Characterizing White Matter Damage in Rat Spinal Coro Histology

Journal of Neurotrauma 25, 653-676 DOI: 10.1089/neu.2007.0462

Citation Report

#	Article	IF	CITATIONS
1	Glial Response and Myelin Clearance in Areas of Wallerian Degeneration after Spinal Cord Hemisection in the Monkey <i>Macaca Fascicularis</i> . Journal of Neurotrauma, 2009, 26, 2083-2096.	1.7	19
2	Diffusion Tensor Magnetic Resonance Imaging of Wallerian Degeneration in Rat Spinal Cord after Dorsal Root Axotomy. Journal of Neuroscience, 2009, 29, 3160-3171.	1.7	167
3	Neurodegeneration in thiamine deficient rats—A longitudinal MRI study. Brain Research, 2010, 1308, 176-184.	1.1	22
4	<i>q</i> â€space and conventional diffusion imaging of axon and myelin damage in the rat spinal cord after axotomy. Magnetic Resonance in Medicine, 2010, 63, 1323-1335.	1.9	43
5	<i>In Vivo</i> Longitudinal MRI and Behavioral Studies in Experimental Spinal Cord Injury. Journal of Neurotrauma, 2010, 27, 1753-1767.	1.7	49
6	Recovery after spinal cord relapse in multiple sclerosis is predicted by radial diffusivity. Multiple Sclerosis Journal, 2010, 16, 1193-1202.	1.4	63
7	Diffusion tensor imaging of white matter pathology in the mouse brain. Imaging in Medicine, 2010, 2, 623-632.	0.0	14
8	Cerebrospinal Fluid Myelin Basic Protein as a Prognostic Biomarker in Dogs with Thoracolumbar Intervertebral Disk Herniation. Journal of Veterinary Internal Medicine, 2010, 24, 890-896.	0.6	36
9	Neurite density from magnetic resonance diffusion measurements at ultrahigh field: Comparison with light microscopy and electron microscopy. NeuroImage, 2010, 49, 205-216.	2.1	245
10	Early Events of Secondary Degeneration after Partial Optic Nerve Transection: An Immunohistochemical Study. Journal of Neurotrauma, 2010, 27, 439-452.	1.7	98
11	Effect of Vascular Endothelial Growth Factor Treatment in Experimental Traumatic Spinal Cord Injury: <i>In Vivo</i> Longitudinal Assessment. Journal of Neurotrauma, 2011, 28, 565-578.	1.7	27
12	Comparative study of the sensitivity of ADC value and T2 relaxation time for early detection of Wallerian degeneration. European Journal of Radiology, 2011, 79, 118-123.	1.2	6
13	Correlation of MR Diffusion Tensor Imaging Parameters with ASIA Motor Scores in Hemorrhagic and Nonhemorrhagic Acute Spinal Cord Injury. Journal of Neurotrauma, 2011, 28, 1881-1892.	1.7	105
14	Axonal integrity predicts cortical reorganisation following cervical injury. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 629-637.	0.9	65
15	Magnetic Resonance Diffusion Tensor Imaging in Patients With Cervical Spondylotic Spinal Cord Compression. Spine, 2012, 37, 48-56.	1.0	94
16	Scaffolds to promote spinal cord regeneration. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 109, 575-594.	1.0	56
17	Myelin water imaging reflects clinical variability in multiple sclerosis. NeuroImage, 2012, 60, 263-270.	2.1	110
18	Rapid whole cerebrum myelin water imaging using a 3D GRASE sequence. NeuroImage, 2012, 63, 533-539.	2.1	222

#	Article	IF	Citations
19	Conditions for quantitative evaluation of injured spinal cord by in vivo diffusion tensor imaging and tractography: Preclinical longitudinal study in common marmosets. NeuroImage, 2012, 63, 1841-1853.	2.1	62
20	Cervical spinal cord injection of epidural corticosteroids: Comprehensive longitudinal study including multiparametric magnetic resonance imaging. Pain, 2012, 153, 2292-2299.	2.0	20
21	The Translational Role of Diffusion Tensor Image Analysis in Animal Models of Developmental Pathologies. Developmental Neuroscience, 2012, 34, 5-19.	1.0	21
22	Detection of endogenous iron deposits in the injured mouse spinal cord through highâ€resolution <i>ex vivo</i> and <i>in vivo</i> MRI. NMR in Biomedicine, 2013, 26, 141-150.	1.6	22
23	<i>Ex Vivo</i> Diffusion Tensor Imaging of Spinal Cord Injury in Rats of Varying Degrees of Severity. Journal of Neurotrauma, 2013, 30, 1577-1586.	1.7	42
24	Acute Delivery of EphA4-Fc Improves Functional Recovery after Contusive Spinal Cord Injury in Rats. Journal of Neurotrauma, 2013, 30, 1023-1034.	1.7	35
25	A Novel Porcine Model of Traumatic Thoracic Spinal Cord Injury. Journal of Neurotrauma, 2013, 30, 142-159.	1.7	123
26	Longitudinal assessment of white matter pathology in the injured mouse spinal cord through ultra-high field (16.4T) in vivo diffusion tensor imaging. NeuroImage, 2013, 82, 574-585.	2.1	51
27	Myelin loss and oligodendrocyte pathology in white matter tracts following traumatic brain injury in the rat. European Journal of Neuroscience, 2013, 38, 2153-2165.	1.2	119
28	The acute phase of Wallerian degeneration: Longitudinal diffusion tensor imaging of the fornix following temporal lobe surgery. Neurolmage, 2013, 74, 128-139.	2.1	52
29	Optimal time window of myelotomy in rats with acute traumatic spinal cord injury: a preliminary study. Spinal Cord, 2013, 51, 673-678.	0.9	17
30	Effects of Vertebral Column Distraction on Transcranial Electrical Stimulation-Motor Evoked Potential and Histology of the Spinal Cord in a Porcine Model. Journal of Bone and Joint Surgery - Series A, 2013, 95, 835-842.	1.4	17
31	Diffusion tensor imaging of the spinal cord: a review. Coluna/ Columna, 2013, 12, 64-69.	0.0	9
32	T2 Relaxation. , 2014, , 181-206.		0
33	Characterization of a Novel, Magnetic Resonance Imaging-Compatible Rodent Model Spinal Cord Injury Device. Journal of Biomechanical Engineering, 2014, 136, 095001.	0.6	7
34	In vivo longitudinal Myelin Water Imaging in rat spinal cord following dorsal column transection injury. Magnetic Resonance Imaging, 2014, 32, 250-258.	1.0	25
35	The current state-of-the-art of spinal cord imaging: Applications. NeuroImage, 2014, 84, 1082-1093.	2.1	169
36	A non-surgical model of cervical spinal cord injury induced with focused ultrasound and microbubbles. Journal of Neuroscience Methods, 2014, 235, 92-100.	1.3	18

CITATION REPORT

ARTICLE IF CITATIONS # Diffusion Tensor Imaging as a Predictor of Locomotor Function after Experimental Spinal Cord Injury 37 1.7 62 and Recovery. Journal of Neurotrauma, 2014, 31, 1362-1373. Diffusion Tensor Imaging of the Spinal Cord. Neurosurgery, 2014, 74, 1-8. Brain and cord myelin water imaging: a progressive multiple sclerosis biomarker. NeuroImage: 39 1.4 44 Clinical, 2015, 9, 574-580. Quantitative MRI in a nonâ€surgical model of cervical spinal cord injury. NMR in Biomedicine, 2015, 28, 925-936. Serum Levels of Neurofilament-H are Elevated in Patients Suffering From Severe Burns. Journal of 41 0.2 5 Burn Care and Research, 2015, 36, 545-550. Corticospinal Tract Anatomy and Functional Connectivity of Primary Motor Cortex in Autism. Journal of the American Academy of Child and Adolescent Psychiatry, 2015, 54, 859-867. 0.3 Cornel Iridoid Glycoside Improves Locomotor Impairment and Decreases Spinal Cord Damage in Rats. 43 0.9 2 BioMed Research International, 2016, 2016, 1-12. Ameliorating Spinal Cord Injury in an Animal Model With Mechanical Tissue Resuscitation. 44 0.6 Neurosurgery, 2016, 78, 868-876. 45 Magnetic Resonance of Myelin Water: AnÂin vivo Marker for Myelin. Brain Plasticity, 2016, 2, 71-91. 1.9 205 Transcriptional Regulation of Brain-Derived Neurotrophic Factor (BDNF) by Methyl CpG Binding Protein 2 (MeCP2): a Novel Mechanism for Re-Myelination and/or Myelin Repair Involved in the Treatment of Multiple Sclerosis (MS). Molecular Neurobiology, 2016, 53, 1092-1107. Continuous distraction-induced delayed spinal cord injury on motor-evoked potentials and 47 0.9 16 histological changes of spinal cord in a porcine model. Spinal Cord, 2016, 54, 649-655. High-resolution myelin water imaging in post-mortem multiple sclerosis spinal cord: A case report. 1.4 Multiple Sclerosis Journal, 2016, 22, 1485-1489. Differential Histopathological and Behavioral Outcomes Eight Weeks after Rat Spinal Cord Injury by 49 1.7 48 Contusion, Dislocation, and Distraction Mechanisms. Journal of Neurotrauma, 2016, 33, 1667-1684. Serial Diffusion Tensor Imaging <i>In Vivo</i> Predicts Long-Term Functional Recovery and Histopathology in Rats following Different Severities of Spinal Cord Injury. Journal of Neurotrauma, 2016, 33, 917-928. 1.7 29 Quantifying the internal deformation of the rodent spinal cord during acute spinal cord injury – the validation of a method. Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19, 0.9 9 51 386-395. Consumption of seaweeds and the human brain. Journal of Applied Phycology, 2017, 29, 2377-2398. 54 Repeated mild traumatic brain injury in female rats increases lipid peroxidation in neurons. 53 0.7 23 Experimental Brain Research, 2017, 235, 2133-2149. Validating myelin water imaging with transmission electron microscopy in a rat spinal cord injury 54 2.1 model. NeuroImage, 2017, 153, 122-130.

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
55	Neuroprotection and secondary damage following spinal cord injury: concepts and methods. Neuroscience Letters, 2017, 652, 3-10.	1.0	78
56	Diffusion MRI of the spinal cord: from structural studies to pathology. NMR in Biomedicine, 2017, 30, e3592.	1.6	32
57	Implantation of 3D Constructs Embedded with Oral Mucosa-Derived Cells Induces Functional Recovery in Rats with Complete Spinal Cord Transection. Frontiers in Neuroscience, 2017, 11, 589.	1.4	29
58	Specific ion channels contribute to key elements of pathology during secondary degeneration following neurotrauma. BMC Neuroscience, 2017, 18, 62.	0.8	26
59	The Relationship between Lesion Severity Characterized by Diffusion Tensor Imaging and Motor Function in Chronic Canine Spinal Cord Injury. Journal of Neurotrauma, 2018, 35, 500-507.	1.7	24
60	Testing Pathological Variation of White Matter Tract in Adult Rats after Severe Spinal Cord Injury with MRI. BioMed Research International, 2018, 2018, 1-13.	0.9	10
61	High-Speed Fluoroscopy to Measure Dynamic Spinal Cord Deformation in an <i>In Vivo</i> Rat Model. Journal of Neurotrauma, 2018, 35, 2572-2580.	1.7	6
62	Postmortem diffusion MRI of the entire human spinal cord at microscopic resolution. NeuroImage: Clinical, 2018, 18, 963-971.	1.4	27
63	Axon Diameters and Myelin Content Modulate Microscopic Fractional Anisotropy at Short Diffusion Times in Fixed Rat Spinal Cord. Frontiers in Physics, 2018, 6, .	1.0	23
64	Quantitative Ex Vivo MRI Changes due to Progressive Formalin Fixation in Whole Human Brain Specimens: Longitudinal Characterization of Diffusion, Relaxometry, and Myelin Water Fraction Measurements at 3T. Frontiers in Medicine, 2018, 5, 31.	1.2	56
65	Guidelines for the conduct of clinical trials in spinal cord injury: Neuroimaging biomarkers. Spinal Cord, 2019, 57, 717-728.	0.9	40
66	Rapid myelin water imaging for the assessment of cervical spinal cord myelin damage. NeuroImage: Clinical, 2019, 23, 101896.	1.4	16
67	Stable gastric pentadecapeptide BPC 157 can improve the healing course of spinal cord injury and lead to functional recovery in rats. Journal of Orthopaedic Surgery and Research, 2019, 14, 199.	0.9	18
68	Dynamic response of microglia/macrophage polarization following demyelination in mice. Journal of Neuroinflammation, 2019, 16, 188.	3.1	33
69	Traumatic and nontraumatic spinal cord injury: pathological insights from neuroimaging. Nature Reviews Neurology, 2019, 15, 718-731.	4.9	125
70	The influence of brain iron on myelin water imaging. NeuroImage, 2019, 199, 545-552.	2.1	68
71	Diffusion tensor imaging shows mechanism-specific differences in injury pattern and progression in rat models of acute spinal cord injury. Neurolmage, 2019, 186, 43-55.	2.1	9
72	Longitudinal <i>In Vivo</i> Diffusion Magnetic Resonance Imaging Remote from the Lesion Site in Rat Spinal Cord Injury. Journal of Neurotrauma, 2019, 36, 1389-1398.	1.7	7

#	Article	IF	CITATIONS
73	Myelin Water Fraction and Intra/Extracellular Water Geometric Mean T ₂ Normative Atlases for the Cervical Spinal Cord from 3T MRI. Journal of Neuroimaging, 2020, 30, 50-57.	1.0	13
74	DECAES – DEcomposition and Component Analysis of Exponential Signals. Zeitschrift Fur Medizinische Physik, 2020, 30, 271-278.	0.6	17
75	Red-Light (670 nm) Therapy Reduces Mechanical Sensitivity and Neuronal Cell Death, and Alters Glial Responses after Spinal Cord Injury in Rats. Journal of Neurotrauma, 2020, 37, 2244-2260.	1.7	5
76	Influence of Duration of Injury on Diffusion Tensor Imaging in Acute Canine Spinal Cord Injury. Journal of Neurotrauma, 2020, 37, 2261-2267.	1.7	5
77	Numbers of Axons in Spared Neural Tissue Bridges But Not Their Widths or Areas Correlate With Functional Recovery in Spinal Cord-Injured Rats. Journal of Neuropathology and Experimental Neurology, 2020, 79, 1203-1217.	0.9	1
78	So You Want to Image Myelin Using MRI: An Overview and Practical Guide for Myelin Water Imaging. Journal of Magnetic Resonance Imaging, 2021, 53, 360-373.	1.9	60
79	Myelin quantification with MRI: A systematic review of accuracy and reproducibility. NeuroImage, 2021, 226, 117561.	2.1	67
80	Myelin water imaging depends on white matter fiber orientation in the human brain. Magnetic Resonance in Medicine, 2021, 85, 2221-2231.	1.9	35
81	Secondary Degeneration of White Matter After Focal Sensorimotor Cortical Ischemic Stroke in Rats. Frontiers in Neuroscience, 2020, 14, 611696.	1.4	6
82	Time-Course Changes of Extracellular Matrix Encoding Genes Expression Level in the Spinal Cord Following Contusion Injury—A Data-Driven Approach. International Journal of Molecular Sciences, 2021, 22, 1744.	1.8	5
83	Exploring the Contribution of Myelin Content in Normal Appearing White Matter to Cognitive Outcomes in Cerebral Small Vessel Disease. Journal of Alzheimer's Disease, 2021, 80, 91-101.	1.2	9
84	Can MRI measure myelin? Systematic review, qualitative assessment, and meta-analysis of studies validating microstructural imaging with myelin histology. NeuroImage, 2021, 230, 117744.	2.1	104
85	Baricitinib Ameliorates Experimental Autoimmune Encephalomyelitis by Modulating the Janus Kinase/Signal Transducer and Activator of Transcription Signaling Pathway. Frontiers in Immunology, 2021, 12, 650708.	2.2	13
86	Alcohol-fixed specimens for high-contrast post-mortem MRI. Forensic Imaging, 2021, 25, 200449.	0.4	2
87	Empty Sella Syndrome as a Window Into the Neuroprotective Effects of Prolactin. Frontiers in Medicine, 2021, 8, 680602.	1.2	3
88	Label-free assessment of myelin status using birefringence microscopy. Journal of Neuroscience Methods, 2021, 360, 109226.	1.3	7
89	Morphological changes in the sciatic nerve in experimental modeling of contusion injury of the spinal cord in rats. Hirurgia Pozvonochnika, 2021, 18, 36-42.	0.1	0
94	The relevance of Neuroimaging Findings to Physical Disability in Multiple Sclerosis. Noropsikiyatri Arsivi, 2018, 55, S31-S36.	0.2	3

CITATION REPORT

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
95	Delayed treatment of secondary degeneration following acute optic nerve transection using a combination of ion channel inhibitors. Neural Regeneration Research, 2017, 12, 307.	1.6	3
96	DTI and pathological changes in a rabbit model of radiation injury to the spinal cord after ¹²⁵ 1 radioactive seed implantation. Neural Regeneration Research, 2018, 13, 528.	1.6	3
97	An interactive meta-analysis of MRI biomarkers of myelin. ELife, 2020, 9, .	2.8	99
98	Morphological Assessments Following Spinal Cord Injury. Springer Protocols, 2012, , 405-416.	0.1	0
99	Muscular Adaptations and Novel Magnetic Resonance Characterizations of Spinal Cord Injury. Physical Therapy Korea, 2015, 22, 70-80.	0.1	0
101	Relaxometry: Applications in the Brain. Advances in Magnetic Resonance Technology and Applications, 2020, 1, 149-184.	0.0	0
102	Serum neurofilament light chain correlates with myelin and axonal magnetic resonance imaging markers in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2022, 57, 103366.	0.9	8
104	Advanced imaging for spinal cord injury. , 2022, , 105-124.		0
105	Evolution of Spinal Cord Transection of Rhesus Monkey Implanted with Polymer Synthesized by Plasma Evaluated by Diffusion Tensor Imaging. Polymers, 2022, 14, 962.	2.0	5
107	Quantifying Intraparenchymal Hemorrhage after Traumatic Spinal Cord Injury: A Review of Methodology. Journal of Neurotrauma, 2022, 39, 1603-1635.	1.7	3
109	A pilot study comparing myelin measurements from myelin water imaging and 11C-PIB PET in multiple sclerosis and Related Disorders, 2022, 68, 104238.	0.9	0
110	Quantitative myelin imaging with MRI and PET: an overview of techniques and their validation status. Brain, 2023, 146, 1243-1266.	3.7	12
111	High-resolution magnetization-transfer imaging of post-mortem marmoset brain: Comparisons with relaxometry and histology. NeuroImage, 2023, 268, 119860.	2.1	3
115	Conventional and advanced magnetic resonance imaging for degenerative cervical myelopathy. , 2023, , 101-111.		0