogen-Activated Protein Kinases 3 and 6 Are Required for Full Priming of Stress Responses in <i>Arabidopsis thaliana</i>	3.1	458
7	OsTGAP1, a bZIP Transcription Factor, Coordinately Regulates the Inductive Production of Diterpenoid Phytoalexins in Rice. Journal of Biological Chemistry, 2009, 284, 26510-26518.	1.6	140
8	Abscisic Acid Negatively Regulates Elicitor-Induced Synthesis of Capsidiol in Wild Tobacco Â. Plant Physiology, 2009, 150, 1556-1566.	2.3	37
9	MAP KINASE PHOSPHATASE1 and PROTEIN TYROSINE PHOSPHATASE1 Are Repressors of Salicylic Acid Synthesis and SNC1-Mediated Responses in <i>Arabidopsis</i>	3.1	216
10	MAPK cascade signalling networks in plant defence. Current Opinion in Plant Biology, 2009, 12, 421-426.	3.5	612
11	Gene regulation by MAP kinase cascades. Current Opinion in Plant Biology, 2009, 12, 615-621.	3.5	114
13	A mitogen-activated protein kinase gene, AhMPK3 of peanut: molecular cloning, genomic organization, and heterologous expression conferring resistance against Spodoptera litura in tobacco. Molecular Genetics and Genomics, 2009, 282, 65-81.	1.0	41
14	Inducible expression of a Nep1-like protein serves as a model trigger system of camalexin biosynthesis. Phytochemistry, 2009, 70, 185-189.	1.4	23
15	A cell wall extract from the endophytic fungus <i>Piriformospora indica</i> promotes growth of Arabidopsis seedlings and induces intracellular calcium elevation in roots. Plant Journal, 2009, 59, 193-206.	2.8	155
16	A Biotic or Abiotic Stress?., 2009, , 103-122.		1
17	The Multifunctional Enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) Converts Cysteine-Indole-3-Acetonitrile to Camalexin in the Indole-3-Acetonitrile Metabolic Network of <i>Arabidopsis thaliana</i>	3.1	221
18	<i>Xanthomonas campestris</i> Overcomes Arabidopsis Stomatal Innate Immunity through a DSF Cell-to-Cell Signal-Regulated Virulence Factor. Plant Physiology, 2009, 149, 1017-1027.	2.3	155
19	Overexpression of <i>Brassica napus MPK4</i> Enhances Resistance to <i>Sclerotinia sclerotiorum</i> in Oilseed Rape. Molecular Plant-Microbe Interactions, 2009, 22, 235-244.	1.4	135

#	ARTICLE	IF	Citations
20	Nitric Oxide as a Partner of Reactive Oxygen Species Participates in Disease Resistance to Necrotrophic Pathogen <i>Botrytis cinerea</i> in <i>Nicotiana benthamiana</i> Interactions, 2009, 22, 619-629.	1.4	173
21	Expression pattern and core region analysis of AtMPK3 promoter in response to environmental stresses. Science China Life Sciences, 2010, 53, 1315-1321.	2.3	10
22	Multifunctional genes: the cross-talk among the regulation networks of abiotic stress responses. Biologia Plantarum, 2010, 54, 213-223.	1.9	31
23	A rice fungal MAMPâ€responsive MAPK cascade regulates metabolic flow to antimicrobial metabolite synthesis. Plant Journal, 2010, 63, 599-612.	2.8	208
24	MAPK phosphatase MKP2 mediates disease responses in Arabidopsis and functionally interacts with MPK3 and MPK6. Plant Journal, 2010, 63, 1017-1030.	2.8	117
25	Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis. Plant Journal, 2010, 64, no-no.	2.8	211
26	Senescence and death., 0,, 229-242.		0
27	Hydrogen Peroxide–Mediated Activation of MAP Kinase 6 Modulates Nitric Oxide Biosynthesis and Signal Transduction in∢i>Arabidopsis∢/i>Â. Plant Cell, 2010, 22, 2981-2998.	3.1	280
28	A regulon conserved in monocot and dicot plants defines a functional module in antifungal plant immunity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21896-21901.	3.3	110
29	MAMP-responsive MAPK cascades regulate phytoalexin biosynthesis. Plant Signaling and Behavior, 2010, 5, 1653-1656.	1.2	22
30	Necrotroph Attacks on Plants: Wanton Destruction or Covert Extortion?. The Arabidopsis Book, 2010, 8, e0136.	0.5	220
31	Plant Immunity Triggered by Microbial Molecular Signatures. Molecular Plant, 2010, 3, 783-793.	3.9	298
33	Phosphorylation of the <i>Nicotiana benthamiana</i> WRKY8 Transcription Factor by MAPK Functions in the Defense Response Â. Plant Cell, 2011, 23, 1153-1170.	3.1	218
34	Transcription Dynamics in Plant Immunity. Plant Cell, 2011, 23, 2809-2820.	3.1	221
35	Induction of Phytoalexin Biosynthesis: WRKY33 Is a Target of MAPK Signaling. Plant Cell, 2011, 23, 1190-1190.	3.1	17
36	Molecular aspects of defence priming. Trends in Plant Science, 2011, 16, 524-531.	4.3	677
37	Alkamides Activate Jasmonic Acid Biosynthesis and Signaling Pathways and Confer Resistance to Botrytis cinerea in Arabidopsis thaliana. PLoS ONE, 2011, 6, e27251.	1.1	55
38	Crosstalk between abiotic ultravioletâ€B stress and biotic (flg22) stress signalling in <i>Arabidopsis</i> prevents flavonol accumulation in favor of pathogen defence compound production. Plant, Cell and Environment, 2011, 34, 1849-1864.	2.8	121

#	Article	IF	CITATIONS
39	Arabidopsis MAP Kinase Phosphatase 1 (AtMKP1) negatively regulates MPK6â€mediated PAMP responses and resistance against bacteria. Plant Journal, 2011, 67, 258-268.	2.8	116
40	Arabidopsis MAP kinase phosphatase $\hat{a} \in f1$ and its target MAP kinases $\hat{a} \in f3$ and 6 antagonistically determine UV $\hat{a} \in f3$ stress tolerance, independent of the UVR8 photoreceptor pathway. Plant Journal, 2011, 68, 727-737.	B 2.8	136
41	MPK6, sphinganine and the <i>LCB2a</i> gene from serine palmitoyltransferase are required in the signaling pathway that mediates cell death induced by long chain bases in <i>Arabidopsis</i> New Phytologist, 2011, 191, 943-957.	3.5	111
42	The <i>Arabidopsis</i> protein kinase Ptoâ€interacting 1â€4 is a common target of the oxidative signalâ€inducible 1 and mitogenâ€activated protein kinases. FEBS Journal, 2011, 278, 1126-1136.	2.2	50
43	Protein kinase signaling networks in plant innate immunity. Current Opinion in Plant Biology, 2011, 14, 519-529.	3.5	377
44	Overexpression of the mitogen-activated protein kinase gene OsMAPK33 enhances sensitivity to salt stress in rice (Oryza sativa L.). Journal of Biosciences, 2011, 36, 139-151.	0.5	94
45	Glutathione-Indole-3-Acetonitrile Is Required for Camalexin Biosynthesis in <i>Arabidopsis thaliana</i> Â Â. Plant Cell, 2011, 23, 364-380.	3.1	109
46	Phosphorylation by MPK6. Plant Signaling and Behavior, 2011, 6, 889-891.	1.2	20
47	Soybean Homologs of MPK4 Negatively Regulate Defense Responses and Positively Regulate Growth and Development \hat{A} \hat{A} . Plant Physiology, 2011, 157, 1363-1378.	2.3	130
48	Cytokinins Mediate Resistance against <i>Pseudomonas syringae</i> in Tobacco through Increased Antimicrobial Phytoalexin Synthesis Independent of Salicylic Acid Signaling Â. Plant Physiology, 2011, 157, 815-830.	2.3	178
49	Arabidopsis MPK3 and MPK6 Play Different Roles in Basal and Oligogalacturonide- or Flagellin-Induced Resistance against <i>Botrytis cinerea</i> Â Â. Plant Physiology, 2011, 157, 804-814.	2.3	239
50	Stress-Responsive Mitogen-Activated Protein Kinases Interact with the EAR Motif of a Poplar Zinc Finger Protein and Mediate Its Degradation through the 26S Proteasome Â. Plant Physiology, 2011, 157, 1379-1393.	2.3	29
51	Phosphorylation of a WRKY Transcription Factor by Two Pathogen-Responsive MAPKs Drives Phytoalexin Biosynthesis in $\langle i \rangle$ Arabidopsis $\langle i \rangle$ Â Â. Plant Cell, 2011, 23, 1639-1653.	3.1	674
52	Towards Establishment of a Rice Stress Response Interactome. PLoS Genetics, 2011, 7, e1002020.	1.5	199
53	MAP Kinase Cascades in Arabidopsis Innate Immunity. Frontiers in Plant Science, 2012, 3, 169.	1.7	171
54	Dual-Level Regulation of ACC Synthase Activity by MPK3/MPK6 Cascade and Its Downstream WRKY Transcription Factor during Ethylene Induction in Arabidopsis. PLoS Genetics, 2012, 8, e1002767.	1.5	380
55	Cotton GhMKK5 affects disease resistance, induces HR-like cell death, and reduces the tolerance to salt and drought stress in transgenic Nicotiana benthamiana. Journal of Experimental Botany, 2012, 63, 3935-3951.	2.4	115
56	MPK11â€"a fourth elicitor-responsive mitogen-activated protein kinase in Arabidopsis thaliana. Plant Signaling and Behavior, 2012, 7, 1203-1205.	1.2	32

#	Article	IF	Citations
57	Indole-3-Acetaldoxime-Derived Compounds Restrict Root Colonization in the Beneficial Interaction Between <i>Arabidopsis</i> Roots and the Endophyte <i>Piriformospora indica</i> Molecular Plant-Microbe Interactions, 2012, 25, 1186-1197.	1.4	46
58	Modulation of Protein Phosphorylation, N-Glycosylation and Lys-Acetylation in Grape (Vitis vinifera) Mesocarp and Exocarp Owing to Lobesia botrana Infection. Molecular and Cellular Proteomics, 2012, 11, 945-956.	2.5	118
59	Balancing defense and growthâ€"Analyses of the beneficial symbiosis between Piriformospora indica and Arabidopsis thaliana. Symbiosis, 2012, 58, 17-28.	1.2	11
60	Mitogen-Activated Protein Kinase Signaling in Plant-Interacting Fungi: Distinct Messages from Conserved Messengers. Plant Cell, 2012, 24, 1327-1351.	3.1	294
61	Phytoalexin transgenics in crop protection—Fairy tale with a happy end?. Plant Science, 2012, 195, 54-70.	1.7	79
62	Phytoalexins in defense against pathogens. Trends in Plant Science, 2012, 17, 73-90.	4.3	882
63	Arabidopsis WRKY33 Is a Key Transcriptional Regulator of Hormonal and Metabolic Responses toward <i>Botrytis cinerea</i> Infection Â. Plant Physiology, 2012, 159, 266-285.	2.3	487
64	Abiotic Stress Responses in Plants: Metabolism to Productivity. , 2012, , 41-61.		20
65	Nitric Oxide–Mediated Stress Imprint in Potato as an Effect of Exposure to a Priming Agent. Molecular Plant-Microbe Interactions, 2012, 25, 1469-1477.	1.4	33
66	Identification and Characterization of <i>ANACO42</i> , a Transcription Factor Family Gene Involved in the Regulation of Camalexin Biosynthesis in <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2012, 25, 684-696.	1.4	104
67	CrMPK3, a mitogen activated protein kinase from Catharanthus roseusand its possible role in stress induced biosynthesis of monoterpenoid indole alkaloids. BMC Plant Biology, 2012, 12, 134.	1.6	80
68	The Role of Radical Burst in Plant Defense Responses to Necrotrophic Fungi. Journal of Integrative Agriculture, 2012, 11, 1305-1312.	1.7	6
69	Different roles of glycine-rich RNA-binding protein7 in plant defense against Pectobacterium carotovorum, Botrytis cinerea, and tobacco mosaic viruses. Plant Physiology and Biochemistry, 2012, 60, 46-52.	2.8	48
70	Transcriptome Profiling of Citrus Fruit Response to Huanglongbing Disease. PLoS ONE, 2012, 7, e38039.	1.1	158
71	Activation of the <i>Arabidopsis thaliana</i> Mitogen-Activated Protein Kinase MPK11 by the Flagellin-Derived Elicitor Peptide, flg22. Molecular Plant-Microbe Interactions, 2012, 25, 471-480.	1.4	123
72	Plant Immunity to Necrotrophs. Annual Review of Phytopathology, 2012, 50, 267-294.	3.5	479
73	Plant Defense Compounds: Systems Approaches to Metabolic Analysis. Annual Review of Phytopathology, 2012, 50, 155-173.	3.5	46
74	Calmodulin-binding protein CBP60g is a positive regulator of both disease resistance and drought tolerance in Arabidopsis. Plant Cell Reports, 2012, 31, 1269-1281.	2.8	117

#	Article	IF	CITATIONS
75	<i>Arabidopsis</i> Acetylâ€Amido Synthetase GH3.5 Involvement in Camalexin Biosynthesis through Conjugation of Indoleâ€3â€Carboxylic Acid and Cysteine and Upregulation of Camalexin Biosynthesis Genes ^F . Journal of Integrative Plant Biology, 2012, 54, 471-485.	4.1	29
76	Hrip1, a novel protein elicitor from necrotrophic fungus, <i>Alternaria tenuissima</i>), elicits cell death, expression of defenceâ€related genes and systemic acquired resistance in tobacco. Plant, Cell and Environment, 2012, 35, 2104-2120.	2.8	67
77	Expression analysis of MAP2K9 and MAPK6 during pathogenesis of Alternaria blight in Arabidopsis thaliana ecotype Columbia. Molecular Biology Reports, 2012, 39, 4439-4444.	1.0	13
78	Genome-Wide Analysis of Mitogen-Activated Protein Kinase Gene Family in Maize. Plant Molecular Biology Reporter, 2013, 31, 1446-1460.	1.0	74
79	Genomics and Breeding for Climate-Resilient Crops. , 2013, , .		9
80	Methods for Analysis of Disease Resistance and the Defense Response in Arabidopsis. Methods in Molecular Biology, 2013, 1043, 55-66.	0.4	3
81	Identification and analysis of MKK and MPK gene families in canola (Brassica napusL.). BMC Genomics, 2013, 14, 392.	1.2	75
82	Identification of Traits, Genes, and Crops of the Future. , 2013, , 27-177.		1
83	Transcription Factors in Alkaloid Biosynthesis. International Review of Cell and Molecular Biology, 2013, 305, 339-382.	1.6	39
84	Modulation of Phytoalexin Biosynthesis in Engineered Plants for Disease Resistance. International Journal of Molecular Sciences, 2013, 14, 14136-14170.	1.8	139
85	Genome-wide identification and expression analysis of MAPK and MAPKK gene family in Malus domestica. Gene, 2013, 531, 377-387.	1.0	92
86	Cotton <i>Gh<scp>MPK</scp>6a</i> negatively regulates osmotic tolerance and bacterial infection in transgenic <i>NicotianaÂbenthamiana</i> , and plays a pivotal role in development. FEBS Journal, 2013, 280, 5128-5144.	2.2	43
87	Biosynthesis of Phytoalexins and Regulatory Mechanisms of It in Rice. Bioscience, Biotechnology and Biochemistry, 2013, 77, 1141-1148.	0.6	66
88	Improvement of stress tolerance in plants by genetic manipulation of mitogen-activated protein kinases. Biotechnology Advances, 2013, 31, 118-128.	6.0	124
89	Putrescine regulating by stress-responsive MAPK cascade contributes to bacterial pathogen defense in Arabidopsis. Biochemical and Biophysical Research Communications, 2013, 437, 502-508.	1.0	36
90	Protein–Protein Interactions in the Regulation of WRKY Transcription Factors. Molecular Plant, 2013, 6, 287-300.	3.9	276
91	Differential timing of defenseâ€related responses induced by ceratoâ€platanin and ceratoâ€populin, two nonâ€catalytic fungal elicitors. Physiologia Plantarum, 2013, 149, 408-421.	2.6	23
92	Tobacco MAP Kinase Phosphatase (NtMKP1) Negatively Regulates Wound Response and Induced Resistance Against Necrotrophic Pathogens and Lepidopteran Herbivores. Molecular Plant-Microbe Interactions, 2013, 26, 668-675.	1.4	31

#	ARTICLE	IF	Citations
93	⟨i>Nicotiana attenuata ⟨/i>⟨scp>MPK⟨/scp>4 suppresses a novel jasmonic acid (⟨scp>JA⟨/scp>) signalingâ€independent defense pathway against the specialist insect ⟨i>Manduca sexta⟨/i>, but is not required for the resistance to the generalist ⟨i>Spodoptera littoralis⟨/i>. New Phytologist, 2013, 199, 787-799.	3.5	51
94	Two concise total syntheses of the wasabi phytoalexin methyl 1-methoxyindole-3-carboxylate. Tetrahedron Letters, 2013, 54, 3124-3126.	0.7	9
95	MAPK Cascades in Plant Disease Resistance Signaling. Annual Review of Phytopathology, 2013, 51, 245-266.	3.5	1,009
96	Characterization of the defense transcriptome responsive to Fusarium oxysporum-infection in Arabidopsis using RNA-seq. Gene, 2013, 512, 259-266.	1.0	120
97	Comprehensive Protein-Based Artificial MicroRNA Screens for Effective Gene Silencing in Plants. Plant Cell, 2013, 25, 1507-1522.	3.1	110
98	Reprogramming of plants during systemic acquired resistance. Frontiers in Plant Science, 2013, 4, 252.	1.7	100
99	Dual Regulation of Gene Expression Mediated by Extended MAPK Activation and Salicylic Acid Contributes to Robust Innate Immunity in Arabidopsis thaliana. PLoS Genetics, 2013, 9, e1004015.	1.5	208
100	A MAPK Cascade Downstream of ERECTA Receptor-Like Protein Kinase Regulates <i>Arabidopsis</i> Inflorescence Architecture by Promoting Localized Cell Proliferation Â. Plant Cell, 2013, 24, 4948-4960.	3.1	191
101	Reply: Complexity in Camalexin Biosynthesis. Plant Cell, 2013, 25, 367-370.	3.1	4
102	Evolutionary history of mitogen-activated protein kinase (MAPK) genes in <i>Lotus</i> , <i>Medicago</i> , and <i>Phaseolus</i> . Plant Signaling and Behavior, 2013, 8, e27189.	1.2	17
103	Phosphorylation of an ERF Transcription Factor by <i>Arabidopsis</i> MPK3/MPK6 Regulates Plant Defense Gene Induction and Fungal Resistance A. Plant Cell, 2013, 25, 1126-1142.	3.1	362
104	Identification, Nomenclature, and Evolutionary Relationships of Mitogen-Activated Protein Kinase (MAPK) Genes in Soybean. Evolutionary Bioinformatics, 2013, 9, EBO.S12526.	0.6	48
105	Cell Death in Plant Immune Response to Necrotrophs. Journal of Plant Biochemistry & Physiology, 2013, 1, .	0.5	12
106	Pattern-Triggered Immunity Suppresses Programmed Cell Death Triggered by Fumonisin B1. PLoS ONE, 2013, 8, e60769.	1.1	30
107	Cerato-Platanin Induces Resistance in Arabidopsis Leaves through Stomatal Perception, Overexpression of Salicylic Acid- and Ethylene-Signalling Genes and Camalexin Biosynthesis. PLoS ONE, 2014, 9, e100959.	1.1	41
108	bZIPs and WRKYs: two large transcription factor families executing two different functional strategies. Frontiers in Plant Science, 2014, 5, 169.	1.7	163
109	Deciphering the Role of Phytoalexins in Plant-Microorganism Interactions and Human Health. Molecules, 2014, 19, 18033-18056.	1.7	170
110	The mitogen-activated protein kinase cascade MKK1–MPK4 mediates salt signaling in rice. Plant Science, 2014, 227, 181-189.	1.7	70

#	Article	IF	CITATIONS
111	Nucleoporin 75 Is Involved in the Ethylene-Mediated Production of Phytoalexin for the Resistance of <i>Nicotiana benthamiana</i> to <i>Phytophthora infestans</i> Interactions, 2014, 27, 1318-1330.	1.4	27
112	EDR1 Physically Interacts with MKK4/MKK5 and Negatively Regulates a MAP Kinase Cascade to Modulate Plant Innate Immunity. PLoS Genetics, 2014, 10, e1004389.	1.5	136
113	Enhanced Plant Immunity Using Trichoderma. , 2014, , 495-504.		14
114	Phosphorylation of a WRKY Transcription Factor by MAPKs Is Required for Pollen Development and Function in Arabidopsis. PLoS Genetics, 2014, 10, e1004384.	1.5	149
115	The Arabidopsis NUCLEUS- AND PHRAGMOPLAST-LOCALIZED KINASE1-Related Protein Kinases Are Required for Elicitor-Induced Oxidative Burst and Immunity. Plant Physiology, 2014, 165, 1188-1202.	2.3	57
116	Activation of <scp>MKK</scp> 9â€ <scp>MPK</scp> 3/ <scp>MPK</scp> 6 enhances phosphate acquisition in <i>Arabidopsis thaliana</i> . New Phytologist, 2014, 203, 1146-1160.	3.5	53
117	Reactive oxygen species in signalling the transcriptional activation of <scp><i>WIPK</i></scp> expression in tobacco. Plant, Cell and Environment, 2014, 37, 1614-1625.	2.8	10
118	Polyphenols and the Human Brain: Plant "Secondary Metabolite―Ecologic Roles and Endogenous Signaling Functions Drive Benefits. Advances in Nutrition, 2014, 5, 515-533.	2.9	91
119	A chemical genetic approach demonstrates that <scp>MPK</scp> 3/ <scp>MPK</scp> 6 activation and <scp>NADPH</scp> oxidaseâ€mediated oxidative burst are two independent signaling events in plant immunity. Plant Journal, 2014, 77, 222-234.	2.8	166
120	GbMPK3, a mitogen-activated protein kinase from cotton, enhances drought and oxidative stress tolerance in tobacco. Plant Cell, Tissue and Organ Culture, 2014, 116, 153-162.	1.2	43
122	Constitutive camalexin production and environmental stress response variation in Arabidopsis populations from the Iberian Peninsula. Plant Science, 2014, 225, 77-85.	1.7	18
123	Overexpression of cotton <i><scp>GhMKK4</scp></i> enhances disease susceptibility and affects abscisic acid, gibberellin and hydrogen peroxide signalling in transgenic <i><scp>N</scp>icotiana benthamiana</i> Molecular Plant Pathology, 2014, 15, 94-108.	2.0	39
124	Tomato SIMKK2 and SIMKK4 contribute to disease resistance against Botrytis cinerea. BMC Plant Biology, 2014, 14, 166.	1.6	54
125	Self-regulation of phytoalexin production: a non-biosynthetic enzyme controls alkaloid biosynthesis in cultured cells of Eschscholzia californica. Plant Cell, Tissue and Organ Culture, 2014, 119, 661-676.	1.2	1
126	Positive and Negative Roles for Soybean MPK6 in Regulating Defense Responses. Molecular Plant-Microbe Interactions, 2014, 27, 824-834.	1.4	47
127	Differential expression profiles of poplar MAP kinase kinases in response to abiotic stresses and plant hormones, and overexpression of PtMKK4 improves the drought tolerance of poplar. Gene, 2014, 545, 141-148.	1.0	43
128	Elucidating the molecular responses of apple rootstock resistant to ARD pathogens: challenges and opportunities for development of genomics-assisted breeding tools. Horticulture Research, 2014, 1, 14043.	2.9	57
129	Functional analysis of Arabidopsis immune-related MAPKs uncovers a role for MPK3 as negative regulator of inducible defences. Genome Biology, 2014, 15, R87.	13.9	137

#	ARTICLE	IF	CITATIONS
130	Mitogen-Activated Protein Kinase 6 and Ethylene and Auxin Signaling Pathways Are Involved in <i>Arabidopsis</i> Root-System Architecture Alterations by <i>Trichoderma atroviride</i> Molecular Plant-Microbe Interactions, 2015, 28, 701-710.	1.4	135
131	Characterization, expression patterns and functional analysis of the MAPK and MAPKK genes in watermelon (Citrullus lanatus). BMC Plant Biology, 2015, 15, 298.	1.6	35
132	Modifications of sphingolipid content affect tolerance to hemibiotrophic and necrotrophic pathogens by modulating plant defense responses in Arabidopsis. Plant Physiology, 2015, 169, pp.01126.2015.	2.3	61
133	Genome-wide analysis of MAPKKKs shows expansion and evolution of a new MEKK class involved in solanaceous species sexual reproduction. BMC Genomics, 2015, 16, 1037.	1.2	9
134	Ethylene production in <i><scp>B</scp>otrytis cinereaâ€</i> and oligogalacturonideâ€induced immunity requires calciumâ€dependent protein kinases. Plant Journal, 2015, 84, 1073-1086.	2.8	80
135	Cotton polyamine oxidase is required for spermine and camalexin signalling in the defence response to <i>Verticillium dahliae</i>	2.8	116
136	The role of MYB34, MYB51 and MYB122 in the regulation of camalexin biosynthesis in Arabidopsis thaliana. Frontiers in Plant Science, 2015, 6, 654.	1.7	69
137	Cellular reprogramming through mitogen-activated protein kinases. Frontiers in Plant Science, 2015, 6, 940.	1.7	45
138	A geographic cline in leaf salicylic acid with increasing elevation in <i>Arabidopsis thaliana</i> Signaling and Behavior, 2015, 10, e992741.	1.2	9
139	Comparative phospho-proteomics analysis of salt-responsive phosphoproteins regulated by the MKK9-MPK6 cascade in Arabidopsis. Plant Science, 2015, 241, 138-150.	1.7	33
140	Proteome response of wild wheat relative Kengyilia thoroldiana to drought stress. Canadian Journal of Plant Science, 2015, 95, 237-249.	0.3	6
141	Transcriptional networks in plant immunity. New Phytologist, 2015, 206, 932-947.	3.5	401
142	Chitosan Controls Postharvest Decay on Cherry Tomato Fruit Possibly via the Mitogen-Activated Protein Kinase Signaling Pathway. Journal of Agricultural and Food Chemistry, 2015, 63, 7399-7404.	2.4	58
143	Priming for Enhanced Defense. Annual Review of Phytopathology, 2015, 53, 97-119.	3.5	733
144	Comparative transcriptome analysis reveals defense-related genes and pathways against downy mildew in Vitis amurensis grapevine. Plant Physiology and Biochemistry, 2015, 95, 1-14.	2.8	66
145	PtrWRKY73, a salicylic acid-inducible poplar WRKY transcription factor, is involved in disease resistance in Arabidopsis thaliana. Plant Cell Reports, 2015, 34, 831-841.	2.8	86
146	Expression analysis of MAP K 4 and MAP K 6 during pathogenesis of Alternaria blight in susceptible and tolerant genotypes of Brassica juncea. European Journal of Plant Pathology, 2015, 142, 633-643.	0.8	4
147	Phenylpropanoid metabolism, hormone biosynthesis and signal transduction-related genes play crucial roles in the resistance of Paulownia fortunei to paulownia witches' broom phytoplasma infection. Genes and Genomics, 2015, 37, 913-929.	0.5	28

#	ARTICLE	IF	CITATIONS
148	Multilayered Regulation of Ethylene Induction Plays a Positive Role in Arabidopsis Resistance against <i>Pseudomonas syringae</i> . Plant Physiology, 2015, 169, 299-312.	2.3	87
149	The rice transcription factor WRKY53 suppresses herbivore-induced defenses by acting as a negative feedback modulator of map kinase activity. Plant Physiology, 2015, 169, pp.01090.2015.	2.3	75
150	Molecular–genetic aspects of plant immunity to phytopathogenic bacteria and fungi. Russian Journal of Plant Physiology, 2015, 62, 571-585.	0.5	19
151	Regulation of Specialized Metabolism by WRKY Transcription Factors. Plant Physiology, 2015, 167, 295-306.	2.3	243
152	A cell typeâ€specific view on the translation of <scp>mRNA</scp> s from <scp>ROS</scp> â€responsive genes upon paraquat treatment of <scp><i>A</i></scp> <i>rabidopsis thaliana</i> leaves. Plant, Cell and Environment, 2015, 38, 349-363.	2.8	34
153	Quaternized chitosan oligomers as novel elicitors inducing protection against B. cinerea in Arabidopsis. International Journal of Biological Macromolecules, 2015, 72, 364-369.	3.6	20
154	Modes of MAPK substrate recognition and control. Trends in Plant Science, 2015, 20, 49-55.	4.3	92
155	Signalling Crosstalk of Plant Defence Responses to Xyleminvading Pathogens. , 0, , .		1
156	Transcriptome Profiling of Resistance to Fusarium oxysporum f. sp. conglutinans in Cabbage (Brassica) Tj ETQq0	0 0. fgBT /	Overlock 10
157	Genome-Wide Identification of Mitogen-Activated Protein Kinase Gene Family across Fungal Lineage Shows Presence of Novel and Diverse Activation Loop Motifs. PLoS ONE, 2016, 11, e0149861.	1.1	12
158	Expression of the inactive ZmMEK1 induces salicylic acid accumulation and salicylic acidâ€dependent leaf senescence. Journal of Integrative Plant Biology, 2016, 58, 724-736.	4.1	33
159	Molecular characterization of biotic and abiotic stress-responsive MAP kinase genes, IbMPK3 and IbMPK6, in sweetpotato. Plant Physiology and Biochemistry, 2016, 108, 37-48.	2.8	31
160	<i>OsMPK6</i> plays a critical role in cell differentiation during early embryogenesis in <i>Oryza sativa</i> . Journal of Experimental Botany, 2016, 67, 2425-2437.	2.4	37
161	Plant Defense Signaling and Responses Against Necrotrophic Fungal Pathogens. Journal of Plant Growth Regulation, 2016, 35, 1159-1174.	2.8	93
162	The Full-Size ABCG Transporters Nb-ABCG1 and Nb-ABCG2 Function in Pre- and Postinvasion Defense against <i>Phytophthora infestans</i> in <i>Nicotiana benthamiana</i> Plant Cell, 2016, 28, 1163-1181.	3.1	66
163	Nucleoporin-regulated MAP kinase signaling in immunity to a necrotrophic fungal pathogen. Plant Physiology, 2016, 172, pp.00832.2016.	2.3	31
164	CaLecRK-S.5, a pepper L-type lectin receptor kinase gene, confers broad-spectrum resistance by activating priming. Journal of Experimental Botany, 2016, 67, 5725-5741.	2.4	29
165	Plastid-nucleus communication involves calcium-modulated MAPK signalling. Nature Communications, 2016, 7, 12173.	5.8	70

#	Article	IF	CITATIONS
166	The WRKY57 Transcription Factor Affects the Expression of Jasmonate ZIM-Domain Genes Transcriptionally to Compromise <i>Botrytis cinerea</i> Resistance. Plant Physiology, 2016, 171, 2771-2782.	2.3	110
167	An Innate Immunity Pathway in the Moss <i>Physcomitrella patens</i> Â. Plant Cell, 2016, 28, 1328-1342.	3.1	73
168	Pathogen-Responsive MPK3 and MPK6 Reprogram the Biosynthesis of Indole Glucosinolates and Their Derivatives in Arabidopsis Immunity. Plant Cell, 2016, 28, 1144-1162.	3.1	135
169	Curcuma longa Mitogen-Activated Protein Kinase 6 (ClMPK6) Stimulates the Defense Response Pathway and Enhances the Resistance to Necrotrophic Fungal Infection. Plant Molecular Biology Reporter, 2016, 34, 886-898.	1.0	8
170	Regulation of Pathogen-Triggered Tryptophan Metabolism in Arabidopsis thaliana by MYB Transcription Factors and Indole Glucosinolate Conversion Products. Molecular Plant, 2016, 9, 682-695.	3.9	149
171	Protein–protein interactions in plant mitogen-activated protein kinase cascades. Journal of Experimental Botany, 2016, 67, 607-618.	2.4	35
172	Role of Plant Immune Signals and Signaling Systems in Plant Pathogenesis. Signaling and Communication in Plants, 2016, , 27-90.	0.5	1
173	Plant resistance against the parasitic nematode <i>Heterodera schachtii</i> is mediated by MPK3 and MPK6 kinases, which are controlled by the MAPK phosphatase AP2C1 in Arabidopsis. Journal of Experimental Botany, 2016, 67, 107-118.	2.4	53
174	Overview of Plant Defence Systems: Lessons from Arabidopsis-Botrytis cinerea Systems Biology. , 2016, , 335-360.		3
175	The Vacuolar Proton-Cation Exchanger EcNHX1 Generates pH Signals for the Expression of Secondary Metabolism in <i>Eschscholzia californica</i>). Plant Physiology, 2016, 170, 1135-1148.	2.3	2
176	Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems. , 2016, , .		167
177	Functional analysis of NtMPK2 uncovers its positive role in response to Pseudomonas syringae pv. tomato DC3000 in tobacco. Plant Molecular Biology, 2016, 90, 19-31.	2.0	6
178	Regulation of Stomatal Immunity by Interdependent Functions of a Pathogen-Responsive MPK3/MPK6 Cascade and Abscisic Acid. Plant Cell, 2017, 29, 526-542.	3.1	146
179	Constitutively Active Arabidopsis MAP Kinase 3 Triggers Defense Responses Involving Salicylic Acid and SUMM2 Resistance Protein. Plant Physiology, 2017, 174, 1238-1249.	2.3	57
180	Interface between fungi and green algae in lichen associations. Botany, 2017, 95, 1005-1014.	0.5	15
182	Molecular Engineering of Phytoalexins in Plants: Benefits and Limitations for Food and Agriculture. Journal of Agricultural and Food Chemistry, 2017, 65, 2643-2644.	2.4	20
183	Can hormesis of plant-released phytotoxins be used to boost and sustain crop production?. Crop Protection, 2017, 93, 69-76.	1.0	44
184	Current Understandings of Plant Nonhost Resistance. Molecular Plant-Microbe Interactions, 2017, 30, 5-15.	1.4	122

#	Article	IF	CITATIONS
185	<i><i><scp>MtMAPKK4</scp></i> is an essential gene for growth and reproduction of <i>Medicago truncatula</i>. Physiologia Plantarum, 2017, 159, 492-503.</i>	2.6	11
186	Mechanisms and strategies of plant defense against <i>Botrytis cinerea</i> . Critical Reviews in Biotechnology, 2017, 37, 262-274.	5.1	160
187	The <scp>NLR</scp> protein <scp>SUMM</scp> 2 senses the disruption of an immune signaling <scp>MAP</scp> kinase cascade via <scp>CRCK</scp> 3. EMBO Reports, 2017, 18, 292-302.	2.0	89
188	Phosphorylation of Arabidopsis MAP Kinase Phosphatase 1 (MKP1) Is Required for PAMP Responses and Resistance against Bacteria. Plant Physiology, 2017, 175, 1839-1852.	2.3	31
189	Plastic Transcriptomes Stabilize Immunity to Pathogen Diversity: The Jasmonic Acid and Salicylic Acid Networks within the Arabidopsis/ <i>Botrytis</i> Pathosystem. Plant Cell, 2017, 29, 2727-2752.	3.1	84
190	Wounding Triggers Callus Formation via Dynamic Hormonal and Transcriptional Changes. Plant Physiology, 2017, 175, 1158-1174.	2.3	214
191	Comparison of transcriptome profiles by Fusarium oxysporum inoculation between Fusarium yellows resistant and susceptible lines in Brassica rapa L Plant Cell Reports, 2017, 36, 1841-1854.	2.8	20
192	Grapevine immune signaling network in response to drought stress as revealed by transcriptomic analysis. Plant Physiology and Biochemistry, 2017, 121, 187-195.	2.8	56
193	Pathogen exploitation of an abscisic acid- and jasmonate-inducible MAPK phosphatase and its interception by <i>Arabidopsis</i> immunity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7456-7461.	3.3	110
194	Novel allelic variants in <i>ACD6</i> cause hybrid necrosis in local collection of <i>Arabidopsis thaliana</i> New Phytologist, 2017, 213, 900-915.	3.5	40
195	Induced Systemic Resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and NPR1-Dependent Signaling Pathway and Activates PAMP-Triggered Immunity in Arabidopsis. Frontiers in Plant Science, 2017, 8, 238.	1.7	164
196	Microarray analysis of Arabidopsis WRKY33 mutants in response to the necrotrophic fungus Botrytis cinerea. PLoS ONE, 2017, 12, e0172343.	1.1	38
197	Elucidation of the molecular responses of a cucumber segment substitution line carrying Pm5.1 and its recurrent parent triggered by powdery mildew by comparative transcriptome profiling. BMC Genomics, 2017, 18, 21.	1.2	47
198	The Role of MPK6 as Mediator of Ethylene/Jasmonic Acid Signaling in Serendipita indica-Colonized Arabidopsis Roots. Plant Molecular Biology Reporter, 2018, 36, 284-294.	1.0	9
199	Molecular Aspects of Plant-Pathogen Interaction. , 2018, , .		28
200	YODA MAP3K kinase regulates plant immune responses conferring broadâ€spectrum disease resistance. New Phytologist, 2018, 218, 661-680.	3.5	54
201	Antimicrobial Compounds and Their Role in Plant Defense. , 2018, , 283-307.		20
202	Recent Advancement on Map Kinase Cascade in Biotic Stress. , 2018, , 139-158.		6

#	Article	IF	CITATIONS
203	Plant cell surface receptor-mediated signaling $\hat{a} \in $ a common theme amid diversity. Journal of Cell Science, 2018, 131, .	1.2	134
204	Arabidopsis MKK10-MPK6 mediates red-light-regulated opening of seedling cotyledons through phosphorylation of PIF3. Journal of Experimental Botany, 2018, 69, 423-439.	2.4	31
205	Constant vigilance: plant functions guarded by resistance proteins. Plant Journal, 2018, 93, 637-650.	2.8	28
206	Convergent and Divergent Signaling in PAMP-Triggered Immunity and Effector-Triggered Immunity. Molecular Plant-Microbe Interactions, 2018, 31, 403-409.	1.4	246
207	Regulation of pollen lipid body biogenesis by MAP kinases and downstream WRKY transcription factors in Arabidopsis. PLoS Genetics, 2018, 14, e1007880.	1.5	38
208	Molecular recognition of fungal pathogens and activation of plant immune response. Indian Phytopathology, 2018, 71, 471-483.	0.7	2
209	The Trihelix transcription factor GT2-like 1 (GTL1) promotes salicylic acid metabolism, and regulates bacterial-triggered immunity. PLoS Genetics, 2018, 14, e1007708.	1.5	41
210	Molecular Characterization of WRKY Transcription Factors That Act as Negative Regulators of O-Methylated Catechin Biosynthesis in Tea Plants (<i>Camellia sinensis</i> L.). Journal of Agricultural and Food Chemistry, 2018, 66, 11234-11243.	2.4	25
211	MKK6 Functions in Two Parallel MAP Kinase Cascades in Immune Signaling. Plant Physiology, 2018, 178, 1284-1295.	2.3	33
212	RNA sequencing-based transcriptome analysis of mature strawberry fruit infected by necrotrophic fungal pathogen Botrytis cinerea. Physiological and Molecular Plant Pathology, 2018, 104, 77-85.	1.3	35
213	A MPK3/6-WRKY33-ALD1-Pipecolic Acid Regulatory Loop Contributes to Systemic Acquired Resistance. Plant Cell, 2018, 30, 2480-2494.	3.1	119
214	The MAPK Kinase Kinase GmMEKK1 Regulates Cell Death and Defense Responses. Plant Physiology, 2018, 178, 907-922.	2.3	42
215	Antagonistic interactions between two <scp>MAP</scp> kinase cascades in plant development and immune signaling. EMBO Reports, 2018, 19, .	2.0	103
216	MAP kinase signalling: interplays between plant PAMP- and effector-triggered immunity. Cellular and Molecular Life Sciences, 2018, 75, 2981-2989.	2.4	105
217	Mitogenâ€activated protein kinase phosphatase 1 reduces the replication efficiency of <i>Bamboo mosaic virus</i> in <i>Nicotiana benthamiana</i> Molecular Plant Pathology, 2018, 19, 2319-2332.	2.0	6
218	Knockout of <i>SIMAPK3</i> Reduced Disease Resistance to <i>Botrytis cinerea</i> in Tomato Plants. Journal of Agricultural and Food Chemistry, 2018, 66, 8949-8956.	2.4	79
219	Receptor-Like Cytoplasmic Kinases Directly Link Diverse Pattern Recognition Receptors to the Activation of Mitogen-Activated Protein Kinase Cascades in Arabidopsis. Plant Cell, 2018, 30, 1543-1561.	3.1	219
220	Active photosynthetic inhibition mediated by MPK3/MPK6 is critical to effector-triggered immunity. PLoS Biology, 2018, 16, e2004122.	2.6	161

#	Article	IF	CITATIONS
221	Metabolic Responses of Plants Upon Different Plant–Pathogen Interactions. , 2018, , 195-214.		4
222	Chitosan promoting formononetin and calycosin accumulation in Astragalus membranaceus hairy root cultures via mitogen-activated protein kinase signaling cascades. Scientific Reports, 2019, 9, 10367.	1.6	24
223	Function of miR825 and miR825* as Negative Regulators in Bacillus cereus AR156-elicited Systemic Resistance to Botrytis cinerea in Arabidopsis thaliana. International Journal of Molecular Sciences, 2019, 20, 5032.	1.8	26
224	Functional genomics of the protein kinase superfamily from wheat. Molecular Breeding, 2019, 39, 1.	1.0	10
225	A stress-response-related inter-compartmental signalling pathway regulates embryonic cuticle integrity in Arabidopsis. PLoS Genetics, 2019, 15, e1007847.	1.5	32
226	RNAi of the sesquiterpene cyclase gene for phytoalexin production impairs pre†and postâ€invasive resistance to potato blight pathogens. Molecular Plant Pathology, 2019, 20, 907-922.	2.0	10
227	Molecular Players of EF-hand Containing Calcium Signaling Event in Plants. International Journal of Molecular Sciences, 2019, 20, 1476.	1.8	69
228	Transcriptional induction of capsidiol synthesis genes by wounding can promote pathogen signal-induced capsidiol synthesis. BMC Plant Biology, 2019, 19, 576.	1.6	5
229	Genotype-specific suppression of multiple defense pathways in apple root during infection by Pythium ultimum. Horticulture Research, 2019, 6, 10.	2.9	30
230	Regulation of GDSL Lipase Gene Expression by the MPK3/MPK6 Cascade and Its Downstream WRKY Transcription Factors in <i>Arabidopsis</i> Immunity. Molecular Plant-Microbe Interactions, 2019, 32, 673-684.	1.4	23
231	A Förster resonance energy transfer sensor for liveâ€cell imaging of mitogenâ€activated protein kinase activity in <scp>A</scp> rabidopsis. Plant Journal, 2019, 97, 970-983.	2.8	21
232	Transcriptome analysis of Actinidia chinensis in response to Botryosphaeria dothidea infection. PLoS ONE, 2020, 15, e0227303.	1.1	13
233	Silencing GmFLS2 enhances the susceptibility of soybean to bacterial pathogen through attenuating the activation of GmMAPK signaling pathway. Plant Science, 2020, 292, 110386.	1.7	14
235	Regulatory role of receptor-like cytoplasmic kinases in early immune signaling events in plants. FEMS Microbiology Reviews, 2020, 44, 845-856.	3.9	21
236	Sustained Incompatibility between MAPK Signaling and Pathogen Effectors. International Journal of Molecular Sciences, 2020, 21, 7954.	1.8	17
237	Isolation and functional characterization of the mitogen-activated protein kinase kinase gene MAPKK1 from Panax notoginseng. European Journal of Plant Pathology, 2020, 158, 1-13.	0.8	0
238	Amplification and cloning of arabidopsis 6xhis-tagged mpk6 fusion encoded gene to characterize biochemical mitogen-activated protein kinase in disease resistance role against Fusarium graminearum. IOP Conference Series: Earth and Environmental Science, 2020, 575, 012002.	0.2	1
239	The Versatile Roles of Sulfur-Containing Biomolecules in Plant Defense—A Road to Disease Resistance. Plants, 2020, 9, 1705.	1.6	33

#	Article	IF	CITATIONS
240	Genome-wide identification of mitogen-activated protein kinase (MAPK) cascade and expression profiling of CmMAPKs in melon (Cucumis melo L.). PLoS ONE, 2020, 15, e0232756.	1.1	10
241	Induction of γâ€aminobutyric acid plays a positive role to <i>Arabidopsis</i> resistance against <i>Pseudomonas syringae</i> . Journal of Integrative Plant Biology, 2020, 62, 1797-1812.	4.1	25
242	Differential Phosphorylation of the Transcription Factor WRKY33 by the Protein Kinases CPK5/CPK6 and MPK3/MPK6 Cooperatively Regulates Camalexin Biosynthesis in Arabidopsis. Plant Cell, 2020, 32, 2621-2638.	3.1	110
243	Expression profiles of genes for enzymes involved in capsidiol production in Nicotiana benthamiana. Journal of General Plant Pathology, 2020, 86, 340-349.	0.6	9
244	A strawberry mitogen-activated protein kinase gene, FaMAPK19, is involved in disease resistance against Botrytis cinerea. Scientia Horticulturae, 2020, 265, 109259.	1.7	9
245	Harnessing symbiotic plant–fungus interactions to unleash hidden forces from extreme plant ecosystems. Journal of Experimental Botany, 2020, 71, 3865-3877.	2.4	17
246	The <i>Arabidopsis</i> <scp>CCCH</scp> protein <scp>C3H14</scp> contributes to basal defense against <i>Botrytis cinerea</i> mainly through the <scp>WRKY33</scp> â€dependent pathway. Plant, Cell and Environment, 2020, 43, 1792-1806.	2.8	19
247	Plant Innate Immunity Signals and Signaling Systems. Signaling and Communication in Plants, 2020, , .	0.5	2
248	Regulation of phytoalexin biosynthesis for agriculture and human health. Phytochemistry Reviews, 2021, 20, 483-505.	3.1	18
249	The transcription factor WRKY75 positively regulates jasmonate-mediated plant defense to necrotrophic fungal pathogens. Journal of Experimental Botany, 2021, 72, 1473-1489.	2.4	58
250	Role of Mapks During Plant-Insect Interaction. , 2021, , 93-106.		0
251	Genome-wide association analysis reveals seed protein loci as determinants of variations in grain mold resistance in sorghum. Theoretical and Applied Genetics, 2021, 134, 1167-1184.	1.8	20
252	Plant Mitogen-Activated Protein Kinase Cascades in Environmental Stresses. International Journal of Molecular Sciences, 2021, 22, 1543.	1.8	61
253	TALEN-Based HvMPK3 Knock-Out Attenuates Proteome and Root Hair Phenotypic Responses to flg22 in Barley. Frontiers in Plant Science, 2021, 12, 666229.	1.7	11
254	The mitogen-activated protein kinase kinase TaMKK5 mediates immunity via the TaMKK5–TaMPK3–TaERF3 module. Plant Physiology, 2021, 187, 2323-2337.	2.3	10
255	Reprogramming plant specialized metabolism by manipulating protein kinases. ABIOTECH, 2021, 2, 226-239.	1.8	5
256	Brassica napus Mediator Subunit16 Induces BnMED25- and BnWRKY33-Activated Defense Signaling to Confer Sclerotinia sclerotiorum Resistance. Frontiers in Plant Science, 2021, 12, 663536.	1.7	8
257	MPK3/MPK6-mediated phosphorylation of ERF72 positively regulates resistance to <i>Botrytis cinerea</i> through directly and indirectly activating the transcription of camalexin biosynthesis enzymes. Journal of Experimental Botany, 2022, 73, 413-428.	2.4	22

#	Article	IF	Citations
258	Phytohormones jasmonic acid, salicylic acid, gibberellins, and abscisic acid are key mediators of plant secondary metabolites. World Journal of Traditional Chinese Medicine, 2021, 7, 307.	0.9	19
259	Mechanisms of Induced Resistance Against B. cinerea. , 2009, , 13-30.		6
260	Antimicrobial Compounds (Phytoanticipins and Phytoalexins) and Their Role in Plant Defense. Reference Series in Phytochemistry, 2020, , 845-868.	0.2	19
261	G Proteins and Plant Innate Immunity. Signaling and Communication in Plants, 2010, , 221-250.	0.5	19
262	MAPK Signaling Cascades and Transcriptional Reprogramming in Plant–Pathogen Interactions. , 2014, , 297-316.		6
263	Mitogen-Activated Protein Kinase Cascades in Plant Innate Immunity. Signaling and Communication in Plants, 2014, , 331-374.	0.5	2
264	Plant Immunity, Priming, and Systemic Resistance as Mechanisms for Trichoderma spp. Biocontrol. Rhizosphere Biology, 2020, , 81-110.	0.4	14
267	Coâ€regulation of indole glucosinolates and camalexin biosynthesis by CPK5/CPK6 and MPK3/MPK6 signaling pathways. Journal of Integrative Plant Biology, 2020, 62, 1780-1796.	4.1	48
268	Mitogen-Activated Protein Kinase Cascade MKK7-MPK6 Plays Important Roles in Plant Development and Regulates Shoot Branching by Phosphorylating PIN1 in Arabidopsis. PLoS Biology, 2016, 14, e1002550.	2.6	114
269	Tight Interconnection and Multi-Level Control of Arabidopsis MYB44 in MAPK Cascade Signalling. PLoS ONE, 2013, 8, e57547.	1.1	83
270	Overexpression of Phosphomimic Mutated OsWRKY53 Leads to Enhanced Blast Resistance in Rice. PLoS ONE, 2014, 9, e98737.	1.1	94
271	Riboflavin-Induced Disease Resistance Requires the Mitogen-Activated Protein Kinases 3 and 6 in Arabidopsis thaliana. PLoS ONE, 2016, 11, e0153175.	1.1	18
272	The Arabidopsis thaliana Mediator subunit MED8 regulates plant immunity to Botrytis Cinerea through interacting with the basic helix-loop-helix (bHLH) transcription factor FAMA. PLoS ONE, 2018, 13, e0193458.	1.1	25
273	Mitogen activated protein kinase (MAPK)-regulated genes with predicted signal peptides function in the Glycine max defense response to the root pathogenic nematode Heterodera glycines. PLoS ONE, 2020, 15, e0241678.	1.1	10
274	Transcription Factors Involved in Plant Resistance to Pathogens. Current Protein and Peptide Science, 2017, 18, 335-351.	0.7	134
276	The Green MAPKs. Asian Journal of Plant Sciences, 2009, 9, 1-10.	0.2	25
277	Transgenic Rice Plants Expressing an Active Tobacco Mitogen-activated Protein Kinase Kinase Induce Multiple Defense Responses. Plant Pathology Journal, 2008, 24, 375-383.	0.7	3
278	Functions of MAPK Cascade Pathways in Plant Defense Signaling. Plant Pathology Journal, 2010, 26, 101-109.	0.7	16

#	Article	IF	CITATIONS
279	Comprehensive analysis of mitogen-activated protein kinase cascades in chrysanthemum. PeerJ, 2018, 6, e5037.	0.9	11
280	Calcium Ion Signaling System: Calcium Signatures and Sensors. Signaling and Communication in Plants, 2014, , 207-282.	0.5	0
281	Metabolomics of Disease Resistance in Crops. Current Issues in Molecular Biology, 2016, , .	1.0	9
282	Antimicrobial Compounds (Phytoanticipins and Phytoalexins) and Their Role in Plant Defense. Reference Series in Phytochemistry, 2020, , 1-25.	0.2	1
283	Bioengineering and Molecular Manipulation of Mitogen-Activated Kinases to Activate Plant Innate Immunity for Crop Disease Management. Signaling and Communication in Plants, 2020, , 137-168.	0.5	0
284	De novo assembly, annotation, marker discovery, and genetic diversity of the Stipa breviflora Griseb. (Poaceae) response to grazing. PLoS ONE, 2020, 15, e0244222.	1.1	4
285	Evolution of views on plant immunity: from Flor's "gene-for-gene―theory to the "zig-zag model― developed by Jones and Dangl. Izvestiâ Vuzov: Prikladnaâ Himiâ I Biotehnologiâ, 2020, 10, 424-438.	0.1	0
286	Dissecting the Role of Promoters of Pathogen-sensitive Genes in Plant Defense. Current Genomics, 2020, 21, 491-503.	0.7	9
288	Mitogenâ€activated protein kinase cascades in plant signaling. Journal of Integrative Plant Biology, 2022, 64, 301-341.	4.1	149
289	Interaction between MAPKs and MKPs in hexaploid chrysanthemum illuminates functional paralogue diversification in polyploids. Horticultural Plant Journal, 2023, 9, 158-168.	2.3	1
290	Interactions between second messengers, SA and MAPK6 signaling pathways lead to chitosan-induced lignan production in Linum album cell culture. Industrial Crops and Products, 2022, 177, 114525.	2.5	9
291	Mitogen-Activated Protein Kinase and Substrate Identification in Plant Growth and Development. International Journal of Molecular Sciences, 2022, 23, 2744.	1.8	15
292	Comparative methylomics and chromatin accessibility analysis in <i>Osmanthus fragrans</i> uncovers regulation of genic transcription and mechanisms of key floral scent production. Horticulture Research, 2022, 9, .	2.9	10
293	Multilayered synergistic regulation of phytoalexin biosynthesis by ethylene, jasmonate, and MAPK signaling pathways in Arabidopsis. Plant Cell, 2022, 34, 3066-3087.	3.1	30
294	Camalexin accumulation as a component of plant immunity during interactions with pathogens and beneficial microbes. Planta, 2022, 255, 116.	1.6	8
295	Mitogen-Activated Protein Kinases Associated Sites of Tobacco Repression of Shoot Growth Regulates Its Localization in Plant Cells. International Journal of Molecular Sciences, 2022, 23, 8941.	1.8	3
298	Phosphorylation of the auxin signaling transcriptional repressor IAA15 by MPKs is required for the suppression of root development under drought stress in Arabidopsis. Nucleic Acids Research, 2022, 50, 10544-10561.	6.5	13
299	Combined physiological and transcriptome analysis revealed the response mechanism of Pogostemon cablin roots to p-hydroxybenzoic acid. Frontiers in Plant Science, 0, 13, .	1.7	8

#	Article	IF	CITATIONS
300	Isoprenoid biosynthesis regulation in poplars by methylerythritol phosphate and mevalonic acid pathways. Frontiers in Plant Science, 0, 13 , .	1.7	7
301	Temporal regulation of cold transcriptional response in switchgrass. Frontiers in Plant Science, 0, 13 ,	1.7	0
302	Crosstalk between MAPKs and GSH under stress: A critical review. Journal of Biosciences, 2022, 47, .	0.5	3
303	The WAK-like protein RFO1 acts as a sensor of the pectin methylation status in Arabidopsis cell walls to modulate root growth and defense. Molecular Plant, 2023, 16, 865-881.	3.9	4
304	Analysis of the role of BrRPP1 gene in Chinese cabbage infected by Plasmodiophora brassicae. Frontiers in Plant Science, 0, 14 , .	1.7	1
305	Candidate gene discovery of Botrytis cinerea resistance in grapevine based on QTL mapping and RNA-seq. Frontiers in Plant Science, 0, 14 , .	1.7	3
306	Soybean GmSAUL1, a Bona Fide U-Box E3 Ligase, Negatively Regulates Immunity Likely through Repressing the Activation of GmMPK3. International Journal of Molecular Sciences, 2023, 24, 6240.	1.8	2
307	Salinity-Triggered Responses in Plant Apical Meristems for Developmental Plasticity. International Journal of Molecular Sciences, 2023, 24, 6647.	1.8	4