Apoptosis induces expression of sphingosine kinase 1 to $\hat{a} \in \hat{c}$ and $\hat{a} \in \hat{g}$ et $\hat{a} \in \hat{s}$ ignal

FASEB Journal 22, 2629-2638 DOI: 10.1096/fj.08-107169

Citation Report

#	Article	IF	CITATIONS
1	The alliance of sphingosine-1-phosphate and its receptors in immunity. Nature Reviews Immunology, 2008, 8, 753-763.	10.6	570
2	Sphingosine kinase regulation and cardioprotection. Cardiovascular Research, 2008, 82, 184-192.	1.8	31
3	Lipid metabolism: sphingolipids- from membrane constituents to signaling molecules that control cell-to-cell communications. Current Opinion in Lipidology, 2008, 19, 620-621.	1.2	4
4	The liaison between apoptotic cells and macrophages – the end programs the beginning. Biological Chemistry, 2009, 390, 379-390.	1.2	36
5	Heme Oxygenase-1 Contributes to an Alternative Macrophage Activation Profile Induced by Apoptotic Cell Supernatants. Molecular Biology of the Cell, 2009, 20, 1280-1288.	0.9	151
6	Targeting the sphingolipid metabolism to defeat pancreatic cancer cell resistance to the chemotherapeutic gemcitabine drug. Molecular Cancer Therapeutics, 2009, 8, 809-820.	1.9	117
7	G2A and LPC: Regulatory functions in immunity. Prostaglandins and Other Lipid Mediators, 2009, 89, 73-81.	1.0	119
8	Role of sphingosine kinases and lipid phosphate phosphatases in regulating spatial sphingosine 1-phosphate signalling in health and disease. Cellular Signalling, 2009, 21, 14-21.	1.7	124
9	Sphingosine kinase 2 deficient tumor xenografts show impaired growth and fail to polarize macrophages towards an antiâ€inflammatory phenotype. International Journal of Cancer, 2009, 125, 2114-2121.	2.3	94
10	Does autophagy have a license to kill mammalian cells?. Cell Death and Differentiation, 2009, 16, 12-20.	5.0	231
11	Regulation of macrophage function by sphingosine-1-phosphate. Immunobiology, 2009, 214, 748-760.	0.8	97
12	Tumor-associated macrophages as targets for tumor immunotherapy. Immunotherapy, 2009, 1, 83-95.	1.0	37
13	Sphingosine Kinase and Sphingosine 1-Phosphate in Cardioprotection. Journal of Cardiovascular Pharmacology, 2009, 53, 189-197.	0.8	73
14	Phospholipids: Key Players in Apoptosis and Immune Regulation. Molecules, 2009, 14, 4892-4914.	1.7	126
15	The supernatant of apoptotic cells causes transcriptional activation of hypoxia-inducible factor–1α in macrophages via sphingosine-1-phosphate and transforming growth factor-β. Blood, 2009, 114, 2140-2148.	0.6	50
16	Cleavage of sphingosine kinase 2 by caspase-1 provokes its release from apoptotic cells. Blood, 2010, 115, 3531-3540.	0.6	77
17	Autophagy: Can it become a potential therapeutic target? (Review). International Journal of Molecular Medicine, 2010, 25, 493-503.	1.8	28
18	The role of defective clearance of apoptotic cells in systemic autoimmunity. Nature Reviews Rheumatology, 2010, 6, 280-289.	3.5	533

	CITATION	CITATION REPORT	
# 19	ARTICLE Dangerous attraction: phagocyte recruitment and danger signals of apoptotic and necrotic cells. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 1007-1028.	IF 2.2	CITATIONS
20	Circulating sphingosine-1-phosphate inversely correlates with chemotherapy-induced weight gain during early breast cancer. Breast Cancer Research and Treatment, 2010, 124, 543-549.	1.1	6
21	Apoptosis: Opening PANdora's BoX. Current Biology, 2010, 20, R940-R942.	1.8	7
22	Scent of dying cells: The role of attraction signals in the clearance of apoptotic cells and its immunological consequences. Autoimmunity Reviews, 2010, 9, 425-430.	2.5	42
23	Modulation of gene expression by α-tocopherol and α-tocopheryl phosphate in THP-1 monocytes. Free Radical Biology and Medicine, 2010, 49, 1989-2000.	1.3	48
24	Therapeutic applications of bioactive sphingolipids in hematological malignancies. International Journal of Cancer, 2010, 127, 1497-1506.	2.3	31
25	Eosinophils in health and disease: the <i>LIAR</i> hypothesis. Clinical and Experimental Allergy, 2010, 40, 563-575.	1.4	276
26	Surfaceâ€exposed calreticulin in the interaction between dying cells and phagocytes. Annals of the New York Academy of Sciences, 2010, 1209, 77-82.	1.8	97
27	Increased Expression of Enzymes for Sphingosine 1-Phosphate Turnover and Signaling in Human Decidua During Late Pregnancy1. Biology of Reproduction, 2010, 82, 628-635.	1.2	22
28	Molecular Suicide Notes: Last Call from Apoptosing Cells. Journal of Molecular Cell Biology, 2010, 2, 78-80.	1.5	11
29	FTY720 (Fingolimod) Sensitizes Prostate Cancer Cells to Radiotherapy by Inhibition of Sphingosine Kinase-1. Cancer Research, 2010, 70, 8651-8661.	0.4	134
30	Inhibitors of the Sphingosine Kinase Pathway as Potential Therapeutics. Current Cancer Drug Targets, 2010, 10, 354-367.	0.8	69
31	Lysyl tRNA synthetase is required for the translocation of calreticulin to the cell surface in immunogenic death. Cell Cycle, 2010, 9, 3144-3149.	1.3	25
32	Autoimmunity and the Clearance of Dead Cells. Cell, 2010, 140, 619-630.	13.5	751
33	Sphingosine kinase 1 regulates the expression of proinflammatory cytokines and nitric oxide in activated microglia. Neuroscience, 2010, 166, 132-144.	1.1	141
34	Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums. Journal of Experimental Medicine, 2010, 207, 1807-1817.	4.2	450
35	Sphingolipids as Signaling and Regulatory Molecules. Advances in Experimental Medicine and Biology, 2010, , .	0.8	23
36	Extracellular and Intracellular Actions of Sphingosine-1-Phosphate. Advances in Experimental Medicine and Biology, 2010, 688, 141-155.	0.8	289

ARTICLE IF CITATIONS # Beginnings of a Good Apoptotic Meal: The Find-Me and Eat-Me Signaling Pathways. Immunity, 2011, 35, 37 6.6 463 445-455. Programmed Cell Death in Animal Development and Disease. Cell, 2011, 147, 742-758. 13.5 1,487 How to improve the immunogenicity of chemotherapy and radiotherapy. Cancer and Metastasis 39 2.7 72 Reviews, 2011, 30, 71-82. Release of sphingosine \hat{e} 1 \hat{e} phosphate from human platelets is dependent on thromboxane formation. Journal of Thrombosis and Haemostasis, 2011, 9, 790-798. Sphingosine $\hat{a} \in 1$ $\hat{a} \in p$ hosphate antibodies as potential agents in the treatment of cancer and age $\hat{a} \in r$ elated 41 2.7 76 macular degeneration. British Journal of Pharmacology, 2011, 162, 1225-1238. Regulation of sphingosine kinase and sphingolipid signaling. Trends in Biochemical Sciences, 2011, 36, 97-107. 3.7 279 43 Sensing sterile injury: Opportunities for pharmacological control., 2011, 132, 204-214. 14 Extracellular and intracellular sphingosine-1-phosphate in cancer. Cancer and Metastasis Reviews, 2.7 44 2011, 30, 577-597. The role of nucleotides in apoptotic cell clearance: implications for disease pathogenesis. Journal of 45 1.7 30 Molecular Medicine, 2011, 89, 13-22. Cell death in the neighbourhood: direct microenvironmental effects of apoptosis in normal and 2.1 neoplastic tissues. Journal of Pathology, 2011, 223, 178-195. The dendritic cell–tumor cross-talk in cancer. Current Opinion in Immunology, 2011, 23, 146-152. 47 2.4 78 Epithelial cell extrusion requires the sphingosine-1-phosphate receptor 2 pathway. Journal of Cell 2.3 140 Biology, 2011, 193, 667-676. Leukocyte migratory responses to apoptosis. Cell Adhesion and Migration, 2011, 5, 293-297. 49 1.1 4 Therapeutic potential of targeting sphingosine kinase 1 in prostate cancer. Nature Reviews Urology, 2011, 8, 569-578. Animal Models of Molecular Pathology. Progress in Molecular Biology and Translational Science, 51 0.9 40 2012, 105, 321-370. Dying cell clearance and its impact on the outcome of tumor radiotherapy. Frontiers in Oncology, 2012, 2, 116. "Dead Cells Talkingâ€: The Silent Form of Cell Death Is Not so Quiet. Biochemistry Research 53 1.520 International, 2012, 2012, 1-8. A Perspective on Mammalian Caspases as Positive and Negative Regulators of Inflammation. Molecular 54 4.5 Cell, 2012, 46, 387-397.

#	Article	IF	CITATIONS
55	A polysaccharides MDG-1 augments survival in the ischemic heart by inducing S1P release and S1P1 expression. International Journal of Biological Macromolecules, 2012, 50, 734-740.	3.6	19
56	Greasing the Path to BAX/BAK Activation. Cell, 2012, 148, 845-846.	13.5	6
57	Amniotic Membrane Induces Peroxisome Proliferator-Activated Receptor-Î ³ Positive Alternatively Activated Macrophages. , 2012, 53, 799.		32
58	Eatâ€me signals: Keys to molecular phagocyte biology and "Appetite―control. Journal of Cellular Physiology, 2012, 227, 1291-1297.	2.0	84
59	Targeting sphingosine kinase 1 (SphK1) and apoptosis by colon-specific delivery formula of resveratrol in treatment of experimental ulcerative colitis in rats. European Journal of Pharmacology, 2013, 718, 145-153.	1.7	56
60	Therapeutic Potential of Targeting SK1 in Human Cancers. Advances in Cancer Research, 2013, 117, 143-200.	1.9	51
61	Automated Capillary Electrophoresis System for Fast Single-Cell Analysis. Analytical Chemistry, 2013, 85, 4797-4804.	3.2	59
62	O death where is thy sting? Immunologic tolerance to apoptotic self. Cellular and Molecular Life Sciences, 2013, 70, 3571-3589.	2.4	15
63	Fas/CD95-Induced Chemokines Can Serve as "Find-Me―Signals for Apoptotic Cells. Molecular Cell, 2013, 49, 1034-1048.	4.5	183
64	Decoding cell death signals in liver inflammation. Journal of Hepatology, 2013, 59, 583-594.	1.8	755
65	Resolution of inflammation: an integrated view. EMBO Molecular Medicine, 2013, 5, 661-674.	3.3	586
66	Resolution of inflammation: Mechanisms and opportunity for drug development. , 2013, 139, 189-212.		183
67	Shaping the landscape: Metabolic regulation of S1P gradients. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 193-202.	1.2	79
68	Surface code—biophysical signals for apoptotic cell clearance. Physical Biology, 2013, 10, 065007.	0.8	38
69	Eat-Me: Autophagy, Phagocytosis, and Reactive Oxygen Species Signaling. Antioxidants and Redox Signaling, 2013, 18, 677-691.	2.5	138
71	Clearing the Dead: Apoptotic Cell Sensing, Recognition, Engulfment, and Digestion. Cold Spring Harbor Perspectives in Biology, 2013, 5, a008748-a008748.	2.3	410
72	4-deoxypyridoxine improves the viability of isolated pancreatic islets ex vivo. Islets, 2013, 5, 116-121.	0.9	4
73	Regulation of cell survival by sphingosine-1-phosphate receptor S1P1 via reciprocal ERK-dependent suppression of Bim and PI-3-kinase/protein kinase C-mediated upregulation of Mcl-1. Cell Death and Disease, 2013, 4, e927-e927.	2.7	74

#	Article	IF	CITATIONS
74	Current Understanding of the Mechanisms for Clearance of Apoptotic Cells—A Fine Balance. Journal of Cell Death, 2013, 6, JCD.S11037.	0.8	22
75	Macrophage activation by apoptotic cells. Bioinorganic Reaction Mechanisms, 2013, 9, .	0.5	Ο
76	Neutrophils and Apoptosis. , 2013, , 218-240.		0
77	Transcriptional targeting of sphingosine-1- phosphate receptor S1P2 by epigallocatechin- 3-gallate prevents sphingosine-1-phosphate- mediated signaling in macrophage-differentiated HL-60 promyelomonocytic leukemia cells. OncoTargets and Therapy, 2014, 7, 667.	1.0	7
78	Sphingosine-1-phosphate induces thrombin receptor PAR-4 expression to enhance cell migration and COX-2 formation in human monocytes. Journal of Leukocyte Biology, 2014, 96, 611-618.	1.5	23
79	Tumor Immunotherapy: Lessons from Autoimmunity. Frontiers in Immunology, 2014, 5, 212.	2.2	18
80	S5a binds death receptor-6 to induce THP-1 monocytes differentiation via NF-κB pathway. Journal of Cell Science, 2014, 127, 3257-68.	1.2	5
81	Sphingosine 1-Phosphate as a Link between Blood Coagulation and Inflammation. Cellular Physiology and Biochemistry, 2014, 34, 185-196.	1.1	30
83	The Role of Nucleotides and Purinergic Signaling in Apoptotic Cell Clearance ââ,¬â€œ Implications for Chronic Inflammatory Diseases. Frontiers in Immunology, 2014, 5, 656.	2.2	36
84	Impaired Clearance of Apoptotic Cells in Chronic Inflammatory Diseases: Therapeutic Implications. Frontiers in Immunology, 2014, 5, 354.	2.2	83
85	Osteocytes: Master Orchestrators of Bone. Calcified Tissue International, 2014, 94, 5-24.	1.5	373
86	Photosensitivity, Apoptosis, and Cytokines in the Pathogenesis of Lupus Erythematosus: a Critical Review. Clinical Reviews in Allergy and Immunology, 2014, 47, 148-162.	2.9	93
87	Leukotrienes in pulmonary arterial hypertension. Immunologic Research, 2014, 58, 387-393.	1.3	37
88	The dynamic lives of macrophage and dendritic cell subsets in atherosclerosis. Annals of the New York Academy of Sciences, 2014, 1319, 19-37.	1.8	20
89	Enhancement of antibody production against rabies virus by uridine 5′-triphosphate in mice. Microbes and Infection, 2014, 16, 196-202.	1.0	5
90	Apoptotic cell clearance: basic biology and therapeutic potential. Nature Reviews Immunology, 2014, 14, 166-180.	10.6	952
91	Controlled release of sphingosine-1-phosphate agonist with gelatin hydrogels for macrophage recruitment. Acta Biomaterialia, 2014, 10, 4723-4729.	4.1	18
92	Cell Death and Cell Death Responses in Liver Disease: Mechanisms and Clinical Relevance. Gastroenterology, 2014, 147, 765-783.e4.	0.6	587

#	Article	IF	CITATIONS
93	Delineating the roles of neutrophils and macrophages in zebrafish regeneration models. International Journal of Biochemistry and Cell Biology, 2014, 56, 92-106.	1.2	76
94	Sphingosine kinase 1 regulates adipose proinflammatory responses and insulin resistance. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E756-E768.	1.8	77
95	Recognition of apoptotic cells by viable cells is specific, ubiquitous, and species independent: analysis using photonic crystal biosensors. Molecular Biology of the Cell, 2014, 25, 1704-1714.	0.9	10
96	Apoptotic Cell Clearance in Development. Current Topics in Developmental Biology, 2015, 114, 297-334.	1.0	34
97	The Sound of Silence. Current Topics in Developmental Biology, 2015, 114, 241-265.	1.0	55
98	Antiinflammatory effects of aspirin in ACS: relevant to its cardio coronary actions?. Thrombosis and Haemostasis, 2015, 114, 469-477.	1.8	24
99	Sphingosine-1-Phosphate and Its Receptors: A Mutual Link between Blood Coagulation and Inflammation. Mediators of Inflammation, 2015, 2015, 1-11.	1.4	49
100	Modulation of Intrathymic Sphingosine-1-Phosphate Levels Promotes Escape of Immature Thymocytes to the Periphery with a Potential Proinflammatory Role in Chagas Disease. BioMed Research International, 2015, 2015, 1-6.	0.9	4
101	The Granuloma Response Controlling Cryptococcosis in Mice Depends on the Sphingosine Kinase 1–Sphingosine 1-Phosphate Pathway. Infection and Immunity, 2015, 83, 2705-2713.	1.0	27
102	Active JNK-dependent secretion of Drosophila Tyrosyl-tRNA synthetase by loser cells recruits haemocytes during cell competition. Nature Communications, 2015, 6, 10022.	5.8	38
103	Fas and TRAIL â€~death receptors' as initiators of inflammation: Implications for cancer. Seminars in Cell and Developmental Biology, 2015, 39, 26-34.	2.3	67
104	Macrophage development and polarization in chronic inflammation. Seminars in Immunology, 2015, 27, 257-266.	2.7	97
105	Necroptotic cells release find-me signal and are engulfed without proinflammatory cytokine production. In Vitro Cellular and Developmental Biology - Animal, 2015, 51, 1033-1039.	0.7	20
106	Aberrant TGFÎ ² Signalling Contributes to Dysregulation of Sphingolipid Metabolism in Intrauterine Growth Restriction. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E986-E996.	1.8	32
107	Phagocytosis of apoptotic cells in homeostasis. Nature Immunology, 2015, 16, 907-917.	7.0	632
108	Prix Fixe: Efferocytosis as a Four-Course Meal. Current Topics in Microbiology and Immunology, 2015, 403, 1-36.	0.7	25
109	The emerging role of FTY720 (Fingolimod) in cancer treatment. Oncotarget, 2016, 7, 23106-23127.	0.8	128
110	Alkaline ceramidase 2 and its bioactive product sphingosine are novel regulators of the DNA damage response. Oncotarget, 2016, 7, 18440-18457.	0.8	39

#	Article	IF	CITATIONS
111	Sphingosine-1 Phosphate: A New Modulator of Immune Plasticity in the Tumor Microenvironment. Frontiers in Oncology, 2016, 6, 218.	1.3	57
112	Apoptosis in Cellular Society: Communication between Apoptotic Cells and Their Neighbors. International Journal of Molecular Sciences, 2016, 17, 2144.	1.8	46
113	Apoptotic cell responses in the splenic marginal zone: a paradigm for immunologic reactions to apoptotic antigens with implications for autoimmunity. Immunological Reviews, 2016, 269, 26-43.	2.8	46
114	Key mechanisms governing resolution of lung inflammation. Seminars in Immunopathology, 2016, 38, 425-448.	2.8	177
115	The Dynamics of Apoptotic Cell Clearance. Developmental Cell, 2016, 38, 147-160.	3.1	235
116	Concise Review: Mechanisms Behind Apoptotic Cell-Based Therapies Against Transplant Rejection and Graft versus Host Disease. Stem Cells, 2016, 34, 1142-1150.	1.4	31
117	Killing Is Not Enough: How Apoptosis Hijacks Tumor-Associated Macrophages to Promote Cancer Progression. Advances in Experimental Medicine and Biology, 2016, 930, 205-239.	0.8	32
119	Microenvironmental Effects of Cell Death in Malignant Disease. Advances in Experimental Medicine and Biology, 2016, 930, 51-88.	0.8	29
120	The life cycle of phagosomes: formation, maturation, and resolution. Immunological Reviews, 2016, 273, 156-179.	2.8	239
121	â€~This way please': Apoptotic cells regulate phagocyte migration before and after engulfment. European Journal of Immunology, 2016, 46, 1583-1586.	1.6	11
122	Lipocalin 2 from macrophages stimulated by tumor cell–derived sphingosine 1-phosphate promotes lymphangiogenesis and tumor metastasis. Science Signaling, 2016, 9, ra64.	1.6	73
123	The clearance of dying cells: table for two. Cell Death and Differentiation, 2016, 23, 915-926.	5.0	239
124	Resolution of inflammation: a new therapeutic frontier. Nature Reviews Drug Discovery, 2016, 15, 551-567.	21.5	642
125	Erythropoeitin Signaling in Macrophages Promotes Dying Cell Clearance and Immune Tolerance. Immunity, 2016, 44, 287-302.	6.6	151
126	Do not let death do us part: â€~find-me' signals in communication between dying cells and the phagocytes. Cell Death and Differentiation, 2016, 23, 979-989.	5.0	131
127	The role of airway macrophages in apoptotic cell clearance following acute and chronic lung inflammation. Seminars in Immunopathology, 2016, 38, 409-423.	2.8	120
128	Syndecan-1 Attenuates Lung Injury during Influenza Infection by Potentiating c-Met Signaling to Suppress Epithelial Apoptosis. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 333-344.	2.5	51
129	Oroscomucoid like protein 3 (ORMDL3) transgenic mice have reduced levels of sphingolipids including sphingosine-1-phosphate and ceramide. Journal of Allergy and Clinical Immunology, 2017, 139, 1373-1376.e4.	1.5	34

#	Article	IF	CITATIONS
130	Microglia in CNS development: Shaping the brain for the future. Progress in Neurobiology, 2017, 149-150, 1-20.	2.8	203
131	Efferocytosis Signaling in the Regulation of Macrophage Inflammatory Responses. Journal of Immunology, 2017, 198, 1387-1394.	0.4	296
132	Engulfment signals and the phagocytic machinery for apoptotic cell clearance. Experimental and Molecular Medicine, 2017, 49, e331-e331.	3.2	111
133	Up-regulated Ectonucleotidases in Fas-Associated Death Domain Protein– and Receptor-Interacting Protein Kinase 1–Deficient Jurkat Leukemia Cells Counteract Extracellular ATP/AMP Accumulation via Pannexin-1 Channels during Chemotherapeutic Drug-Induced Apoptosis. Molecular Pharmacology, 2017, 92, 30-47.	1.0	13
134	Alkaline ceramidase 2 is a novel direct target of p53 and induces autophagy and apoptosis through ROS generation. Scientific Reports, 2017, 7, 44573.	1.6	30
135	Complement factor H in host defense and immune evasion. Cellular and Molecular Life Sciences, 2017, 74, 1605-1624.	2.4	148
136	Sphingolipid pathway enzymes modulate cell fate and immune responses. Immunotherapy, 2017, 9, 1185-1198.	1.0	22
137	Crosstalk between TLR2 and Sphk1 in microglia in the cerebral ischemia/reperfusion-induced inflammatory response. International Journal of Molecular Medicine, 2017, 40, 1750-1758.	1.8	22
138	Elevated intrathymic sphingosine-1-phosphate promotes thymus involution during sepsis. Molecular Immunology, 2017, 90, 255-263.	1.0	12
139	In life there is death: How epithelial tissue barriers are preserved despite the challenge of apoptosis. Tissue Barriers, 2017, 5, e1345353.	1.6	16
140	Doxorubicin effect is enhanced by sphingosine-1-phosphate signaling antagonist in breast cancer. Journal of Surgical Research, 2017, 219, 202-213.	0.8	46
141	Chromosome 17q21 Genes ORMDL3 and GSDMB in Asthma and Immune Diseases. Advances in Immunology, 2017, 135, 1-52.	1.1	91
142	Inosine Released from Dying or Dead Cells Stimulates Cell Proliferation via Adenosine Receptors. Frontiers in Immunology, 2017, 8, 504.	2.2	18
143	Anti-inflammatory Mechanisms Triggered by Apoptotic Cells during Their Clearance. Frontiers in Immunology, 2017, 8, 909.	2.2	139
144	Apoptotic Cells Induced Signaling for Immune Homeostasis in Macrophages and Dendritic Cells. Frontiers in Immunology, 2017, 8, 1356.	2.2	81
145	Efferocytosis of Pathogen-Infected Cells. Frontiers in Immunology, 2017, 8, 1863.	2.2	37
146	Apoptotic Cell Clearance in Drosophila melanogaster. Frontiers in Immunology, 2017, 8, 1881.	2.2	17
147	Differential S1P Receptor Profiles on M1- and M2-Polarized Macrophages Affect Macrophage Cytokine Production and Migration. BioMed Research International, 2017, 2017, 1-10.	0.9	43

#	Article	IF	CITATIONS
148	Carcinogenesis-relevant biological events in the pathophysiology of the efferocytosis phenomenon. Oncology Reviews, 2017, 11, 343.	0.8	4
149	Naturally occurring compounds in differentiation based therapy of cancer. Biotechnology Advances, 2018, 36, 1622-1632.	6.0	31
150	Berberine protects HK-2 cells from hypoxia/reoxygenation induced apoptosis via inhibiting SPHK1 expression. Journal of Natural Medicines, 2018, 72, 390-398.	1.1	9
151	An apoptosis-driven â€~onco-regenerative niche': roles of tumour-associated macrophages and extracellular vesicles. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170003.	1.8	48
152	Function of Pro-Resolving Lipid Mediator Resolvin E1 in Type 2 Diabetes. Critical Reviews in Immunology, 2018, 38, 343-365.	1.0	32
154	Hepatocyte-Derived Lipotoxic Extracellular Vesicle Sphingosine 1-Phosphate Induces Macrophage Chemotaxis. Frontiers in Immunology, 2018, 9, 2980.	2.2	65
155	Autophagy in Health and Disease. Pancreatic Islet Biology, 2018, , .	0.1	1
156	Regulation of Hepatic Inflammation via Macrophage Cell Death. Seminars in Liver Disease, 2018, 38, 340-350.	1.8	31
157	Mechanisms of Fumonisin B1 Toxicity: A Computational Perspective beyond the Ceramide Synthases Inhibition. Chemical Research in Toxicology, 2018, 31, 1203-1212.	1.7	21
158	Efferocytosis in the tumor microenvironment. Seminars in Immunopathology, 2018, 40, 545-554.	2.8	93
159	Role of neutrophils in equine asthma. Animal Health Research Reviews, 2018, 19, 65-73.	1.4	20
160	The Role of Efferocytosis in Autoimmune Diseases. Frontiers in Immunology, 2018, 9, 1645.	2.2	93
161	Mechanisms and Consequences of Defective Efferocytosis in Atherosclerosis. Frontiers in Cardiovascular Medicine, 2017, 4, 86.	1.1	193
162	Clearance of Apoptotic Cells by Tissue Epithelia: A Putative Role for Hepatocytes in Liver Efferocytosis. Frontiers in Immunology, 2018, 9, 44.	2.2	52
163	Neutral Sphingomyelinases in Cancer. Advances in Cancer Research, 2018, 140, 97-119.	1.9	12
164	Communicating with the dead: lipids, lipid mediators and extracellular vesicles. Biochemical Society Transactions, 2018, 46, 631-639.	1.6	3
165	Targeting Sphingosine Kinases for the Treatment of Cancer. Advances in Cancer Research, 2018, 140, 295-325.	1.9	32
166	New Insights into Microglia–Neuron Interactions: A Neuron's Perspective. Neuroscience, 2019, 405, 103-117.	1.1	77

#	Article	IF	CITATIONS
167	Sphingosine-1-Phosphate and Macrophage Biology—How the Sphinx Tames the Big Eater. Frontiers in Immunology, 2019, 10, 1706.	2.2	80
168	Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 531-543.	8.2	481
169	The Emerging Role of Triggering Receptor Expressed on Myeloid Cells 2 as a Target for Immunomodulation in Ischemic Stroke. Frontiers in Immunology, 2019, 10, 1668.	2.2	46
170	Effects of Tithonia diversifolia (Asteraceae) extract on innate inflammatory responses. Journal of Ethnopharmacology, 2019, 242, 112041.	2.0	10
171	Luciferase-assisted detection of extracellular ATP and ATP metabolites during immunogenic death of cancer cells. Methods in Enzymology, 2019, 629, 81-102.	0.4	10
173	The contribution of macrophages to systemic lupus erythematosus. Clinical Immunology, 2019, 207, 1-9.	1.4	52
174	Imaging of cancer lipid metabolism in response to therapy. NMR in Biomedicine, 2019, 32, e4070.	1.6	10
175	Targeting Tyro3, Axl and MerTK (TAM receptors): implications for macrophages in the tumor microenvironment. Molecular Cancer, 2019, 18, 94.	7.9	237
176	How macrophages deal with death. Nature Reviews Immunology, 2019, 19, 539-549.	10.6	239
177	Voices from the dead: The complex vocabulary and intricate grammar of dead cells. Advances in Protein Chemistry and Structural Biology, 2019, 116, 1-90.	1.0	3
178	Ci-hox12 tail gradient precedes and participates in the control of the apoptotic-dependent tail regression during Ciona larva metamorphosis. Developmental Biology, 2019, 448, 237-246.	0.9	16
179	Apoptotic cell-derived extracellular vesicles: structure–function relationships. Biochemical Society Transactions, 2019, 47, 509-516.	1.6	17
180	Efferocytosis: molecular mechanisms and pathophysiological perspectives. Immunology and Cell Biology, 2019, 97, 124-133.	1.0	54
181	Sphingosine kinase and sphingosine-1-phosphate receptor signaling pathway in inflammatory gastrointestinal disease and cancers: A novel therapeutic target. , 2020, 207, 107464.		91
182	Efferocytosis in health and disease. Nature Reviews Immunology, 2020, 20, 254-267.	10.6	461
183	Mechanisms of Cell Death. , 2020, , 135-153.		0
184	Cell Death in the Tumor Microenvironment: Implications for Cancer Immunotherapy. Cells, 2020, 9, 2207.	1.8	21
185	Sphingolipid Metabolism in Glioblastoma and Metastatic Brain Tumors: A Review of Sphingomyelinases and Sphingosine-1-Phosphate. Biomolecules, 2020, 10, 1357.	1.8	28

#	Article	IF	CITATIONS
186	Intestinal Macrophages at the Crossroad between Diet, Inflammation, and Cancer. International Journal of Molecular Sciences, 2020, 21, 4825.	1.8	24
187	Age-related blunting of the phagocyte arsenal and its art of killing. Current Molecular Biology Reports, 2020, 6, 126-138.	0.8	1
188	Druggable Sphingolipid Pathways: Experimental Models and Clinical Opportunities. Advances in Experimental Medicine and Biology, 2020, 1274, 101-135.	0.8	6
189	Regulation of efferocytosis as a novel cancer therapy. Cell Communication and Signaling, 2020, 18, 71.	2.7	41
190	Fractalkine/CX3CL1 in Neoplastic Processes. International Journal of Molecular Sciences, 2020, 21, 3723.	1.8	51
191	Sphingosineâ€1â€phosphate (S1P) receptors: Promising drug targets for treating boneâ€related diseases. Journal of Cellular and Molecular Medicine, 2020, 24, 4389-4401.	1.6	23
192	Biological Function and Immunotherapy Utilizing Phosphatidylserine-based Nanoparticles. Immunological Investigations, 2020, 49, 858-874.	1.0	8
194	Cellular Interplay as a Consequence of Inflammatory Signals Leading to Liver Fibrosis Development. Cells, 2020, 9, 461.	1.8	38
195	Evaluating the antitumor activity of sphingosine-1-phosphate against human triple-negative breast cancer cells with basal-like morphology. Investigational New Drugs, 2020, 38, 1316-1325.	1.2	6
196	Phagocytosis of Necrotic Debris at Sites of Injury and Inflammation. Frontiers in Immunology, 2019, 10, 3030.	2.2	104
197	Sphingolipids as mediators of inflammation and novel therapeutic target in inflammatory bowel disease. Advances in Protein Chemistry and Structural Biology, 2020, 120, 123-158.	1.0	29
198	Efferocytosis and Its Associated Cytokines: A Light on Non-tumor and Tumor Diseases?. Molecular Therapy - Oncolytics, 2020, 17, 394-407.	2.0	19
199	The clearance of dead cells by efferocytosis. Nature Reviews Molecular Cell Biology, 2020, 21, 398-414.	16.1	395
200	Phagocytosis of Apoptotic Cells in Resolution of Inflammation. Frontiers in Immunology, 2020, 11, 553.	2.2	156
201	Macrophageâ€Mediated Tumor Cell Phagocytosis: Opportunity for Nanomedicine Intervention. Advanced Functional Materials, 2021, 31, 2006220.	7.8	63
202	Tyro3, Axl, Mertk receptor-mediated efferocytosis and immune regulation in the tumor environment. International Review of Cell and Molecular Biology, 2021, 361, 165-210.	1.6	6
203	Metabolic Consequences of Efferocytosis and Its Impact on Atherosclerosis. Immunometabolism, 2021, 3, .	0.7	15
204	Role of Apoptotic Cell Clearance in Pneumonia and Inflammatory Lung Disease. Pathogens, 2021, 10, 134.	1.2	14

#	Article	IF	CITATIONS
205	Pulsatile contractions promote apoptotic cell extrusion in epithelial tissues. Current Biology, 2021, 31, 1129-1140.e4.	1.8	34
206	Recent advances in dead cell clearance during acute lung injury and repair. Faculty Reviews, 2021, 10, 33.	1.7	9
207	Importance of apoptosis and extrusion for preserving the structure of the airway epithelium. Bulletin Physiology and Pathology of Respiration, 2021, , 141-153.	0.0	0
208	Phagocytic clearance of apoptotic, necrotic, necroptotic and pyroptotic cells. Biochemical Society Transactions, 2021, 49, 793-804.	1.6	23
209	Apoptotic cell extrusion depends on single-cell synthesis of sphingosine-1-phosphate by sphingosine kinase 2. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158888.	1.2	5
210	Targeting the Sphingosine Kinase/Sphingosine-1-Phosphate Signaling Axis in Drug Discovery for Cancer Therapy. Cancers, 2021, 13, 1898.	1.7	33
211	Efferocytosis Mediated Modulation of Injury after Neonatal Brain Hypoxia-Ischemia. Cells, 2021, 10, 1025.	1.8	8
212	Chemokines act as phosphatidylserine-bound "find-me―signals in apoptotic cell clearance. PLoS Biology, 2021, 19, e3001259.	2.6	16
213	Having an Old Friend for Dinner: The Interplay between Apoptotic Cells and Efferocytes. Cells, 2021, 10, 1265.	1.8	9
214	The role of P2Y receptors in regulating immunity and metabolism. Biochemical Pharmacology, 2021, 187, 114419.	2.0	22
215	The Role of Sphingolipids in Cancer Immunotherapy. International Journal of Molecular Sciences, 2021, 22, 6492.	1.8	11
216	Efferocytosis of vascular cells in cardiovascular disease. , 2022, 229, 107919.		6
217	Targeting Immunometabolism in Glioblastoma. Frontiers in Oncology, 2021, 11, 696402.	1.3	19
218	Macrophage Motility in Wound Healing Is Regulated by HIF-1α via S1P Signaling. International Journal of Molecular Sciences, 2021, 22, 8992.	1.8	11
219	Dead cell and debris clearance in the atherosclerotic plaque: Mechanisms and therapeutic opportunities to promote inflammation resolution. Pharmacological Research, 2021, 170, 105699.	3.1	16
220	Macrophages: The Good, the Bad, and the Gluttony. Frontiers in Immunology, 2021, 12, 708186.	2.2	178
221	The behavior and functions of embryonic microglia. Anatomical Science International, 2022, 97, 1-14.	0.5	15
222	Roles of Ceramides and Other Sphingolipids in Immune Cell Function and Inflammation. Advances in Experimental Medicine and Biology, 2019, 1161, 169-191.	0.8	62

#	Article	IF	CITATIONS
223	S1P Signaling in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1223, 129-153.	0.8	19
224	Entosis and apical cell extrusion constitute a tumor-suppressive mechanism downstream of Matriptase. Journal of Cell Biology, 2020, 219, .	2.3	3
225	Macrophage Efferocytosis in Cardiac Pathophysiology and Repair. Shock, 2021, 55, 177-188.	1.0	17
226	Necroptosis of infiltrated macrophages drives Yersinia pestis dispersal within buboes. JCI Insight, 2018, 3, .	2.3	22
227	S1PR4 ablation reduces tumor growth and improves chemotherapy via CD8+ T cell expansion. Journal of Clinical Investigation, 2020, 130, 5461-5476.	3.9	48
228	Downregulation of sphingosine kinase-1 induces protective tumor immunity by promoting M1 macrophage response in melanoma. Oncotarget, 2016, 7, 71873-71886.	0.8	35
229	New extracellular factors in glioblastoma multiforme development: neurotensin, growth differentiation factor-15, sphingosine-1-phosphate and cytomegalovirus infection. Oncotarget, 2018, 9, 7219-7270.	0.8	16
230	Targeting Tumor-Associated Macrophages in the Pediatric Sarcoma Tumor Microenvironment. Frontiers in Oncology, 2020, 10, 581107.	1.3	14
231	Phagocytosis. Colloquium Series on Building Blocks of the Cell Cell Structure and Function, 2013, 1, 1-105.	0.5	2
232	Immunosuppression via adenosine receptor activation by adenosine monophosphate released from apoptotic cells. ELife, 2014, 3, e02172.	2.8	86
233	Apoptotic cell-derived metabolites in efferocytosis-mediated resolution of inflammation. Cytokine and Growth Factor Reviews, 2021, 62, 42-53.	3.2	7
234	Comparative transcriptomic analysis reveals gene regulation mediated by caspase activity in a chordate organism. BMC Molecular and Cell Biology, 2021, 22, 51.	1.0	3
235	Alterations in β-Cell Sphingolipid Profile Associated with ER Stress and iPLA2β: Another Contributor to β-Cell Apoptosis in Type 1 Diabetes. Molecules, 2021, 26, 6361.	1.7	2
236	Expressions of Sphingosine-1-phosphate (S1P) Receptors, Sphingosine Kinases in Malignant Bone and Soft Tissue Tumors, and The role of Sphingosine Kinase-1 in Growth of MFH Cell Lines. Journal of Cancer Therapy, 2011, 02, 288-294.	0.1	0
237	(Auto)Phagocytosis in Atherosclerosis: Implications for Plaque Stability and Therapeutic Challenges. , O, , .		0
238	Autoimmune Diseases and the Role of MFG-E8. , 2014, , 97-117.		1
239	Apoptotic Cell Clearance in Gut Tissue: Role of Intestinal Regeneration. Pancreatic Islet Biology, 2018, , 87-100.	0.1	0
242	Sphingolipids in spinal cord injury. International Journal of Physiology, Pathophysiology and Pharmacology, 2016, 8, 52-69.	0.8	14

#	Article	IF	Citations
243	Phagocyte Chemoattraction Is Induced through the Mcp-1–Ccr2 Axis during Efferocytosis. Cells, 2021, 10, 3115.	1.8	3
244	Efferocytosis in multisystem diseases (Review). Molecular Medicine Reports, 2021, 25, .	1.1	5
245	å¿f血管ç−¾ç−…ä,的巨噬细èfž. Scientia Sinica Vitae, 2021, , .	0.1	0
246	Efferocytosis in the Central Nervous System. Frontiers in Cell and Developmental Biology, 2021, 9, 773344.	1.8	12
247	Before the "cytokine storm― Boosting efferocytosis as an effective strategy against SARS-CoV-2 infection and associated complications. Cytokine and Growth Factor Reviews, 2022, 63, 108-118.	3.2	8
248	The role of efferocytosis in neuro-degenerative diseases. Neurological Sciences, 2022, 43, 1593-1603.	0.9	4
249	The Apoptosis Paradox in Cancer. International Journal of Molecular Sciences, 2022, 23, 1328.	1.8	96
250	Phagocytic astrocytes: Emerging from the shadows of microglia. Glia, 2022, 70, 1009-1026.	2.5	30
251	Tumor lysates cancer vaccine. , 2022, , 21-49.		0
252	Sphingosine 1-phosphate modulation and immune cell trafficking in inflammatory bowel disease. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 351-366.	8.2	43
253	Efferocytosis and Its Role in Inflammatory Disorders. Frontiers in Cell and Developmental Biology, 2022, 10, 839248.	1.8	30
254	MicroRNAs and Efferocytosis: Implications for Diagnosis and Therapy. Mini-Reviews in Medicinal Chemistry, 2022, 22, .	1.1	1
255	Role of sphingosine kinase and sphingosine-1-phosphate receptor in the liver pathology of mice infected with Plasmodium berghei ANKA. PLoS ONE, 2022, 17, e0266055.	1.1	2
256	Sphingosine 1-Phosphate Receptor 5 (S1P5) Knockout Ameliorates Adenine-Induced Nephropathy. International Journal of Molecular Sciences, 2022, 23, 3952.	1.8	3
257	Impact of Epithelial Cell Shedding on Intestinal Homeostasis. International Journal of Molecular Sciences, 2022, 23, 4160.	1.8	20
258	Guanxinkang Decoction Attenuates the Inflammation in Atherosclerosis by Regulating Efferocytosis and MAPKs Signaling Pathway in LDLRâ^'/â^' Mice and RAW264.7 Cells. Frontiers in Pharmacology, 2021, 12, 731769.	1.6	8
260	The crossâ€ŧalk between soluble "Find me―and "Keep out―signals as an initial step in regulating efferocytosis. Journal of Cellular Physiology, 2022, 237, 3113-3126.	2.0	5
261	The metabolic characteristic of decidual immune cells and their unique properties in pregnancy loss*. Immunological Reviews, 2022, 308, 168-186.	2.8	5

#	Article	IF	CITATIONS
262	Drugging the efferocytosis process: concepts and opportunities. Nature Reviews Drug Discovery, 2022, 21, 601-620.	21.5	91
263	Efferocytosis in lung mucosae: implications for health and disease. Immunology Letters, 2022, 248, 109-118.	1.1	3
264	The Impaired Mechanism and Facilitated Therapies of Efferocytosis in Atherosclerosis. Journal of Cardiovascular Pharmacology, 2022, Publish Ahead of Print, .	0.8	3
265	Mechanisms of efferocytosis in determining inflammation resolution: Therapeutic potential and the association with cardiovascular disease. British Journal of Pharmacology, 2022, 179, 5151-5171.	2.7	4
266	Diacerein attenuate LPS-induced acute lung injury via inhibiting ER stress and apoptosis: Impact on the crosstalk between SphK1/S1P, TLR4/NFI®B/STAT3, and NLRP3/IL-1I² signaling pathways. Life Sciences, 2022, 308, 120915.	2.0	12
267	Platelet-Derived S1P and Its Relevance for the Communication with Immune Cells in Multiple Human Diseases. International Journal of Molecular Sciences, 2022, 23, 10278.	1.8	3
268	The microglia-blood vessel interactions in the developing brain. Neuroscience Research, 2023, 187, 58-66.	1.0	9
269	Defective efferocytosis of vascular cells in heart disease. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	3
270	Pramipexole and Lactoferrin ameliorate Cyclophosphamide-Induced haemorrhagic cystitis via targeting Sphk1/S1P/MAPK, TLR-4/NF-κB, and NLRP3/caspase-1/IL-1β signalling pathways and modulating the Nrf2/HO-1 pathway. International Immunopharmacology, 2022, 112, 109282.	1.7	8
271	Apoptotic MSCs and MSC-Derived Apoptotic Bodies as New Therapeutic Tools. Current Issues in Molecular Biology, 2022, 44, 5153-5172.	1.0	6
272	50 years on and still very much alive: â€~Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics'. British Journal of Cancer, 2023, 128, 426-431.	2.9	18
273	Phosphatidylserine-mediated Oral Tolerance. Cellular Immunology, 2022, , 104660.	1.4	2
274	Anti-Inflammatory Neutrophil Functions in the Resolution of Inflammation and Tissue Repair. Cells, 2022, 11, 4076.	1.8	10
275	Prolonged hypernutrition impairs TREM2-dependent efferocytosis to license chronic liver inflammation and NASH development. Immunity, 2023, 56, 58-77.e11.	6.6	37
276	Unveiling the biological role of sphingosine-1-phosphate receptor modulators in inflammatory bowel diseases. World Journal of Gastroenterology, 0, 29, 110-125.	1.4	4
277	Sphingosine-1-Phosphate Recruits Macrophages and Microglia and Induces a Pro-Tumorigenic Phenotype That Favors Glioma Progression. Cancers, 2023, 15, 479.	1.7	4
278	Role of transcription factors in apoptotic cells clearance. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	2
279	The Sphingosine 1-Phosphate Axis: an Emerging Therapeutic Opportunity for Endometriosis. Reproductive Sciences, 2023, 30, 2040-2059.	1.1	2

#	Article	IF	CITATIONS
280	Mechanisms of continual efferocytosis by macrophages and its role in mitigating atherosclerosis. Immunometabolism, 2023, 5, e00017.	0.7	6
281	Messenger functions of cell death during development and homeostasis. Biochemical Society Transactions, 0, , .	1.6	0
282	Update of cellular responses to the efferocytosis of necroptosis and pyroptosis. Cell Division, 2023, 18, .	1.1	4
293	After cell death: the molecular machinery of efferocytosis. Experimental and Molecular Medicine, 2023, 55, 1644-1651.	3.2	1
300	Macrophage profiling in atherosclerosis: understanding the unstable plaque. Basic Research in Cardiology, 2024, 119, 35-56.	2.5	0