Artificial Intelligence technique for modelling and fored review

International Journal of Artificial Intelligence and Soft Comput 1, 52 DOI: 10.1504/ijaisc.2008.021264

Citation Report

#	Article	IF	CITATIONS
1	FPGA-based artificial neural network for prediction of solar radiation data from sunshine duration and air temperature. , 2008, , .		9
2	ANN-based GA for generating the sizing curve of stand-alone photovoltaic systems. Advances in Engineering Software, 2010, 41, 687-693.	3.8	31
3	An adaptive model for predicting of global, direct and diffuse hourly solar irradiance. Energy Conversion and Management, 2010, 51, 771-782.	9.2	124
4	A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy. Solar Energy, 2010, 84, 807-821.	6.1	702
5	Rainfall events prediction using rule-based fuzzy inference system. Atmospheric Research, 2011, 101, 228-236.	4.1	54
6	FPGA-based implementation of intelligent predictor for global solar irradiation, Part I: Theory and simulation. Expert Systems With Applications, 2011, 38, 2668-2685.	7.6	20
7	Estimation of monthly-mean daily global solar radiation based on MODIS and TRMM products. Applied Energy, 2011, 88, 2480-2489.	10.1	93
8	Forecasting of global and direct solar irradiance using stochastic learning methods, ground experiments and the NWS database. Solar Energy, 2011, 85, 746-756.	6.1	257
9	Prediction of Solar Irradiance and Photovoltaic Power. , 2012, , 239-292.		49
10	Functional fuzzy approach for forecasting daily global solar irradiation. Atmospheric Research, 2012, 112, 79-88.	4.1	60
11	A feasibility study of grid-connected photovoltaic systems in Istanbul, Turkey. Renewable and Sustainable Energy Reviews, 2012, 16, 5678-5686.	16.4	34
12	Estimation of hourly global solar irradiation on tilted planes from horizontal one using artificial neural networks. Energy, 2012, 39, 166-179.	8.8	76
13	Assessment of forecasting techniques for solar power production with no exogenous inputs. Solar Energy, 2012, 86, 2017-2028.	6.1	497
14	Intra-hour DNI forecasting based on cloud tracking image analysis. Solar Energy, 2013, 91, 327-336.	6.1	288
15	Hybrid solar forecasting method uses satellite imaging and ground telemetry as inputs to ANNs. Solar Energy, 2013, 92, 176-188.	6.1	138
16	Determination Method of Insolation Prediction With Fuzzy and Applying Neural Network for Long-Term Ahead PV Power Output Correction. IEEE Transactions on Sustainable Energy, 2013, 4, 527-533.	8.8	153
17	Solar forecasting methods for renewable energy integration. Progress in Energy and Combustion Science, 2013, 39, 535-576.	31.2	742
18	Neural network approach to estimate 10-min solar global irradiation values on tilted planes. Renewable Energy, 2013, 50, 576-584.	8.9	52

#	Article	IF	CITATIONS
19	Stochastic-Learning Methods. , 2013, , 383-406.		18
20	Forecasting of Global Horizontal Irradiance Using Sky Cover Indices. Journal of Solar Energy Engineering, Transactions of the ASME, 2013, 135, .	1.8	51
21	Proposed Metric for Evaluation of Solar Forecasting Models. Journal of Solar Energy Engineering, Transactions of the ASME, 2013, 135, .	1.8	119
22	Overview of Solar-Forecasting Methods and a Metric for Accuracy Evaluation. , 2013, , 171-194.		58
23	Wind Speed Forecasting by Wavelet Neural Networks: A Comparative Study. Mathematical Problems in Engineering, 2013, 2013, 1-7.	1.1	7
24	Artificial neural network predictor for grid-connected solar photovoltaic installations at atmospheric temperature. , 2014, , .		10
25	Photovoltaic power forecasting using statistical methods: impact of weather data. IET Science, Measurement and Technology, 2014, 8, 90-97.	1.6	185
26	Day-ahead prediction of solar power output for grid-connected solar photovoltaic installations using Artificial Neural Networks. , 2014, , .		8
27	Application of extreme learning machine for estimating solar radiation from satellite data. International Journal of Energy Research, 2014, 38, 205-212.	4.5	74
28	Solar energy prediction using linear and non-linear regularization models: A study on AMS (American) Tj ETQq1 I	0.784314	4 rggT /Over
29	SIPS: Solar Irradiance Prediction System. , 2014, , .		26
30	Use of the artificial neural network and meteorological data for predicting daily global solar radiation in Djelfa, Algeria. , 2014, , .		7
31	Data-driven model for solar irradiation based on satellite observations. Solar Energy, 2014, 110, 22-38.	6.1	24
32	Direct normal irradiance forecasting and its application to concentrated solar thermal output forecasting – A review. Solar Energy, 2014, 108, 287-307.	6.1	151
33	Support Vector Regression of multiple predictive models of downward short-wave radiation. , 2014, , .		6
34	Application Of Artificial Intelligence Methods In Drilling System Design And Operations: A Review Of The State Of The Art. Journal of Artificial Intelligence and Soft Computing Research, 2015, 5, 121-139.	4.3	93
35	Photovoltaic power forecasting methods in smart power grid. , 2015, , .		22
36	Model output statistics cascade to improve day ahead solar irradiance forecast. Solar Energy, 2015,	6.1	24

#	Article	IF	CITATIONS
37	On the role of lagged exogenous variables and spatio–temporal correlations in improving the accuracy of solar forecasting methods. Renewable Energy, 2015, 78, 203-218.	8.9	46
38	A hybrid modelling approach for assessing solar radiation. Theoretical and Applied Climatology, 2015, 122, 403-420.	2.8	17
40	A model tree approach to forecasting solar irradiance variability. Solar Energy, 2015, 120, 514-524.	6.1	41
41	Applications of ANNs in the Field of the HCPV Technology. Green Energy and Technology, 2015, , 333-351.	0.6	1
42	Adaptive neuro-fuzzy approach for solar radiation prediction in Nigeria. Renewable and Sustainable Energy Reviews, 2015, 51, 1784-1791.	16.4	141
43	Short-term irradiance forecastability for various solar micro-climates. Solar Energy, 2015, 122, 587-602.	6.1	39
44	A Hierarchical Approach Using Machine Learning Methods in Solar Photovoltaic Energy Production Forecasting. Energies, 2016, 9, 55.	3.1	87
45	Calculation of Solar Radiation by Using Regression Methods. Journal of Physics: Conference Series, 2016, 707, 012049.	0.4	0
46	Regime-Dependent Short-Range Solar Irradiance Forecasting. Journal of Applied Meteorology and Climatology, 2016, 55, 1599-1613.	1.5	27
47	Prediction of daily and mean monthly global solar radiation using support vector machine in an arid climate. Energy Conversion and Management, 2016, 118, 105-118.	9.2	130
48	Forecasting short-term solar irradiance based on artificial neural networks and data from neighboring meteorological stations. Solar Energy, 2016, 134, 119-131.	6.1	108
49	Multi-Model Ensemble for day ahead prediction of photovoltaic power generation. Solar Energy, 2016, 134, 132-146.	6.1	86
50	Estimation of daily global solar radiation using wavelet regression, ANN, GEP and empirical models: A comparative study of selected temperature-based approaches. Journal of Atmospheric and Solar-Terrestrial Physics, 2016, 149, 131-145.	1.6	71
51	Daily forecast of solar thermal energy production for heat storage management. Journal of Cleaner Production, 2016, 139, 86-98.	9.3	11
52	Short-term PV power forecasting using Support Vector Regression and local monitoring data. , 2016, , .		14
53	Comparing support vector regression for PV power forecasting to a physical modeling approach using measurement, numerical weather prediction, and cloud motion data. Solar Energy, 2016, 135, 197-208.	6.1	171
54	Multilayer Perceptron approach for estimating 5-min and hourly horizontal global irradiation from exogenous meteorological data in locations without solar measurements. Renewable Energy, 2016, 90, 267-282.	8.9	19
55	A regime-dependent artificial neural network technique for short-range solar irradiance forecasting. Renewable Energy, 2016, 89, 351-359.	8.9	63

#	Article	IF	CITATIONS
56	Estimation of hourly global solar irradiation on tilted absorbers from horizontal one using Artificial Neural Network for case study of Mashhad. Renewable and Sustainable Energy Reviews, 2016, 53, 59-67.	16.4	39
57	Renewable energy: Present research and future scope of Artificial Intelligence. Renewable and Sustainable Energy Reviews, 2017, 77, 297-317.	16.4	216
58	Day-Ahead Prediction of Bihourly Solar Radiance With a Markov Switch Approach. IEEE Transactions on Sustainable Energy, 2017, 8, 1536-1547.	8.8	36
59	Deterministic and Stochastic Approaches for Day-Ahead Solar Power Forecasting. Journal of Solar Energy Engineering, Transactions of the ASME, 2017, 139, .	1.8	38
60	Forecasting ground-level irradiance over short horizons: Time series, meteorological, and time-varying parameter models. Renewable Energy, 2017, 112, 474-485.	8.9	42
61	Using Artificial Intelligence to Improve Real-Time Decision-Making for High-Impact Weather. Bulletin of the American Meteorological Society, 2017, 98, 2073-2090.	3.3	239
62	Artificial neural networks based prediction of hourly horizontal solar radiation data: case study. International Journal of Applied Decision Sciences, 2017, 10, 156.	0.3	2
63	Multi-objective evolutionary optimization of prediction intervals for solar energy forecasting with neural networks. Information Sciences, 2017, 418-419, 363-382.	6.9	65
64	Data-driven upscaling methods for regional photovoltaic power estimation and forecast using satellite and numerical weather prediction data. Solar Energy, 2017, 158, 1026-1038.	6.1	90
65	Review of techniques based on artificial neural networks for the electrical characterization of concentrator photovoltaic technology. Renewable and Sustainable Energy Reviews, 2017, 75, 938-953.	16.4	66
66	A comparative study of prediction of hourly slope irradiation. , 2017, , .		1
67	Prediction of irradiation: A comparative study of ANFIS. , 2017, , .		1
68	Gaussian process with linear discriminant analysis for predicting hourly global horizontal irradiance in Tamanrasset, Algeria. , 2017, , .		1
69	Methods to provide meteorological forecasts for optimum CSP system operations. , 2017, , 253-281.		1
70	Forecasting global horizontal solar irradiance: A case study based on Indian geography. , 2017, , .		2
71	Hybrid Power Forecasting Model for Photovoltaic Plants Based on Neural Network with Air Quality Index. International Journal of Photoenergy, 2017, 2017, 1-9.	2.5	15
72	Learning Processes to Predict the Hourly Global, Direct, and Diffuse Solar Irradiance from Daily Global Radiation with Artificial Neural Networks. International Journal of Photoenergy, 2017, 2017, 1-13.	2.5	17
73	Strategies for Fault Detection and Diagnosis ofÂPV Systems. , 2018, , 231-255.		11

#	Article	IF	CITATIONS
74	Evaluation of regression and neural network models for solar forecasting over different short-term horizons. Science and Technology for the Built Environment, 2018, 24, 1004-1013.	1.7	7
75	Concentrated Solar Plants Management: Big Data and Neural Network. , 2018, , 63-81.		7
76	Performance evaluation of hybrid adaptive neuro-fuzzy inference system models for predicting monthly global solar radiation. Applied Energy, 2018, 213, 247-261.	10.1	128
77	Predicting the energy production by solar photovoltaic systems in cold-climate regions. International Journal of Sustainable Energy, 2018, 37, 978-998.	2.4	14
78	Nowcasting Surface Solar Irradiance with AMESIS via Motion Vector Fields of MSG-SEVIRI Data. Remote Sensing, 2018, 10, 845.	4.0	23
79	The Role of Big Data Analytics in Exploration and Production: A Review of Benefits and Applications. , 2018, , .		32
80	Solar irradiation prediction with machine learning: Forecasting models selection method depending on weather variability. Energy, 2018, 165, 620-629.	8.8	109
81	A Novel Model Based on Square Root Elastic Net and Artificial Neural Network for Forecasting Global Solar Radiation. Complexity, 2018, 2018, 1-19.	1.6	2
82	Estimation of renewable energy and built environment-related variables using neural networks – A review. Renewable and Sustainable Energy Reviews, 2018, 94, 959-988.	16.4	43
83	Clustered ANFIS network using fuzzy c-means, subtractive clustering, and grid partitioning for hourly solar radiation forecasting. Theoretical and Applied Climatology, 2019, 137, 31-43.	2.8	97
84	100 Years of Progress in Applied Meteorology. Part II: Applications that Address Growing Populations. Meteorological Monographs, 2019, 59, 23.1-23.40.	5.0	7
85	Prediction Using LSTM Networks. , 2019, , .		7
86	Multi-region Modeling of Daily Global Solar Radiation with Artificial Intelligence Ensemble. Natural Resources Research, 2019, 28, 1217-1238.	4.7	39
87	Global surface solar radiation and photovoltaic power from Coupled Model Intercomparison Project Phase 5 climate models. Journal of Cleaner Production, 2019, 224, 304-324.	9.3	40
88	Artificial Intelligence for Photovoltaic Systems. Power Systems, 2019, , 121-142.	0.5	4
89	KloudNet: Deep Learning for Sky Image Analysis and Irradiance Forecasting. Lecture Notes in Computer Science, 2019, , 535-551.	1.3	7
90	Forecasting solar irradiance at short horizons: Frequency and time domain models. Renewable Energy, 2019, 135, 1270-1290.	8.9	42
91	A current perspective on the accuracy of incoming solar energy forecasting. Progress in Energy and Combustion Science, 2019, 70, 119-144.	31.2	164

#	ARTICLE	IF	CITATIONS
92	A short-term solar radiation forecasting system for the Iberian Peninsula. Part 2: Model blending approaches based on machine learning. Solar Energy, 2020, 195, 685-696.	6.1	38
93	Trade-Off between Precision and Resolution of a Solar Power Forecasting Algorithm for Micro-Grid Optimal Control. Energies, 2020, 13, 3565.	3.1	5
94	A Look at the Past, Present and Future Research Trends of Artificial Intelligence in Agriculture. Agronomy, 2020, 10, 1839.	3.0	28
95	Air Temperature Forecasting Using Machine Learning Techniques: A Review. Energies, 2020, 13, 4215.	3.1	103
96	Integration of solar thermal and photovoltaic, wind, and battery energy storage through AI in NEOM city. Energy and AI, 2021, 3, 100038.	10.6	61
97	Artificial Intelligence Applications for Friction Stir Welding: A Review. Metals and Materials International, 2021, 27, 193-219.	3.4	49
98	Deep Neural Networks for Predicting Solar Radiation at Hail Region, Saudi Arabia. IEEE Access, 2021, 9, 36719-36729.	4.2	42
99	Application of artificial intelligence in the perspective of data mining. , 2021, , 133-154.		1
100	Utilizing physics-based input features within a machine learning model to predict wind speed forecasting error. Wind Energy Science, 2021, 6, 295-309.	3.3	13
101	Solar Radiation Prediction Using Different Machine Learning Algorithms and Implications for Extreme Climate Events. Frontiers in Earth Science, 2021, 9, .	1.8	39
102	A Machine Learning Approach and Methodology for Solar Radiation Assessment Using Multispectral Satellite Images. Annals of Data Science, 2023, 10, 907-932.	3.2	5
103	Multi-channel convolutional neural network for integration of meteorological and geographical features in solar power forecasting. Applied Energy, 2021, 295, 117083.	10.1	36
104	Review of application of Al techniques to Solar Tower Systems. Solar Energy, 2021, 224, 500-515.	6.1	25
105	Evolutionary-based prediction interval estimation by blending solar radiation forecasting models using meteorological weather types. Applied Soft Computing Journal, 2021, 109, 107531.	7.2	10
106	Renewable energy management system for Saudi Arabia: Methodology and preliminary results. Renewable and Sustainable Energy Reviews, 2021, 149, 111334.	16.4	6
107	Selection of an Information Source and Methodology for Calculating Solar Resources of the Kyrgyz Republic. , 2021, , 578-615.		1
108	Statistical Learning for Short-Term Photovoltaic Power Predictions. Studies in Computational Intelligence, 2016, , 31-45.	0.9	20
109	A Bayesian-Based Neural Network Model for Solar Photovoltaic Power Forecasting. Smart Innovation, Systems and Technologies, 2016, , 169-177.	0.6	12

#	Article	IF	CITATIONS
110	Selection of Numerical Weather Forecast Features for PV Power Predictions with Random Forests. Lecture Notes in Computer Science, 2017, , 78-91.	1.3	8
111	Short-Range Forecasting for Energy. , 2018, , 97-107.		5
113	Machine learning and deep learning for clinical data and PET/SPECT imaging in Parkinson's disease: a review. IET Image Processing, 2020, 14, 4013-4026.	2.5	21
114	Neural Network Ensemble-Based Solar Power Generation Short-Term Forecasting. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2010, 14, 69-75.	0.9	37
115	Artificial Intelligence Techniques for Solar Energy and Photovoltaic Applications. , 0, , 376-436.		12
116	Artificial Intelligence Techniques for Solar Energy and Photovoltaic Applications. , 0, , 1662-1720.		5
118	Fuzzy Logic Approaches. Green Energy and Technology, 2013, , 203-237.	0.6	0
119	Rainfall Events Evaluation Using Adaptive Neural-Fuzzy Inference System. International Journal of Information Technology and Computer Science, 2014, 6, 46-51.	1.0	4
120	Selection of an Information Source and Methodology for Calculating Solar Resources of the Kyrgyz Republic. Advances in Computational Intelligence and Robotics Book Series, 2020, , 236-272.	0.4	0
121	Artificial Intelligence (AI) in Renewable Energy Systems: A Condensed Review of its Applications and Techniques. , 2021, , .		10
122	Contribution of ordinal variables to short-term global solar irradiation forecasting for sites with low variabilities. Renewable Energy, 2022, 183, 890-902.	8.9	8
123	Assessment of Global Solar Energy Under All-Sky Condition Using Artificial Neural Network. Lecture Notes in Networks and Systems, 2022, , 167-174.	0.7	0
124	Recent Developments in Estimation of Solar Radiation. , 2020, , .		1
125	Direct Torque Control based Slide Mode Control applied to Induction Motor drive in a photovoltaic pumping system. , 2021, , .		2
126	Estimation of solar radiation by joint application of phase space reconstruction and a hybrid neural network model. Theoretical and Applied Climatology, 2022, 147, 1725-1742.	2.8	6
128	Adıyaman ve Gaziantep İstasyonlarındaki Güneşlenme Şiddetinin Destek Vektör Makineleri ile Tahmir Bilecik Åžeyh Edebali Āœniversitesi Fen Bilimleri Dergisi, 0, , .	^{ni.} 0.6	1
129	Solar Radiation Forecasting for Smart Building Applications. Green Energy and Technology, 2022, , 229-247.	0.6	2
130	Generation of Horizontal Hourly Global Solar Radiation From Exogenous Variables Using an Artificial Neural Network in Fes (Morocco). , 2017, , .		4

IF CITATIONS ARTICLE # Scientometric Analysis of Artificial Intelligence Research in Agriculture., 2022,,. 132 1 Soft computing in business: exploring current research and Aoutlining future research directions. Industrial Management and Data Systems, 2023, 123, 2079-2127. Solar Irradiation Forecast Enhancement Using Hybrid Architecture., 2023,,. 134 1 Forecasting of rain in chennai using fuzzy inference system. AIP Conference Proceedings, 2023, , . Security Concerns of Adversarial Attack for LSTM/BiLSTM Based Solar Power Forecasting., 2023,,. 136 0 Solar Radiation Analysis for Predicting Climate Change Using Deep Learning Techniques. Advances in Computational Intelligence and Robotics Book Series, 2023, , 58-68. A lightweight time series method for prediction of solar radiation. Energy Systems, 0, , . 139 3.0 0

CITATION REPORT