Low-Frequency Local Field Potentials and Spikes in Prin Independent Visual Information

Journal of Neuroscience 28, 5696-5709 DOI: 10.1523/jneurosci.0009-08.2008

Citation Report

#	Article	IF	CITATIONS
2	On the use of information theory for the analysis of the relationship between neural and imaging signals. Magnetic Resonance Imaging, 2008, 26, 1015-1025.	1.0	29
3	Neurophysiology of the BOLD fMRI Signal in Awake Monkeys. Current Biology, 2008, 18, 631-640.	1.8	504
4	Neural Correlates of High-Gamma Oscillations (60–200 Hz) in Macaque Local Field Potentials and Their Potential Implications in Electrocorticography. Journal of Neuroscience, 2008, 28, 11526-11536.	1.7	592
5	Bridging the Brain to the World: A Perspective on Neural Interface Systems. Neuron, 2008, 60, 511-521.	3.8	262
6	Encoding of Naturalistic Stimuli by Local Field Potential Spectra in Networks of Excitatory and Inhibitory Neurons. PLoS Computational Biology, 2008, 4, e1000239.	1.5	247
7	Polarographic Electrode Measures of Cerebral Tissue Oxygenation: Implications for Functional Brain Imaging. Sensors, 2008, 8, 7649-7670.	2.1	9
8	Feature selectivity of the gamma-band of the local field potential in primate primary visual cortex. Frontiers in Neuroscience, 2008, 2, 199-207.	1.4	108
9	Python for information theoretic analysis of neural data. Frontiers in Neuroinformatics, 2009, 3, 4.	1.3	48
10	The modulation of alpha-wave amplitude in human EEG by the intention to act with a motor response. Nature Precedings, 2009, , .	0.1	0
11	Coherency between spike and LFP activity in M1 during hand movements. , 2009, , .		10
12	Spectral Properties of Induced and Evoked Gamma Oscillations in Human Early Visual Cortex to Moving and Stationary Stimuli. Journal of Neurophysiology, 2009, 102, 1241-1253.	0.9	114
13	Pattern Motion Selectivity of Spiking Outputs and Local Field Potentials in Macaque Visual Cortex. Journal of Neuroscience, 2009, 29, 13702-13709.	1.7	74
14	From Neurons to Circuits: Linear Estimation of Local Field Potentials. Journal of Neuroscience, 2009, 29, 13785-13796.	1.7	62
15	Broadband Shifts in Local Field Potential Power Spectra Are Correlated with Single-Neuron Spiking in Humans. Journal of Neuroscience, 2009, 29, 13613-13620.	1.7	792
16	Power-Law Scaling in the Brain Surface Electric Potential. PLoS Computational Biology, 2009, 5, e1000609.	1.5	602
17	A toolbox for the fast information analysis of multiple-site LFP, EEG and spike train recordings. BMC Neuroscience, 2009, 10, 81.	0.8	198
18	Anticipatory haemodynamic signals in sensory cortex not predicted by local neuronal activity. Nature, 2009, 457, 475-479.	13.7	424
19	Extracting information from neuronal populations: information theory and decoding approaches. Nature Reviews Neuroscience, 2009, 10, 173-185.	4.9	657

#	Article	IF	CITATIONS
20	Spike-Phase Coding Boosts and Stabilizes Information Carried by Spatial and Temporal Spike Patterns. Neuron, 2009, 61, 597-608.	3.8	427
21	State-Dependent Variability of Neuronal Responses to Transcranial Magnetic Stimulation of the Visual Cortex. Neuron, 2009, 62, 291-303.	3.8	129
22	Frequency-Band Coupling in Surface EEG Reflects Spiking Activity in Monkey Visual Cortex. Neuron, 2009, 64, 281-289.	3.8	314
23	Coupling of mesoscopic brain oscillations: Recent advances in analytical and theoretical perspectives. Progress in Neurobiology, 2009, 89, 61-78.	2.8	60
24	Multisensory interactions in primate auditory cortex: fMRI and electrophysiology. Hearing Research, 2009, 258, 80-88.	0.9	90
25	The Science of Neural Interface Systems. Annual Review of Neuroscience, 2009, 32, 249-266.	5.0	326
26	Coordinated Activity in the Brain. , 2009, , .		10
27	How not to study spontaneous activity. NeuroImage, 2009, 45, 1080-1089.	2.1	112
28	Different Neural Frequency Bands Integrate Faces and Voices Differently in the Superior Temporal Sulcus. Journal of Neurophysiology, 2009, 101, 773-788.	0.9	83
29	Brain oscillations: ideal scenery to understand the neurovascular coupling. Current Opinion in Neurology, 2010, 23, 374-381.	1.8	38
30	Relationship between neural and hemodynamic signals during spontaneous activity studied with temporal kernel CCA. Magnetic Resonance Imaging, 2010, 28, 1095-1103.	1.0	72
31	Testing methodologies for the nonlinear analysis of causal relationships in neurovascular coupling. Magnetic Resonance Imaging, 2010, 28, 1113-1119.	1.0	14
32	LFP spectral peaks in V1 cortex: network resonance and cortico-cortical feedback. Journal of Computational Neuroscience, 2010, 29, 495-507.	0.6	69
33	Predicting stimulus-locked single unit spiking from cortical local field potentials. Journal of Computational Neuroscience, 2010, 29, 581-597.	0.6	24
34	Sensory information in local field potentials and spikes from visual and auditory cortices: time scales and frequency bands. Journal of Computational Neuroscience, 2010, 29, 533-545.	0.6	75
35	Causal relationships between frequency bands of extracellular signals in visual cortex revealed by an information theoretic analysis. Journal of Computational Neuroscience, 2010, 29, 547-566.	0.6	57
36	Temporal kernel CCA and its application in multimodal neuronal data analysis. Machine Learning, 2010, 79, 5-27.	3.4	77
37	Local field potentials, BOLD and spiking activity – relationships and physiological mechanisms. Nature Precedings, 2010, , .	0.1	11

#	Article	IF	Citations
38	Open source tools for the information theoretic analysis of neural data. Frontiers in Neuroscience, 2010, 4, .	1.4	27
39	Orchestration of "presto" and "largo" synchrony in up-down activity of cortical networks. Frontiers in Neural Circuits, 2010, 4, 11.	1.4	25
40	Binding by asynchrony: the neuronal phase code. Frontiers in Neuroscience, 2010, 4, .	1.4	42
41	On the Similarity of Functional Connectivity between Neurons Estimated across Timescales. PLoS ONE, 2010, 5, e9206.	1.1	14
42	Conversion of Phase Information into a Spike-Count Code by Bursting Neurons. PLoS ONE, 2010, 5, e9669.	1.1	24
43	Effects of Adaptation on the Stimulus Selectivity of Macaque Inferior Temporal Spiking Activity and Local Field Potentials. Cerebral Cortex, 2010, 20, 2145-2165.	1.6	122
44	The Influence of Natural Scene Dynamics on Auditory Cortical Activity. Journal of Neuroscience, 2010, 30, 13919-13931.	1.7	35
45	Cognitively driven brain machine control using neural signals in the parietal reach region. , 2010, 2010, 3329-32.		7
46	Frequency-Dependent Attentional Modulation of Local Field Potential Signals in Macaque Area MT. Journal of Neuroscience, 2010, 30, 7037-7048.	1.7	49
47	Single-Trial Speech Suppression of Auditory Cortex Activity in Humans. Journal of Neuroscience, 2010, 30, 16643-16650.	1.7	180
48	Sensory Input Drives Multiple Intracellular Information Streams in Somatosensory Cortex. Journal of Neuroscience, 2010, 30, 10872-10884.	1.7	15
49	Synchronization Dynamics in Response to Plaid Stimuli in Monkey V1. Cerebral Cortex, 2010, 20, 1556-1573.	1.6	103
50	Coherence Potentials: Loss-Less, All-or-None Network Events in the Cortex. PLoS Biology, 2010, 8, e1000278.	2.6	40
51	Optimal Information Transfer in the Cortex through Synchronization. PLoS Computational Biology, 2010, 6, e1000934.	1.5	144
52	Dissociable Neural Effects of Long-term Stimulus–Reward Pairing in Macaque Visual Cortex. Journal of Cognitive Neuroscience, 2010, 22, 1425-1439.	1.1	56
53	Neural basis of global resting-state fMRI activity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10238-10243.	3.3	860
54	In Vivo Characterization of a Smart MRI Agent That Displays an Inverse Response to Calcium Concentration. ACS Chemical Neuroscience, 2010, 1, 819-828.	1.7	27
55	The Temporal Structures and Functional Significance of Scale-free Brain Activity. Neuron, 2010, 66, 353-369.	3.8	831

#	ARTICLE Reliability of cortical activity during natural stimulation. Trends in Cognitive Sciences, 2010, 14, 40-48.	IF 4.0	CITATIONS
57	Sensory neural codes using multiplexed temporal scales. Trends in Neurosciences, 2010, 33, 111-120.	4.2	432
58	An information theoretic approach to EEG–fMRI integration of visually evoked responses. NeuroImage, 2010, 49, 498-516.	2.1	66
59	Understanding the relationships between spike rate and delta/gamma frequency bands of LFPs and EEGs using a local cortical network model. NeuroImage, 2010, 52, 956-972.	2.1	101
60	Comparisons of the Dynamics of Local Field Potential and Multiunit Activity Signals in Macaque Visual Cortex. Journal of Neuroscience, 2010, 30, 13739-13749.	1.7	95
61	High-frequency EEG covaries with spike burst patterns detected in cortical neurons. Journal of Neurophysiology, 2011, 105, 2951-2959.	0.9	41
62	Cracking the Code of Oscillatory Activity. PLoS Biology, 2011, 9, e1001064.	2.6	126
63	Dynamics of large-scale cortical interactions at high gamma frequencies during word production: Event related causality (ERC) analysis of human electrocorticography (ECoG). NeuroImage, 2011, 56, 2218-2237.	2.1	75
64	Cortical gamma responses: Searching high and low. International Journal of Psychophysiology, 2011, 79, 9-15.	0.5	172
65	The neuronal encoding of information in the brain. Progress in Neurobiology, 2011, 95, 448-490.	2.8	216
66	Modeling the Spatial Reach of the LFP. Neuron, 2011, 72, 859-872.	3.8	393
67	Statistical Comparison of Spike Responses to Natural Stimuli in Monkey Area V1 With Simulated Responses of a Detailed Laminar Network Model for a Patch of V1. Journal of Neurophysiology, 2011, 105, 757-778.	0.9	25
68	Dynamics of Networks of Excitatory and Inhibitory Neurons in Response to Time-Dependent Inputs. Frontiers in Computational Neuroscience, 2011, 5, 25.	1.2	136
69	Effects of visual stimulation on LFPs, spikes, and LFP-spike relations in PRR. Journal of Neurophysiology, 2011, 105, 1850-1860.	0.9	30
70	Information transmission and detection thresholds in the vestibular nuclei: single neurons vs. population encoding. Journal of Neurophysiology, 2011, 105, 1798-1814.	0.9	66
71	Investigating static nonlinearities in neurovascular coupling. Magnetic Resonance Imaging, 2011, 29, 1358-1364.	1.0	14
72	Cortical dynamics during naturalistic sensory stimulations: Experiments and models. Journal of Physiology (Paris), 2011, 105, 2-15.	2.1	64
73	Readout of the intrinsic and extrinsic properties of a stimulus from un-experienced neuronal activities: Towards cognitive neuroprostheses. Journal of Physiology (Paris), 2011, 105, 115-122.	2.1	14

#	Article	IF	Citations
74	Real-Time Adaptive Microstimulation Increases Reliability of Electrically Evoked Cortical Potentials. IEEE Transactions on Biomedical Engineering, 2011, 58, 1483-1491.	2.5	18
75	Oscillations in the prefrontal cortex: a gateway to memory and attention. Current Opinion in Neurobiology, 2011, 21, 475-485.	2.0	297
76	Sub-centimeter language organization in the human temporal lobe. Brain and Language, 2011, 117, 103-109.	0.8	92
77	The benefits of noise in neural systems: bridging theory and experiment. Nature Reviews Neuroscience, 2011, 12, 415-425.	4.9	586
78	Synaptic information transfer in computer models of neocortical columns. Journal of Computational Neuroscience, 2011, 30, 69-84.	0.6	62
79	Different LFP frequency bands convey complementary information about the BOLD signal. BMC Neuroscience, 2011, 12, .	0.8	2
80	Trial-to-trial noise cancellation of cortical field potentials in awake macaques by autoregression model with exogenous input (ARX). Journal of Neuroscience Methods, 2011, 194, 266-273.	1.3	12
81	Extraction of functional information from ongoing brain electrical activity. Irbm, 2011, 32, 27-34.	3.7	2
82	Coordination of High Gamma Activity in Anterior Cingulate and Lateral Prefrontal Cortical Areas during Adaptation. Journal of Neuroscience, 2011, 31, 11110-11117.	1.7	64
83	Carbon nanotube composite coating of neural microelectrodes preferentially improves the multiunit signal-to-noise ratio. Journal of Neural Engineering, 2011, 8, 066013.	1.8	79
84	Relationships among low-frequency local field potentials, spiking activity, and three-dimensional reach and grasp kinematics in primary motor and ventral premotor cortices. Journal of Neurophysiology, 2011, 105, 1603-1619.	0.9	128
85	Network Rhythms Influence the Relationship between Spike-Triggered Local Field Potential and Functional Connectivity. Journal of Neuroscience, 2011, 31, 12674-12682.	1.7	93
86	INFORMATION QUANTIFICATION OF EMPIRICAL MODE DECOMPOSITION AND APPLICATIONS TO FIELD POTENTIALS. International Journal of Neural Systems, 2011, 21, 49-63.	3.2	8
87	Synchronous Chaos and Broad Band Gamma Rhythm in a Minimal Multi-Layer Model of Primary Visual Cortex. PLoS Computational Biology, 2011, 7, e1002176.	1.5	53
88	Different Origins of Gamma Rhythm and High-Gamma Activity in Macaque Visual Cortex. PLoS Biology, 2011, 9, e1000610.	2.6	851
89	Stimulus repetition affects both strength and synchrony of macaque inferior temporal cortical activity. Journal of Neurophysiology, 2012, 107, 3509-3527.	0.9	47
90	Decoding 3D reach and grasp from hybrid signals in motor and premotor cortices: spikes, multiunit activity, and local field potentials. Journal of Neurophysiology, 2012, 107, 1337-1355.	0.9	185
91	Relationships between spike-free local field potentials and spike timing in human temporal cortex. Journal of Neurophysiology, 2012, 107, 1808-1821.	0.9	48

#	Article	IF	CITATIONS
92	Stochastic Generation of Gamma-Band Activity in Primary Visual Cortex of Awake and Anesthetized Monkeys. Journal of Neuroscience, 2012, 32, 13873-13880a.	1.7	121
93	The Amplitude and Timing of the BOLD Signal Reflects the Relationship between Local Field Potential Power at Different Frequencies. Journal of Neuroscience, 2012, 32, 1395-1407.	1.7	300
94	Temporal stability of visually selective responses in intracranial field potentials recorded from human occipital and temporal lobes. Journal of Neurophysiology, 2012, 108, 3073-3086.	0.9	11
95	BCIs That Use Signals Recorded in Motor Cortex. , 2012, , 266-288.		0
96	Functional magnetic resonance imaging. , 0, , 410-469.		0
97	Optimal band separation of extracellular field potentials. Journal of Neuroscience Methods, 2012, 210, 66-78.	1.3	17
98	A novel test to determine the significance of neural selectivity to single and multiple potentially correlated stimulus features. Journal of Neuroscience Methods, 2012, 210, 49-65.	1.3	44
99	Diversity of neural–hemodynamic relationships associated with differences in cortical processing during bilateral somatosensory activation in rats. NeuroImage, 2012, 59, 3325-3338.	2.1	8
100	Improved decoding of neural activity from fMRI signals using non-separable spatiotemporal deconvolutions. NeuroImage, 2012, 61, 1031-1042.	2.1	22
101	Intermittent stimulus presentation stabilizes neuronal responses in macaque area MT. Journal of Neurophysiology, 2012, 108, 2101-2114.	0.9	6
102	Functional connectivity and neurological recovery. Developmental Psychobiology, 2012, 54, 239-253.	0.9	77
103	How different are the local field potentials and spiking activities? Insights from multi-electrodes arrays. Journal of Physiology (Paris), 2012, 106, 93-103.	2.1	41
104	The utility of multichannel local field potentials for brain–machine interfaces. Journal of Neural Engineering, 2013, 10, 046005.	1.8	65
105	Assessing the role of synchronization and phase coherence in neural communication comparing cortical recordings and integrate-and-fire network models. BMC Neuroscience, 2013, 14, .	0.8	0
106	Input dependence of local field potential spectra: experiment vs theory. BMC Neuroscience, 2013, 14, .	0.8	0
107	Elevated Correlations in Neuronal Ensembles of Mouse Auditory Cortex Following Parturition. Journal of Neuroscience, 2013, 33, 12851-12861.	1.7	40
108	Modelling and analysis of local field potentials for studying the function of cortical circuits. Nature Reviews Neuroscience, 2013, 14, 770-785.	4.9	693
109	State-based decoding of hand and finger kinematics using neuronal ensemble and LFP activity during dexterous reach-to-grasp movements. Journal of Neurophysiology, 2013, 109, 3067-3081.	0.9	132

#	Article	IF	CITATIONS
110	Functional Regeneration of the ex-vivo Reconstructed Mesocorticolimbic Dopaminergic System. Cerebral Cortex, 2013, 23, 2905-2922.	1.6	14
111	Information coding in a laminar computational model of cat primary visual cortex. Journal of Computational Neuroscience, 2013, 34, 273-283.	0.6	8
112	Auditory Cortex Represents Both Pitch Judgments and the Corresponding Acoustic Cues. Current Biology, 2013, 23, 620-625.	1.8	104
113	Auditory-driven phase reset in visual cortex: Human electrocorticography reveals mechanisms of early multisensory integration. NeuroImage, 2013, 79, 19-29.	2.1	129
114	Frequency Dependence of Signal Power and Spatial Reach of the Local Field Potential. PLoS Computational Biology, 2013, 9, e1003137.	1.5	133
115	The Feature Selectivity of the Phase of the Local Field Potential in the Primary Visual Cortex. Advanced Materials Research, 2013, 749, 333-337.	0.3	0
116	A robust EC-PC spike detection method for extracellular neural recording. , 2013, 2013, 1338-41.		1
117	High gamma power in ECoG reflects cortical electrical stimulation effects on unit activity in layers V/VI. Journal of Neural Engineering, 2013, 10, 066002.	1.8	21
119	Sensory-Motor Interactions for Vocal Pitch Monitoring in Non-Primary Human Auditory Cortex. PLoS ONE, 2013, 8, e60783.	1.1	60
120	Desynchronization and rebound of beta oscillations during conscious and unconscious local neuronal processing in the macaque lateral prefrontal cortex. Frontiers in Psychology, 2013, 4, 603.	1.1	22
121	Local field potentials reflect multiple spatial scales in V4. Frontiers in Computational Neuroscience, 2013, 7, 21.	1.2	19
122	BOLD Responses in Human Primary Visual Cortex are Insensitive to Substantial Changes in Neural Activity. Frontiers in Human Neuroscience, 2013, 7, 76.	1.0	33
123	Cross-frequency interaction of the eye-movement related LFP signals in V1 of freely viewing monkeys. Frontiers in Systems Neuroscience, 2013, 7, 1.	1.2	216
124	Small Modifications to Network Topology Can Induce Stochastic Bistable Spiking Dynamics in a Balanced Cortical Model. PLoS ONE, 2014, 9, e88254.	1.1	11
125	Alpha- and beta-band oscillations subserve different processes in reactive control of limb movements. Frontiers in Behavioral Neuroscience, 2014, 8, 383.	1.0	28
126	Incoordination between spikes and LFPs in Aβ1−42-mediated memory deficits in rats. Frontiers in Behavioral Neuroscience, 2014, 8, 411.	1.0	6
127	Comparison of the dynamics of neural interactions between current-based and conductance-based integrate-and-fire recurrent networks. Frontiers in Neural Circuits, 2014, 8, 12.	1.4	60
128	Mutual information of local field potentials distinguishes area-V2 stripe compartments. Eye and Brain, 2014, 6, 75.	3.8	1

#	Article	IF	CITATIONS
129	Local Field Potentials in the Gustatory Cortex Carry Taste Information. Journal of Neuroscience, 2014, 34, 8778-8787.	1.7	16
130	Coordinated within-Trial Dynamics of Low-Frequency Neural Rhythms Controls Evidence Accumulation. Journal of Neuroscience, 2014, 34, 8519-8528.	1.7	29
131	Heterogeneous Single-Unit Selectivity in an fMRI-Defined Body-Selective Patch. Journal of Neuroscience, 2014, 34, 95-111.	1.7	80
132	Applications of Information Theory to Analysis of Neural Data. , 2014, , 1-6.		4
133	Spatial Modules of Coherent Activity in Pathway-Specific LFPs in the Hippocampus Reflect Topology and Different Modes of Presynaptic Synchronization. Cerebral Cortex, 2014, 24, 1738-1752.	1.6	51
134	Phase-Coherence Transitions and Communication in the Gamma Range between Delay-Coupled Neuronal Populations. PLoS Computational Biology, 2014, 10, e1003723.	1.5	37
135	On the robustness of EC–PC spike detection method for online neural recording. Journal of Neuroscience Methods, 2014, 235, 316-330.	1.3	11
136	Real-time estimation and biofeedback of single-neuron firing rates using local field potentials. Nature Communications, 2014, 5, 5462.	5.8	55
137	Afferent inputs to cortical fast-spiking interneurons organize pyramidal cell network oscillations at high-gamma frequencies (60–200 Hz). Journal of Neurophysiology, 2014, 112, 3001-3011.	0.9	22
138	Decoding of Chinese phoneme clusters using ECoC. , 2014, 2014, 1278-81.		1
139	Artifact characterization and removal for in vivo neural recording. Journal of Neuroscience Methods, 2014, 226, 110-123.	1.3	40
140	Stimulus Dependence of Local Field Potential Spectra: Experiment versus Theory. Journal of Neuroscience, 2014, 34, 14589-14605.	1.7	48
141	Reliability of directional information in unsorted spikes and local field potentials recorded in human motor cortex. Journal of Neural Engineering, 2014, 11, 046007.	1.8	92
142	Subjective visual perception: from local processing to emergent phenomena of brain activity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130534.	1.8	28
143	Unilateral electrical stimulation of rat locus coeruleus elicits bilateral response of norepinephrine neurons and sustained activation of medial prefrontal cortex. Journal of Neurophysiology, 2014, 111, 2570-2588.	0.9	91
144	General overview on the merits of multimodal neuroimaging data fusion. NeuroImage, 2014, 102, 3-10.	2.1	179
145	A Causal Perspective on the Analysis of Signal and Noise Correlations and Their Role in Population Coding. Neural Computation, 2014, 26, 999-1054.	1.3	9
146	Selective stimulation of neurons in visual cortex enables segregation of slow and fast connections. Neuroscience, 2014, 274, 170-186.	1.1	7

ARTICLE IF CITATIONS # No unified reward prediction error in local field potentials from the human nucleus accumbens: 147 0.9 9 evidence from epilepsy patients. Journal of Neurophysiology, 2015, 114, 781-792. Revealing neuronal function through microelectrode array recordings. Frontiers in Neuroscience, 148 1.4 2014, 8, 423. Contribution of LFP dynamics to single-neuron spiking variability in motor cortex during movement 149 1.2 21 execution. Frontiers in Systems Neuroscience, 2015, 9, 89. Computing the Local Field Potential (LFP) from Integrate-and-Fire Network Models. PLoS 391 Computational Biology, 2015, 11, e1004584. Sparse Spectro-Temporal Receptive Fields Based on Multi-Unit and High-Gamma Responses in Human 151 1.1 10 Auditory Cortex. PLoS ONE, 2015, 10, e0137915. A high performing brain–machine interface driven by low-frequency local field potentials alone and together with spikes. Journal of Neural Engineering, 2015, 12, 036009. 1.8 Rhythmic Auditory Cortex Activity at Multiple Timescales Shapes Stimulus–Response Gain and 153 1.7 70 Background Firing. Journal of Neuroscience, 2015, 35, 7750-7762. Gestalt perception is associated with reduced parietal beta oscillations. NeuroImage, 2015, 112, 61-69. 154 2.1 New uses of LFPs: Pathway-specific threads obtained through spatial discrimination. Neuroscience, 155 1.1 47 2015, 310, 486-503. Top-down modulation in human visual cortex predicts the stability of a perceptual illusion. Journal of Neurophysiology, 2015, 113, 1063-1076. Frequency-band signatures of visual responses to naturalistic input in ferret primary visual cortex 157 12 1.1 during free viewing. Brain Research, 2015, 1598, 31-45. Spatial consistency of neural firing regulates long-range local field potential synchronization: A 3.3 computational study. Neural Networks, 2015, 62, 52-61. Informative features of local field potential signals in primary visual cortex during natural image 159 0.9 2 stimulation. Journal of Neurophysiology, 2015, 113, 1520-1532. Anti-Hebbian Learning., 2015, , 191-193. Single-Trial Decoding of Visual Attention from Local Field Potentials in the Primate Lateral Prefrontal 161 1.7 44 Cortex Is Frequency-Dependent. Journal of Neuroscience, 2015, 35, 9038-9049. A Specific Component of the Evoked Potential Mirrors Phasic Dopamine Neuron Activity during Conditioning. Journal of Neuroscience, 2015, 35, 10451-10459. Importance of EEG in validating the chronic effects of drugs: Suggestions from animal models of 163 0.9 12 epilepsy treated with rapamycin. Seizure: the Journal of the British Epilepsy Association, 2015, 27, 30-39. Evaluation of local field potential signals in decoding of visual attention. Cognitive Neurodynamics, 164 2.3 2015, 9, 509-522.

#	Article	IF	CITATIONS
165	Dynamics of the functional link between area MT LFPs and motion detection. Journal of Neurophysiology, 2015, 114, 80-98.	0.9	12
166	A unifying principle underlying the extracellular field potential spectral responses in the human cortex. Journal of Neurophysiology, 2015, 114, 505-519.	0.9	171
167	On the use of information theory for the analysis of synchronous nociceptive withdrawal reflexes and somatosensory evoked potentials elicited by graded electrical stimulation. Journal of Neuroscience Methods, 2015, 240, 1-12.	1.3	11
168	Electrophysiological correlates of the BOLD signal for EEG-informed fMRI. Human Brain Mapping, 2015, 36, 391-414.	1.9	137
169	Primary Visual Cortex Represents the Difference Between Past and Present. Cerebral Cortex, 2015, 25, 1427-1440.	1.6	21
170	Targeting Channelrhodopsin-2 to ON-bipolar Cells With Vitreally Administered AAV Restores ON and OFF Visual Responses in Blind Mice. Molecular Therapy, 2015, 23, 7-16.	3.7	166
171	Challenges in the quantification and interpretation of spike-LFP relationships. Current Opinion in Neurobiology, 2015, 31, 111-118.	2.0	59
172	Invasive vs. Non-Invasive Neuronal Signals for Brain-Machine Interfaces: Will One Prevail?. Frontiers in Neuroscience, 2016, 10, 295.	1.4	95
173	fMRI at High Spatial Resolution: Implications for BOLD-Models. Frontiers in Computational Neuroscience, 2016, 10, 66.	1.2	104
174	Differential Processing of Consonance and Dissonance within the Human Superior Temporal Gyrus. Frontiers in Human Neuroscience, 2016, 10, 154.	1.0	17
175	Brain oscillations in perception, timing and action. Current Opinion in Behavioral Sciences, 2016, 8, 161-166.	2.0	32
176	Inferring Cortical Variability from Local Field Potentials. Journal of Neuroscience, 2016, 36, 4121-4135.	1.7	46
177	Attending to and neglecting people: bridging neuroscience, psychology and sociology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150365.	1.8	21
178	Predicting local field potentials with recurrent neural networks. , 2016, 2016, 808-811.		5
179	Dynamic information routing in complex networks. Nature Communications, 2016, 7, 11061.	5.8	145
180	Area- and band-specific representations of hand movements by local field potentials in caudal cingulate motor area and supplementary motor area of monkeys. Journal of Neurophysiology, 2016, 115, 1556-1576.	0.9	4
181	Intracranial Recordings of Occipital Cortex Responses to Illusory Visual Events. Journal of Neuroscience, 2016, 36, 6297-6311.	1.7	15
182	Correlation Between Extreme Learning Machine and Entorhinal Hippocampal System. Proceedings in Adaptation, Learning and Optimization, 2016, , 307-315.	1.5	1

		LITATION REPORT	
#	Article	IF	CITATIONS
183	Joint analysis of spikes and local field potentials using copula. NeuroImage, 2016, 133, 457-467.	2.1	9
184	Stimulus-induced visual cortical networks are recapitulated by spontaneous local and interareal synchronization. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E606-15.	3.3	56
185	Local field potential correlates of auditory working memory in primate dorsal temporal pole. Brain Research, 2016, 1640, 299-313.	1.1	6
186	Perceptual and affective mechanisms in facial expression recognition: An integrative review. Cognition and Emotion, 2016, 30, 1081-1106.	1.2	182
187	Decoding of intended saccade direction in an oculomotor brain–computer interface. Journal of Neural Engineering, 2017, 14, 046007.	1.8	12
188	An analysis of current source density profiles activated by local stimulation in the mouse auditory cortex in vitro. Brain Research, 2017, 1659, 96-112.	1.1	10
189	Multiple Transient Signals in Human Visual Cortex Associated with an Elementary Decision. Journal o Neuroscience, 2017, 37, 5744-5757.	of 1.7	24
190	High-Throughput Analysis of in-vitro LFP Electrophysiological Signals: A validated workflow/software package. Scientific Reports, 2017, 7, 3055.	1.6	7
191	Adaptive common average reference for in vivo multichannel local field potentials. Biomedical Engineering Letters, 2017, 7, 7-15.	2.1	21
192	Home-cage odors spatial cues elicit theta phase/gamma amplitude coupling between olfactory bulb dorsal hippocampus. Neuroscience, 2017, 363, 97-106.	and 1.1	18
193	Beta oscillations reflect supramodal information during perceptual judgment. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13810-13815.	3.3	36
194	Mapping white-matter functional organization at rest and during naturalistic visual perception. NeuroImage, 2017, 146, 1128-1141.	2.1	86
195	Distinctive time-lagged resting-state networks revealed by simultaneous EEG-fMRI. NeuroImage, 20 145, 1-10.	17, 2.1	32
196	Spatiotemporal dynamics of information encoding revealed in orbitofrontal high-gamma. Nature Communications, 2017, 8, 1139.	5.8	76
197	Selective Enhancement of Domoic Acid Toxicity in Primary Cultures of Cerebellar Granule Cells by Lowering Extracellular Na+ Concentration. Toxicological Sciences, 2018, 161, 103-114.	1.4	7
198	From Single Neuron Activity to Network Information Processing: Simulating Cortical Local Field Potentials and Thalamus Dynamic Regimes with Integrate-and-Fire Neurons. Springer INdAM Series, 2017, , 1-23.	0.4	0
199	Mathematical and Theoretical Neuroscience. Springer INdAM Series, 2017, , .	0.4	0
200	Model-based decoding of time-varying visual information during saccadic eye movements using population-level information. , 2017, , .		5

#	Article	IF	CITATIONS
201	Dissonant Representations of Visual Space in Prefrontal Cortex during Eye Movements. Cell Reports, 2018, 22, 2039-2052.	2.9	22
202	On Information Metrics for Spatial Coding. Neuroscience, 2018, 375, 62-73.	1.1	39
203	Dopamine Is Signaled by Mid-frequency Oscillations and Boosts Output Layers Visual Information in Visual Cortex. Current Biology, 2018, 28, 224-235.e5.	1.8	20
204	A new approach to detect the coding rule of the cortical spiking model in the information transmission. Neural Networks, 2018, 99, 68-78.	3.3	13
205	Nonmonotonic spatial structure of interneuronal correlations in prefrontal microcircuits. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3539-E3548.	3.3	16
206	Locus coeruleus phasic discharge is essential for stimulus-induced gamma oscillations in the prefrontal cortex. Journal of Neurophysiology, 2018, 119, 904-920.	0.9	42
207	A Model of Spatial Reach in LFP Recordings. Springer Series in Computational Neuroscience, 2018, , 509-533.	0.3	0
208	Multiscale dynamics of interstimulus interval integration in visual cortex. PLoS ONE, 2018, 13, e0208822.	1.1	1
209	Natural image reconstruction on the basis of local field potential signals of pigeon optic tectum neurons. NeuroReport, 2018, 29, 1092-1098.	0.6	1
210	Causal Shannon–Fisher Characterization of Motor/Imagery Movements in EEG. Entropy, 2018, 20, 660.	1.1	18
211	Differentiating Color Responses in Retina Through Multielectrode Array Recordings. , 2018, , .		0
212	Two distinct profiles of fMRI and neurophysiological activity elicited by acetylcholine in visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12073-E12082.	3.3	16
213	The Role of the Locus Coeruleus in Cellular and Systems Memory Consolidation. Handbook of Behavioral Neuroscience, 2018, , 327-347.	0.7	3
214	Optimizing the learning rate for adaptive estimation of neural encoding models. PLoS Computational Biology, 2018, 14, e1006168.	1.5	32
215	A multi-scale layer-resolved spiking network model of resting-state dynamics in macaque visual cortical areas. PLoS Computational Biology, 2018, 14, e1006359.	1.5	91
217	Gating by induced Îʿ–Γ asynchrony in selective attention. Human Brain Mapping, 2018, 39, 3854-3870.	1.9	25
218	Heterogeneous Redistribution of Facial Subcategory Information Within and Outside the Face-Selective Domain in Primate Inferior Temporal Cortex. Cerebral Cortex, 2018, 28, 1416-1431.	1.6	13
219	Discriminating imagined and non-imagined tasks in the motor cortex area: Entropy-complexity plane with a wavelet decomposition. Physica A: Statistical Mechanics and Its Applications, 2018, 511, 27-39.	1.2	18

#	Article	IF	CITATIONS
220	Rhythmic activities of the brain: Quantifying the high complexity of beta and gamma oscillations during visuomotor tasks. Chaos, 2018, 28, 075513.	1.0	15
221	Classification-Based Prediction of Effective Connectivity Between Timeseries With a Realistic Cortical Network Model. Frontiers in Computational Neuroscience, 2018, 12, 38.	1.2	0
222	Surprise About Sensory Event Timing Drives Cortical Transients in the Beta Frequency Band. Journal of Neuroscience, 2018, 38, 7600-7610.	1.7	6
223	Distinct frequency bands in the local field potential are differently tuned to stimulus drift rate. Journal of Neurophysiology, 2018, 120, 681-692.	0.9	13
224	Serial representation of items during working memory maintenance at letter-selective cortical sites. PLoS Biology, 2018, 16, e2003805.	2.6	88
225	Broca's area in comprehension and production, insights from intracranial studies in humans. Current Opinion in Behavioral Sciences, 2018, 21, 170-175.	2.0	8
226	Slow-Wave Recordings From Micro-Sized Neural Clusters Using Multiwell Type Microelectrode Arrays. IEEE Transactions on Biomedical Engineering, 2019, 66, 403-410.	2.5	1
227	Characterization of Visuomotor/Imaginary Movements in EEG: An Information Theory and Complex Network Approach. Frontiers in Physics, 2019, 7, .	1.0	20
228	Spike-field Granger causality for hybrid neural data analysis. Journal of Neurophysiology, 2019, 122, 809-822.	0.9	7
229	Differential brain mechanisms during reading human vs. machine translated fiction and news texts. Scientific Reports, 2019, 9, 13251.	1.6	2
230	Routing information flow by separate neural synchrony frequencies allows for "functionally labeled lines―in higher primate cortex. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12506-12515.	3.3	29
231	Integrate-and-fire network model of activity propagation from thalamus to cortex. BioSystems, 2019, 183, 103978.	0.9	4
232	Genome-Wide Search for Tyrosine Phosphatases in the Human Genome Through Computational Approaches Leads to the Discovery of Few New Domain Architectures. Evolutionary Bioinformatics, 2019, 15, 117693431984028.	0.6	3
233	Medial Orbitofrontal Cortex, Dorsolateral Prefrontal Cortex, and Hippocampus Differentially Represent the Event Saliency. Journal of Cognitive Neuroscience, 2019, 31, 874-884.	1.1	21
234	Local and Volume-Conducted Contributions to Cortical Field Potentials. Cerebral Cortex, 2019, 29, 5234-5254.	1.6	25
235	Network dynamics of Broca's area during word selection. PLoS ONE, 2019, 14, e0225756.	1.1	25
236	Local Field Potentials Reflect Dopaminergic and Non-Dopaminergic Activities within the Primate Midbrain. Neuroscience, 2019, 399, 167-183.	1.1	5
237	Potential of onâ€scalp MEC: Robust detection of human visual gammaâ€band responses. Human Brain Mapping, 2020, 41, 150-161.	1.9	64

	CITATION	Citation Report		
#	Article	IF	CITATIONS	
238	Dissociable neural systems for unconditioned acute and sustained fear. NeuroImage, 2020, 216, 116522.	2.1	22	
239	Hyperammonemia alters the mismatch negativity in the auditory evoked potential by altering functional connectivity and neurotransmission. Journal of Neurochemistry, 2020, 154, 56-70.	2.1	1	
240	Parietal tACS at beta frequency improves vision in a crowding regime. NeuroImage, 2020, 208, 116451.	2.1	33	
241	Phaseâ€amplitude coupling profiles differ in frontal and auditory cortices of bats. European Journal of Neuroscience, 2022, 55, 3483-3501.	1.2	5	
242	Power-saving design opportunities for wireless intracortical brain–computer interfaces. Nature Biomedical Engineering, 2020, 4, 984-996.	11.6	66	
243	Multi-View Broad Learning System for Primate Oculomotor Decision Decoding. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 1908-1920.	2.7	15	
244	Frequency-separated principal component analysis of cortical population activity. Journal of Neurophysiology, 2020, 124, 668-681.	0.9	4	
245	Challenges in Scaling Down of Free-Floating Implantable Neural Interfaces to Millimeter Scale. IEEE Access, 2020, 8, 133295-133320.	2.6	25	
246	Recent Advances in Electrical Neural Interface Engineering: Minimal Invasiveness, Longevity, and Scalability. Neuron, 2020, 108, 302-321.	3.8	85	
247	Gait-related frequency modulation of beta oscillatory activity in the subthalamic nucleus of parkinsonian patients. Brain Stimulation, 2020, 13, 1743-1752.	0.7	42	
248	Simultaneous spike-time locking to multiple frequencies. Journal of Neurophysiology, 2020, 123, 2355-2372.	0.9	7	
249	Spatial resolution of local field potential signals in macaque V4. Journal of Neural Engineering, 2020, 17, 026003.	1.8	2	
250	Temporal Sharpening of Sensory Responses by Layer V in the Mouse Primary Somatosensory Cortex. Current Biology, 2020, 30, 1589-1599.e10.	1.8	25	
251	Electrocorticogram (ECoG) Is Highly Informative in Primate Visual Cortex. Journal of Neuroscience, 2020, 40, 2430-2444.	1.7	27	
252	Decoding Adaptive Visuomotor Behavior Mediated by Non-linear Phase Coupling in Macaque Area MT. Frontiers in Neuroscience, 2020, 14, 230.	1.4	4	
253	Inter-Subject Analysis: A Partial Gaussian Graphical Model Approach. Journal of the American Statistical Association, 2021, 116, 746-755.	1.8	5	
254	Enhanced representation of natural sound sequences in the ventral auditory midbrain. Brain Structure and Function, 2021, 226, 207-223.	1.2	1	
255	Decision Signals in the Local Field Potentials of Early and Mid-Level Macaque Visual Cortex. Cerebral Cortex, 2021, 31, 169-183.	1.6	7	

#	Article	IF	Citations
256	The broadband power shifts in entorhinal EEG are related to the firing of grid cells. Heliyon, 2021, 7, e06087.	1.4	3
257	Inferring Neural Circuit Interactions and Neuromodulation from Local Field Potential and Electroencephalogram Measures. Lecture Notes in Computer Science, 2021, , 3-12.	1.0	1
258	Information diversity in individual auditory cortical neurons is associated with functionally distinct coordinated neuronal ensembles. Scientific Reports, 2021, 11, 4064.	1.6	2
259	Impact of referencing scheme on decoding performance of LFP-based brain-machine interface. Journal of Neural Engineering, 2021, 18, 016028.	1.8	7
260	Towards human motor augmentation by voluntary decoupling beta activity in the neural drive to muscle and force production. Journal of Neural Engineering, 2021, 18, 016001.	1.8	20
261	Multivariate Identification of Functional Neural Networks Underpinning Humorous Movie Viewing. Frontiers in Psychology, 2020, 11, 547353.	1.1	2
262	Larger GPU-accelerated brain simulations with procedural connectivity. Nature Computational Science, 2021, 1, 136-142.	3.8	35
264	A real-time FPGA-based implementation for detection and sorting of bio-signals. Neural Computing and Applications, 2021, 33, 12121-12140.	3.2	3
265	Decoding of Attentional State Using High-Frequency Local Field Potential Is As Accurate As Using Spikes. Cerebral Cortex, 2021, 31, 4314-4328.	1.6	5
266	Computation of the electroencephalogram (EEG) from network models of point neurons. PLoS Computational Biology, 2021, 17, e1008893.	1.5	20
268	Thalamocortical Spectral Transmission Relies on Balanced Input Strengths. Brain Topography, 2022, 35, 4-18.	0.8	1
269	Stochastic resonance and 'gamma band' synchronization in the human visual system. IBRO Neuroscience Reports, 2021, 10, 191-195.	0.7	1
270	Multi-scale neural decoding and analysis. Journal of Neural Engineering, 2021, 18, 045013.	1.8	16
272	Inferring entire spiking activity from local field potentials. Scientific Reports, 2021, 11, 19045.	1.6	13
273	Spatial information transfer in hippocampal place cells depends on trial-to-trial variability, symmetry of place-field firing, and biophysical heterogeneities. Neural Networks, 2021, 142, 636-660.	3.3	12
274	The Size of Neuronal Assemblies, Their Frequency of Synchronization, and Their Cognitive Function. , 2009, , 117-136.		1
275	Local Field Potential, Relationship to Unit Activity. , 2014, , 1-6.		2
276	Pharmaco-Based fMRI and Neurophysiology in Non-Human Primates. Neuromethods, 2017, , 37-66.	0.2	1

# 277	ARTICLE Brain Function: Novel Technologies Driving Novel Understanding. , 2014, , 299-334.	IF	CITATIONS
278	4.1 Linking Band-Limited Cortical Activity to fMRI and Behavior. , 2010, , 271-294.		11
286	Cortical long-range interactions embed statistical knowledge of natural sensory input: a voltage-sensitive dye imaging study. F1000Research, 2013, 2, 51.	0.8	12
287	Timing Precision in Population Coding of Natural Scenes in the Early Visual System. PLoS Biology, 2008, 6, e324.	2.6	48
288	Shifts of Gamma Phase across Primary Visual Cortical Sites Reflect Dynamic Stimulus-Modulated Information Transfer. PLoS Biology, 2015, 13, e1002257.	2.6	95
289	Predicting Spike Occurrence and Neuronal Responsiveness from LFPs in Primary Somatosensory Cortex. PLoS ONE, 2012, 7, e35850.	1.1	17
290	Context Matters: The Illusive Simplicity of Macaque V1 Receptive Fields. PLoS ONE, 2012, 7, e39699.	1.1	17
291	Decoding of Repeated Objects from Local Field Potentials in Macaque Inferior Temporal Cortex. PLoS ONE, 2013, 8, e74665.	1.1	4
292	Influences of High-Level Features, Gaze, and Scene Transitions on the Reliability of BOLD Responses to Natural Movie Stimuli. PLoS ONE, 2016, 11, e0161797.	1.1	21
293	Phase-amplitude coupling supports phase coding in human ECoG. ELife, 2015, 4, .	2.8	54
294	Phase-tuned neuronal firing encodes human contextual representations for navigational goals. ELife, 2018, 7, .	2.8	91
295	Spatiotemporal patterns of neocortical activity around hippocampal sharp-wave ripples. ELife, 2020, 9,	2.8	92
296	The Future of Neural Interface Technology. , 2009, , 3185-3200.		0
297	Designing a Neural Interface System to Restore Mobility. , 2009, , 229-242.		3
298	Neural Data Analysis and Reduction Using Improved Framework of Information-Preserving EMD. Lecture Notes in Computer Science, 2010, , 360-367.	1.0	0
299	Physiological Basis of the BOLD Signal. , 2010, , 21-46.		2
300	Linking Neural Activity to Visual Perception: Separating Sensory and Attentional Contributions. , 0, , .		0
301	Physiological Foundations ofÂNeural Signals. , 2013, , 3-14.		0

#	Article	IF	CITATIONS
302	Local Field Potential, Relationship to BOLD Signal. , 2014, , 1-11.		2
303	Local Field Potential, Relationship to Unit Activity. , 2015, , 1579-1584.		Ο
307	Alternating Periods of High and Low-Entropy Neural Ensemble Activity During Image Processing in the Primary Visual Cortex of Rats. Open Biomedical Engineering Journal, 2016, 10, 51-61.	0.7	1
308	Auditory Stimuli Coding by Postsynaptic Potential and Local Field Potential Features. PLoS ONE, 2016, 11, e0160089.	1.1	2
327	Converging intracortical signatures of two separated processing timescales in human early auditory cortex. NeuroImage, 2020, 218, 116882.	2.1	4
330	Local Field Potential, Relationship to Unit Activity. , 2020, , 1-6.		1
332	Analysis of Non-stationary Neurobiological Signals Using Empirical Mode Decomposition. Lecture Notes in Computer Science, 2008, , 714-721.	1.0	0
333	Cortical long-range interactions embed statistical knowledge of natural sensory input: a voltage-sensitive dye imaging study. F1000Research, 2013, 2, 51.	0.8	7
335	The significance of neural inter-frequency power correlations. Scientific Reports, 2021, 11, 23190.	1.6	1
336	Electrophysiological hallmarks of locationâ€based and objectâ€based visual multiple objects tracking. European Journal of Neuroscience, 2022, 55, 1200-1214.	1.2	0
338	Increased fMRI connectivity upon chemogenetic inhibition of the mouse prefrontal cortex. Nature Communications, 2022, 13, 1056.	5.8	45
339	When the Whole Is Less Than the Sum of Its Parts: Maximum Object Category Information and Behavioral Prediction in Multiscale Activation Patterns. Frontiers in Neuroscience, 2022, 16, 825746.	1.4	4
341	Neurons as will and representation. Nature Reviews Neuroscience, 2022, 23, 104-114.	4.9	13
342	Methods for inferring neural circuit interactions and neuromodulation from local field potential and electroencephalogram measures. Brain Informatics, 2021, 8, 27.	1.8	3
345	PtNPs/PEDOT:PSS-Modified Microelectrode Arrays Reveal Electrophysiological Activities of Different Neurons in Medial Amygdala of Mice Under Innate Fear. Frontiers in Neuroscience, 2022, 16, .	1.4	11
347	Ballistocardiogram suppression in concurrent <scp>EEGâ€MRI</scp> by dynamic modeling of heartbeats. Human Brain Mapping, 0, , .	1.9	1
348	Spike–Gamma Phase Relationship in the Visual Cortex. Annual Review of Vision Science, 2022, 8, 361-381.	2.3	4
349	Decoding of attentional state using local field potentials. Current Opinion in Neurobiology, 2022, 76, 102589.	2.0	5

ARTICLE IF CITATIONS Local Field Potential, Relationship to BOLD Signal., 2022, , 1852-1860. 350 0 Local Field Potential, Relationship to Unit Activity., 2022, , 1865-1870. 352 Applications of Information Theory to Analysis of Neural Data., 2022, , 222-226. 0 Inferior temporal cortex leads prefrontal cortex in response to a violation of a learned sequence. Cerebral Cortex, 2023, 33, 3124-3141. Disruption of layer-specific visual processing in a model of focal neocortical epilepsy. Cerebral 355 0 1.6 Cortex, 2023, 33, 4173-4187. Synaptic alterations in visual cortex reshape contrast-dependent gamma oscillations and inhibition-excitation ratio in a genetic mouse model of migraine. Journal of Headache and Pain, 2022, 2.5 23, . High-frequency oscillations in the ripple bands and amplitude information coding: Toward a 357 1.0 3 biomarker of maximum entropy in the preictal signals. Chaos, 2022, 32, . Neural modulations in the auditory cortex during internal and external attention tasks: A 1.1 single-patient intracranial recording study. Cortex, 2022, 157, 211-230. Hierarchical unimodal processing within the primary somatosensory cortex during a bimodal 360 detection task. Proceedings of the National Academy of Sciences of the United States of America, 2022, 3.3 2 119,. A tripartite view of the posterior cingulate cortex. Nature Reviews Neuroscience, 2023, 24, 173-189. Inhibition is a prevalent mode of activity in the neocortex around awake hippocampal ripples in mice. 363 2.8 6 ELife, 0, 12, . Spatio-Temporal Analysis of LTP-like Neuroplasticity in Pigs., 2023, , . 365 Time-Varying Mutual Information Analysis of Evoked in Vivo Local Field Potentials in Rodents., 2023,,. 366 0 What Do ECoG Recordings Tell Us About Intracortical Action Potentials?. Studies in Neuroscience, 371 0.1 Psychology and Behavioral Economics, 2023, , 283-295. How Can I Identify Stimulus-Driven Neural Activity Patterns in Multi-Patient ECoG Data?. Studies in 372 0 0.1 Neuroscience, Psychology and Behavioral Economics, 2023, , 803-836. How Do Local Field Potentials Measured with Microelectrodes Differ from iEEG Activity?. Studies in Neuroscience, Psychology and Behavioral Economics, 2023, , 273-282. A Model ofÂtheÂContribution ofÂInterneuron Diversity toÂRecurrent Network Oscillation Generation 374 1.0 0 andÂlnformation Coding. Lecture Notes in Computer Science, 2023, , 33-44.