Characterization of the Human Skeletal Muscle Proteor Electrophoresis and HPLC-ESI-MS/MS

Molecular and Cellular Proteomics 7, 257-267 DOI: 10.1074/mcp.m700304-mcp200

Citation Report

#	Article	IF	CITATIONS
2	Mitochondrial Dysfunction in Type 2 Diabetes and Obesity. Endocrinology and Metabolism Clinics of North America, 2008, 37, 713-731.	3.2	118
3	Global Relationship between the Proteome and Transcriptome of Human Skeletal Muscle. Journal of Proteome Research, 2008, 7, 3230-3241.	3.7	40
4	Plasticity of the Muscle Proteome to Exercise at Altitude. High Altitude Medicine and Biology, 2009, 10, 183-193.	0.9	59
5	Fastâ€ŧwitch sarcomeric and glycolytic enzyme protein loss in inclusion body myositis. Muscle and Nerve, 2009, 39, 739-753.	2.2	41
6	Separation of small molecular peptides with the same amino acid composition but different sequences by high performance liquid chromatography-electrospray ionization-mass spectrometry. Science in China Series B: Chemistry, 2009, 52, 2264-2268.	0.8	1
7	Proteomics of skeletal muscle aging. Proteomics, 2009, 9, 989-1003.	2.2	82
8	Application of iTRAQ to catalogue the skeletal muscle proteome in pigs and assessment of effects of gender and diet dephytinization. Proteomics, 2009, 9, 4000-4016.	2.2	51
9	Proteomic investigation of changes in human vastus lateralis muscle in response to intervalâ€exercise training. Proteomics, 2009, 9, 5155-5174.	2.2	94
10	Proteome profile of functional mitochondria from human skeletal muscle using one-dimensional gel electrophoresis and HPLC-ESI-MS/MS. Journal of Proteomics, 2009, 72, 1046-1060.	2.4	68
11	<i>In vivo</i> Phosphoproteome of Human Skeletal Muscle Revealed by Phosphopeptide Enrichment and HPLCâ^'ESIâ~'MS/MS. Journal of Proteome Research, 2009, 8, 4954-4965.	3.7	81
12	Characterization of Human Skeletal Muscle Biopsy Samples Using Shotgun Proteomics. Journal of Proteome Research, 2009, 8, 3265-3277.	3.7	68
13	Proteomics in diabetes research. Molecular and Cellular Endocrinology, 2009, 297, 93-103.	3.2	69
14	Human ATP synthase beta is phosphorylated at multiple sites and shows abnormal phosphorylation at specific sites in insulin-resistant muscle. Diabetologia, 2010, 53, 541-551.	6.3	59
15	Proteomics of skeletal muscle glycolysis. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 2089-2101.	2.3	55
16	Global analysis of the rat and human platelet proteome – the molecular blueprint for illustrating multiâ€functional platelets and crossâ€species function evolution. Proteomics, 2010, 10, 2444-2457.	2.2	33
17	Long term bed rest with and without vibration exercise countermeasures: Effects on human muscle protein dysregulation. Proteomics, 2010, 10, 3756-3774.	2.2	86
18	Proteomics Analysis of Human Skeletal Muscle Reveals Novel Abnormalities in Obesity and Type 2 Diabetes. Diabetes, 2010, 59, 33-42.	0.6	217
19	Proteomics of skeletal muscle differentiation, neuromuscular disorders and fiber aging. Expert Review of Proteomics, 2010, 7, 283-296.	3.0	51

#	Article	IF	CITATIONS
20	A novel cell permeant peptide inhibitor of MAPKAP kinase II inhibits intimal hyperplasia in a human saphenous vein organ culture model. Journal of Vascular Surgery, 2010, 52, 1596-1607.	1.1	21
21	Quantitative Proteomic Analysis of Dystrophic Dog Muscle. Journal of Proteome Research, 2011, 10, 2465-2478.	3.7	72
22	Proteomic responses of skeletal and cardiac muscle to exercise. Expert Review of Proteomics, 2011, 8, 361-377.	3.0	62
23	Comparative Proteome Cataloging of Lactobacillus rhamnosus Strains GG and Lc705. Journal of Proteome Research, 2011, 10, 3460-3473.	3.7	53
24	Reduction in Reactive Oxygen Species Production by Mitochondria From Elderly Subjects With Normal and Impaired Glucose Tolerance. Diabetes, 2011, 60, 2051-2060.	0.6	111
25	Mitochondrial dysfunction and insulin resistance from the outside in: extracellular matrix, the cytoskeleton, and mitochondria. American Journal of Physiology - Endocrinology and Metabolism, 2011, 301, E749-E755.	3.5	77
26	Increased abundance of the adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif (APPL1) in patients with obesity and type 2 diabetes: evidence for altered adiponectin signalling. Diabetologia, 2011, 54, 2122-2131.	6.3	34
27	The role of the myosin ATPase activity in adaptive thermogenesis by skeletal muscle. Biophysical Reviews, 2011, 3, 33-45.	3.2	93
28	Label-Free Proteomic Identification of Endogenous, Insulin-Stimulated Interaction Partners of Insulin Receptor Substrate-1. Journal of the American Society for Mass Spectrometry, 2011, 22, 457-466.	2.8	34
29	Skeletal muscle proteomics: current approaches, technical challenges and emerging techniques. Skeletal Muscle, 2011, 1, 6.	4.2	95
30	Diversity of human skeletal muscle in health and disease: Contribution of proteomics. Journal of Proteomics, 2011, 74, 774-795.	2.4	54
31	Phosphoproteome Analysis of Functional Mitochondria Isolated from Resting Human Muscle Reveals Extensive Phosphorylation of Inner Membrane Protein Complexes and Enzymes. Molecular and Cellular Proteomics, 2011, 10, M110.000299.	3.8	145
32	Characterization of Human Myotubes From Type 2 Diabetic and Nondiabetic Subjects Using Complementary Quantitative Mass Spectrometric Methods. Molecular and Cellular Proteomics, 2011, 10, M110.006650.	3.8	45
33	Rare Cell Proteomic Reactor Applied to Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)-based Quantitative Proteomics Study of Human Embryonic Stem Cell Differentiation. Molecular and Cellular Proteomics, 2011, 10, S1-S10.	3.8	52
34	Pathobiochemical Changes in Diabetic Skeletal Muscle as Revealed by Mass-Spectrometry-Based Proteomics. Journal of Nutrition and Metabolism, 2012, 2012, 1-12.	1.8	16
35	Novel tyrosine phosphorylation sites in rat skeletal muscle revealed by phosphopeptide enrichment and HPLC-ESI-MS/MS. Journal of Proteomics, 2012, 75, 4017-4026.	2.4	6
36	Gain and Loss of Extracellular Molecules in Sporadic Inclusion Body Myositis and Polymyositis—A Proteomicsâ€Based Study. Brain Pathology, 2012, 22, 32-40.	4.1	5
37	Proteomics applied to exercise physiology: A cuttingâ€edge technology. Journal of Cellular Physiology, 2012, 227, 885-898.	4.1	34

#	Article	IF	CITATIONS
38	The proteomic signature of insulin-resistant human skeletal muscle reveals increased glycolytic and decreased mitochondrial enzymes. Diabetologia, 2012, 55, 1114-1127.	6.3	66
39	Shotgun proteomic analysis of sarcoplasmic reticulum preparations from rabbit skeletal muscle. Proteomics, 2013, 13, 2335-2338.	2.2	23
40	Expression and modification proteomics during skeletal muscle ageing. Biogerontology, 2013, 14, 339-352.	3.9	43
41	Proteomic identification of biomarkers of skeletal muscle disorders. Biomarkers in Medicine, 2013, 7, 169-186.	1.4	56
42	Identification of Disease Specific Pathways Using in Vivo SILAC Proteomics in Dystrophin Deficient mdx Mouse. Molecular and Cellular Proteomics, 2013, 12, 1061-1073.	3.8	88
43	Proteomic profiling of the contractile apparatus from skeletal muscle. Expert Review of Proteomics, 2013, 10, 239-257.	3.0	32
44	Effect of Exercise on the Skeletal Muscle Proteome in Patients with Type 2 Diabetes. Medicine and Science in Sports and Exercise, 2013, 45, 1069-1076.	0.4	40
45	Application of Fluorescence Two-Dimensional Difference In-Gel Electrophoresis as a Proteomic Biomarker Discovery Tool in Muscular Dystrophy Research. Biology, 2013, 2, 1438-1464.	2.8	37
46	Label-Free LC-MS Profiling of Skeletal Muscle Reveals Heart-Type Fatty Acid Binding Protein as a Candidate Biomarker of Aerobic Capacity. Proteomes, 2013, 1, 290-308.	3.5	30
47	Multi-Tissue Computational Modeling Analyzes Pathophysiology of Type 2 Diabetes in MKR Mice. PLoS ONE, 2014, 9, e102319.	2.5	15
48	Mass Spectrometry-Based Identification of Muscle-Associated and Muscle-Derived Proteomic Biomarkers of Dystrophinopathies. Journal of Neuromuscular Diseases, 2014, 1, 15-40.	2.6	24
49	Quantitative proteome analysis of ageâ€related changes in mouse gastrocnemius muscle using m <scp>TRAQ</scp> . Proteomics, 2014, 14, 121-132.	2.2	30
50	Label-free Quantitative Protein Profiling of vastus lateralis Muscle During Human Aging. Molecular and Cellular Proteomics, 2014, 13, 283-294.	3.8	49
51	Insulin Increases Phosphorylation of Mitochondrial Proteins in Human Skeletal Muscle <i>in Vivo</i> . Journal of Proteome Research, 2014, 13, 2359-2369.	3.7	22
52	Labelâ€free profiling of skeletal muscle using highâ€definition mass spectrometry. Proteomics, 2014, 14, 2339-2344.	2.2	44
53	Profiling of human myotubes reveals an intrinsic proteomic signature associated with type 2 diabetes. Translational Proteomics, 2014, 2, 25-38.	1.2	16
54	Chaperoning heat shock proteins: Proteomic analysis and relevance for normal and dystrophinâ€deficient muscle. Proteomics - Clinical Applications, 2014, 8, 875-895.	1.6	45
55	Conditional independence mapping of DIGE data reveals PDIA3 protein species as key nodes associated with muscle aerobic capacity. Journal of Proteomics, 2014, 106, 230-245.	2.4	26

#	Article	IF	CITATIONS
56	Simultaneous Pathoproteomic Evaluation of the Dystrophin-Glycoprotein Complex and Secondary Changes in the mdx-4cv Mouse Model of Duchenne Muscular Dystrophy. Biology, 2015, 4, 397-423.	2.8	37
57	Deep Proteomics of Mouse Skeletal Muscle Enables Quantitation of Protein Isoforms, Metabolic Pathways, and Transcription Factors*. Molecular and Cellular Proteomics, 2015, 14, 841-853.	3.8	234
58	In-depth characterisation of the lamb meat proteome from longissimus lumborum. EuPA Open Proteomics, 2015, 6, 28-41.	2.5	16
59	Cellular Proteome Dynamics during Differentiation of Human Primary Myoblasts. Journal of Proteome Research, 2015, 14, 3348-3361.	3.7	30
60	Basal and exercise induced label-free quantitative protein profiling of m. vastus lateralis in trained and untrained individuals. Journal of Proteomics, 2015, 122, 119-132.	2.4	55
61	Will Quantitative Proteomics Redefine Some of the Key Concepts in Skeletal Muscle Physiology?. Proteomes, 2016, 4, 2.	3.5	3
62	The Extracellular Matrix Complexome from Skeletal Muscle. , 0, , .		4
63	Age- and Activity-Related Differences in the Abundance of Myosin Essential and Regulatory Light Chains in Human Muscle. Proteomes, 2016, 4, 15.	3.5	10
64	Comparative Skeletal Muscle Proteomics Using Two-Dimensional Gel Electrophoresis. Proteomes, 2016, 4, 27.	3.5	35
65	A Proof of Concept to Bridge the Gap between Mass Spectrometry Imaging, Protein Identification and Relative Quantitation: MSI~LC-MS/MS-LF. Proteomes, 2016, 4, 32.	3.5	15
66	Molecular Signatures of Membrane Protein Complexes Underlying Muscular Dystrophy. Molecular and Cellular Proteomics, 2016, 15, 2169-2185.	3.8	18
67	Functional phosphorylation sites in cardiac myofilament proteins are evolutionarily conserved in skeletal myofilament proteins. Physiological Genomics, 2016, 48, 377-387.	2.3	9
68	The biochemical and mass spectrometric profiling of the dystrophin complexome from skeletal muscle. Computational and Structural Biotechnology Journal, 2016, 14, 20-27.	4.1	61
69	Cookingâ€Induced Protein Modifications in Meat. Comprehensive Reviews in Food Science and Food Safety, 2017, 16, 141-159.	11.7	152
70	Comprehensive proteome analysis of human skeletal muscle in cachexia and sarcopenia: a pilot study. Journal of Cachexia, Sarcopenia and Muscle, 2017, 8, 567-582.	7.3	47
71	The Human Skeletal Muscle Proteome Project: a reappraisal of the current literature. Journal of Cachexia, Sarcopenia and Muscle, 2017, 8, 5-18.	7.3	84
72	Mapping the human skeletal muscle proteome: progress and potential. Expert Review of Proteomics, 2017, 14, 825-839.	3.0	27
73	Mitochondrial phosphoproteomics of mammalian tissues. Mitochondrion, 2017, 33, 45-57.	3.4	34

#	Article	IF	CITATIONS
74	Dynamics of Zebrafish Heart Regeneration Using an HPLC–ESI–MS/MS Approach. Journal of Proteome Research, 2018, 17, 1300-1308.	3.7	17
75	Dicarbonyl Stress and Glyoxalase-1 in Skeletal Muscle: Implications for Insulin Resistance and Type 2 Diabetes. Frontiers in Cardiovascular Medicine, 2018, 5, 117.	2.4	30
76	Proteomic study of skeletal muscle in obesity and type 2 diabetes: progress and potential. Expert Review of Proteomics, 2018, 15, 817-828.	3.0	8
77	Proteomics and frailty: a clinical overview. Expert Review of Proteomics, 2018, 15, 657-664.	3.0	11
78	Proteomic profiling of giant skeletal muscle proteins. Expert Review of Proteomics, 2019, 16, 241-256.	3.0	13
79	Characterization of Contractile Proteins from Skeletal Muscle Using Gel-Based Top-Down Proteomics. Proteomes, 2019, 7, 25.	3.5	25
80	Role of Tissue Biopsy in Drug Development for Nonalcoholic Fatty Liver Disease and Other Metabolic Disorders. , 2019, , 245-274.		0
81	Physical Activity Associated Proteomics of Skeletal Muscle: Being Physically Active in Daily Life May Protect Skeletal Muscle From Aging. Frontiers in Physiology, 2019, 10, 312.	2.8	70
82	Proteomic profiling of the mouse diaphragm and refined mass spectrometric analysis of the dystrophic phenotype. Journal of Muscle Research and Cell Motility, 2019, 40, 9-28.	2.0	32
83	Profiling of nanoparticle–protein interactions by electrophoresis techniques. Analytical and Bioanalytical Chemistry, 2019, 411, 79-96.	3.7	22
84	FIHâ€l engages novel binding partners to positively influence epithelial proliferation via p63. FASEB Journal, 2020, 34, 525-539.	0.5	10
85	The Mitochondrial Proteomic Signatures of Human Skeletal Muscle Linked to Insulin Resistance. International Journal of Molecular Sciences, 2020, 21, 5374.	4.1	9
86	Comparative Analysis of the Extracellular Matrix Proteome across the Myotendinous Junction. Journal of Proteome Research, 2020, 19, 3955-3967.	3.7	39
87	Application of mass spectrometry based proteomics to understand diabetes: A special focus on interactomics. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140469.	2.3	10
88	Proteomic profiling of fatty acid binding proteins in muscular dystrophy. Expert Review of Proteomics, 2020, 17, 137-148.	3.0	11
89	Age-Related Changes in the Matrisome of the Mouse Skeletal Muscle. International Journal of Molecular Sciences, 2021, 22, 10564.	4.1	18
90	Identification of Proteins from Interstitium of Trapezius Muscle in Women with Chronic Myalgia Using Microdialysis in Combination with Proteomics. PLoS ONE, 2012, 7, e52560.	2.5	68
91	Muscle Proteomics of the Indian Major Carp Catla (Catla catla, Hamilton). Journal of Proteomics and Bioinformatics, 2013, 06, .	0.4	7

IF ARTICLE CITATIONS # Proteomic Analysis of Signalling Pathway Deregulation in Dystrophic Dog Muscle., 0,,. 92 0 Proteomic Profiling of Human Skeletal Muscle in Health and Disease., 2019, , 137-154. Proteomic profiling of carbonic anhydrase CA3 in skeletal muscle. Expert Review of Proteomics, 2021, 94 3.0 11 18, 1073-1086. Potential Satellite Cell-Linked Biomarkers in Aging Skeletal Muscle Tissue: Proteomics and Proteogenomics to Monitor Sarcopenia. Proteomes, 2022, 10, 29. Proteomic profiling of impaired excitation–contraction coupling and abnormal calcium handling in 98 2.2 10 muscular dystrophy. Proteomics, 2022, 22, . The role of pathogens in diabetes pathogenesis and the potential of immunoproteomics as a diagnostic and prognostic tool. Frontiers in Microbiology, 0, 13, . 3.5 Identification of Subproteomic Markers for Skeletal Muscle Profiling. Methods in Molecular Biology, 100 0.9 5 2023, , 291-302. Fiber-Type Shifting in Sarcopenia of Old Age: Proteomic Profiling of the Contractile Apparatus of 4.1 Skeletál Muscles. International Journal of Molecular Sciences, 2023, 24, 2415. Extracellular Matrix Proteomics: The mdx-4cv Mouse Diaphragm as a Surrogate for Studying 102 4.0 5 Myofibrosis in Dystrophinopathy. Biomolecules, 2023, 13, 1108. Biochemical and proteomic insights into sarcoplasmic reticulum Ca ²⁺ -ATPase complexes in skeletal muscles. Expert Review of Proteomics, 2023, 20, 125-142. Mass Spectrometry-Based Proteomic Technology and Its Application to Study Skeletal Muscle Cell 104 1 4.1 Biology. Cells, 2023, 12, 2560. How Can Proteomics Help to Elucidate the Pathophysiological Crosstalk in Muscular Dystrophy and Associated Multi-System Dysfunction?. Proteome's, 2024, 12, 4.

CITATION REPORT