Structure of the human voltage-dependent anion chann

Proceedings of the National Academy of Sciences of the Unite 105, 15370-15375

DOI: 10.1073/pnas.0808115105

Citation Report

#	Article	IF	CITATIONS
1	Opening and closing the metabolite gate. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19565-19566.	3.3	77
2	Voltage-dependent Anion Channel 1-based Peptides Interact with Hexokinase to Prevent Its Anti-apoptotic Activity. Journal of Biological Chemistry, 2009, 284, 3946-3955.	1.6	141
3	Trouble in VDAC field by putative inconsistencies of early antibody labeling studies. Channels, 2009, 3, 379-380.	1.5	5
4	Crystal packing analysis of murine VDAC1 crystals in a lipidic environment reveals novel insights on oligomerization and orientation. Channels, 2009, 3, 167-170.	1.5	42
5	Nek1 regulates cell death and mitochondrial membrane permeability through phosphorylation of VDAC1. Cell Cycle, 2009, 8, 257-267.	1.3	79
6	Coupled Decomposition of Four-Dimensional NOESY Spectra. Journal of the American Chemical Society, 2009, 131, 12970-12978.	6.6	51
7	Chapter 11 Bacterial Membrane Proteins. Current Topics in Membranes, 2009, 63, 269-297.	0.5	2
8	Structure and topology of monomeric phospholamban in lipid membranes determined by a hybrid solution and solid-state NMR approach. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10165-10170.	3.3	158
9	Downregulation of Mitochondrial Porin Inhibits Cell Growth and Alters Respiratory Phenotype in <i>Trypanosoma brucei</i> . Eukaryotic Cell, 2009, 8, 1418-1428.	3.4	31
10	Solution Nuclear Magnetic Resonance Structure of Membrane-Integral Diacylglycerol Kinase. Science, 2009, 324, 1726-1729.	6.0	205
11	The VDAC1 N-terminus is essential both for apoptosis and the protective effect of anti-apoptotic proteins. Journal of Cell Science, 2009, 122, 1906-1916.	1.2	201
12	The role of solution NMR in the structure determinations of VDAC-1 and other membrane proteins. Current Opinion in Structural Biology, 2009, 19, 396-401.	2.6	81
13	From biomolecular structure to functional understanding: new NMR developments narrow the gap. Current Opinion in Structural Biology, 2009, 19, 585-595.	2.6	29
14	The published 3D structure of the VDAC channel: native or not?. Trends in Biochemical Sciences, 2009, 34, 382-389.	3.7	109
15	Key regions of VDAC1 functioning in apoptosis induction and regulation by hexokinase. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 421-430.	0.5	114
16	Probing the orientation of yeast VDAC1 in vivo. FEBS Letters, 2009, 583, 739-742.	1.3	29
17	Pathogen Inducible Voltage-Dependent Anion Channel (AtVDAC) Isoforms Are Localized to Mitochondria Membrane in Arabidopsis. Molecules and Cells, 2009, 27, 321-328.	1.0	54
18	Biogenesis of \hat{l}^2 -barrel membrane proteins in bacteria and eukaryotes: evolutionary conservation and divergence. Cellular and Molecular Life Sciences, 2009, 66, 2789-2804.	2.4	149

#	Article	IF	CITATIONS
19	Outer membrane VDAC1 controls permeability transition of the inner mitochondrial membrane in cellulo during stress-induced apoptosis. Cell Research, 2009, 19, 1363-1376.	5.7	120
20	Recent advances in the application of solution NMR spectroscopy to multi-span integral membrane proteins. Progress in Nuclear Magnetic Resonance Spectroscopy, 2009, 55, 335-360.	3.9	140
21	Structural and functional link between the mitochondrial network and the endoplasmic reticulum. International Journal of Biochemistry and Cell Biology, 2009, 41, 1817-1827.	1.2	337
22	Evolution of mitochondrial protein biogenesis. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 409-415.	1.1	41
23	Solid-state NMR study of proteorhodopsin in the lipid environment: Secondary structure and dynamics. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 2563-2574.	1.4	90
24	VDAC and ERα interaction in caveolae from human cortex is altered in Alzheimer's disease. Molecular and Cellular Neurosciences, 2009, 42, 172-183.	1.0	83
25	Tuning microbial hosts for membrane protein production. Microbial Cell Factories, 2009, 8, 69.	1.9	64
26	Structural and Functional Characterization of the Integral Membrane Protein VDAC-1 in Lipid Bilayer Nanodiscs. Journal of the American Chemical Society, 2009, 131, 17777-17779.	6.6	158
27	Effects of ergosterol on the structure and activity of <i>Neurospora </i> mitochondrial porin in liposomes. Canadian Journal of Microbiology, 2009, 55, 1275-1283.	0.8	3
28	HHompâ€"prediction and classification of outer membrane proteins. Nucleic Acids Research, 2009, 37, W446-W451.	6.5	86
29	Dominant-negative VDAC1 mutants reveal oligomeric VDAC1 to be the active unit in mitochondria-mediated apoptosis. Biochemical Journal, 2010, 429, 147-155.	1.7	13
30	VDAC1 cysteine residues: topology and function in channel activity and apoptosis. Biochemical Journal, 2010, 427, 445-454.	1.7	43
31	Apoptosis is regulated by the VDAC1 N-terminal region and by VDAC oligomerization: release of cytochrome c, AIF and Smac/Diablo. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1281-1291.	0.5	123
32	Mitochondrial tyrosine phosphoproteome: New insights from an upâ€toâ€date analysis. BioFactors, 2010, 36, 437-450.	2.6	15
33	Structures of membrane proteins. Quarterly Reviews of Biophysics, 2010, 43, 65-158.	2.4	157
34	Backbone and ILV side chain methyl group assignments of the integral human membrane protein VDAC-1. Biomolecular NMR Assignments, 2010, 4, 29-32.	0.4	10
35	Cell-free expression and stable isotope labelling strategies for membrane proteins. Journal of Biomolecular NMR, 2010, 46, 33-43.	1.6	81
36	The 3D structures of VDAC represent a native conformation. Trends in Biochemical Sciences, 2010, 35, 514-521.	3.7	115

3

#	ARTICLE	IF	Citations
37	Characterization of human VDAC isoforms: A peculiar function for VDAC3?. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1268-1275.	0.5	142
38	Structure and evolution of mitochondrial outer membrane proteins of \hat{l}^2 -barrel topology. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1292-1299.	0.5	83
39	Characterization of human VDAC isoforms: A peculiar function for VDAC3?. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 66.	0.5	1
41	Communication between mitochondria and nucleus: Putative role for VDAC in reduction/oxidation mechanism. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 66-67.	0.5	1
42	Voltageâ€dependent anionâ€selective channel (VDAC) in the plasma membrane. FEBS Letters, 2010, 584, 1793-1799.	1.3	144
43	Swapping of the Nâ€terminus of VDAC1 with VDAC3 restores full activity of the channel and confers antiâ€aging features to the cell. FEBS Letters, 2010, 584, 2837-2844.	1.3	58
45	The Native Conformation of the Human VDAC1 Nâ€Terminus. Angewandte Chemie - International Edition, 2010, 49, 1882-1885.	7.2	67
46	A reconstitution protocol for the in vitro folded human G protein-coupled Y2 receptor into lipid environment. Biophysical Chemistry, 2010, 150, 29-36.	1.5	30
47	Prediction of subcellular locations of proteins: Where to proceed?. Proteomics, 2010, 10, 3970-3983.	1.3	81
48	Homologue structure of the SLAC1 anion channel for closing stomata in leaves. Nature, 2010, 467, 1074-1080.	13.7	118
49	Assembly of outer-membrane proteins in bacteria and mitochondria. Microbiology (United Kingdom), 2010, 156, 2587-2596.	0.7	97
50	AnEscherichia coli-Based Cell-Free System for Large-Scale Production of Functional Mammalian Membrane Proteins Suitable for X-Ray Crystallography. Journal of Molecular Microbiology and Biotechnology, 2010, 18, 85-91.	1.0	17
51	The Mitochondrial Porin, VDAC, Has Retained the Ability to Be Assembled in the Bacterial Outer Membrane. Molecular Biology and Evolution, 2010, 27, 887-895.	3.5	41
53	Voltage-dependent Anion Channel 1-based Peptides Interact with Bcl-2 to Prevent Antiapoptotic Activity. Journal of Biological Chemistry, 2010, 285, 6053-6062.	1.6	139
54	Functional dynamics in the voltage-dependent anion channel. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22546-22551.	3.3	97
55	Inhibition of Bak Activation by VDAC2 Is Dependent on the Bak Transmembrane Anchor. Journal of Biological Chemistry, 2010, 285, 36876-36883.	1.6	83
56	Oligomerization of the Mitochondrial Protein Voltage-Dependent Anion Channel Is Coupled to the Induction of Apoptosis. Molecular and Cellular Biology, 2010, 30, 5698-5709.	1.1	202
57	Voltage dependent anion channel-1 (VDAC-1) as an anti-cancer target. Cancer Biology and Therapy, 2010, 9, 1053-1056.	1.5	28

#	Article	IF	CITATIONS
58	Outer Membrane Proteins., 2010, , 175-228.		11
59	Modulation of Plant Mitochondrial VDAC by Phytosterols. Biophysical Journal, 2010, 99, 2097-2106.	0.2	55
60	Assignment of Dynamic Regions in Biological Solids Enabled by Spin-State Selective NMR Experiments. Journal of the American Chemical Society, 2010, 132, 8891-8893.	6.6	45
61	A Soluble Form of the Pilus Protein FimA Targets the VDAC-Hexokinase Complex at Mitochondria to Suppress Host Cell Apoptosis. Molecular Cell, 2010, 37, 768-783.	4.5	42
62	The Electrostatics of VDAC: Implications for Selectivity and Gating. Journal of Molecular Biology, 2010, 396, 580-592.	2.0	81
63	A Tag at the Carboxy Terminus Prevents Membrane Integration of VDAC1 in Mammalian Mitochondria. Journal of Molecular Biology, 2010, 397, 219-232.	2.0	13
64	VDAC, a multi-functional mitochondrial protein regulating cell life and death. Molecular Aspects of Medicine, 2010, 31, 227-285.	2.7	607
65	Crystallization of the membrane protein hVDAC1 produced in cell-free system. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1540-1546.	1.4	37
66	Phosphorylation by Nek1 regulates opening and closing of voltage dependent anion channel 1. Biochemical and Biophysical Research Communications, 2010, 394, 798-803.	1.0	44
67	Voltage-dependent anion channel in mammalian spermatozoa. Biochemical and Biophysical Research Communications, 2010, 397, 633-636.	1.0	13
68	Amyloid Aß, cut from APP by ß-secretase BACE1 and γ-secretase, induces apoptosis via opening type-1 porin/VDAC in cell membranes of hypometabolic cells—A basic model for the induction of apoptosis!?. Molecular Genetics and Metabolism, 2010, 101, 301-303.	0.5	14
69	Prokaryotic Cell Wall Compounds. , 2010, , .		19
70	Low molecular weight oligomers of amyloid peptides display \hat{l}^2 -barrel conformations: A replica exchange molecular dynamics study in explicit solvent. Journal of Chemical Physics, 2010, 132, 165103.	1.2	62
71	Porins in prokaryotes and eukaryotes: common themes and variations. Biochemical Journal, 2010, 431, 13-22.	1.7	106
72	Origami in outer membrane mimetics: correlating the first detailed images of refolded VDAC with over 20Ayears of biochemical data. Biochemistry and Cell Biology, 2010, 88, 425-438.	0.9	21
73	Insights on the permeability of wide protein channels: measurement and interpretation of ion selectivity. Integrative Biology (United Kingdom), 2011, 3, 159-172.	0.6	49
74	Brownian Dynamics Simulations of Ion Transport through the VDAC. Biophysical Journal, 2011, 100, 611-619.	0.2	56
7 5	Molecular Dynamics Studies of Ion Permeation in VDAC. Biophysical Journal, 2011, 100, 602-610.	0.2	78

#	ARTICLE	IF	CITATIONS
76	Development of EGFR-Targeted Polymer Blend Nanocarriers for Combination Paclitaxel/Lonidamine Delivery To Treat Multi-Drug Resistance in Human Breast and Ovarian Tumor Cells. Molecular Pharmaceutics, 2011, 8, 185-203.	2.3	132
77	A proteomic approach to study parathyroid glands. Molecular BioSystems, 2011, 7, 687-699.	2.9	24
78	Contemporary Methods in Structure Determination of Membrane Proteins by Solution NMR. Topics in Current Chemistry, 2011, 326, 123-185.	4.0	19
79	Trans-Plasma Membrane Electron Transport in Mammals: Functional Significance in Health and Disease. Antioxidants and Redox Signaling, 2011, 14, 2289-2318.	2.5	45
80	Association of Neighboring \hat{l}^2 -Strands of Outer Membrane Protein A in Lipid Bilayers Revealed by Site-Directed Fluorescence Quenching. Journal of Molecular Biology, 2011, 407, 316-332.	2.0	33
81	Improving the Resistance of a Eukaryotic \hat{l}^2 -Barrel Protein to Thermal and Chemical Perturbations. Journal of Molecular Biology, 2011, 413, 150-161.	2.0	21
82	The Use of Anti-VDAC2 Antibody for the Combined Assessment of Human Sperm Acrosome Integrity and Ionophore A23187-Induced Acrosome Reaction. PLoS ONE, 2011, 6, e16985.	1.1	18
83	Modulation of Myocardial Mitochondrial Mechanisms during Severe Polymicrobial Sepsis in the Rat. PLoS ONE, 2011, 6, e21285.	1.1	32
84	The Core Components of Organelle Biogenesis and Membrane Transport in the Hydrogenosomes of Trichomonas vaginalis. PLoS ONE, 2011, 6, e24428.	1.1	69
85	Common ground for protein translocation: access control for mitochondria and chloroplasts. Nature Reviews Molecular Cell Biology, 2011, 12, 48-59.	16.1	223
86	The structural biology of \hat{l}^2 -barrel membrane proteins: a summary of recent reports. Current Opinion in Structural Biology, 2011, 21, 523-531.	2.6	216
87	Solution NMR studies of polytopic α-helical membrane proteins. Current Opinion in Structural Biology, 2011, 21, 497-508.	2.6	43
88	Structural elements of the mitochondrial preprotein-conducting channel Tom40 dissolved by bioinformatics and mass spectrometry. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 1647-1657.	0.5	31
89	Early steps in steroidogenesis: intracellular cholesterol trafficking. Journal of Lipid Research, 2011, 52, 2111-2135.	2.0	413
90	Isoforms of voltage-dependent anion channel of the outer mitochondrial membrane and experimental models to study their physiological role. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2011, 5, 111-120.	0.3	0
91	High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data. Journal of Biomolecular NMR, 2011, 51, 227-233.	1.6	51
92	Apoptogenic interactions of plasmalemmal type-1 VDAC and $A\hat{l}^2$ peptides via GxxxG motifs induce Alzheimer's disease $\hat{a} \in \hat{l}$ a basic model of apoptosis?*. Wiener Medizinische Wochenschrift, 2011, 161, 274-276.	0.5	28
93	Functional Refolding and Characterization of Two Tom40 Isoforms from Human Mitochondria. Journal of Membrane Biology, 2011, 242, 11-21.	1.0	16

#	Article	IF	CITATIONS
94	Bacterial Expression, Purification and Characterization of a Rice Voltage-Dependent, Anion-Selective Channel Isoform, OsVDAC4. Journal of Membrane Biology, 2011, 244, 67-80.	1.0	18
95	Molecular model of hexokinase binding to the outer mitochondrial membrane porin (VDAC1): Implication for the design of new cancer therapies. Mitochondrion, 2011, 11, 513-519.	1.6	52
96	Eukaryote-wide sequence analysis of mitochondrial \hat{l}^2 -barrel outer membrane proteins. BMC Genomics, 2011, 12, 79.	1.2	36
97	Solution NMR study of integral membrane proteins. Current Opinion in Chemical Biology, 2011, 15, 560-569.	2.8	71
98	Very simple combination of TROSY, CRINEPT and multiple quantum coherence for signal enhancement in an HN(CO)CA experiment for large proteins. Journal of Magnetic Resonance, 2011, 209, 310-314.	1.2	10
99	Autotransporter protein secretion. Biomolecular Concepts, 2011, 2, 525-536.	1.0	5
100	OMPdb: a database of Â-barrel outer membrane proteins from Gram-negative bacteria. Nucleic Acids Research, 2011, 39, D324-D331.	6.5	60
101	NMR structures of polytopic integral membrane proteins. Molecular Membrane Biology, 2011, 28, 370-397.	2.0	18
102	Yeast Mitochondrial Interactosome Model: Metabolon Membrane Proteins Complex Involved in the Channeling of ADP/ATP. International Journal of Molecular Sciences, 2012, 13, 1858-1885.	1.8	13
103	VDAC1: from structure to cancer therapy. Frontiers in Oncology, 2012, 2, 164.	1.3	159
104	Structure-based analysis of VDAC1: N-terminus location, translocation, channel gating and association with anti-apoptotic proteins. Biochemical Journal, 2012, 444, 475-485.	1.7	87
105	Mediation of the Antiapoptotic Activity of Bcl-xL Protein upon Interaction with VDAC1 Protein. Journal of Biological Chemistry, 2012, 287, 23152-23161.	1.6	143
106	Affixing N-terminal \hat{l} ±-Helix to the Wall of the Voltage-dependent Anion Channel Does Not Prevent Its Voltage Gating. Journal of Biological Chemistry, 2012, 287, 11437-11445.	1.6	70
107	Structure-based Analysis of VDAC1 Protein. Journal of Biological Chemistry, 2012, 287, 2179-2190.	1.6	73
108	Phylogenetic Analysis of Mitochondrial Outer Membrane \hat{l}^2 -Barrel Channels. Genome Biology and Evolution, 2012, 4, 110-125.	1,1	14
109	Mitochondrial VDAC1: Function in Cell Life and Death and a Target for Cancer Therapy. Current Medicinal Chemistry, 2012, 19, 714-735.	1.2	119
110	Physikalische Chemie 2011. Nachrichten Aus Der Chemie, 2012, 60, 313-322.	0.0	2
111	Structure and Dynamic Properties of Membrane Proteins using NMR. , 2012, 2, 1491-1539.		5

#	Article	IF	CITATIONS
112	Warburg Revisited: Regulation of Mitochondrial Metabolism by Voltage-Dependent Anion Channels in Cancer Cells. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 637-641.	1.3	93
113	Analytical Approaches for Studying Transporters, Channels and Porins. Chemical Reviews, 2012, 112, 6227-6249.	23.0	42
114	Tyrosine nitration of voltage-dependent anion channels in cardiac ischemia-reperfusion: reduction by peroxynitrite scavenging. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 2049-2059.	0.5	30
115	Membrane-protein structure determination by solid-state NMR spectroscopy of microcrystals. Nature Methods, 2012, 9, 1212-1217.	9.0	140
116	VDAC1 selectively transfers apoptotic Ca2+ signals to mitochondria. Cell Death and Differentiation, 2012, 19, 267-273.	5.0	255
117	Lipid Dynamics and Protein–Lipid Interactions in 2D Crystals Formed with the β-Barrel Integral Membrane Protein VDAC1. Journal of the American Chemical Society, 2012, 134, 6375-6387.	6.6	65
118	Membrane Protein Structure and Dynamics from NMR Spectroscopy. Annual Review of Physical Chemistry, 2012, 63, 1-24.	4.8	179
119	Mitochondrial Outer Membrane Channels. Chemical Reviews, 2012, 112, 6373-6387.	23.0	26
120	Modeling and Simulation of Ion Channels. Chemical Reviews, 2012, 112, 6250-6284.	23.0	196
121	The therapeutic potential of mitochondrial channels in cancer, ischemia–reperfusion injury, and neurodegeneration. Mitochondrion, 2012, 12, 14-23.	1.6	28
122	VDAC, a multi-functional mitochondrial protein as a pharmacological target. Mitochondrion, 2012, 12, 24-34.	1.6	206
123	VDAC isoforms in mammals. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1466-1476.	1.4	204
124	Solution NMR spectroscopic characterization of human VDAC-2 in detergent micelles and lipid bilayer nanodiscs. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1562-1569.	1.4	53
125	Phylogenetic and coevolutionary analysis of the \hat{l}^2 -barrel protein family comprised of mitochondrial porin (VDAC) and Tom40. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1502-1519.	1.4	42
126	Plant VDAC: Facts and speculations. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1486-1501.	1.4	73
127	Regulation of mitochondrial function by voltage dependent anion channels in ethanol metabolism and the Warburg effect. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1536-1544.	1.4	38
128	VDAC structure, selectivity, and dynamics. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1457-1465.	1.4	232
129	VDAC blockage by phosphorothioate oligonucleotides and its implication in apoptosis. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1555-1561.	1.4	15

#	Article	IF	CITATIONS
130	5.7 Solution NMR Spectroscopy of Integral Membrane Proteins. , 2012, , 120-138.		2
131	5.8 Structure and Folding of Outer Membrane Proteins. , 2012, , 139-163.		7
132	Coupling of ryanodine receptor 2 and voltage-dependent anion channel 2 is essential for Ca2+ transfer from the sarcoplasmic reticulum to the mitochondria in the heart. Biochemical Journal, 2012, 447, 371-379.	1.7	83
133	Isolation, functional characterization and crystallization of Aq_1259, an outer membrane protein with porin features, from Aquifex aeolicus. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 1358-1365.	1.1	0
134	The Role of Lipids in VDAC Oligomerization. Biophysical Journal, 2012, 102, 523-531.	0.2	92
135	Probing Tubulin-Blocked State of VDAC by Varying Membrane Surface Charge. Biophysical Journal, 2012, 102, 2070-2076.	0.2	20
136	\hat{l}^2 -Barrel Mobility Underlies Closure of the Voltage-Dependent Anion Channel. Structure, 2012, 20, 1540-1549.	1.6	104
137	Bayesian Methods in Structural Bioinformatics. Statistics in the Health Sciences, 2012, , .	0.2	28
138	The Mode of Action of Isocyanide in Three Aquatic Organisms, Balanus amphitrite, Bugula neritina and Danio rerio. PLoS ONE, 2012, 7, e45442.	1.1	19
139	Flexibility of the N-Terminal mVDAC1 Segment Controls the Channel's Gating Behavior. PLoS ONE, 2012, 7, e47938.	1.1	46
140	Facile backbone structure determination of human membrane proteins by NMR spectroscopy. Nature Methods, 2012, 9, 834-839.	9.0	83
141	Web interface for brownian dynamics simulation of ion transport and its applications to betaâ€barrel pores. Journal of Computational Chemistry, 2012, 33, 331-339.	1.5	43
142	Structural adaptations of proteins to different biological membranes. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2592-2608.	1.4	54
143	The functions of voltage-dependent anion channels in plants. Apoptosis: an International Journal on Programmed Cell Death, 2013, 18, 917-924.	2.2	38
144	New findings concerning vertebrate porin II â€" On the relevance of glycine motifs of type-1 VDAC. Molecular Genetics and Metabolism, 2013, 108, 212-224.	0.5	13
145	Charge asymmetry in the proteins of the outer membrane. Bioinformatics, 2013, 29, 2122-2128.	1.8	50
146	Ion-Channels: Goals for Function-Oriented Synthesis. Accounts of Chemical Research, 2013, 46, 2773-2780.	7.6	44
147	A parallel finite element simulator for ion transport through threeâ€dimensional ion channel systems. Journal of Computational Chemistry, 2013, 34, 2065-2078.	1.5	38

#	Article	IF	CITATIONS
148	Photoactivatable Lipid Probes for Studying Biomembranes by Photoaffinity Labeling. Chemical Reviews, 2013, 113, 7880-7929.	23.0	79
149	Coupling of Mitochondrial Import and Export Translocases by Receptor-Mediated Supercomplex Formation. Cell, 2013, 154, 596-608.	13.5	115
150	Solution NMR resonance assignment strategies for βâ€barrel membrane proteins. Protein Science, 2013, 22, 1133-1140.	3.1	14
151	The role of lipids in defining membrane protein interactions: insights from mass spectrometry. Trends in Cell Biology, 2013, 23, 1-8.	3.6	134
152	Voltageâ€dependent anion channels (VDACs, porin) expressed in the plasma membrane regulate the differentiation and function of human osteoclasts. Cell Biology International, 2013, 37, 65-77.	1.4	10
153	Mdm10 is an ancient eukaryotic porin co-occurring with the ERMES complex. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 3314-3325.	1.9	68
154	Deletion of \hat{l}^2 -strands 9 and 10 converts VDAC1 voltage-dependence in an asymmetrical process. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 793-805.	0.5	32
155	Localization Prediction and Structure-Based In Silico Analysis of Bacterial Proteins: With Emphasis on Outer Membrane Proteins. Methods in Molecular Biology, 2013, 939, 115-140.	0.4	3
156	Molecular origin of VDAC selectivity towards inorganic ions: A combined molecular and Brownian dynamics study. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1284-1292.	1.4	18
157	Steroid hormone synthesis in mitochondria. Molecular and Cellular Endocrinology, 2013, 379, 62-73.	1.6	321
158	Oligomerization of the Mitochondrial Protein VDAC1. Progress in Molecular Biology and Translational Science, 2013, 117, 303-334.	0.9	56
159	Advances in NMR structures of integral membrane proteins. Current Opinion in Structural Biology, 2013, 23, 555-562.	2.6	45
160	Modulation of Human Mitochondrial Voltage-dependent Anion Channel 2 (hVDAC-2) Structural Stability by Cysteine-assisted Barrel-lipid Interactions. Journal of Biological Chemistry, 2013, 288, 25584-25592.	1.6	39
161	Cytosolic Ca2+–Induced Apoptosis in Rat Cardiomyocytes via Mitochondrial NO-cGMP-Protein Kinase G Pathway. Journal of Pharmacology and Experimental Therapeutics, 2013, 344, 77-84.	1.3	17
162	Voltage-dependent Anion Channels Modulate Mitochondrial Metabolism in Cancer Cells. Journal of Biological Chemistry, 2013, 288, 11920-11929.	1.6	197
163	Anaplasma phagocytophilum Inhibits Apoptosis and Promotes Cytoskeleton Rearrangement for Infection of Tick Cells. Infection and Immunity, 2013, 81, 2415-2425.	1.0	99
164	The Voltage-Dependent Anion Selective Channel 1 (VDAC1) Topography in the Mitochondrial Outer Membrane as Detected in Intact Cell. PLoS ONE, 2013, 8, e81522.	1.1	62
165	Charged Residues Distribution Modulates Selectivity of the Open State of Human Isoforms of the Voltage Dependent Anion-Selective Channel. PLoS ONE, 2014, 9, e103879.	1.1	45

#	Article	IF	CITATIONS
166	Channeling your inner energy. Nature Structural and Molecular Biology, 2014, 21, 575-577.	3.6	1
167	Trans-Plasma Membrane Electron Transport in Human Blood Platelets: An Update. , 2014, , 404-432.		0
168	Cholesterol Transporters of the START Domain Protein Family in Health and Disease., 2014,,.		2
169	Intermolecular Detergent–Membrane Protein NOEs for the Characterization of the Dynamics of Membrane Protein–Detergent Complexes. Journal of Physical Chemistry B, 2014, 118, 14288-14301.	1.2	5
170	Molecular basis for the differential interaction of plant mitochondrial VDAC proteins with tRNAs. Nucleic Acids Research, 2014, 42, 9937-9948.	6. 5	30
171	Structure Prediction of Transmembrane Proteins. , 2014, , 199-221.		0
172	Evidence Supporting the 19 \hat{l}^2 -Strand Model for Tom40 from Cysteine Scanning and Protease Site Accessibility Studies. Journal of Biological Chemistry, 2014, 289, 21640-21650.	1.6	19
173	Recombinant Human Voltage Dependent Anion Selective Channel Isoform 3 (hVDAC3) Forms Pores with a Very Small Conductance. Cellular Physiology and Biochemistry, 2014, 34, 842-853.	1.1	60
174	High Resolution Structure and Double Electron-Electron Resonance of the Zebrafish Voltage-dependent Anion Channel 2 Reveal an Oligomeric Population. Journal of Biological Chemistry, 2014, 289, 12566-12577.	1.6	116
175	Origin of ion selectivity in Phaseolus coccineus mitochondrial VDAC. Mitochondrion, 2014, 19, 206-213.	1.6	18
176	Membrane Transport Mechanism. Springer Series in Biophysics, 2014, , .	0.4	2
177	Mitochondrial Channels: Ion Fluxes and More. Physiological Reviews, 2014, 94, 519-608.	13.1	281
178	Nucleotide Interactions of the Human Voltage-dependent Anion Channel. Journal of Biological Chemistry, 2014, 289, 13397-13406.	1.6	27
179	Toward the functional oligomerization state of tryptophanâ€rich sensory proteins. Protein Science, 2014, 23, 1154-1160.	3.1	8
180	Measuring membrane protein bond orientations in nanodiscs via residual dipolar couplings. Protein Science, 2014, 23, 851-856.	3.1	32
181	Live cell interactome of the human voltage dependent anion channel 3 (VDAC3) revealed in HeLa cells by affinity purification tag technique. Molecular BioSystems, 2014, 10, 2134-2145.	2.9	28
182	Voltage-dependent structural changes of the membrane-bound anion channel hVDAC1 probed by SEIRA and electrochemical impedance spectroscopy. Physical Chemistry Chemical Physics, 2014, 16, 9546-9555.	1.3	38
183	VDAC phosphorylation, a lipid sensor influencing the cell fate. Mitochondrion, 2014, 19, 69-77.	1.6	60

#	Article	IF	Citations
184	Life at the border: Adaptation of proteins to anisotropic membrane environment. Protein Science, 2014, 23, 1165-1196.	3.1	21
185	Cell-free expression and in meso crystallisation of an integral membrane kinase for structure determination. Cellular and Molecular Life Sciences, 2014, 71, 4895-4910.	2.4	32
186	Computational Investigation of Cholesterol Binding Sites on Mitochondrial VDAC. Journal of Physical Chemistry B, 2014, 118, 9852-9860.	1.2	43
187	ATP/ADP ratio, the missed connection between mitochondria and the Warburg effect. Mitochondrion, 2014, 19, 78-84.	1.6	141
188	Structure-guided simulations illuminate the mechanism of ATP transport through VDAC1. Nature Structural and Molecular Biology, 2014, 21, 626-632.	3.6	87
189	Mitochondria: The Anti- cancer Target for the Third Millennium. , 2014, , .		3
190	Neuroglobin as a regulator of mitochondrial-dependent apoptosis: A bioinformatics analysis. International Journal of Molecular Medicine, 2014, 33, 111-116.	1.8	30
192	VDAC3 gating is activated by suppression of disulfide-bond formation between the N-terminal region and the bottom of the pore. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 3188-3196.	1.4	57
193	Structure and function of mitochondrial membrane protein complexes. BMC Biology, 2015, 13, 89.	1.7	459
195	Non-Overlapping Distributions and Functions of the VDAC Family in Ciliogenesis. Cells, 2015, 4, 331-353.	1.8	13
196	Dual Mechanism of Ion Permeation through VDAC Revealed with Inorganic Phosphate Ions and Phosphate Metabolites. PLoS ONE, 2015, 10, e0121746.	1.1	20
197	After all, plasmalemmal expression of type-1 VDAC can be understood. Phosphorylation, nitrosylation, and channel modulators work together in vertebrate cell volume regulation and either apoptotic pathway. Frontiers in Physiology, 2015, 6, 126.	1.3	10
198	Phosphorylation, nitrosation and plasminogen K3 modulation make VDAC-1 lucid as part of the extrinsic apoptotic pathway—Resulting thesis: Native VDAC-1 indispensible for finalisation of its 3D structure. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1410-1416.	1.4	4
199	Solid-state NMR, electrophysiology and molecular dynamics characterization of human VDAC2. Journal of Biomolecular NMR, 2015, 61, 311-320.	1.6	26
200	Deuterated detergents for structural and functional studies of membrane proteins: Properties, chemical synthesis and applications. Molecular Membrane Biology, 2015, 32, 139-155.	2.0	16
201	N-helix and Cysteines Inter-regulate Human Mitochondrial VDAC-2 Function and Biochemistry. Journal of Biological Chemistry, 2015, 290, 30240-30252.	1.6	24
202	Solid-state NMR structures of integral membrane proteins. Molecular Membrane Biology, 2015, 32, 156-178.	2.0	15
203	Stabilized finite element methods to simulate the conductances of ion channels. Computer Physics Communications, 2015, 188, 131-139.	3.0	16

#	Article	IF	CITATIONS
204	Molecular mechanism of mitochondrial calcium uptake. Cellular and Molecular Life Sciences, 2015, 72, 1489-1498.	2.4	28
205	Lipid bilayer-bound conformation of an integral membrane beta barrel protein by multidimensional MAS NMR. Journal of Biomolecular NMR, 2015, 61, 299-310.	1.6	38
206	Magic Angle Spinning Nuclear Magnetic Resonance Characterization of Voltage-Dependent Anion Channel Gating in Two-Dimensional Lipid Crystalline Bilayers. Biochemistry, 2015, 54, 994-1005.	1.2	34
207	Self-Binding Peptides: Folding or Binding?. Journal of Chemical Information and Modeling, 2015, 55, 329-342.	2.5	123
208	Channel characteristics of VDAC-3 from Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 2015, 459, 24-28.	1.0	12
209	Markov chain Monte Carlo based analysis of post-translationally modified VDAC gating kinetics. Frontiers in Physiology, 2014, 5, 513.	1.3	7
210	X-ray crystallography over the past decade for novel drug discovery – where are we heading next?. Expert Opinion on Drug Discovery, 2015, 10, 975-989.	2.5	59
211	MemProtMD: Automated Insertion of Membrane Protein Structures into Explicit Lipid Membranes. Structure, 2015, 23, 1350-1361.	1.6	257
212	Decreasing Transmembrane Segment Length Greatly Decreases Perfringolysin O Pore Size. Journal of Membrane Biology, 2015, 248, 517-527.	1.0	5
213	NMR studies of membrane proteins. Journal of Biomolecular NMR, 2015, 61, 181-184.	1.6	6
214	Folding of \hat{l}^2 -barrel membrane proteins in lipid bilayers $\hat{a} \in$ "Unassisted and assisted folding and insertion. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1927-1943.	1.4	73
215	Phosphorylation of voltage-dependent anion channel by c-Jun N-terminal Kinase-3 leads to closure of the channel. Biochemical and Biophysical Research Communications, 2015, 459, 100-106.	1.0	16
216	Motifs of VDAC2 required for mitochondrial Bak import and tBid-induced apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5590-9.	3.3	63
217	A New Fungal Diterpene Induces VDAC1-dependent Apoptosis in Bax/Bak-deficient Cells. Journal of Biological Chemistry, 2015, 290, 23563-23578.	1.6	42
218	BmVDAC upregulation in the midgut of Rhipicephalus microplus, during infection with Babesia bigemina. Veterinary Parasitology, 2015, 212, 368-374.	0.7	10
219	Evidence of Distinct Channel Conformations and Substrate Binding Affinities for the Mitochondrial Outer Membrane Protein Translocase Pore Tom40. Journal of Biological Chemistry, 2015, 290, 26204-26217.	1.6	30
220	The N-Terminal Peptides of the Three Human Isoforms of the Mitochondrial Voltage-Dependent Anion Channel Have Different Helical Propensities. Biochemistry, 2015, 54, 5646-5656.	1.2	19
221	The Design and Structure of Outer Membrane Receptors from Peroxisomes, Mitochondria, and Chloroplasts. Structure, 2015, 23, 1783-1800.	1.6	2

#	ARTICLE	IF	Citations
222	The mitochondrial voltage-dependent anion channel 1 in tumor cells. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2547-2575.	1.4	194
223	Computational modeling of membrane proteins. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1-24.	1.5	86
224	Stress Response Pathways in Cancer. , 2015, , .		3
225	Modulation of the mitochondrial voltage dependent anion channel (VDAC) by curcumin. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 151-158.	1.4	39
226	Assembly of \hat{l}^2 -barrel proteins in the mitochondrial outer membrane. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 74-88.	1.9	62
227	PRED-TMBB2: improved topology prediction and detection of beta-barrel outer membrane proteins. Bioinformatics, 2016, 32, i665-i671.	1.8	77
228	Adrenal Mitochondria and Steroidogenesis: From Individual Proteins to Functional Protein Assemblies. Frontiers in Endocrinology, 2016, 7, 106.	1.5	69
229	VDAC3 As a Potential Marker of Mitochondrial Status Is Involved in Cancer and Pathology. Frontiers in Oncology, 2016, 6, 264.	1.3	41
230	Neuroglobin, a Factor Playing for Nerve Cell Survival. International Journal of Molecular Sciences, 2016, 17, 1817.	1.8	23
231	Identification of 4â€hydroxynonenal protein targets in rat, mouse and human liver microsomes by twoâ€dimensional liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2016, 30, 1488-1494.	0.7	11
232	Regulation of VDAC trafficking modulates cell death. Cell Death Discovery, 2016, 2, 16085.	2.0	20
233	VDAC2-specific cellular functions and the underlying structure. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2503-2514.	1.9	83
234	Recognition and binding of voltage-dependent anion channel-1 with ATP and NADH by spectroscopic analysis and molecular docking. RSC Advances, 2016, 6, 13407-13417.	1.7	4
235	Current state of theoretical and experimental studies of the voltage-dependent anion channel (VDAC). Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1778-1790.	1.4	62
236	Control of human VDAC-2 scaffold dynamics by interfacial tryptophans is position specific. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2993-3004.	1.4	7
237	Voltage Dependence of Conformational Dynamics and Subconducting States of VDAC-1. Biophysical Journal, 2016, 111, 1223-1234.	0.2	28
238	In silico construction of HK2-VDAC1 complex and investigating the HK2 binding-induced molecular gating mechanism of VDAC1. Mitochondrion, 2016, 30, 222-228.	1.6	29
239	Chloride Transport through Supramolecular Barrel-Rosette Ion Channels: Lipophilic Control and Apoptosis-Inducing Activity. Journal of the American Chemical Society, 2016, 138, 16443-16451.	6.6	126

#	Article	IF	CITATIONS
240	Highâ€Resolution NMR Determination of the Dynamic Structure of Membrane Proteins. Angewandte Chemie - International Edition, 2016, 55, 10518-10521.	7.2	25
241	Novel Compounds Targeting the Mitochondrial Protein VDAC1 Inhibit Apoptosis and Protect against Mitochondrial Dysfunction. Journal of Biological Chemistry, 2016, 291, 24986-25003.	1.6	83
242	Neuroglobin: From structure to function in health and disease. Molecular Aspects of Medicine, 2016, 52, 1-48.	2.7	91
243	The multiple assemblies of VDAC: from conformational heterogeneity to \hat{l}^2 -aggregation and amyloid formation. Biochemical Society Transactions, 2016, 44, 1531-1540.	1.6	6
244	Anion Channels of Mitochondria. Handbook of Experimental Pharmacology, 2016, 240, 71-101.	0.9	64
245	Characterization of the targeting signal in mitochondrial \hat{l}^2 -barrel proteins. Nature Communications, 2016, 7, 12036.	5.8	80
246	Hochauflösende NMRâ€spektroskopische Bestimmung der dynamischen Struktur von Membranproteinen. Angewandte Chemie, 2016, 128, 10674-10678.	1.6	2
247	Membrane Transport., 2016,, 335-378.		5
248	Conservation of the oligomeric state of native VDAC1 in detergent micelles. Biochimie, 2016, 127, 163-172.	1.3	3
249	Mitochondrial cholesterol: mechanisms of import and effects on mitochondrial function. Journal of Bioenergetics and Biomembranes, 2016, 48, 137-151.	1.0	87
250	The N-terminus of VDAC: Structure, mutational analysis, and a potential role in regulating barrel shape. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1350-1361.	1.4	34
251	Molecular Plasticity of the Human Voltage-Dependent Anion Channel Embedded Into a Membrane. Structure, 2016, 24, 585-594.	1.6	36
252	A two-step binding mechanism for the self-binding peptide recognition of target domains. Molecular BioSystems, 2016, 12, 1201-1213.	2.9	108
253	Overexpression of human SOD1 in VDAC1-less yeast restores mitochondrial functionality modulating beta-barrel outer membrane protein genes. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 789-798.	0.5	27
254	Role of cysteines in mammalian VDAC isoforms' function. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1219-1227.	0.5	64
255	Revisiting trends on mitochondrial mega-channels for the import of proteins and nucleic acids. Journal of Bioenergetics and Biomembranes, 2017, 49, 75-99.	1.0	19
256	Regulation of Calcium Homeostasis by ER Redox: A Close-Up of the ER/Mitochondria Connection. Journal of Molecular Biology, 2017, 429, 620-632.	2.0	60
257	VDAC in cancer. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 665-673.	0.5	116

#	Article	IF	CITATIONS
258	A deletion variant partially complements a porin-less strain of Neurospora crassa. Biochemistry and Cell Biology, 2017, 95, 318-327.	0.9	5
259	Targeting mitochondrial dysfunction in CNS injury using Methylene Blue; still a magic bullet?. Neurochemistry International, 2017, 109, 117-125.	1.9	21
260	Functional characterization of an N-terminally-truncated mitochondrial porin expressed in <i>Neurospora crassa</i> . Canadian Journal of Microbiology, 2017, 63, 730-738.	0.8	10
261	Molecular Basis for Mitochondrial Signaling. Biological and Medical Physics Series, 2017, , .	0.3	4
262	Mitochondria and Iron: current questions. Expert Review of Hematology, 2017, 10, 65-79.	1.0	272
263	Plant VDAC Permeability: Molecular Basis and Role in Oxidative Stress. Biological and Medical Physics Series, 2017, , 161-183.	0.3	1
264	An Assessment of How VDAC Structures Have Impacted Our Understanding of Their Function. Biological and Medical Physics Series, 2017, , 141-160.	0.3	4
265	Crystal structural characterization reveals novel oligomeric interactions of human voltageâ€dependent anion channel 1. Protein Science, 2017, 26, 1749-1758.	3.1	20
266	Putative roles of mitochondrial Voltage-Dependent Anion Channel, Bcl-2 family proteins and c-Jun N-terminal Kinases in ischemic stroke associated apoptosis. Biochimie Open, 2017, 4, 47-55.	3.2	30
267	Phosphorylation of purified mitochondrial Voltage-Dependent Anion Channel by c-Jun N-terminal Kinase-3 modifies channel voltage-dependence. Biochimie Open, 2017, 4, 78-87.	3.2	12
268	Mitochondrial Machineries for Protein Import and Assembly. Annual Review of Biochemistry, 2017, 86, 685-714.	5.0	651
269	Membrane mimetics for solution NMR studies of membrane proteins. Nanotechnology Reviews, 2017, 6, 15-32.	2.6	25
270	Synthetic Ubiquinones Specifically Bind to Mitochondrial Voltage-Dependent Anion Channel 1 (VDAC1) in <i>Saccharomyces cerevisiae</i> Mitochondria. Biochemistry, 2017, 56, 570-581.	1.2	12
271	High resolution mass spectrometry characterization of the oxidation pattern of methionine and cysteine residues in rat liver mitochondria voltage-dependent anion selective channel 3 (VDAC3). Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 301-311.	1.4	29
272	Analysis of Pore Formation and Protein Translocation Using Large Biological Nanopores. Analytical Chemistry, 2017, 89, 11269-11277.	3.2	43
273	Protein–protein interaction networks as a new perspective to evaluate distinct functional roles of voltage-dependent anion channel isoforms. Molecular BioSystems, 2017, 13, 2466-2476.	2.9	50
274	Neuroglobin and friends. Journal of Molecular Recognition, 2017, 30, e2654.	1.1	20
275	The mitochondrial VDAC of bean seeds recruits phosphatidylethanolamine lipids for its proper functioning. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 786-794.	0.5	21

#	ARTICLE	IF	Citations
276	Mitochondrial <scp>VDAC2</scp> and cell homeostasis: highlighting hidden structural features and unique functionalities. Biological Reviews, 2017, 92, 1843-1858.	4.7	19
277	Mitochondrial VDAC, the Na+/Ca2+ Exchanger, and the Ca2+ Uniporter in Ca2+ Dynamics and Signaling. Advances in Experimental Medicine and Biology, 2017, 981, 323-347.	0.8	29
278	Mitochondrial VDAC1: A Key Gatekeeper as Potential Therapeutic Target. Frontiers in Physiology, 2017, 8, 460.	1.3	238
279	Bayesian Modeling of Biomolecular Assemblies with Cryo-EM Maps. Frontiers in Molecular Biosciences, 2017, 4, 15.	1.6	20
280	Voltage-Dependent Anion Channel 1 As an Emerging Drug Target for Novel Anti-Cancer Therapeutics. Frontiers in Oncology, 2017, 7, 154.	1.3	89
281	Solution Nuclear Magnetic Resonance Spectroscopy of Integral Membrane Proteins â~†., 2017, , .		1
282	An evolutionarily conserved glycine-tyrosine motif forms a folding core in outer membrane proteins. PLoS ONE, 2017, 12, e0182016.	1.1	22
283	Decrypting Strong and Weak Single-Walled Carbon Nanotubes Interactions with Mitochondrial Voltage-Dependent Anion Channels Using Molecular Docking and Perturbation Theory. Scientific Reports, 2017, 7, 13271.	1.6	22
284	Mitochondrial Proteolipid Complexes of Creatine Kinase. Sub-Cellular Biochemistry, 2018, 87, 365-408.	1.0	23
285	Challenges and approaches to understand cholesterol-binding impact on membrane protein function: an NMR view. Cellular and Molecular Life Sciences, 2018, 75, 2137-2151.	2.4	16
286	Efficient and Qualified Mesh Generation for Gaussian Molecular Surface Using Adaptive Partition and Piecewise Polynomial Approximation. SIAM Journal of Scientific Computing, 2018, 40, B507-B527.	1.3	15
287	yVDAC2, the second mitochondrial porin isoform of Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 270-279.	0.5	21
288	Mitochondria-based aircraft carrier enhances <i>in vivo</i> imaging of carbon quantum dots and delivery of anticancer drug. Nanoscale, 2018, 10, 3744-3752.	2.8	58
289	Membrane protein insertion through a mitochondrial \hat{l}^2 -barrel gate. Science, 2018, 359, .	6.0	111
290	Protonation state of glutamate 73 regulates the formation of a specific dimeric association of mVDAC1. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E172-E179.	3.3	26
291	Mitochondrial Outer Membrane Channels: Emerging Diversity in Transport Processes. BioEssays, 2018, 40, e1800013.	1.2	44
292	Mechanism of translation control of the alternative Drosophila melanogaster Voltage Dependent Anion-selective Channel 1 mRNAs. Scientific Reports, 2018, 8, 5347.	1.6	18
293	VDAC1, mitochondrial dysfunction, and Alzheimer's disease. Pharmacological Research, 2018, 131, 87-101.	3.1	153

#	Article	IF	CITATIONS
294	VDAC1 functions in Ca2+ homeostasis and cell life and death in health and disease. Cell Calcium, 2018, 69, 81-100.	1.1	100
295	ROS-mediated oligomerization of VDAC2 is associated with quinocetone-induced apoptotic cell death. Toxicology in Vitro, 2018, 47, 195-206.	1.1	7
296	Topology of membrane proteins $\hat{a} \in \text{``}$ predictions, limitations and variations. Current Opinion in Structural Biology, 2018, 50, 9-17.	2.6	31
297	Probing Membrane Protein Insertion into Lipid Bilayers by Solidâ€State NMR. ChemPhysChem, 2019, 20, 302-310.	1.0	24
298	The Role of Mitochondria in Reactive Oxygen Species Generation and Its Implications for Neurodegenerative Diseases. Cells, 2018, 7, 274.	1.8	205
299	Melatonin Can Strengthen the Effect of Retinoic Acid in HL-60 Cells. International Journal of Molecular Sciences, 2018, 19, 2873.	1.8	17
300	Ischemic postconditioning confers cerebroprotection by stabilizing VDACs after brain ischemia. Cell Death and Disease, 2018, 9, 1033.	2.7	25
301	Folded Structure and Membrane Affinity of the N-Terminal Domain of the Three Human Isoforms of the Mitochondrial Voltage-Dependent Anion-Selective Channel. ACS Omega, 2018, 3, 11415-11425.	1.6	7
302	Structure of voltage-dependent anion channel-tethered bilayer lipid membranes determined using neutron reflectivity. Acta Crystallographica Section D: Structural Biology, 2018, 74, 1219-1232.	1.1	9
303	The major outer membrane protein of Legionella pneumophila Lpg1974 shows pore-forming characteristics similar to the human mitochondrial outer membrane pore, hVDAC1. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1544-1553.	1.4	3
304	Post-translational modifications of VDAC1 and VDAC2 cysteines from rat liver mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 806-816.	0.5	32
305	Interaction of the cryptic fragment of myelin basic protein with mitochondrial voltage-dependent anion-selective channel-1 affects cell energy metabolism. Biochemical Journal, 2018, 475, 2355-2376.	1.7	3
306	Ten Years of High Resolution Structural Research on the Voltage Dependent Anion Channel (VDAC)—Recent Developments and Future Directions. Frontiers in Physiology, 2018, 9, 108.	1.3	32
307	VDAC1 as Pharmacological Target in Cancer and Neurodegeneration: Focus on Its Role in Apoptosis. Frontiers in Chemistry, 2018, 6, 108.	1.8	113
308	A Unifying Hypothesis Linking Hepatic Adaptations for Ethanol Metabolism to the Proinflammatory and Profibrotic Events of Alcoholic Liver Disease. Alcoholism: Clinical and Experimental Research, 2018, 42, 2072-2089.	1.4	34
309	Single-Molecule Force Spectroscopy of Transmembrane \hat{l}^2 -Barrel Proteins. Annual Review of Analytical Chemistry, 2018, 11, 375-395.	2.8	21
310	Increased reactive oxygen species production and maintenance of membrane potential in VDAC-less Neurospora crassa mitochondria. Journal of Bioenergetics and Biomembranes, 2019, 51, 341-354.	1.0	4
311	Voltage-dependent anion channel isoform 3 as a potential male contraceptive drug target. Future Medicinal Chemistry, 2019, 11, 857-867.	1.1	1

#	Article	IF	CITATIONS
312	VDAC1 and the TSPO: Expression, Interactions, and Associated Functions in Health and Disease States. International Journal of Molecular Sciences, 2019, 20, 3348.	1.8	68
313	Structural characterization of the human membrane protein VDAC2 in lipid bilayers by MAS NMR. Journal of Biomolecular NMR, 2019, 73, 451-460.	1.6	13
314	Functional Reconstitution of Membrane Proteins Derived From Eukaryotic Cell-Free Systems. Frontiers in Pharmacology, 2019, 10, 917.	1.6	10
315	MFF Regulation of Mitochondrial Cell Death Is a Therapeutic Target in Cancer. Cancer Research, 2019, 79, 6215-6226.	0.4	34
316	VDAC1 is essential for neurite maintenance and the inhibition of its oligomerization protects spinal cord from demyelination and facilitates locomotor function recovery after spinal cord injury. Scientific Reports, 2019, 9, 14063.	1.6	17
317	Pentenediol-Type Compounds Specifically Bind to Voltage-Dependent Anion Channel 1 in Saccharomyces cerevisiae Mitochondria. Biochemistry, 2019, 58, 1141-1154.	1.2	4
318	An immunoproteomic approach to identifying immunoreactive proteins in <i>Leishmania infantum</i> amastigotes using sera of dogs infected with canine visceral leishmaniasis. Pathogens and Global Health, 2019, 113, 124-132.	1.0	10
319	Potential blockade of the human voltage-dependent anion channel by MoS2 nanoflakes. Physical Chemistry Chemical Physics, 2019, 21, 9520-9530.	1.3	2
320	Analysis of hydrophobic and hydrophilic moments of short penetrating peptides for enhancing mitochondrial localization: prediction and validation. FASEB Journal, 2019, 33, 7970-7984.	0.2	5
321	Computational MitoTarget Scanning Based on Topological Vacancies of Single-Walled Carbon Nanotubes with the Human Mitochondrial Voltage-Dependent Anion Channel (hVDAC1). Chemical Research in Toxicology, 2019, 32, 566-577.	1.7	4
322	A Cholesterol Analog Induces an Oligomeric Reorganization of VDAC. Biophysical Journal, 2019, 116, 847-859.	0.2	7
323	Emerging Diversity in Lipid–Protein Interactions. Chemical Reviews, 2019, 119, 5775-5848.	23.0	299
324	Assessing the role of residue E73 and lipid headgroup charge in VDAC1 voltage gating. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 22-29.	0.5	27
325	Lipid composition and salt concentration as regulatory factors of the anion selectivity of VDAC studied by coarse-grained molecular dynamics simulations. Chemistry and Physics of Lipids, 2019, 220, 66-76.	1.5	6
326	Recombinant yeast VDAC 2: a comparison of electrophysiological features with the native form. FEBS Open Bio, 2019, 9, 1184-1193.	1.0	8
327	An ATP-Regulated Ion Transport Nanosystem for Homeostatic Perturbation Therapy and Sensitizing Photodynamic Therapy by Autophagy Inhibition of Tumors. ACS Central Science, 2019, 5, 327-340.	5.3	56
328	Single organelle function and organization as estimated from Arabidopsis mitochondrial proteomics. Plant Journal, 2020, 101, 420-441.	2.8	152
329	Deletion of Voltage-Dependent Anion Channel 1 knocks mitochondria down triggering metabolic rewiring in yeast. Cellular and Molecular Life Sciences, 2020, 77, 3195-3213.	2.4	25

#	Article	IF	CITATIONS
330	The Structural Basis for Low Conductance in the Membrane Protein VDAC upon Î ² -NADH Binding and Voltage Gating. Structure, 2020, 28, 206-214.e4.	1.6	28
331	A sizeâ€modified poisson–boltzmann ion channel model in a solvent of multiple ionic species: Application to voltageâ€dependent anion channel. Journal of Computational Chemistry, 2020, 41, 218-230.	1.5	9
332	Structural and functional characterization of <scp><i>Solanum tuberosum</i></scp> VDAC36. Proteins: Structure, Function and Bioinformatics, 2020, 88, 729-739.	1.5	6
333	Atomic structure of human TOM core complex. Cell Discovery, 2020, 6, 67.	3.1	67
334	Evolutionary selection of a 19-stranded mitochondrial \hat{l}^2 -barrel scaffold bears structural and functional significance. Journal of Biological Chemistry, 2020, 295, 14653-14665.	1.6	12
335	Post-Translational Modification Analysis of VDAC1 in ALS-SOD1 Model Cells Reveals Specific Asparagine and Glutamine Deamidation. Antioxidants, 2020, 9, 1218.	2.2	10
336	Regulation of Single-Channel Conductance of Voltage-Dependent Anion Channel by Mercuric Chloride in a Planar Lipid Bilayer. Journal of Membrane Biology, 2020, 253, 357-371.	1.0	6
337	Palmitoylated CKAP4 regulates mitochondrial functions through an interaction with VDAC2 at ER–mitochondria contact sites. Journal of Cell Science, 2020, 133, .	1.2	23
338	A Voltageâ€Responsive Synthetic Clâ^ hannel Regulated by pH. Angewandte Chemie, 2020, 132, 19082-190	881.6	3
339	A Voltageâ€Responsive Synthetic Cl ^{â^'} â€Channel Regulated by pH. Angewandte Chemie - International Edition, 2020, 59, 18920-18926.	7.2	26
340	MicroED structure of lipid-embedded mammalian mitochondrial voltage-dependent anion channel. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32380-32385.	3.3	35
341	VDAC1 at the Intersection of Cell Metabolism, Apoptosis, and Diseases. Biomolecules, 2020, 10, 1485.	1.8	93
342	Detergent Titration as an Efficient Method for NMR Resonance Assignments of Membrane Proteins in Lipid–Bilayer Nanodiscs. Analytical Chemistry, 2020, 92, 7786-7793.	3.2	8
343	Solution NMR spectroscopy of membrane proteins. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183356.	1.4	19
344	Targeting the Multiple Physiologic Roles of VDAC With Steroids and Hydrophobic Drugs. Frontiers in Physiology, 2020, 11, 446.	1.3	24
345	Expression of eukaryotic membrane proteins in eukaryotic and prokaryotic hosts. Methods, 2020, 180, 3-18.	1.9	40
346	Melatonin Enhances the Chemotherapeutic Effect of Cytarabin in HL-60 Cells. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2020, 14, 140-145.	0.3	2
347	Cysteine Oxidations in Mitochondrial Membrane Proteins: The Case of VDAC Isoforms in Mammals. Frontiers in Cell and Developmental Biology, 2020, 8, 397.	1.8	32

#	Article	IF	CITATIONS
348	Hypothermia-Induced Ubiquitination of Voltage-Dependent Anion Channel 3 Protects BV2 Microglia Cells From Cytotoxicity Following Oxygen-Glucose Deprivation/Recovery. Frontiers in Molecular Neuroscience, 2020, 13, 100.	1.4	8
349	Quinidine partially blocks mitochondrial voltage-dependent anion channel (VDAC). European Biophysics Journal, 2020, 49, 193-205.	1.2	12
350	The structure of the TOM core complex in the mitochondrial outer membrane. Biological Chemistry, 2020, 401, 687-697.	1.2	15
351	Spotlight on the Ballet of Proteins: The Structural Dynamic Properties of Proteins Illuminated by Solution NMR. International Journal of Molecular Sciences, 2020, 21, 1829.	1.8	7
352	The inverse relation between mitochondrial transmembrane potential and proteins α-helix in neuronal-like cells under static magnetic field and the role of VDAC. Electromagnetic Biology and Medicine, 2020, 39, 176-182.	0.7	3
353	Model reduction-based initialization methods for solving the Poisson-Nernst-Plank equations in three-dimensional ion channel simulations. Journal of Computational Physics, 2020, 419, 109627.	1.9	4
354	Computational modeling on mitochondrial channel nanotoxicity. Nano Today, 2020, 34, 100913.	6.2	7
355	Landscape of Eukaryotic Transmembrane Beta Barrel Proteins. Journal of Proteome Research, 2020, 19, 1209-1221.	1.8	5
356	A High Resolution Mass Spectrometry Study Reveals the Potential of Disulfide Formation in Human Mitochondrial Voltage-Dependent Anion Selective Channel Isoforms (hVDACs). International Journal of Molecular Sciences, 2020, 21, 1468.	1.8	14
357	Decision between mitophagy and apoptosis by Parkin via VDAC1 ubiquitination. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4281-4291.	3.3	124
358	Porins as helpers in mitochondrial protein translocation. Biological Chemistry, 2020, 401, 699-708.	1.2	13
359	Structure-based modeling of turnover of Bcl-2 family proteins bound to voltage-dependent anion channel 2 (VDAC2): Implications for the mechanisms of proapoptotic activation of Bak and Bax in vivo. Computational Biology and Chemistry, 2020, 85, 107203.	1.1	8
360	Plant Mitochondrial Carriers: Molecular Gatekeepers That Help to Regulate Plant Central Carbon Metabolism. Plants, 2020, 9, 117.	1.6	23
361	Mitochondrial functions and rare diseases. Molecular Aspects of Medicine, 2020, 71, 100842.	2.7	39
362	VDAC and its interacting partners in plant and animal systems: an overview. Critical Reviews in Biotechnology, 2020, 40, 715-732.	5.1	22
363	Causes and consequences of sperm mitochondrial dysfunction. Andrologia, 2021, 53, e13666.	1.0	58
364	Mechanisms and pathways of mitochondrial outer membrane protein biogenesis. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148323.	0.5	23
365	Mitochondrial toxicity induced by plant molecules. , 2021, , 709-727.		0

#	Article	IF	CITATIONS
366	Evaluating diffusion resistance of a constriction in a membrane channel by the method of boundary homogenization. Physical Review E, 2021, 103, 012408.	0.8	6
367	Mitochondrial sorting and assembly machinery operates by \hat{l}^2 -barrel switching. Nature, 2021, 590, 163-169.	13.7	60
368	Renaissance of VDAC: New Insights on a Protein Family at the Interface between Mitochondria and Cytosol. Biomolecules, 2021, 11, 107.	1.8	34
369	Prokaryotic and Eukaryotic Porins: Comparison of Structure and Function., 2021,, 367-398.		0
370	VDACâ€"A Primal Perspective. International Journal of Molecular Sciences, 2021, 22, 1685.	1.8	14
371	Potential therapeutic targets shared between leishmaniasis and cancer. Parasitology, 2021, 148, 655-671.	0.7	19
372	The intrinsically disordered N-terminus of the voltage-dependent anion channel. PLoS Computational Biology, 2021, 17, e1008750.	1.5	8
374	The Open State Selectivity of the Bean Seed VDAC Depends on Stigmasterol and Ion Concentration. International Journal of Molecular Sciences, 2021, 22, 3034.	1.8	7
375	Structure, gating and interactions of the voltage-dependent anion channel. European Biophysics Journal, 2021, 50, 159-172.	1.2	28
376	VDAC regulation of mitochondrial calcium flux: From channel biophysics to disease. Cell Calcium, 2021, 94, 102356.	1.1	48
377	Neuroglobin and mitochondria: The impact on neurodegenerative diseases. Archives of Biochemistry and Biophysics, 2021, 701, 108823.	1.4	15
378	OMPdb: A Global Hub of Beta-Barrel Outer Membrane Proteins. Frontiers in Bioinformatics, 2021, 1, .	1.0	7
379	Voltage-Dependent Anion Selective Channel Isoforms in Yeast: Expression, Structure, and Functions. Frontiers in Physiology, 2021, 12, 675708.	1.3	13
380	Alpha-Synuclein and Mitochondrial Dysfunction in Parkinson's Disease: The Emerging Role of VDAC. Biomolecules, 2021, 11, 718.	1.8	29
381	The Role of Voltage-Dependent Anion Channel in Mitochondrial Dysfunction and Human Disease. Cells, 2021, 10, 1737.	1.8	26
383	Integrative Structural Biology in the Era of Accurate Structure Prediction. Journal of Molecular Biology, 2021, 433, 167127.	2.0	36
384	VDACs: An Outlook on Biochemical Regulation and Function in Animal and Plant Systems. Frontiers in Physiology, 2021, 12, 683920.	1.3	8
385	Molecular mechanism of thiamine pyrophosphate import into mitochondria: a molecular simulation study. Journal of Computer-Aided Molecular Design, 2021, 35, 987-1007.	1.3	0

#	Article	IF	CITATIONS
386	Small Hexokinase 1 Peptide against Toxic SOD1 G93A Mitochondrial Accumulation in ALS Rescues the ATP-Related Respiration. Biomedicines, 2021, 9, 948.	1.4	10
387	VDAC Genes Expression and Regulation in Mammals. Frontiers in Physiology, 2021, 12, 708695.	1.3	21
388	Exploring lipid-dependent conformations of membrane-bound \hat{l}_{\pm} -synuclein with the VDAC nanopore. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183643.	1.4	10
389	Contribution of non-selective membrane channels and receptors in epilepsy., 2022, 231, 107980.		17
390	Cell-free electrophysiology of human VDACs incorporated into nanodiscs: An improved method. Biophysical Reports, 2021, 1, 100002.	0.7	6
391	Lipid Membrane Mimetics in Functional and Structural Studies of Integral Membrane Proteins. Membranes, 2021, 11, 685.	1.4	32
392	Role of the Mitochondrial Protein Import Machinery and Protein Processing in Heart Disease. Frontiers in Cardiovascular Medicine, 2021, 8, 749756.	1.1	18
393	A C-Terminally Truncated Variant of Neurospora crassa VDAC Assembles Into a Partially Functional Form in the Mitochondrial Outer Membrane and Forms Multimers in vitro. Frontiers in Physiology, 2021, 12, 739001.	1.3	2
394	Porin 1 Modulates Autophagy in Yeast. Cells, 2021, 10, 2416.	1.8	6
395	Cellular Interactome of Mitochondrial Voltage-Dependent Anion Channels: Oligomerization and Channel (Mis)Regulation. ACS Chemical Neuroscience, 2021, 12, 3497-3515.	1.7	8
396	Analysing the mechanism of mitochondrial oxidation-induced cell death using a multifunctional iridium(III) photosensitiser. Nature Communications, 2021, 12, 26.	5.8	32
397	Function and Regulation of Mitochondrial Voltage-Dependent Anion Channel. Springer Series in Biophysics, 2015, , 3-31.	0.4	14
399	Mitochondria, the gut microbiome and ROS. Cellular Signalling, 2020, 75, 109737.	1.7	65
400	VDAC1 selectively transfers apoptotic Ca2+ signals to mitochondria., 0, .		1
401	Apoptosis-inducing activity of a fluorescent barrel-rosette M ⁺ /Cl ^{â^'} channel. Chemical Science, 2020, 11, 2420-2428.	3.7	31
402	A lower affinity to cytosolic proteins reveals VDAC3 isoform-specific role in mitochondrial biology. Journal of General Physiology, 2020, 152, .	0.9	36
403	Concentration Dependent Ion Selectivity in VDAC: A Molecular Dynamics Simulation Study. PLoS ONE, 2011, 6, e27994.	1.1	28
404	HIV-1 Vpr Triggers Mitochondrial Destruction by Impairing Mfn2-Mediated ER-Mitochondria Interaction. PLoS ONE, 2012, 7, e33657.	1.1	74

#	Article	IF	Citations
405	Influence of Protein – Micelle Ratios and Cysteine Residues on the Kinetic Stability and Unfolding Rates of Human Mitochondrial VDAC-2. PLoS ONE, 2014, 9, e87701.	1.1	17
406	Cysteine Residues Impact the Stability and Micelle Interaction Dynamics of the Human Mitochondrial Î ² -Barrel Anion Channel hVDAC-2. PLoS ONE, 2014, 9, e92183.	1.1	13
407	NMR-Based Detection of Hydrogen/Deuterium Exchange in Liposome-Embedded Membrane Proteins. PLoS ONE, 2014, 9, e112374.	1.1	3
408	Characterization of Oyster Voltage-Dependent Anion Channel 2 (VDAC2) Suggests Its Involvement in Apoptosis and Host Defense. PLoS ONE, 2016, 11, e0146049.	1.1	12
409	VDAC1 at the crossroads of cell metabolism, apoptosis and cell stress. Cell Stress, 2017, 1, 11-36.	1.4	101
410	Mitochondria in cancer. Cell Stress, 2020, 4, 114-146.	1.4	133
411	Hypoxic-induced truncation of voltage-dependent anion channel 1 is mediated by both asparagine endopeptidase and calpain 1 activities. Oncotarget, 2018, 9, 12825-12841.	0.8	12
412	Clinical implication of voltage-dependent anion channel 1 in uterine cervical cancer and its action on cervical cancer cells. Oncotarget, 2016, 7, 4210-4225.	0.8	28
413	VDAC3 as a sensor of oxidative state of the intermembrane space of mitochondria: the putative role of cysteine residue modifications. Oncotarget, 2016, 7, 2249-2268.	0.8	78
414	Towards understanding of plant mitochondrial VDAC proteins: an overview of bean (Phaseolus) VDAC proteins. AIMS Biophysics, 2016, 4, 43-62.	0.3	4
415	Adverse Effects of Metformin From Diabetes to COVID-19, Cancer, Neurodegenerative Diseases, and Aging: Is VDAC1 a Common Target?. Frontiers in Physiology, 2021, 12, 730048.	1.3	22
416	Antisense Oligonucleotide Modified with Disulfide Units Induces Efficient Exon Skipping in <i>mdx</i> Myotubes through Enhanced Membrane Permeability and Nucleus Internalization. ChemBioChem, 2021, 22, 3437-3442.	1.3	6
417	Natural tetramic acids elicit multiple inhibitory actions against mitochondrial machineries presiding over oxidative phosphorylation. Bioscience, Biotechnology and Biochemistry, 2021, 85, 2368-2377.	0.6	2
418	Mitochondrial calcium exchange in physiology and disease. Physiological Reviews, 2022, 102, 893-992.	13.1	115
419	Novel Perspectives on Protein Structure Prediction. , 2010, , 179-207.		0
420	Association between VDAC1 mRNA expression and intracellular ATP levels of cultured L-02 hepatocytes during hexavalent chromium toxicity. African Journal of Biotechnology, 2011, 11, .	0.3	0
421	Electrophysiological Techniques for Mitochondrial Channels. , 0, , .		0
422	Congenital Lipoid Adrenal Hyperplasia. , 2014, , 73-97.		1

#	Article	IF	Citations
423	Targets and Strategies for the Mitochondrial Assault on Cancer. , 2014, , 211-264.		0
424	At the Crossroads Between Mitochondrial Metabolite Transport and Apoptosis: VDAC1 as an Emerging Cancer Drug Target., 2015,, 345-373.		0
427	Molecular Mechanisms of mtDNA-Mediated Inflammation. Cells, 2021, 10, 2898.	1.8	7 5
428	Molecular recognition and interaction between human plasminogen Kringle 5 and voltage-dependent anion channel-1 by biological specificity technologies and molecular dynamic simulation. Biophysical Chemistry, 2021, 280, 106710.	1.5	0
429	In-cell structures of conserved supramolecular protein arrays at the mitochondria–cytoskeleton interface in mammalian sperm. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	24
432	VDACs Post-Translational Modifications Discovery by Mass Spectrometry: Impact on Their Hub Function. International Journal of Molecular Sciences, 2021, 22, 12833.	1.8	8
433	VDAC2 and the BCL-2 family of proteins. Biochemical Society Transactions, 2021, 49, 2787-2795.	1.6	23
434	Proteomic Shifts Reflecting Oxidative Stress and Reduced Capacity for Protein Synthesis, and Alterations to Mitochondrial Membranes in Neurospora crassa Lacking VDAC. Microorganisms, 2022, 10, 198.	1.6	2
435	A Deep Dive into VDAC1 Conformational Diversity Using All-Atom Simulations Provides New Insights into the Structural Origin of the Closed States. International Journal of Molecular Sciences, 2022, 23, 1175.	1.8	3
436	The Molecular Mechanism of Human Voltage-Dependent Anion Channel 1 Blockade by the Metallofullerenol Gd@C82(OH)22: An In Silico Study. Biomolecules, 2022, 12, 123.	1.8	1
437	MicroED: conception, practice and future opportunities. IUCrJ, 2022, 9, 169-179.	1.0	10
438	Voltage-Dependent Anion Selective Channel 3: Unraveling Structural and Functional Features of the Least Known Porin Isoform. Frontiers in Physiology, 2021, 12, 784867.	1.3	7
439	Mitochondrial Fusion, Fission, and Mitophagy in Cardiac Diseases: Challenges and Therapeutic Opportunities. Antioxidants and Redox Signaling, 2022, 36, 844-863.	2.5	23
440	Homocysteine-Thiolactone Modulates Gating of Mitochondrial Voltage-Dependent Anion Channel (VDAC) and Protects It from Induced Oxidative Stress. Journal of Membrane Biology, 2022, 255, 79-97.	1.0	3
441	Studying membrane proteins with MicroED. Biochemical Society Transactions, 2022, 50, 231-239.	1.6	5
442	How RSV Proteins Join Forces to Overcome the Host Innate Immune Response. Viruses, 2022, 14, 419.	1.5	12
443	Structure and Gating Behavior of the Human Integral Membrane Protein VDAC1 in a Lipid Bilayer. Journal of the American Chemical Society, 2022, 144, 2953-2967.	6.6	14
444	Contribution of Autophagy-Lysosomal Pathway in the Exosomal Secretion of Alpha-Synuclein and Its Impact in the Progression of Parkinson's Disease. Frontiers in Molecular Neuroscience, 2022, 15, 805087.	1.4	13

#	Article	IF	Citations
448	Differential mitochondrial protein interaction profile between human translocator protein and its A147T polymorphism variant. PLoS ONE, 2022, 17, e0254296.	1.1	1
449	Historical Perspective of Pore-Forming Activity Studies of Voltage-Dependent Anion Channel (Eukaryotic or Mitochondrial Porin) Since Its Discovery in the 70th of the Last Century. Frontiers in Physiology, 2021, 12, 734226.	1.3	6
450	Structural basis of Tom20 and Tom22 cytosolic domains as the human TOM complex receptors. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	25
451	Mitochondria and mitochondrial disorders: an overview update. Endocrine Regulations, 2022, 56, 232-248.	0.5	5
452	Mapping the N-Terminal Hexokinase-I Binding Site onto Voltage-Dependent Anion Channel-1 To Block Peripheral Nerve Demyelination. Journal of Medicinal Chemistry, 0, , .	2.9	0
453	The Single Residue K12 Governs the Exceptional Voltage Sensitivity of Mitochondrial Voltage-Dependent Anion Channel Gating. Journal of the American Chemical Society, 2022, 144, 14564-14577.	6.6	4
454	Determinants, maintenance, and function of organellar pH. Physiological Reviews, 2023, 103, 515-606.	13.1	21
455	The Multicellular Effects of VDAC1 N-Terminal-Derived Peptide. Biomolecules, 2022, 12, 1387.	1.8	6
456	Mitochondrial VDAC1: A Potential Therapeutic Target of Inflammation-Related Diseases and Clinical Opportunities. Cells, 2022, 11, 3174.	1.8	15
458	Modulation of mitochondria by viral proteins. Life Sciences, 2023, 313, 121271.	2.0	5
459	The mechanisms of chromogranin B-regulated Clâ^' homeostasis. Biochemical Society Transactions, 2022, 50, 1659-1672.	1.6	3
460	Mitochondria in Aging and Alzheimer's Disease: Focus on Mitophagy. Neuroscientist, 0, , 107385842211397.	2.6	12
461	E as in Enigma: The Mysterious Role of the Voltage-Dependent Anion Channel Glutamate E73. International Journal of Molecular Sciences, 2023, 24, 269.	1.8	2
462	Combining nano-differential scanning fluorimetry and microscale thermophoresis to investigate VDAC1 interaction with small molecules. Journal of Enzyme Inhibition and Medicinal Chemistry, 2023, 38, .	2.5	1
463	NMR of Membrane Proteins., 2012,, 271-317.		0
464	Structural basis of bioenergetic protein complexes in Alzheimer's disease pathogenesis. Current Opinion in Structural Biology, 2023, 80, 102573.	2.6	2
465	Voltage dependent anion channel and its interaction with N-acetyl-L-Cysteine (NAC) under oxidative stress on planar lipid bilayer. Biochimie, 2023, 209, 150-160.	1.3	0
466	Inhibition of mitochondrial VDAC1 oligomerization alleviates apoptosis and necroptosis of retinal neurons following OGD/R injury. Annals of Anatomy, 2023, 247, 152049.	1.0	6

#	ARTICLE	IF	CITATIONS
467	Iron and mitochondria in the susceptibility, pathogenesis and progression of COPD. Clinical Science, 2023, 137, 219-237.	1.8	1
468	DNA-nanostructure-templated assembly of planar and curved lipid-bilayer membranes. Frontiers in Chemistry, 0, 10 , .	1.8	1
469	VDAC1 Knockout Affects Mitochondrial Oxygen Consumption Triggering a Rearrangement of ETC by Impacting on Complex I Activity. International Journal of Molecular Sciences, 2023, 24, 3687.	1.8	5
470	Hypoxia-induced GPCPD1 depalmitoylation triggers mitophagy via regulating PRKN-mediated ubiquitination of VDAC1. Autophagy, 0, , 1-21.	4.3	3
471	Mitochondrial pores at the crossroad between cell death and inflammatory signaling. Molecular Cell, 2023, 83, 843-856.	4.5	6
472	Apoptotic proteins with non-apoptotic activity: expression and function in cancer. Apoptosis: an International Journal on Programmed Cell Death, 2023, 28, 730-753.	2.2	7
473	In Silico Exploration of Alternative Conformational States of VDAC. Molecules, 2023, 28, 3309.	1.7	2
474	Ca ²⁺ /Calmodulin-Dependent Protein Kinase II Disrupts the Voltage Dependency of the Voltage-Dependent Anion Channel on the Lipid Bilayer Membrane. Journal of Physical Chemistry B, 2023, 127, 3372-3381.	1.2	2
480	Mitochondrial dynamics in health and disease: mechanisms and potential targets. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	25
492	Modular Assembly of Mitochondrial \hat{l}^2 -Barrel Proteins. Methods in Molecular Biology, 2024, , 201-220.	0.4	O