Systemic Inflammation Alters the Kinetics of Cerebrova after Experimental Stroke in Mice

Journal of Neuroscience 28, 9451-9462 DOI: 10.1523/jneurosci.2674-08.2008

Citation Report

#	Article	IF	CITATIONS
1	An experimental platform for systemic drug delivery to the retina. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17817-17822.	3.3	71
2	Therapeutic Administration of Plasminogen Activator Inhibitor-1 Prevents Hypoxic-Ischemic Brain Injury in Newborns. Journal of Neuroscience, 2009, 29, 8669-8674.	1.7	44
3	Bone marrow-derived cells are the major source of MMP-9 contributing to blood–brain barrier dysfunction and infarct formation after ischemic stroke in mice. Brain Research, 2009, 1294, 183-192.	1.1	59
4	Impaired blood–brain and blood–spinal cord barriers in mutant SOD1-linked ALS rat. Brain Research, 2009, 1301, 152-162.	1.1	139
5	Microglial Low-Density Lipoprotein Receptor-Related Protein 1 Mediates the Effect of Tissue-Type Plasminogen Activator on Matrix Metalloproteinase-9 Activity in the Ischemic Brain. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 1946-1954.	2.4	54
6	Bench-to-bedside review: Burn-induced cerebral inflammation – a neglected entity?. Critical Care, 2009, 13, 215.	2.5	41
7	CD47 gene knockout protects against transient focal cerebral ischemia in mice. Experimental Neurology, 2009, 217, 165-170.	2.0	52
8	Systemic infection, inflammation and acute ischemic stroke. Neuroscience, 2009, 158, 1049-1061.	1.1	280
9	Altered expression of tight junction proteins and matrix metalloproteinases in thiamine-deficient mouse brain. Neurochemistry International, 2009, 55, 275-281.	1.9	26
10	Estrogen treatment following severe burn injury reduces brain inflammation and apoptotic signaling. Journal of Neuroinflammation, 2009, 6, 30.	3.1	61
11	Suppression of inflammation in ischemic and hemorrhagic stroke: therapeutic options. Current Opinion in Neurology, 2009, 22, 294-301.	1.8	119
12	Anamnestic Recall of Stroke-Related Deficits. Stroke, 2010, 41, 2653-2660.	1.0	15
13	Oxidized Low-Density Lipoprotein-Induced Matrix Metalloproteinase-9 Expression via PKC-Î/p42/p44 MAPK/Elk-1 Cascade in Brain Astrocytes. Neurotoxicity Research, 2010, 17, 50-65.	1.3	26
14	Lipoteichoic Acid Induces Matrix Metalloproteinase-9 Expression via Transactivation of PDGF Receptors and NF-κB Activation in Rat Brain Astrocytes. Neurotoxicity Research, 2010, 17, 344-359.	1.3	25
15	Nigral neurodegeneration triggered by striatal AdIL-1 administration can be exacerbated by systemic IL-1 expression. Journal of Neuroimmunology, 2010, 222, 29-39.	1.1	44
16	Molecular insights and therapeutic targets for blood–brain barrier disruption in ischemic stroke: Critical role of matrix metalloproteinases and tissue-type plasminogen activator. Neurobiology of Disease, 2010, 38, 376-385.	2.1	234
17	A novel quantification of blood–brain barrier damage and histochemical typing after embolic stroke in rats. Brain Research, 2010, 1359, 186-200.	1.1	59
18	Differential distribution of tight junction proteins suggests a role for tanycytes in bloodâ€hypothalamus barrier regulation in the adult mouse brain. Journal of Comparative Neurology, 2010, 518, 943-962.	0.9	254

#	Article	IF	CITATIONS
19	Rapid brain penetration of interleukinâ€1 receptor antagonist in rat cerebral ischaemia: pharmacokinetics, distribution, protection. British Journal of Pharmacology, 2010, 160, 153-159.	2.7	65
20	Increased intranuclear matrix metalloproteinase activity in neurons interferes with oxidative DNA repair in focal cerebral ischemia. Journal of Neurochemistry, 2010, 112, 134-149.	2.1	118
21	Endothelinâ€1 enhances cell migration via matrix metalloproteinaseâ€9 upâ€regulation in brain astrocytes. Journal of Neurochemistry, 2010, 113, 1133-1149.	2.1	27
22	Ulcerative colitis exacerbates lipopolysaccharideâ€induced damage to the nigral dopaminergic system: potential risk factor in Parkinson`s disease. Journal of Neurochemistry, 2010, 114, 1687-1700.	2.1	169
23	Increased Brain Microvascular MMP-9 and Incidence of Haemorrhagic Transformation in Obese Mice after Experimental Stroke. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 267-272.	2.4	63
24	Prolonged, 24-h Delayed Peripheral Inflammation Increases Short- and Long-Term Functional Impairment and Histopathological Damage after Focal Ischemia in the Rat. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 1450-1459.	2.4	30
25	Amphetamine toxicities. Annals of the New York Academy of Sciences, 2010, 1187, 101-121.	1.8	232
26	Symptomatic Hemorrhagic Transformation and Its Predictors in Acute Ischemic Stroke with Atrial Fibrillation. European Neurology, 2010, 64, 193-200.	0.6	58
27	Chronic Systemic Infection Exacerbates Ischemic Brain Damage via a CCL5 (Regulated on Activation,) Tj ETQq0 C Neuroscience, 2010, 30, 10086-10095.	0 rgBT /C 1.7	verlock 10 Tf 119
28	Low-Dose Lipopolysaccharide Selectively Sensitizes Hypoxic Ischemia-Induced White Matter Injury in the Immature Brain. Pediatric Research, 2010, 68, 41-47.	1.1	53
29	Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. Journal of Leukocyte Biology, 2010, 87, 779-789.	1.5	1,281
30	Membrane attack complex inhibitor CD59a protects against focal cerebral ischemia in mice. Journal of Neuroinflammation, 2010, 7, 15.	3.1	49
31	Calmodulin kinase II-dependent transactivation of PDGF receptors mediates astrocytic MMP-9 expression and cell motility induced by lipoteichoic acid. Journal of Neuroinflammation, 2010, 7, 84.	3.1	32
32	MMP-9 levels in elderly patients with cognitive dysfunction after carotid surgery. Journal of Clinical Neuroscience, 2010, 17, 436-440.	0.8	24
33	The clinical spectrum and immunobiology of parainfectious neuromyelitis optica (Devic) syndromes. Journal of Autoimmunity, 2010, 34, 371-379.	3.0	121
34	Inflammation and brain injury: Acute cerebral ischaemia, peripheral and central inflammation. Brain, Behavior, and Immunity, 2010, 24, 708-723.	2.0	251
35	Connection between inflammatory processes and transmittor function—Modulatory effects of interleukin-1. Progress in Neurobiology, 2010, 90, 256-262.	2.8	32
36	The Blood–Brain Barrier: Geriatric Relevance of a Critical Brain–Body Interface. Journal of the American Geriatrics Society, 2010, 58, 1749-1757.	1.3	99

#	Article	IF	CITATIONS
37	Progesterone and allopregnanolone attenuate blood–brain barrier dysfunction following permanent focal ischemia by regulating the expression of matrix metalloproteinases. Experimental Neurology, 2010, 226, 183-190.	2.0	141
38	The LTB4-BLT1 Axis Mediates Neutrophil Infiltration and Secondary Injury in Experimental Spinal Cord Injury. American Journal of Pathology, 2010, 176, 2352-2366.	1.9	148
39	Systemic Inflammation Modulates Fc Receptor Expression on Microglia during Chronic Neurodegeneration. Journal of Immunology, 2011, 186, 7215-7224.	0.4	109
40	Translational pharmacokinetics: challenges of an emerging approach to drug development in stroke. Expert Opinion on Drug Metabolism and Toxicology, 2011, 7, 681-695.	1.5	9
41	Macrophages play a key role in early blood brain barrier reformation after hypothermic brain injury. Neuroscience Letters, 2011, 501, 148-151.	1.0	6
42	Matrix Metalloproteinase Inhibitors Attenuate Neuroinflammation Following Focal Cerebral Ischemia in Mice. Korean Journal of Physiology and Pharmacology, 2011, 15, 115.	0.6	25
43	Parkinson's Disease and Systemic Inflammation. Parkinson's Disease, 2011, 2011, 1-9.	0.6	148
44	Response to Letter by McColl et al Regarding Article, "Influenza Virus Infection Aggravates Stroke Outcome― Stroke, 2011, 42, .	1.0	0
45	Influenza Virus Infection Aggravates Stroke Outcome. Stroke, 2011, 42, 783-791.	1.0	104
46	Neutralization of interleukin-1β reduces cerebral edema and tissue loss and improves late cognitive outcome following traumatic brain injury in mice. European Journal of Neuroscience, 2011, 34, 110-123.	1.2	126
47	Experimental Stroke-Induced Changes in the Bone Marrow Reveal Complex Regulation of Leukocyte Responses. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 1036-1050.	2.4	61
48	Targeting the neurovascular unit for treatment of neurological disorders. , 2011, 130, 239-247.		64
49	Stroke and the immune system: from pathophysiology to new therapeutic strategies. Lancet Neurology, The, 2011, 10, 471-480.	4.9	415
50	Systemic inflammatory challenges compromise survival after experimental stroke via augmenting brain inflammation, blood- brain barrier damage and brain oedema independently of infarct size. Journal of Neuroinflammation, 2011, 8, 164.	3.1	140
51	Normobaric hyperoxia protects the blood brain barrier through inhibiting Nox2 containing NADPH oxidase in ischemic stroke. Medical Gas Research, 2011, 1, 22.	1.2	50
52	Transplanted Stem Cell-Secreted Vascular Endothelial Growth Factor Effects Poststroke Recovery, Inflammation, and Vascular Repair. Stem Cells, 2011, 29, 274-285.	1.4	219
53	Significance of marrowâ€derived nicotinamide adenine dinucleotide phosphate oxidase in experimental ischemic stroke. Annals of Neurology, 2011, 70, 606-615.	2.8	64
54	Synthetic gelatinases inhibitor attenuates electromagnetic pulse-induced blood–brain barrier disruption by inhibiting gelatinases-mediated ZO-1 degradation in rats. Toxicology, 2011, 285, 31-38.	2.0	27

#	Article	IF	CITATIONS
55	Phosphatidylinositol-3-Kinase Gamma Plays a Central Role in Blood–Brain Barrier Dysfunction in Acute Experimental Stroke. Stroke, 2011, 42, 2033-2044.	1.0	60
56	Astrocytes: Targets for Neuroprotection in Stroke. Central Nervous System Agents in Medicinal Chemistry, 2011, 11, 164-173.	0.5	257
57	Cognitive dysfunction with aging and the role of inflammation. Therapeutic Advances in Chronic Disease, 2011, 2, 175-195.	1.1	154
58	Cyclooxygenase-2 inhibitor blocks the production of West Nile virus-induced neuroinflammatory markers in astrocytes. Journal of General Virology, 2011, 92, 507-515.	1.3	27
59	Interleukin-1 and Stroke: Biomarker, Harbinger of Damage, and Therapeutic Target. Cerebrovascular Diseases, 2011, 32, 517-527.	0.8	103
60	Letter by McColl et al Regarding Article, "Influenza Virus Infection Aggravates Stroke Outcomeâ€. Stroke, 2011, 42, e416; author reply e417.	1.0	3
61	NLRP3-Inflammasome Activating DAMPs Stimulate an Inflammatory Response in Glia in the Absence of Priming Which Contributes to Brain Inflammation after Injury. Frontiers in Immunology, 2012, 3, 288.	2.2	161
62	Altered expression of tight junction molecules in alveolar septa in lung injury and fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L193-L205.	1.3	113
63	Ghrelin-mediated sympathoinhibition and suppression of inflammation in sepsis. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E265-E272.	1.8	31
64	Delayed Administration of Interleukin-1 Receptor Antagonist Reduces Ischemic Brain Damage and Inflammation in Comorbid Rats. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 1810-1819.	2.4	122
65	Neutrophil Cerebrovascular Transmigration Triggers Rapid Neurotoxicity through Release of Proteases Associated with Decondensed DNA. Journal of Immunology, 2012, 189, 381-392.	0.4	174
66	Blood-Brain Barrier Integrity and Glial Support: Mechanisms that can be Targeted for Novel Therapeutic Approaches in Stroke. Current Pharmaceutical Design, 2012, 18, 3624-3644.	0.9	142
67	Functional neurological recovery after spinal cord injury is impaired in patients with infections. Brain, 2012, 135, 3238-3250.	3.7	132
68	The blood–brain barrier in health and disease. Annals of Neurology, 2012, 72, 648-672.	2.8	592
69	Spatiotemporal evolution of blood brain barrier damage and tissue infarction within the first 3h after ischemia onset. Neurobiology of Disease, 2012, 48, 309-316.	2.1	48
70	Intranuclear matrix metalloproteinases promote DNA damage and apoptosis induced by oxygen–glucose deprivation in neurons. Neuroscience, 2012, 220, 277-290.	1.1	71
71	Attenuation of interleukin-1beta by pulsed electromagnetic fields after traumatic brain injury. Neuroscience Letters, 2012, 519, 4-8.	1.0	48
72	Peripheral inflammation increases the deleterious effect of CNS inflammation on the nigrostriatal dopaminergic system. NeuroToxicology, 2012, 33, 347-360.	1.4	87

#	Article	IF	CITATIONS
73	NADPH oxidase-mediated redox signal contributes to lipoteichoic acid-induced MMP-9 upregulation in brain astrocytes. Journal of Neuroinflammation, 2012, 9, 110.	3.1	55
74	JNK signaling is the shared pathway linking neuroinflammation, blood–brain barrier disruption, and oligodendroglial apoptosis in the white matter injury of the immature brain. Journal of Neuroinflammation, 2012, 9, 175.	3.1	99
75	Junctional Protein Regulation by Sphingosine Kinase 2 Contributes to Blood–Brain Barrier Protection in Hypoxic Preconditioning-Induced Cerebral Ischemic Tolerance. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 1014-1023.	2.4	65
76	Surgery Upregulates High Mobility Group Boxâ€1 and Disrupts the Blood–Brain Barrier causing Cognitive Dysfunction in Aged Rats. CNS Neuroscience and Therapeutics, 2012, 18, 994-1002.	1.9	152
77	Calcium Signaling at the Bloodâ \in "Brain Barrier in Stroke. , 2012, , 129-163.		2
78	Early ghrelin treatment attenuates disruption of the blood brain barrier and apoptosis after traumatic brain injury through a UCP-2 mechanism. Brain Research, 2012, 1489, 140-148.	1.1	39
79	α1-Acid glycoprotein induced effects in rat brain microvessel endothelial cells. Microvascular Research, 2012, 84, 161-168.	1.1	15
80	DIDS Prevents Ischemic Membrane Degradation in Cultured Hippocampal Neurons by Inhibiting Matrix Metalloproteinase Release. PLoS ONE, 2012, 7, e43995.	1.1	10
81	Human stefin B normal and patho-physiological role: molecular and cellular aspects of amyloid-type aggregation of certain EPM1 mutants. Frontiers in Molecular Neuroscience, 2012, 5, 88.	1.4	14
82	Matrix Metalloproteinase-2-Mediated Occludin Degradation and Caveolin-1-Mediated Claudin-5 Redistribution Contribute to Blood–Brain Barrier Damage in Early Ischemic Stroke Stage. Journal of Neuroscience, 2012, 32, 3044-3057.	1.7	337
83	Blood-Brain Barrier Permeability Is Increased After Acute Adult Stroke But Not Neonatal Stroke in the Rat. Journal of Neuroscience, 2012, 32, 9588-9600.	1.7	191
84	The doubleâ€edged sword of inflammation after stroke: What sharpens each edge?. Annals of Neurology, 2012, 71, 729-731.	2.8	10
85	Systemic immune activation shapes stroke outcome. Molecular and Cellular Neurosciences, 2013, 53, 14-25.	1.0	67
86	Beneficial effects of (RS)-glucoraphanin on the tight junction dysfunction in a mouse model of restraint stress. Life Sciences, 2013, 93, 288-305.	2.0	12
87	Prevention of rt-PA induced blood–brain barrier component degradation by the poly(ADP-ribose)polymerase inhibitor PJ34 after ischemic stroke in mice. Experimental Neurology, 2013, 248, 416-428.	2.0	26
88	Mechanisms of neuroprotection by hemopexin: modeling the control of heme and iron homeostasis in brain neurons in inflammatory states. Journal of Neurochemistry, 2013, 125, 89-101.	2.1	57
89	Tumor necrosis factor receptorâ€associated factor 5 is an essential mediator of ischemic brain infarction. Journal of Neurochemistry, 2013, 126, 400-414.	2.1	36
90	Early Inhibition of MMP Activity in Ischemic Rat Brain Promotes Expression of Tight Junction Proteins and Angiogenesis During Recovery. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1104-1114.	2.4	122

#	Article	IF	CITATIONS
91	The Immune System in Stroke: Clinical Challenges and Their Translation to Experimental Research. Journal of NeuroImmune Pharmacology, 2013, 8, 867-887.	2.1	40
92	Post-stroke infections exacerbate ischemic brain injury in middle-aged rats: Immunomodulation and neuroprotection by progesterone. Neuroscience, 2013, 239, 92-102.	1.1	60
93	Inhibition of NF-kappaB activation by Pyrrolidine dithiocarbamate partially attenuates hippocampal MMP-9 activation and improves cognitive deficits in streptozotocin-induced diabetic rats. Behavioural Brain Research, 2013, 238, 44-47.	1.2	23
94	Role of Inflammation and Its Mediators in Acute Ischemic Stroke. Journal of Cardiovascular Translational Research, 2013, 6, 834-851.	1.1	351
95	Carcinoembryonic Antigen–Related Cell Adhesion Molecule 1 Inhibits MMP-9–Mediated Blood–Brain–Barrier Breakdown in a Mouse Model for Ischemic Stroke. Circulation Research, 2013, 113, 1013-1022.	2.0	85
96	The protective effect of berberine against neuronal damage by inhibiting matrix metalloproteinase-9 and laminin degradation in experimental autoimmune encephalomyelitis. Neurological Research, 2013, 35, 360-368.	0.6	34
97	The Multifaceted Responses of Primary Human Astrocytes and Brain Microvascular Endothelial Cells to the Lyme Disease Spirochete, Borrelia Burgdorferi. ASN Neuro, 2013, 5, AN20130010.	1.5	22
98	At low doses ethanol maintains blood–brain barrier (BBB) integrity after hypoxia and reoxygenation: a brain slice study. Neurological Research, 2013, 35, 790-797.	0.6	21
99	Ultra-Sensitive Molecular MRI of Vascular Cell Adhesion Molecule-1 Reveals a Dynamic Inflammatory Penumbra After Strokes. Stroke, 2013, 44, 1988-1996.	1.0	92
100	Magnetic Resonance Imaging Reveals Therapeutic Effects of Interferon-Beta on Cytokine-Induced Reactivation of Rat Model of Multiple Sclerosis. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 744-753.	2.4	14
101	Agricultural Exposures and Stroke Mortality in the Agricultural Health Study. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2013, 76, 798-814.	1.1	11
102	Matrix Metalloproteinases and Blood-Brain Barrier Disruption in Acute Ischemic Stroke. Frontiers in Neurology, 2013, 4, 32.	1.1	292
103	3,6′â€dithiothalidomide improves experimental stroke outcome by suppressing neuroinflammation. Journal of Neuroscience Research, 2013, 91, 671-680.	1.3	38
104	RNA in blood is altered prior to hemorrhagic transformation in ischemic stroke. Annals of Neurology, 2013, 74, 232-240.	2.8	47
105	Blood–Brain Barrier and Stroke. Topics in Medicinal Chemistry, 2013, , 91-116.	0.4	2
106	Inhibition of Calcium/Calmodulin-Dependent Protein Kinase Kinase β and Calcium/Calmodulin-Dependent Protein Kinase IV Is Detrimental in Cerebral Ischemia. Stroke, 2013, 44, 2559-2566.	1.0	57
107	The role of inflammation and interleukin-1 in acute cerebrovascular disease. Journal of Inflammation Research, 2013, 6, 121.	1.6	41
108	Combined Therapy of Iron Chelator and Antioxidant Completely Restores Brain Dysfunction Induced by Iron Toxicity. PLoS ONE, 2014, 9, e85115.	1.1	84

#	ARTICLE	IF	CITATIONS
109	Antigen-specific immune reactions to ischemic stroke. Frontiers in Cellular Neuroscience, 2014, 8, 278.	1.8	54
110	The Use of ADSCs as a Treatment for Chronic Stroke. Cell Transplantation, 2014, 23, 541-547.	1.2	29
111	Systemic Inflammation Impairs Tissue Reperfusion Through Endothelin-Dependent Mechanisms in Cerebral Ischemia. Stroke, 2014, 45, 3412-3419.	1.0	42
112	Inhibition of matrix metalloproteinase-2 and 9 by Piroxicam confer neuroprotection in cerebral ischemia: An in silico evaluation of the hypothesis. Medical Hypotheses, 2014, 83, 697-701.	0.8	27
113	Non-muscle Mlck is required for β-catenin- and FoxO1-dependent downregulation of Cldn5 in IL-1β-mediated barrier dysfunction in brain endothelial cells. Journal of Cell Science, 2014, 127, 1840-1853.	1.2	59
114	Exacerbation of ischemic brain injury in hypercholesterolemic mice is associated with pronounced changes in peripheral and cerebral immune responses. Neurobiology of Disease, 2014, 62, 456-468.	2.1	46
115	Neurogenesis in neurological and psychiatric diseases and brain injury: From bench to bedside. Progress in Neurobiology, 2014, 115, 116-137.	2.8	69
116	Infection and injury of human astrocytes by tick-borne encephalitis virus. Journal of General Virology, 2014, 95, 2411-2426.	1.3	91
117	The Emerging Role of Autoimmunity in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/cfs). Molecular Neurobiology, 2014, 49, 741-756.	1.9	87
118	Current preclinical studies on neuroinflammation and changes in blood–brain barrier integrity by MDMA and methamphetamine. Neuropharmacology, 2014, 87, 125-134.	2.0	36
119	Long-term functional recovery and compensation after cerebral ischemia in rats. Behavioural Brain Research, 2014, 270, 18-28.	1.2	34
120	Barrier mechanisms in neonatal stroke. Frontiers in Neuroscience, 2014, 8, 359.	1.4	37
121	Interleukinâ€1 as a pharmacological target in acute brain injury. Experimental Physiology, 2015, 100, 1488-1494.	0.9	26
122	Inflammation in chronic obstructive pulmonary disease and its role in cardiovascular disease and lung cancer. Clinical and Translational Medicine, 2015, 4, 68.	1.7	187
123	Tuscan black kale sprout extract bioactivated with myrosinase: a novel natural product for neuroprotection by inflammatory and oxidative response during cerebral ischemia/reperfusion injury in rat. BMC Complementary and Alternative Medicine, 2015, 15, 397.	3.7	15
124	Neutrophil Gelatinase-Associated Lipocalin and Matrix Metalloproteinase-9 as Potential Biomarkers for Stroke: A Pilot Study. Journal of Neurology & Neurophysiology, 2015, 06, .	0.1	3
125	Systemic Inflammation and the Brain: Novel Roles of Genetic, Molecular, and Environmental Cues as Drivers of Neurodegeneration. Frontiers in Cellular Neuroscience, 2015, 9, 28.	1.8	248
126	Impact of methamphetamine on infection and immunity. Frontiers in Neuroscience, 2014, 8, 445.	1.4	80

#	Article	IF	CITATIONS
127	Blood-brain barrier dysfunction in disorders of the developing brain. Frontiers in Neuroscience, 2015, 9, 40.	1.4	119
128	Vitamin D Prevents Hypoxia/Reoxygenation-Induced Blood-Brain Barrier Disruption via Vitamin D Receptor-Mediated NF-kB Signaling Pathways. PLoS ONE, 2015, 10, e0122821.	1.1	105
129	Hypoxia-controlled matrix metalloproteinase-9 hyperexpression promotes behavioral recovery after ischemia. Neuroscience Bulletin, 2015, 31, 550-560.	1.5	23
130	Inhibition of TNF-α protects in vitro brain barrier from ischaemic damage. Molecular and Cellular Neurosciences, 2015, 69, 65-79.	1.0	36
131	Mast Cells Promote Blood Brain Barrier Breakdown and Neutrophil Infiltration in a Mouse Model of Focal Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 638-647.	2.4	71
132	A Novel SPECT-Based Approach Reveals Early Mechanisms of Central and Peripheral Inflammation after Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1921-1929.	2.4	29
133	Astrocytes Are Primed by Chronic Neurodegeneration to Produce Exaggerated Chemokine and Cell Infiltration Responses to Acute Stimulation with the Cytokines IL-1β and TNF-α. Journal of Neuroscience, 2015, 35, 8411-8422.	1.7	140
134	A possible molecular mechanism of hearing loss during cerebral ischemia in mice. Canadian Journal of Physiology and Pharmacology, 2015, 93, 505-516.	0.7	11
135	Systemic inflammation as a therapeutic target in acute ischemic stroke. Expert Review of Neurotherapeutics, 2015, 15, 523-531.	1.4	134
136	Neuroprotective effect of the hairy root extract of Angelica gigas NAKAI on transient focal cerebral ischemia in rats through the regulation of angiogenesis. BMC Complementary and Alternative Medicine, 2015, 15, 101.	3.7	37
137	Attenuation of acute stroke injury in rat brain by minocycline promotes blood–brain barrier remodeling and alternative microglia/macrophage activation during recovery. Journal of Neuroinflammation, 2015, 12, 26.	3.1	197
138	Targeting Neutrophils in Ischemic Stroke: Translational Insights from Experimental Studies. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 888-901.	2.4	405
139	Partially purified components of Uncaria sinensis attenuate blood brain barrier disruption after ischemic brain injury in mice. BMC Complementary and Alternative Medicine, 2015, 15, 157.	3.7	10
140	17β-Estradiol Ameliorates Tight Junction Disruption via Repression of MMP Transcription. Molecular Endocrinology, 2015, 29, 1347-1361.	3.7	45
141	Matrix Metalloproteinase-12 Induces Blood–Brain Barrier Damage After Focal Cerebral Ischemia. Stroke, 2015, 46, 3523-3531.	1.0	63
142	Thinking outside the brain for cognitive improvement: Is peripheral immunomodulation on the way?. Neuropharmacology, 2015, 96, 94-104.	2.0	27
143	Calcium/calmodulinâ€dependent protein kinase kinase β is neuroprotective in stroke in aged mice. European Journal of Neuroscience, 2016, 44, 2139-2146.	1.2	16
144	Blood brain barrier breakdown was found in non-infarcted area after 2-h MCAO. Journal of the Neurological Sciences, 2016, 363, 63-68.	0.3	19

#	Article	IF	CITATIONS
145	COPD and stroke: are systemic inflammation and oxidative stress the missing links?. Clinical Science, 2016, 130, 1039-1050.	1.8	138
146	Non-Neuronal Mechanisms of Brain Damage and Repair After Stroke. Springer Series in Translational Stroke Research, 2016, , .	0.1	1
147	Antigen Presentation After Stroke. Neurotherapeutics, 2016, 13, 719-728.	2.1	29
148	Interleukin-1 in Stroke. Stroke, 2016, 47, 2160-2167.	1.0	104
149	Systemic inflammation affects reperfusion following transient cerebral ischaemia. Experimental Neurology, 2016, 277, 252-260.	2.0	23
150	The extracellular matrix protein laminin-10 promotes blood–brain barrier repair after hypoxia and inflammation in vitro. Journal of Neuroinflammation, 2016, 13, 25.	3.1	54
151	Omega-3 polyunsaturated fatty acids mitigate blood–brain barrier disruption after hypoxic–ischemic brain injury. Neurobiology of Disease, 2016, 91, 37-46.	2.1	70
152	Nitric Oxide Interacts with Caveolin-1 to Facilitate Autophagy-Lysosome-Mediated Claudin-5 Degradation in Oxygen-Glucose Deprivation-Treated Endothelial Cells. Molecular Neurobiology, 2016, 53, 5935-5947.	1.9	64
153	Clematichinenoside protects blood brain barrier against ischemic stroke superimposed on systemic inflammatory challenges through up-regulating A20. Brain, Behavior, and Immunity, 2016, 51, 56-69.	2.0	42
154	Leukemia Inhibitory Factor Protects Neurons from Ischemic Damage via Upregulation of Superoxide Dismutase 3. Molecular Neurobiology, 2017, 54, 608-622.	1.9	32
155	Polarization of Microglia/Macrophages in Brain Ischaemia: Relevance for Stroke Therapy. Springer Series in Translational Stroke Research, 2017, , 303-328.	0.1	0
156	PDZRN3 destabilizes endothelial cell-cell junctions through a PKCζ-containing polarity complex to increase vascular permeability. Science Signaling, 2017, 10, .	1.6	35
157	Intranasal Pretreatment with <i>Z</i> -Ligustilide, the Main Volatile Component of <i>Rhizoma Chuanxiong</i> , Confers Prophylaxis against Cerebral Ischemia via Nrf2 and HSP70 Signaling Pathways. Journal of Agricultural and Food Chemistry, 2017, 65, 1533-1542.	2.4	43
158	Hypoxia Response Element-Regulated MMP-9 Promotes Neurological Recovery via Glial Scar Degradation and Angiogenesis in Delayed Stroke. Molecular Therapy, 2017, 25, 1448-1459.	3.7	59
159	Cell-Derived Microparticles/Exosomes in Neuroinflammation. , 2017, , 139-159.		1
160	Therapeutic effects of anti-HMGB1 monoclonal antibody on pilocarpine-induced status epilepticus in mice. Scientific Reports, 2017, 7, 1179.	1.6	91
161	Blood-Brain Barrier Protection as a Therapeutic Strategy for Acute Ischemic Stroke. AAPS Journal, 2017, 19, 957-972.	2.2	130
162	The Interplay of MicroRNAs in the Inflammatory Mechanisms Following Ischemic Stroke. Journal of Neuropathology and Experimental Neurology, 2017, 76, 548-561.	0.9	61

#	Article	IF	CITATIONS
163	Effect of magnolol on cerebral injury and blood brain barrier dysfunction induced by ischemia-reperfusion in vivo and in vitro. Metabolic Brain Disease, 2017, 32, 1109-1118.	1.4	34
164	Dexamethasone suppresses JMJD3 gene activation via a putative negative glucocorticoid response element and maintains integrity of tight junctions in brain microvascular endothelial cells. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 3695-3708.	2.4	28
165	Increased Plasma Matrix Metalloproteinase-9 Levels Contribute to Intracerebral Hemorrhage during Thrombolysis after Concomitant Stroke and Influenza Infection. Cerebrovascular Diseases Extra, 2017, 6, 50-59.	0.5	12
166	The effect of systemic inflammation on human brain barrier function. Brain, Behavior, and Immunity, 2017, 62, 35-40.	2.0	82
167	Blood-Brain Barrier and Cognitive Function. Springer Series in Cognitive and Neural Systems, 2017, , 713-740.	0.1	0
169	Role of Matrix Metalloproteinases in Brain Edema. , 2017, , 199-215.		2
170	Selective drug delivery approaches to lesioned brain through blood brain barrier disruption. Expert Opinion on Drug Delivery, 2018, 15, 335-349.	2.4	21
171	Immune responses in stroke: how the immune system contributes to damage and healing after stroke and how this knowledge could be translated to better cures?. Immunology, 2018, 154, 363-376.	2.0	117
172	Targeting RNS/caveolin-1/MMP signaling cascades to protect against cerebral ischemia-reperfusion injuries: potential application for drug discovery. Acta Pharmacologica Sinica, 2018, 39, 669-682.	2.8	53
173	Sustained (S)-roscovitine delivery promotes neuroprotection associated with functional recovery and decrease in brain edema in a randomized blind focal cerebral ischemia study. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1070-1084.	2.4	11
174	Infections in neuromyelitis optica spectrum disorder. Journal of Clinical Neuroscience, 2018, 47, 14-19.	0.8	29
175	Blood-brain barrier dysfunction and recovery after ischemic stroke. Progress in Neurobiology, 2018, 163-164, 144-171.	2.8	565
176	High serum sICAM-1 is correlated with cerebral microbleeds and hemorrhagic transformation in ischemic stroke patients. British Journal of Neurosurgery, 2018, 32, 631-636.	0.4	18
177	Executive (dys)function after stroke: special considerations for behavioral pharmacology. Behavioural Pharmacology, 2018, 29, 638-653.	0.8	31
178	Inflammatory cytokines and cells are potential markers for patients with cerebral apoplexy in intensive care unit. Experimental and Therapeutic Medicine, 2018, 16, 1014-1020.	0.8	9
179	The spleen as a neuroimmune interface after spinal cord injury. Journal of Neuroimmunology, 2018, 321, 1-11.	1.1	53
180	Chronic Obstructive Pulmonary Disease and Stroke. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2018, 15, 405-413.	0.7	35
181	TLR2 Ligand Pam3CSK4 Regulates MMP-2/9 Expression by MAPK/NF-ήB Signaling Pathways in Primary Brain Microvascular Endothelial Cells. Neurochemical Research, 2018, 43, 1897-1904.	1.6	24

#	Article	IF	Citations
182	Association between matrix metalloproteinase family gene polymorphisms and risk of ischemic stroke: A systematic review and meta-analysis of 29 studies. Gene, 2018, 672, 180-194.	1.0	36
183	Old Dog New Tricks; Revisiting How Stroke Modulates the Systemic Immune Landscape. Frontiers in Neurology, 2019, 10, 718.	1.1	29
184	Selective Liposomal Transport through Blood Brain Barrier Disruption in Ischemic Stroke Reveals Two Distinct Therapeutic Opportunities. ACS Nano, 2019, 13, 12470-12486.	7.3	66
185	Lipopolysaccharide induces neuroglia activation and NF-κB activation in cerebral cortex of adult mice. Laboratory Animal Research, 2019, 35, 19.	1.1	31
186	The isolation and molecular characterization of cerebral microvessels. Nature Protocols, 2019, 14, 3059-3081.	5.5	71
187	MMPs and ADAMs in neurological infectious diseases and multiple sclerosis. Cellular and Molecular Life Sciences, 2019, 76, 3097-3116.	2.4	46
188	Neurocognitive Disorders in Heart Failure: Novel Pathophysiological Mechanisms Underpinning Memory Loss and Learning Impairment. Molecular Neurobiology, 2019, 56, 8035-8051.	1.9	30
189	Cilostazol ameliorates ischemia/reperfusionâ€induced tight junction disruption in brain endothelial cells by inhibiting endoplasmic reticulum stress. FASEB Journal, 2019, 33, 10152-10164.	0.2	29
190	Cryptotanshinone Attenuates Oxygen-Glucose Deprivation/ Recovery-Induced Injury in an in vitro Model of Neurovascular Unit. Frontiers in Neurology, 2019, 10, 381.	1.1	18
191	Combining Ceftriaxone with Doxycycline and Daptomycin Reduces Mortality, Neuroinflammation, Brain Damage, and Hearing Loss in Infant Rat Pneumococcal Meningitis. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	17
192	Cerebrovascular inflammation: A critical trigger for neurovascular injury?. Neurochemistry International, 2019, 126, 165-177.	1.9	27
193	Role of the L-PGDS-PGD2-DP1 receptor axis in sleep regulation and neurologic outcomes. Sleep, 2019, 42, .	0.6	25
194	NLRP3 inflammasome in ischemic stroke: As possible therapeutic target. International Journal of Stroke, 2019, 14, 574-591.	2.9	101
195	Stroke and death risk in ventricular assist device patients varies by ISHLT infection category: An INTERMACS analysis. Journal of Heart and Lung Transplantation, 2019, 38, 721-730.	0.3	32
196	Basement membrane and stroke. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 3-19.	2.4	46
197	Roles of blood-brain barrier integrins and extracellular matrix in stroke. American Journal of Physiology - Cell Physiology, 2019, 316, C252-C263.	2.1	51
198	Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. American Journal of Physiology - Cell Physiology, 2019, 316, C135-C153.	2.1	462
199	Human stem cells transplanted into the rat stroke brain migrate to the spleen via lymphatic and inflammation pathways. Haematologica, 2019, 104, 1062-1073.	1.7	33

#	Article	IF	CITATIONS
200	Peroxisome Proliferator-Activated Receptor γ Agonist Rosiglitazone Protects Blood–Brain Barrier Integrity Following Diffuse Axonal Injury by Decreasing the Levels of Inflammatory Mediators Through a Caveolin-1-Dependent Pathway. Inflammation, 2019, 42, 841-856.	1.7	21
201	Vitamin D deficiency increases blood-brain barrier dysfunction after ischemic stroke in male rats. Experimental Neurology, 2019, 312, 63-71.	2.0	34
202	AKT2 maintains brain endothelial claudin-5 expression and selective activation of IR/AKT2/FOXO1-signaling reverses barrier dysfunction. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 374-391.	2.4	24
203	Ligature-induced periodontitis induces systemic inflammation but does not alter acute outcome after stroke in mice. International Journal of Stroke, 2020, 15, 175-187.	2.9	18
204	Toll-like Receptor 4 Signaling and Downstream Neutrophilic Inflammation Mediate Endotoxemia-Enhanced Blood–Labyrinth Barrier Trafficking. Otology and Neurotology, 2020, 41, 123-132.	0.7	12
205	Immunological mechanisms in poststroke dementia. Current Opinion in Neurology, 2020, 33, 30-36.	1.8	21
206	XQ-1H regulates Wnt/GSK3β/β-catenin pathway and ameliorates the integrity of blood brain barrier in mice with acute ischemic stroke. Brain Research Bulletin, 2020, 164, 269-288.	1.4	15
207	PPARÎ ³ Activation-Mediated Egr-1 Inhibition Benefits Against Brain Injury in an Experimental Ischaemic Stroke Model. Journal of Stroke and Cerebrovascular Diseases, 2020, 29, 105255.	0.7	5
208	Dynamic Changes in the Gut Microbiome at the Acute Stage of Ischemic Stroke in a Pig Model. Frontiers in Neuroscience, 2020, 14, 587986.	1.4	29
209	Serum IgG titers to periodontal pathogens predict 3-month outcome in ischemic stroke patients. PLoS ONE, 2020, 15, e0237185.	1.1	7
210	Cytomegalovirus Infection in an Adult Patient With Neuromyelitis Optica and Acute Hemorrhagic Rectal Ulcer: Case Report and Literature Review. Frontiers in Immunology, 2020, 11, 1634.	2.2	4
211	Blood-Brain Barrier: More Contributor to Disruption of Central Nervous System Homeostasis Than Victim in Neurological Disorders. Frontiers in Neuroscience, 2020, 14, 764.	1.4	62
212	Structure, Function, and Regulation of the Blood-Brain Barrier Tight Junction in Central Nervous System Disorders. Frontiers in Physiology, 2020, 11, 914.	1.3	184
213	NLRP3 inflammasomes are involved in the progression of postoperative cognitive dysfunction: from mechanism to treatment. Neurosurgical Review, 2021, 44, 1815-1831.	1.2	15
214	Stem Cell Therapy for Neurodegenerative Diseases: How Do Stem Cells Bypass the Blood-Brain Barrier and Home to the Brain?. Stem Cells International, 2020, 2020, 1-8.	1.2	16
215	Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nature Communications, 2020, 11, 2488.	5.8	234
216	Mechanisms of Blood–Brain Barrier Dysfunction in Traumatic Brain Injury. International Journal of Molecular Sciences, 2020, 21, 3344.	1.8	113
217	Inflammation in Neurological Disorders: The Thin Boundary Between Brain and Periphery. Antioxidants and Redox Signaling, 2020, 33, 191-210.	2.5	68

#	Article	IF	CITATIONS
218	The Local and Peripheral Immune Responses to Stroke: Implications for Therapeutic Development. Neurotherapeutics, 2020, 17, 414-435.	2.1	48
219	Basement Membrane Changes in Ischemic Stroke. Stroke, 2020, 51, 1344-1352.	1.0	30
220	Letter by Gao and Shao Regarding Article, "MicroRNA-126-3p/-5p Overexpression Attenuates Blood-Brain Barrier Disruption in a Mouse Model of Middle Cerebral Artery Occlusion― Stroke, 2020, 51, e66.	1.0	0
221	Mechanisms in blood-brain barrier opening and metabolism-challenged cerebrovascular ischemia with emphasis on ischemic stroke. Metabolic Brain Disease, 2020, 35, 851-868.	1.4	42
222	Acute cerebrovascular effects in juvenile coho salmon exposed to roadway runoff. Canadian Journal of Fisheries and Aquatic Sciences, 2021, 78, 103-109.	0.7	27
223	Highâ€fat diet exacerbates leadâ€induced blood–brain barrier disruption by disrupting tight junction integrity. Environmental Toxicology, 2021, 36, 1412-1421.	2.1	17
224	Microgliaâ€leucocyte axis in cerebral ischaemia and inflammation in the developing brain. Acta Physiologica, 2021, 233, e13674.	1.8	16
225	Inflammation: A Mediator Between Hypertension and Neurodegenerative Diseases. American Journal of Hypertension, 2021, 34, 1014-1030.	1.0	13
226	Prognostic Value of Neutrophil-to-Lymphocyte Ratio in Stroke: A Systematic Review and Meta-Analysis. Frontiers in Neurology, 2021, 12, 686983.	1.1	35
227	Brain Edema in Neurological Diseases. Advances in Neurobiology, 2011, , 125-168.	1.3	2
228	Modeling Risk Factors and Confounding Effects in Stroke. Neuromethods, 2010, , 93-119.	0.2	2
229	Therapeutic approaches to vascular protection in ischemic stroke. Acta Medica Okayama, 2011, 65, 219-23.	0.1	19
230	Relationship of gelatinases-tight junction proteins and blood-brain barrier permeability in the early stage of cerebral ischemia and reperfusion. Neural Regeneration Research, 2012, 7, 2405-12.	1.6	9
231	Fecal Transplantation from db/db Mice Treated with Sodium Butyrate Attenuates Ischemic Stroke Injury. Microbiology Spectrum, 2021, 9, e0004221.	1.2	32
233	Inflammatory Biomarkers of Brain Injury and Disease. , 2014, , 304-339.		0
234	Leukocyte Entry into the Brain. , 2015, , 356-403.		0
235	Modeling Risk Factors and Confounding Effects in Stroke. Neuromethods, 2016, , 93-122.	0.2	1
236	Roles of Neutrophils in Stroke. Springer Series in Translational Stroke Research, 2016, , 273-301.	0.1	0

#	Article	IF	CITATIONS
237	Aspects of Peptidylarginine Deiminase Regulation that May Predispose to Autoreactivity Against Citrullinated Proteins. , 2017, , 11-32.		0
241	Heat shock protein 90 inhibition by 17-Dimethylaminoethylamino-17-demethoxygeldanamycin protects blood-brain barrier integrity in cerebral ischemic stroke. American Journal of Translational Research (discontinued), 2015, 7, 1826-37.	0.0	24
242	Bone marrow derived mesenchymal stem cells alleviated brain injury via down-regulation of interleukin-1β in focal cerebral ischemic rats. American Journal of Translational Research (discontinued), 2016, 8, 1541-50.	0.0	5
243	Post-ischemic treatment with azithromycin protects ganglion cells against retinal ischemia/reperfusion injury in the rat. Molecular Vision, 2017, 23, 911-921.	1.1	16
244	Reperfusion Injury after ischemic Stroke Study (RISKS): single-centre (Florence, Italy), prospective observational protocol study. BMJ Open, 2018, 8, e021183.	0.8	5
245	The NEDD8-activating enzyme inhibitor MLN4924 reduces ischemic brain injury in mice. Proceedings of the United States of America, 2022, 119, .	3.3	19
246	HMGB1-Mediated Neutrophil Extracellular Trap Formation Exacerbates Intestinal Ischemia/Reperfusion-Induced Acute Lung Injury. Journal of Immunology, 2022, 208, 968-978.	0.4	40
247	Do Periodontal Pathogens or Associated Virulence Factors Have a Deleterious Effect on the Blood-Brain Barrier, Contributing to Alzheimer's Disease?. Journal of Alzheimer's Disease, 2022, 85, 957-973.	1.2	5
248	Reperfusion Injury after ischemic Stroke Study (RISKS): single-centre (Florence, Italy), prospective observational protocol study. BMJ Open, 2018, 8, e021183.	0.8	13
249	Relationships Among Gut Microbiota, Ischemic Stroke and Its Risk Factors: Based on Research Evidence. International Journal of General Medicine, 0, Volume 15, 2003-2023.	0.8	1
250	Caspase-1: A Promising Target for Preserving Blood–Brain Barrier Integrity in Acute Stroke. Frontiers in Molecular Neuroscience, 2022, 15, 856372.	1.4	9
251	Membrane-Free Stem Cell Extract Enhances Blood–Brain Barrier Integrity by Suppressing NF-κB-Mediated Activation of NLRP3 Inflammasome in Mice with Ischemic Stroke. Life, 2022, 12, 503.	1.1	3
252	Advanced drug delivery system against ischemic stroke. Journal of Controlled Release, 2022, 344, 173-201.	4.8	23
253	Biological Implications of a Stroke Therapy Based in Neuroglobin Hyaluronate Nanoparticles. Neuroprotective Role and Molecular Bases. International Journal of Molecular Sciences, 2022, 23, 247.	1.8	3
254	Impact of Electronic Cigarette Vaping on Cerebral Ischemia: What We Know So Far. Translational Stroke Research, 2022, 13, 923-938.	2.3	6
258	The Immunity Protection of Central Nervous System Induced by Pseudorabies Virus DelgI/gE/TK in Mice. Frontiers in Microbiology, 2022, 13, 862907.	1.5	7
259	Shared Inflammatory Pathology of Stroke and COVID-19. International Journal of Molecular Sciences, 2022, 23, 5150.	1.8	6
260	Laser ablation: Heating up the anti-tumor response in the intracranial compartment. Advanced Drug Delivery Reviews, 2022, 185, 114311.	6.6	20

#	Article	IF	CITATIONS
261	The Construction and Analysis of Immune Infiltration and Competing Endogenous RNA Network in Acute Ischemic Stroke. Frontiers in Aging Neuroscience, 2022, 14, .	1.7	6
262	Laminin as a Biomarker of Blood–Brain Barrier Disruption under Neuroinflammation: A Systematic Review. International Journal of Molecular Sciences, 2022, 23, 6788.	1.8	8
263	New Strategies for Stroke Therapy: Nanoencapsulated Neuroglobin. Pharmaceutics, 2022, 14, 1737.	2.0	6
264	Infections and Tic Disorders. , 2022, , 146-168.		0
265	Researches on cognitive sequelae of burn injury: Current status and advances. Frontiers in Neuroscience, 0, 16, .	1.4	3
266	Brain Maturation as a Fundamental Factor in Immune-Neurovascular Interactions in Stroke. Translational Stroke Research, 2024, 15, 69-86.	2.3	1
267	Pathological changes in the brain after peripheral burns. Burns and Trauma, 2023, 11, .	2.3	3
268	Icariin protects cerebral neural cells from ischemia‑reperfusion injury in an <i>inÂvitro</i> model by lowering ROS production and intracellular calcium concentration. Experimental and Therapeutic Medicine, 2023, 25, .	0.8	1
269	Extracellular matrix proteins in construction and function of in vitro blood-brain barrier models. Frontiers in Chemical Engineering, 0, 5, .	1.3	2
270	PD-L1 promotes GSDMD-mediated NET release by maintaining the transcriptional activity of Stat3 in sepsis-associated encephalopathy. International Journal of Biological Sciences, 2023, 19, 1413-1429.	2.6	2