Helical Structures of ESCRT-III Are Disassembled by VI

Science 321, 1354-1357 DOI: 10.1126/science.1161070

Citation Report

#	Article	IF	CITATIONS
1	Structural basis for midbody targeting of spastin by the ESCRT-III protein CHMP1B. Nature Structural and Molecular Biology, 2008, 15, 1278-1286.	3.6	226
2	Three-Dimensional Analysis of Budding Sites and Released Virus Suggests a Revised Model for HIV-1 Morphogenesis. Cell Host and Microbe, 2008, 4, 592-599.	5.1	208
3	No strings attached: the ESCRT machinery in viral budding and cytokinesis. Journal of Cell Science, 2009, 122, 2167-2177.	1.2	104
4	Physiological Involvement in pH Signaling of Vps24-mediated Recruitment of Aspergillus PalB Cysteine Protease to ESCRT-III. Journal of Biological Chemistry, 2009, 284, 4404-4412.	1.6	54
5	The Mechanism of Budding of Retroviruses from Cell Membranes. Advances in Virology, 2009, 2009, 1-9.	0.5	63
6	The ESCRT machinery at a glance. Journal of Cell Science, 2009, 122, 2163-2166.	1.2	91
7	Autophagy discriminates between Alix and ESCRTs. Autophagy, 2009, 5, 106-107.	4.3	1
8	Computational Model of Membrane Fission Catalyzed by ESCRT-III. PLoS Computational Biology, 2009, 5, e1000575.	1.5	141
9	Herpes Simplex Virus Type 1 Production Requires a Functional ESCRT-III Complex but Is Independent of TSG101 and ALIX Expression. Journal of Virology, 2009, 83, 11254-11264.	1.5	132
10	Structural Basis of Ist1 Function and Ist1–Did2 Interaction in the Multivesicular Body Pathway and Cytokinesis. Molecular Biology of the Cell, 2009, 20, 3514-3524.	0.9	85
11	Coats of endosomal protein sorting: retromer and ESCRT. Current Opinion in Plant Biology, 2009, 12, 670-676.	3.5	35
12	A Crescent-Shaped ALIX Dimer Targets ESCRT-III CHMP4 Filaments. Structure, 2009, 17, 843-856.	1.6	116
13	Cytokinetic abscission: cellular dynamics at the midbody. Trends in Cell Biology, 2009, 19, 606-616.	3.6	144
14	Ubiquitin in trafficking: The network at work. Experimental Cell Research, 2009, 315, 1610-1618.	1.2	176
15	Molecular assemblies and membrane domains in multivesicular endosome dynamics. Experimental Cell Research, 2009, 315, 1567-1573.	1.2	91
16	Molecular Mechanisms of Membrane Deformation by I-BAR Domain Proteins. Current Biology, 2009, 19, 95-107.	1.8	273
17	Delivery of endocytosed membrane proteins to the lysosome. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 615-624.	1.9	106
18	Mechanical requirements for membrane fission: Common facts from various examples. FEBS Letters, 2009, 583, 3839-3846.	1.3	53

#	ARTICLE	IF	Citations
19	First and last ancestors: reconstructing evolution of the endomembrane system with ESCRTs, vesicle coat proteins, and nuclear pore complexes. Current Opinion in Cell Biology, 2009, 21, 4-13.	2.6	112
20	Cell biology of the ESCRT machinery. Current Opinion in Cell Biology, 2009, 21, 568-574.	2.6	81
21	Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. EMBO Journal, 2009, 28, 315-325.	3.5	288
22	Membrane scission by the ESCRT-III complex. Nature, 2009, 458, 172-177.	13.7	554
23	The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature, 2009, 458, 445-452.	13.7	1,182
24	Detached membrane bending. Nature, 2009, 458, 159-160.	13.7	6
25	Structural basis for ESCRT-III protein autoinhibition. Nature Structural and Molecular Biology, 2009, 16, 754-762.	3.6	203
26	Membrane Protein Targeting to the MVB/Lysosome. Chemical Reviews, 2009, 109, 1575-1586.	23.0	55
27	Structure and Function of the ESCRT-II-III Interface in Multivesicular Body Biogenesis. Developmental Cell, 2009, 17, 234-243.	3.1	109
28	Functional Reconstitution of ESCRT-III Assembly and Disassembly. Cell, 2009, 136, 97-109.	13.5	275
29	RhoBTB3: A Rho GTPase-Family ATPase Required for Endosome to Golgi Transport. Cell, 2009, 137, 938-948.	13.5	87
30	The Cell Biology of HIV-1 Virion Genesis. Cell Host and Microbe, 2009, 5, 550-558.	5.1	175
31	Ancient ESCRTs and the evolution of binary fission. Trends in Microbiology, 2009, 17, 507-513.	3.5	64
32	Membrane Buckling Induced by Curved Filaments. Physical Review Letters, 2009, 103, 038101.	2.9	72
33	Membrane-bending proteins. Critical Reviews in Biochemistry and Molecular Biology, 2009, 44, 278-291.	2.3	55
34	Analysis of the dual function of the ESCRT-III protein Snf7 in endocytic trafficking and in gene expression. Biochemical Journal, 2009, 424, 89-97.	1.7	24
35	Evolution and assembly of ESCRTs. Biochemical Society Transactions, 2009, 37, 151-155.	1.6	20
36	Structure and function of ESCRT-III. Biochemical Society Transactions, 2009, 37, 156-160.	1.6	61

#	Article	IF	CITATIONS
37	The ESCRT machinery: new functions in viral and cellular biology. Biochemical Society Transactions, 2009, 37, 195-199.	1.6	68
38	Marburg virus budding: ESCRT of progeny virion to the outside of the cell. Future Virology, 2010, 5, 627-637.	0.9	0
39	Structural Role of the Vps4-Vta1 Interface in ESCRT-III Recycling. Structure, 2010, 18, 976-984.	1.6	45
40	Protein-driven membrane stresses in fusion and fission. Trends in Biochemical Sciences, 2010, 35, 699-706.	3.7	197
41	Microtubule-severing enzymes. Current Opinion in Cell Biology, 2010, 22, 96-103.	2.6	258
42	Structure and mechanism in membrane trafficking. Current Opinion in Cell Biology, 2010, 22, 454-460.	2.6	35
43	Modeling membrane shaping by proteins: Focus on EHD2 and Nâ€BAR domains. FEBS Letters, 2010, 584, 1830-1839.	1.3	57
44	ESCRT-II coordinates the assembly of ESCRT-III filaments for cargo sorting and multivesicular body vesicle formation. EMBO Journal, 2010, 29, 871-883.	3.5	145
45	Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature, 2010, 464, 864-869.	13.7	629
46	Division of labour in ESCRT complexes. Nature Cell Biology, 2010, 12, 422-423.	4.6	9
47	Membrane budding and scission by the ESCRT machinery: it's all in the neck. Nature Reviews Molecular Cell Biology, 2010, 11, 556-566.	16.1	614
48	Making the Final Cut — Mechanisms Mediating the Abscission Step of Cytokinesis. Scientific World Journal, The, 2010, 10, 1424-1434.	0.8	38
49	Human ESCRT-III and VPS4 proteins are required for centrosome and spindle maintenance. Proceedings of the United States of America, 2010, 107, 12889-12894.	3.3	183
50	Regulators of Vps4 ATPase Activity at Endosomes Differentially Influence the Size and Rate of Formation of Intralumenal Vesicles. Molecular Biology of the Cell, 2010, 21, 1023-1032.	0.9	77
51	Human Immunodeficiency Virus Type 1 Nucleocapsid p1 Confers ESCRT Pathway Dependence. Journal of Virology, 2010, 84, 6590-6597.	1.5	27
52	Coordination of Substrate Binding and ATP Hydrolysis in Vps4-Mediated ESCRT-III Disassembly. Molecular Biology of the Cell, 2010, 21, 3396-3408.	0.9	48
53	The ESCRT machinery: a cellular apparatus for sorting and scission. Biochemical Society Transactions, 2010, 38, 1397-1412.	1.6	31
54	Activation of Human VPS4A by ESCRT-III Proteins Reveals Ability of Substrates to Relieve Enzyme Autoinhibition. Journal of Biological Chemistry, 2010, 285, 35428-35438.	1.6	55

#	Article	IF	CITATIONS
55	CHMP2B mutants linked to frontotemporal dementia impair maturation of dendritic spines. Journal of Cell Science, 2010, 123, 2943-2954.	1.2	64
56	Functional Interchangeability of Late Domains, Late Domain Cofactors and Ubiquitin in Viral Budding. PLoS Pathogens, 2010, 6, e1001153.	2.1	57
57	The Yeast <i>vps</i> Class E Mutants: The Beginning of the Molecular Genetic Analysis of Multivesicular Body Biogenesis. Molecular Biology of the Cell, 2010, 21, 4057-4060.	0.9	23
58	Membrane Budding. Cell, 2010, 143, 875-887.	13.5	249
59	Cytokinetic abscission in animal cells. Seminars in Cell and Developmental Biology, 2010, 21, 909-916.	2.3	51
60	The ESCRT complexes. Critical Reviews in Biochemistry and Molecular Biology, 2010, 45, 463-487.	2.3	282
61	Cortical Constriction During Abscission Involves Helices of ESCRT-III–Dependent Filaments. Science, 2011, 331, 1616-1620.	6.0	444
62	ESCRT-III Protein Requirements for HIV-1 Budding. Cell Host and Microbe, 2011, 9, 235-242.	5.1	203
63	Essential Ingredients for HIV-1 Budding. Cell Host and Microbe, 2011, 9, 172-174.	5.1	12
64	Preventing Phagocytosis Takes More Than a Sweet Disposition. Cell Host and Microbe, 2011, 9, 174-175.	5.1	1
65	The ESCRT Pathway. Developmental Cell, 2011, 21, 77-91.	3.1	1,203
66	Molecular and Structural Basis of ESCRT-III Recruitment to Membranes during Archaeal Cell Division. Molecular Cell, 2011, 41, 186-196.	4.5	102
67	The Role of Cellular Factors in Promoting HIV Budding. Journal of Molecular Biology, 2011, 410, 525-533.	2.0	74
68	Granulovacuolar degeneration (GVD) bodies of Alzheimer's disease (AD) resemble late-stage autophagic organelles. Neuropathology and Applied Neurobiology, 2011, 37, 295-306.	1.8	92
69	Regulation of Vps4 During MVB Sorting and Cytokinesis. Traffic, 2011, 12, 1298-1305.	1.3	48
70	ESCRT Machinery and Cytokinesis: the Road to Daughter Cell Separation. Traffic, 2011, 12, 1318-1326.	1.3	84
71	Structural Basis for ESCRT-III CHMP3 Recruitment of AMSH. Structure, 2011, 19, 1149-1159.	1.6	47
72	The Phe105 Loop of Alix Bro1 Domain Plays a Key Role in HIV-1 Release. Structure, 2011, 19, 1485-1495.	1.6	30

#	Article	IF	CITATIONS
73	Divergent pathways lead to ESCRT-III-catalyzed membrane fission. Trends in Biochemical Sciences, 2011, 36, 199-210.	3.7	83
74	Assembly and disassembly of the ESCRT-III membrane scission complex. FEBS Letters, 2011, 585, 3191-3196.	1.3	75
75	MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between. Current Opinion in Cell Biology, 2011, 23, 452-457.	2.6	296
76	Essential and supporting host cell factors for HIV-1 budding. Future Microbiology, 2011, 6, 1159-1170.	1.0	10
77	Basic Residues in the Nucleocapsid Domain of Gag Are Critical for Late Events of HIV-1 Budding. Journal of Virology, 2011, 85, 2304-2315.	1.5	44
78	Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4846-4851.	3.3	346
79	Charged Multivesicular Body Protein 2B (CHMP2B) of the Endosomal Sorting Complex Required for Transport-III (ESCRT-III) Polymerizes into Helical Structures Deforming the Plasma Membrane. Journal of Biological Chemistry, 2011, 286, 40276-40286.	1.6	95
80	Association of the Endosomal Sorting Complex ESCRT-II with the Vps20 Subunit of ESCRT-III Generates a Curvature-sensitive Complex Capable of Nucleating ESCRT-III Filaments. Journal of Biological Chemistry, 2011, 286, 34262-34270.	1.6	80
81	Hrs Recognizes a Hydrophobic Amino Acid Cluster in Cytokine Receptors during Ubiquitin-independent Endosomal Sorting. Journal of Biological Chemistry, 2011, 286, 15458-15472.	1.6	12
82	A Helix for the Final Cut. Science, 2011, 331, 1533-1534.	6.0	13
83	Host factors involved in retroviral budding and release. Nature Reviews Microbiology, 2011, 9, 519-531.	13.6	169
84	Role of Lipids in Virus Replication. Cold Spring Harbor Perspectives in Biology, 2011, 3, a004820-a004820.	2.3	235
85	The <i>Arabidopsis</i> Deubiquitinating Enzyme AMSH3 Interacts with ESCRT-III Subunits and Regulates Their Localization Â. Plant Cell, 2011, 23, 3026-3040.	3.1	87
86	Identification of Human Proteins That Modify Misfolding and Proteotoxicity of Pathogenic Ataxin-1. PLoS Genetics, 2012, 8, e1002897.	1.5	29
87	Regulation of CHMP4/ESCRT-III Function in Human Immunodeficiency Virus Type 1 Budding by CC2D1A. Journal of Virology, 2012, 86, 3746-3756.	1.5	28
88	In vitro reconstitution of the ordered assembly of the endosomal sorting complex required for transport at membrane-bound HIV-1 Gag clusters. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16928-16933.	3.3	82
89	ESCRT-III binding protein MITD1 is involved in cytokinesis and has an unanticipated PLD fold that binds membranes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17424-17429.	3.3	29
90	Pkh1/2-dependent phosphorylation of Vps27 regulates ESCRT-I recruitment to endosomes. Molecular Biology of the Cell, 2012, 23, 4054-4064.	0.9	26

#	Apticif	IF	CITATIONS
91	Loss of UDP― <i>N</i> â€acetylglucosamine 2â€epimerase/ <i>N</i> â€acetylmannosamine kinase (GNE) induc apoptotic processes in pancreatic carcinoma cells. FASEB Journal, 2012, 26, 938-946.	es _{0.2}	21
92	Vesicle formation within endosomes: An ESCRT marks the spot. Communicative and Integrative Biology, 2012, 5, 50-56.	0.6	29
93	Dynamics of ESCRT proteins. Cellular and Molecular Life Sciences, 2012, 69, 4121-4133.	2.4	32
94	Membrane Trafficking Components in Cytokinesis. Cellular Physiology and Biochemistry, 2012, 30, 1097-1108.	1.1	12
95	Interactome of the Plant-specific ESCRT-III Component AtVPS2.2 in <i>Arabidopsis thaliana</i> . Journal of Proteome Research, 2012, 11, 397-411.	1.8	26
96	Endosomal Sorting Complex Required for Transport (ESCRT) Complexes Induce Phase-separated Microdomains in Supported Lipid Bilayers. Journal of Biological Chemistry, 2012, 287, 28144-28151.	1.6	61
97	CC2D1A Is a Regulator of ESCRT-III CHMP4B. Journal of Molecular Biology, 2012, 419, 75-88.	2.0	54
98	Multivesicular Body Morphogenesis. Annual Review of Cell and Developmental Biology, 2012, 28, 337-362.	4.0	483
99	Computational Model of Cytokinetic Abscission Driven by ESCRT-III Polymerization and Remodeling. Biophysical Journal, 2012, 102, 2309-2320.	0.2	69
100	Blindsight: Spontaneous Scanning of Complex Scenes. Current Biology, 2012, 22, R605-R606.	1.8	3
101	Membrane Abscission: First Glimpse at Dynamic ESCRTs. Current Biology, 2012, 22, R603-R605.	1.8	7
102	HIV-1 Assembly, Budding, and Maturation. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a006924-a006924.	2.9	605
103	Reconstituting Multivesicular Body Biogenesis with Purified Components. Methods in Cell Biology, 2012, 108, 73-92.	0.5	3
104	Quantitative Proteomic Analysis of Niemann-Pick Disease, Type C1 Cerebellum Identifies Protein Biomarkers and Provides Pathological Insight. PLoS ONE, 2012, 7, e47845.	1.1	59
105	The Roles of ESCRT Proteins in Healthy Cells and in Disease. , 2012, , .		2
106	Assembly and Architecture of HIV. Advances in Experimental Medicine and Biology, 2012, 726, 441-465.	0.8	127
107	Inhibition of HBV replication by VPS4B and its dominant negative mutant VPS4B-K180Q in vivo. Journal of Huazhong University of Science and Technology [Medical Sciences], 2012, 32, 311-316.	1.0	1
108	Structure and function of the membrane deformation AAA ATPase Vps4. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 172-181.	1.9	47

#	Article	IF	CITATIONS
109	Two Distinct Binding Modes Define the Interaction of Brox with the C-Terminal Tails of CHMP5 and CHMP4B. Structure, 2012, 20, 887-898.	1.6	23
110	Solution Structure of the ESCRT-I and -II Supercomplex: Implications for Membrane Budding and Scission. Structure, 2012, 20, 874-886.	1.6	85
111	ESCRT-III polymers in membrane neck constriction. Trends in Cell Biology, 2012, 22, 133-140.	3.6	61
112	Viral Membrane Scission. Annual Review of Cell and Developmental Biology, 2013, 29, 551-569.	4.0	46
113	Virus Budding and the ESCRT Pathway. Cell Host and Microbe, 2013, 14, 232-241.	5.1	445
115	Incisive Imaging and Computation for Cellular Mysteries: Lessons from Abscission. Cell, 2013, 155, 1220-1231.	13.5	46
116	Where Do They Come from and Where Do They Go: Candidates for Regulating Extracellular Vesicle Formation in Fungi. International Journal of Molecular Sciences, 2013, 14, 9581-9603.	1.8	62
117	Membrane dynamics during cytokinesis. Current Opinion in Cell Biology, 2013, 25, 92-98.	2.6	66
118	An expanded view of the eukaryotic cytoskeleton. Molecular Biology of the Cell, 2013, 24, 1615-1618.	0.9	8
119	ESCRT-III CHMP2A and CHMP3 form variable helical polymers <i>in vitro</i> and act synergistically during HIV-1 budding. Cellular Microbiology, 2013, 15, 213-226.	1.1	78
120	Wrapping up the bad news â \in " HIV assembly and release. Retrovirology, 2013, 10, 5.	0.9	51
121	How to get out: ssRNA enveloped viruses and membrane fission. Current Opinion in Virology, 2013, 3, 159-167.	2.6	45
122	Membrane Fission Reactions of the Mammalian ESCRT Pathway. Annual Review of Biochemistry, 2013, 82, 663-692.	5.0	215
123	Essential N-Terminal Insertion Motif Anchors the ESCRT-III Filament during MVB Vesicle Formation. Developmental Cell, 2013, 27, 201-214.	3.1	91
124	Electron cryotomography of ESCRT assemblies and dividing <i>Sulfolobus</i> cells suggests that spiraling filaments are involved in membrane scission. Molecular Biology of the Cell, 2013, 24, 2319-2327.	0.9	88
125	Kinetics of Endophilin N-BAR Domain Dimerization and Membrane Interactions. Journal of Biological Chemistry, 2013, 288, 12533-12543.	1.6	39
126	Molecular Mechanisms of the Membrane Sculpting ESCRT Pathway. Cold Spring Harbor Perspectives in Biology, 2013, 5, a016766-a016766.	2.3	367
127	ESCRT requirements for EIAV budding. Retrovirology, 2013, 10, 104.	0.9	28

#	Article	IF	CITATIONS
128	The <i>Nitrosopumilus maritimus</i> CdvB, but Not FtsZ, Assembles into Polymers. Archaea, 2013, 2013, 1-10.	2.3	18
129	Vesicular Transport in the Secretory and Endocytic Pathways. Colloquium Series on Building Blocks of the Cell Cell Structure and Function, 2014, 2, 1-125.	0.5	1
130	ESCRT Function in Cytokinesis: Location, Dynamics and Regulation by Mitotic Kinases. International Journal of Molecular Sciences, 2014, 15, 21723-21739.	1.8	31
131	Electron Tomography of HIV-1 Infection in Gut-Associated Lymphoid Tissue. PLoS Pathogens, 2014, 10, e1003899.	2.1	45
132	ESCRT-III mediated cell division in Sulfolobus acidocaldarius ââ,¬â€œ a reconstitution perspective. Frontiers in Microbiology, 2014, 5, 257.	1.5	14
133	The Arabidopsis Endosomal Sorting Complex Required for Transport III Regulates Internal Vesicle Formation of the Prevacuolar Compartment and Is Required for Plant Development. Plant Physiology, 2014, 165, 1328-1343.	2.3	76
134	Cytokinetic Abscission: Molecular Mechanisms and Temporal Control. Developmental Cell, 2014, 31, 525-538.	3.1	240
135	A Structurally Distinct Human Mycoplasma Protein that Generically Blocks Antigen-Antibody Union. Science, 2014, 343, 656-661.	6.0	85
136	Coordinated binding of Vps4 to ESCRT-III drives membrane neck constriction during MVB vesicle formation. Journal of Cell Biology, 2014, 205, 33-49.	2.3	157
137	Ubiquitin-Dependent Sorting in Endocytosis. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016808.	2.3	174
138	The ESCRT machinery: From the plasma membrane to endosomes and back again. Critical Reviews in Biochemistry and Molecular Biology, 2014, 49, 242-261.	2.3	115
139	Inhibition of ESCRT-II–CHMP6 interactions impedes cytokinetic abscission and leads to cell death. Molecular Biology of the Cell, 2014, 25, 3740-3748.	0.9	48
140	Liaison alcaline: Pals entice non-endosomal ESCRTs to the plasma membrane for pH signaling. Current Opinion in Microbiology, 2014, 22, 49-59.	2.3	60
141	Conformational plasticity of the <scp>E</scp> bola virus matrix protein. Protein Science, 2014, 23, 1519-1527.	3.1	33
142	Structural analysis and modeling reveals new mechanisms governing ESCRT-III spiral filament assembly. Journal of Cell Biology, 2014, 206, 763-777.	2.3	115
143	Distribution of ESCRT Machinery at HIV Assembly Sites Reveals Virus Scaffolding of ESCRT Subunits. Science, 2014, 343, 653-656.	6.0	165
144	Electron Microscopy and Image Processing: Essential Tools for Structural Analysis of Macromolecules. Current Protocols in Protein Science, 2015, 82, 17.2.1-17.2.61.	2.8	9
146	Asymmetric ring structure of Vps4 required for ESCRT-III disassembly. Nature Communications, 2015, 6, 8781.	5.8	45

#	Article	IF	CITATIONS
147	Rupture of Stochastically Occurring Vesicle Clusters Limits Bilayer Formation on Alkane–PEG-Type Supports: Uncoupling Clustering from Surface Coverage. Langmuir, 2015, 31, 8830-8840.	1.6	6
148	The Dual Role of an ESCRT-0 Component HGS in HBV Transcription and Naked Capsid Secretion. PLoS Pathogens, 2015, 11, e1005123.	2.1	64
149	Binding of Substrates to the Central Pore of the Vps4 ATPase Is Autoinhibited by the Microtubule Interacting and Trafficking (MIT) Domain and Activated by MIT Interacting Motifs (MIMs). Journal of Biological Chemistry, 2015, 290, 13490-13499.	1.6	35
150	<i>Drosophila Vps4</i> promotes Epidermal growth factor receptor signaling independently of its role in receptor degradation. Development (Cambridge), 2015, 142, 1480-91.	1.2	13
151	Evidence for a Nonendosomal Function of the Saccharomyces cerevisiae ESCRT-III-Like Protein Chm7. Genetics, 2015, 201, 1439-1452.	1.2	40
152	Structure and membrane remodeling activity of ESCRT-III helical polymers. Science, 2015, 350, 1548-1551.	6.0	230
153	Relaxation of Loaded ESCRT-III Spiral Springs Drives Membrane Deformation. Cell, 2015, 163, 866-879.	13.5	289
154	Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends in Cell Biology, 2015, 25, 364-372.	3.6	1,080
155	Constitutively active ESCRT-II suppresses the MVB-sorting phenotype of ESCRT-0 and ESCRT-I mutants. Molecular Biology of the Cell, 2015, 26, 554-568.	0.9	21
156	Super-Resolution Imaging of ESCRT-Proteins at HIV-1 Assembly Sites. PLoS Pathogens, 2015, 11, e1004677.	2.1	76
157	Vps4 disassembles an ESCRT-III filament by global unfolding and processive translocation. Nature Structural and Molecular Biology, 2015, 22, 492-498.	3.6	88
158	Regulation of Postsynaptic Function by the Dementia-Related ESCRT-III Subunit CHMP2B. Journal of Neuroscience, 2015, 35, 3155-3173.	1.7	50
159	Formation of Tubulovesicular Carriers from Endosomes and Their Fusion to the trans-Golgi Network. International Review of Cell and Molecular Biology, 2015, 318, 159-202.	1.6	14
160	The VPS-20 subunit of the endosomal sorting complex ESCRT-III exhibits an open conformation in the absence of upstream activation. Biochemical Journal, 2015, 466, 625-637.	1.7	20
161	The vacuolar protein sorting genes in insects: A comparative genomeÂview. Insect Biochemistry and Molecular Biology, 2015, 62, 211-225.	1.2	26
162	ALIX Regulates the Ubiquitin-Independent Lysosomal Sorting of the P2Y1 Purinergic Receptor via a YPX3L Motif. PLoS ONE, 2016, 11, e0157587.	1.1	39
163	Chm7 and Heh1 collaborate to link nuclear pore complex quality control with nuclear envelope sealing. EMBO Journal, 2016, 35, 2447-2467.	3.5	116
164	Structural Fine-Tuning of MIT-Interacting Motif 2 (MIM2) and Allosteric Regulation of ESCRT-III by Vps4 in Yeast. Journal of Molecular Biology, 2016, 428, 2392-2404.	2.0	20

#	Article	IF	CITATIONS
165	Electrostatic Interactions between Elongated Monomers Drive Filamentation of Drosophila Shrub, a Metazoan ESCRT-III Protein. Cell Reports, 2016, 16, 1211-1217.	2.9	32
166	Overexpression of CHMP7 from rapeseed and Arabidopsis causes dwarfism and premature senescence in Arabidopsis. Journal of Plant Physiology, 2016, 204, 16-26.	1.6	14
167	CC2D1A and CC2D1B regulate degradation and signaling of EGFR and TLR4. Biochemical and Biophysical Research Communications, 2016, 480, 280-287.	1.0	9
168	Meiotic Clade AAA ATPases: Protein Polymer Disassembly Machines. Journal of Molecular Biology, 2016, 428, 1897-1911.	2.0	56
169	Closing a gap in the nuclear envelope. Current Opinion in Cell Biology, 2016, 40, 90-97.	2.6	22
170	ESCRTâ€III and Vps4: a dynamic multipurpose tool for membrane budding and scission. FEBS Journal, 2016, 283, 3288-3302.	2.2	90
171	Prokaryotic Cytoskeletons. Sub-Cellular Biochemistry, 2017, , .	1.0	0
172	The Structure, Function and Roles of the Archaeal ESCRT Apparatus. Sub-Cellular Biochemistry, 2017, 84, 357-377.	1.0	23
173	Growing functions of the ESCRT machinery in cell biology and viral replication. Biochemical Society Transactions, 2017, 45, 613-634.	1.6	82
174	Dynamic subunit turnover in ESCRT-III assemblies is regulated by Vps4 to mediate membrane remodelling during cytokinesis. Nature Cell Biology, 2017, 19, 787-798.	4.6	222
175	A Consensus View of ESCRT-Mediated Human Immunodeficiency Virus Type 1 Abscission. Annual Review of Virology, 2017, 4, 309-325.	3.0	36
176	Dynamic and elastic shape transitions in curved ESCRT-III filaments. Current Opinion in Cell Biology, 2017, 47, 126-135.	2.6	47
177	Ist1 regulates ESCRT-III assembly and function during multivesicular endosome biogenesis in Caenorhabditis elegans embryos. Nature Communications, 2017, 8, 1439.	5.8	38
178	Cellular Functions and Molecular Mechanisms of the ESCRT Membrane-Scission Machinery. Trends in Biochemical Sciences, 2017, 42, 42-56.	3.7	362
179	Reverse-topology membrane scission by the ESCRT proteins. Nature Reviews Molecular Cell Biology, 2017, 18, 5-17.	16.1	358
180	Physical, Functional and Genetic Interactions between the BEACH Domain Protein SPIRRIG and LIP5 and SKD1 and Its Role in Endosomal Trafficking to the Vacuole in Arabidopsis. Frontiers in Plant Science, 2017, 8, 1969.	1.7	17
181	ESCRTs function directly on the lysosome membrane to downregulate ubiquitinated lysosomal membrane proteins. ELife, 2017, 6, .	2.8	94
182	Recruitment dynamics of ESCRT-III and Vps4 to endosomes and implications for reverse membrane budding. ELife, 2017, 6, .	2.8	138

#	Article	IF	CITATIONS
183	VPS4 is a dynamic component of the centrosome that regulates centrosome localization of Î ³ -tubulin, centriolar satellite stability and ciliogenesis. Scientific Reports, 2018, 8, 3353.	1.6	21
184	Multi-functional DNA nanostructures that puncture and remodel lipid membranes into hybrid materials. Nature Communications, 2018, 9, 1521.	5.8	65
185	All roads lead to the vacuole—autophagic transport as part of the endomembrane trafficking network in plants. Journal of Experimental Botany, 2018, 69, 1313-1324.	2.4	27
186	Biogenesis and function of ESCRT-dependent extracellular vesicles. Seminars in Cell and Developmental Biology, 2018, 74, 66-77.	2.3	292
187	Perivascular dendritic cells elicit anaphylaxis by relaying allergens to mast cells via microvesicles. Science, 2018, 362, .	6.0	56
188	The Dynamics of TGF-Î ² Signaling Are Dictated by Receptor Trafficking via the ESCRT Machinery. Cell Reports, 2018, 25, 1841-1855.e5.	2.9	26
189	Common Energetic and Mechanical Features of Membrane Fusion and Fission Machineries. , 2018, , 421-469.		3
190	A Shocking Type of Communication. Immunity, 2018, 49, 999-1001.	6.6	1
191	The ESCRT and autophagy machineries cooperate to repair ESX-1-dependent damage at the Mycobacterium-containing vacuole but have opposite impact on containing the infection. PLoS Pathogens, 2018, 14, e1007501.	2.1	94
192	ATP-dependent force generation and membrane scission by ESCRT-III and Vps4. Science, 2018, 362, 1423-1428.	6.0	150
193	Frontotemporal dementia causative CHMP2B impairs neuronal endolysosomal traffic-rescue by <i>TMEM106B</i> knockdown. Brain, 2018, 141, 3428-3442.	3.7	27
194	Microtubule-severing enzymes: From cellular functions to molecular mechanism. Journal of Cell Biology, 2018, 217, 4057-4069.	2.3	135
195	Domes and cones: Adhesion-induced fission of membranes by ESCRT proteins. PLoS Computational Biology, 2018, 14, e1006422.	1.5	19
196	The ESCRT CHMP2B acts as a diffusion barrier on reconstituted membrane necks. Journal of Cell Science, 2018, 132, .	1.2	38
197	Timing of ESCRT-III protein recruitment and membrane scission during HIV-1 assembly. ELife, 2018, 7, .	2.8	64
198	Mechanisms of Lipid Sorting in the Endosomal Pathway. Advances in Biomembranes and Lipid Self-Assembly, 2018, 28, 1-39.	0.3	0
199	CHMP1B is a target of USP8/UBPY regulated by ubiquitin during endocytosis. PLoS Genetics, 2018, 14, e1007456.	1.5	37
200	Molecular Genetics of Frontotemporal Dementia Elucidated by Drosophila Models—Defects in Endosomal–Lysosomal Pathway. International Journal of Molecular Sciences, 2018, 19, 1714.	1.8	8

#	Article	IF	Citations
201	Structures, Functions, and Dynamics of ESCRT-III/Vps4 Membrane Remodeling and Fission Complexes. Annual Review of Cell and Developmental Biology, 2018, 34, 85-109.	4.0	205
202	Endocytosis and Signaling. Progress in Molecular and Subcellular Biology, 2018, , .	0.9	2
203	ESCRT and Membrane Protein Ubiquitination. Progress in Molecular and Subcellular Biology, 2018, 57, 107-135.	0.9	30
204	Resolving ESCRT-III Spirals at the Intercellular Bridge of Dividing Cells Using 3D STORM. Cell Reports, 2018, 24, 1756-1764.	2.9	69
205	ESCRTs in membrane sealing. Biochemical Society Transactions, 2018, 46, 773-778.	1.6	26
206	Comprehensive analysis of yeast ESCRT-III composition in single ESCRT-III deletion mutants. Biochemical Journal, 2019, 476, 2031-2046.	1.7	7
207	Extrachromosomal Histone H2B Contributes to the Formation of the Abscission Site for Cell Division. Cells, 2019, 8, 1391.	1.8	4
208	The postmitotic midbody: Regulating polarity, stemness, and proliferation. Journal of Cell Biology, 2019, 218, 3903-3911.	2.3	49
209	Changes in ESCRT-III filament geometry drive membrane remodelling and fission in silico. BMC Biology, 2019, 17, 82.	1.7	38
210	VPS4 triggers constriction and cleavage of ESCRT-III helical filaments. Science Advances, 2019, 5, eaau7198.	4.7	84
211	The role of VPS4 in ESCRT-III polymer remodeling. Biochemical Society Transactions, 2019, 47, 441-448.	1.6	36
212	The molecular principles governing the activity and functional diversity of AAA+ proteins. Nature Reviews Molecular Cell Biology, 2020, 21, 43-58.	16.1	173
213	Abrogating ALIX Interactions Results in Stuttering of the ESCRT Machinery. Viruses, 2020, 12, 1032.	1.5	8
214	An ESCRT-III Polymerization Sequence Drives Membrane Deformation and Fission. Cell, 2020, 182, 1140-1155.e18.	13.5	123
215	Understanding the birth of rupture-prone and irreparable micronuclei. Chromosoma, 2020, 129, 181-200.	1.0	18
216	Endosomal membrane tension regulates ESCRT-III-dependent intra-lumenal vesicle formation. Nature Cell Biology, 2020, 22, 947-959.	4.6	68
217	Protein crowding mediates membrane remodeling in upstream ESCRT-induced formation of intraluminal vesicles. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28614-28624.	3.3	21
218	ALIX- and ESCRT-III–dependent sorting of tetraspanins to exosomes. Journal of Cell Biology, 2020, 219, .	2.3	215

ARTICLE IF CITATIONS # High-speed imaging of ESCRT recruitment and dynamics during HIV virus like particle budding. PLoS 219 1.1 17 OŇE, 2020, 15, e0237268. The ESCRTs – converging on mechanism. Journal of Cell Science, 2020, 133, . 1.2 221 Structure and assembly of ESCRT-III helical Vps24 filaments. Science Advances, 2020, 6, eaba4897. 4.7 32 A Structural View on ESCRT-Mediated Abscission. Frontiers in Cell and Developmental Biology, 2020, 8, 1.8 586880. Anisotropic ESCRT-III architecture governs helical membrane tube formation. Nature Communications, 223 5.8 55 2020, 11, 1516. Human ESCRT-III polymers assemble on positively curved membranes and induce helical membrane tube formation. Nature Communications, 2020, 11, 2663. 224 5.8 Shedding Light on Extracellular Vesicle Biogenesis and Bioengineering. Advanced Science, 2021, 8, 225 5.6 192 2003505. The Interplay between ESCRT and Viral Factors in the Enveloped Virus Life Cycle. Viruses, 2021, 13, 324. 1.5 21 The ESCRT-III isoforms CHMP2A and CHMP2B display different effects on membranes upon 228 1.7 16 polymerization. BMC Biology, 2021, 19, 66. Bacterial Vipp1 and PspA are members of the ancient ESCRT-III membrane-remodeling superfamily. Cell, 229 13.5 58 2021, 184, 3660-3673.e18. HIV-1 Hijacking of Host ATPases and GTPases That Control Protein Trafficking. Frontiers in Cell and 230 1.8 6 Developmental Biology, 2021, 9, 622610. PspA adopts an ESCRT-III-like fold and remodels bacterial membranes. Cell, 2021, 184, 3674-3688.e18. 13.5 Principles of membrane remodeling by dynamic ESCRT-III polymers. Trends in Cell Biology, 2021, 31, 233 3.6 45 856-868. HIV-1 Gag release from yeast reveals ESCRT interaction with the Gag N-terminal protein region. Journal of Biological Chemistry, 2020, 295, 17950-17972. 234 1.6 Membrane manipulations by the ESCRT machinery. F1000Research, 2015, 4, 516. 241 0.8 9 Crenarchaeal CdvA Forms Double-Helical Filaments Containing DNA and Interacts with ESCRT-III-Like 242 1.1 CdvB. PLoS ONE, 2011, 6, e21921. GLUT4 Traffic through an ESCRT-III-Dependent Sorting Compartment in Adipocytes. PLoS ONE, 2012, 7, 243 1.1 20 e44141. ALIX Is Recruited Temporarily into HIV-1 Budding Sites at the End of Gag Assembly. PLoS ONE, 2014, 9, 244 1.1 e96950.

		CITATION REF	ORT	
#	Article		IF	CITATIONS
245	Structure of cellular ESCRT-III spirals and their relationship to HIV budding. ELife, 2014,	3, .	2.8	122
246	ULK3 regulates cytokinetic abscission by phosphorylating ESCRT-III proteins. ELife, 201	5, 4, e06547.	2.8	81
247	Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filame 4, .	nts. ELife, 2015,	2.8	127
248	Electrostatic lateral interactions drive ESCRT-III heteropolymer assembly. ELife, 2019, 8,	·	2.8	36
250	ESCRT-Dependent Sorting in Late Endosomes. , 2012, , 249-270.			0
251	Making the Final Cut - The Role of Endosomes During Mitotic Cell Division. , 0, , .			0
253	HIV-1 Budding. , 2013, , 123-151.			0
261	miR-4454 Promotes Hepatic Carcinoma Progression by Targeting Vps4A and Rab27A. C and Cellular Longevity, 2021, 2021, 1-24.	xidative Medicine	1.9	16
265	Membrane-Remodeling Proteins. Nanoscience and Technology, 2022, , 183-200.		1.5	0
266	Exosomal RNAs: Novel Potential Biomarkers for Diseases—A Review. International Jour Molecular Sciences, 2022, 23, 2461.	nal of	1.8	32
269	The archaeal division protein CdvB1 assembles into polymers that are depolymerized by Letters, 2022, 596, 958-969.	CdvC. FEBS	1.3	7
270	CHMP2A regulates tumor sensitivity to natural killer cell-mediated cytotoxicity. Nature Communications, 2022, 13, 1899.		5.8	16
271	Snf7 spirals sense and alter membrane curvature. Nature Communications, 2022, 13, 2	174.	5.8	8
273	Asgard archaea shed light on the evolutionary origins of the eukaryotic ubiquitin-ESCRT Nature Communications, 2022, 13, .	machinery.	5.8	27
274	Friction-driven membrane scission by the human ESCRT-III proteins CHMP1B and IST1. F National Academy of Sciences of the United States of America, 2022, 119, .	roceedings of the	3.3	16
275	Overcoming the blood-brain barrier: Exosomes as theranostic nanocarriers for precision neuroimaging. Journal of Controlled Release, 2022, 349, 902-916.		4.8	18
277	ESCRT-mediated plasma membrane shaping. , 2023, , 91-103.			0
282	Modelling membrane reshaping by staged polymerization of ESCRT-III filaments. PLoS C Biology, 2022, 18, e1010586.	omputational	1.5	6

#	Article	IF	CITATIONS
283	Asgard ESCRT-III and VPS4 reveal conserved chromatin binding properties of the ESCRT machinery. ISME Journal, 2023, 17, 117-129.	4.4	2
284	The potential of sertoli cells (SCs) derived exosomes and its therapeutic efficacy in male reproductive disorders. Life Sciences, 2023, 312, 121251.	2.0	4
285	Stepwise remodeling and subcompartment formation in individual vesicles by three ESCRT-III proteins. IScience, 2023, 26, 105765.	1.9	1
286	Mechanochemical Rules for Shape-Shifting Filaments that Remodel Membranes. Physical Review Letters, 2022, 129, .	2.9	3
287	De novo transcriptome analysis of the centrohelid <i>Raphidocystis contractilis</i> to identify genes involved in microtubuleâ€based motility. Journal of Eukaryotic Microbiology, 0, , .	0.8	0
288	Structural basis of CHMP2A–CHMP3 ESCRT-III polymer assembly and membrane cleavage. Nature Structural and Molecular Biology, 2023, 30, 81-90.	3.6	16
289	The Machinery of Exosomes: Biogenesis, Release, and Uptake. International Journal of Molecular Sciences, 2023, 24, 1337.	1.8	56
290	The archaeal Cdv cell division system. Trends in Microbiology, 2023, 31, 601-615.	3.5	5
291	Upregulation of the ESCRT pathway and multivesicular bodies accelerates degradation of proteins associated with neurodegeneration. , 2023, 2, .		0
292	Exploiting the biogenesis of extracellular vesicles for bioengineering and therapeutic cargo loading. Molecular Therapy, 2023, 31, 1231-1250.	3.7	32
293	Structure and dynamics of ESCRT-III membrane remodeling proteins by high-speed atomic force microscopy. Journal of Biological Chemistry, 2023, 299, 104575.	1.6	4
294	The patterned assembly and stepwise Vps4-mediated disassembly of composite ESCRT-III polymers drives archaeal cell division. Science Advances, 2023, 9, .	4.7	5
302	Cell-Derived Exosome-Based Materials for Biomedical Applications. , 2023, , 1-26.		0
309	Cell-Derived Exosome-Based Materials for Biomedical Applications. , 2023, , 1-26.		0