NADP Regulates the Yeast <i>GAL</i> Induction System

Science 319, 1090-1092 DOI: 10.1126/science.1151903

Citation Report

#	Article	IF	CITATIONS
2	Progress in Metabolic Engineering of <i>Saccharomyces cerevisiae</i> . Microbiology and Molecular Biology Reviews, 2008, 72, 379-412.	2.9	494
3	A ncRNA Modulates Histone Modification and mRNA Induction in the Yeast GAL Gene Cluster. Molecular Cell, 2008, 32, 685-695.	4.5	262
4	Dinucleotide-Sensing Proteins: Linking Signaling Networks and Regulating Transcription. Science Signaling, 2008, 1, pe38.	1.6	12
5	The Interaction between an Acidic Transcriptional Activator and Its Inhibitor. Journal of Biological Chemistry, 2008, 283, 30266-30272.	1.6	36
6	Metabolic control of transcription: paradigms and lessons from Saccharomyces cerevisiae. Biochemical Journal, 2008, 414, 177-187.	1.7	36
7	The Effect of Ligand Binding on the Galactokinase Activity of Yeast Gal1p and Its Ability to Activate Transcription. Journal of Biological Chemistry, 2009, 284, 229-236.	1.6	10
8	Creating Protein Affinity Reagents by Combining Peptide Ligands on Synthetic DNA Scaffolds. Journal of the American Chemical Society, 2009, 131, 17233-17241.	6.6	104
9	Impact of Nonnatural Amino Acid Mutagenesis on the in Vivo Function and Binding Modes of a Transcriptional Activator. Journal of the American Chemical Society, 2009, 131, 14240-14242.	6.6	38
10	Rearrangements of the transcriptional regulatory networks of metabolic pathways in fungi. Current Opinion in Microbiology, 2009, 12, 655-663.	2.3	75
11	Use of genomeâ€scale metabolic models for understanding microbial physiology. FEBS Letters, 2010, 584, 2556-2564.	1.3	81
12	The transcription repressor NmrA is subject to proteolysis by three <i>Aspergillus nidulans</i> proteases. Protein Science, 2010, 19, 1405-1419.	3.1	19
13	Multiple metabolic signals influence <i>GAL</i> gene activation by modulating the interaction of Gal80p with the transcriptional activator Gal4p. Molecular Microbiology, 2010, 78, 414-428.	1.2	23
14	Rewiring and regulation of cross-compartmentalized metabolism in protists. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 831-845.	1.8	46
15	An NADPH-dependent genetic switch regulates plant infection by the rice blast fungus. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21902-21907.	3.3	130
16	Structural Basis for NADH/NAD+ Redox Sensing by a Rex Family Repressor. Molecular Cell, 2010, 38, 563-575.	4.5	89
17	Analysis of three plasmid systems for use in DNA Aβ42 immunization as therapy for Alzheimer's disease. Vaccine, 2010, 28, 5280-5287.	1.7	30
19	Two gene clusters coâ€ordinate for a functional Nâ€acetylglucosamine catabolic pathway in <i>Vibrio cholerae</i> . Molecular Microbiology, 2011, 80, 1549-1560.	1.2	35
20	lsolation of compensatory inhibitor domain mutants to novel activation domain variants using the splitâ€ubiquitin screen. Yeast, 2011, 28, 569-578.	0.8	1

#	Article	IF	CITATIONS
21	Rapid GAL Gene Switch of <i>Saccharomyces cerevisiae</i> Depends on Nuclear Gal3, Not Nucleocytoplasmic Trafficking of Gal3 and Gal80. Genetics, 2011, 189, 825-836.	1.2	24
22	The Cyc8–Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein. Genes and Development, 2011, 25, 2525-2539.	2.7	118
23	Application of Structure Equation Modeling for Inferring a Serial Transcriptional Regulation in Yeast. Gene Regulation and Systems Biology, 2011, 5, GRSB.S7569.	2.3	11
24	The Gal3p transducer of the <i>GAL</i> regulon interacts with the Gal80p repressor in its ligand-induced closed conformation. Genes and Development, 2012, 26, 294-303.	2.7	42
25	Intracellular NADPH Levels Affect the Oligomeric State of the Glucose 6-Phosphate Dehydrogenase. Eukaryotic Cell, 2012, 11, 1503-1511.	3.4	21
26	Interplay of a Ligand Sensor and an Enzyme in Controlling Expression of the Saccharomyces cerevisiae <i>GAL</i> Genes. Eukaryotic Cell, 2012, 11, 334-342.	3.4	23
27	Molecular simulation and docking studies of Gal1p and Gal3p proteins in the presence and absence of ligands ATP and galactose: implication for transcriptional activation of GAL genes. Journal of Computer-Aided Molecular Design, 2012, 26, 847-864.	1.3	7
28	Mathematical model of GAL regulon dynamics in Saccharomyces cerevisiae. Journal of Theoretical Biology, 2012, 293, 219-235.	0.8	11
29	Upregulation of galactose metabolic pathway by N-acetylglucosamine induced endogenous synthesis of galactose in Candida albicans. Fungal Genetics and Biology, 2013, 54, 15-24.	0.9	19
30	Regulations of sugar transporters: insights from yeast. Current Genetics, 2013, 59, 1-31.	0.8	98
31	Self-Association of the Gal4 Inhibitor Protein Gal80 Is Impaired by Gal3: Evidence for a New Mechanism in the <i>GAL</i> Gene Switch. Molecular and Cellular Biology, 2013, 33, 3667-3674.	1.1	17
32	Dynamics of Gal80p in the Gal80p–Gal3p complex differ significantly from the dynamics in the Gal80p–Gal1p complex: implications for the higher specificity of Gal3p. Molecular BioSystems, 2014, 10, 3120-3129.	2.9	13
33	Sequence context and crosslinking mechanism affect the efficiency of in vivo capture of a protein–protein interaction. Biopolymers, 2014, 101, 391-397.	1.2	15
34	Complex regulation of hydrolytic enzyme genes for cellulosic biomass degradation in filamentous fungi. Applied Microbiology and Biotechnology, 2014, 98, 4829-4837.	1.7	112
35	Nutrient sensing and signaling in the yeast <i>Saccharomyces cerevisiae</i> . FEMS Microbiology Reviews, 2014, 38, 254-299.	3.9	534
36	Different Mechanisms Confer Gradual Control and Memory at Nutrient- and Stress-Regulated Genes in Yeast. Molecular and Cellular Biology, 2015, 35, 3669-3683.	1.1	16
37	Mediator subunit Med15 dictates the conserved "fuzzy―binding mechanism of yeast transcription activators Gal4 and Gcn4. Nature Communications, 2021, 12, 2220.	5.8	28
38	Evolutionary Aspects of a Genetic Network: Studying the Lactose/Galactose Regulon of Kluyveromyces lactis. Methods in Molecular Biology, 2011, 734, 259-277.	0.4	4

CITATION REPORT

#	Article	IF	CITATIONS
40	Mediator Acts Upstream of the Transcriptional Activator Gal4. PLoS Biology, 2012, 10, e1001290.	2.6	12
41	The 9aaTAD Is Exclusive Activation Domain in Gal4. PLoS ONE, 2017, 12, e0169261.	1.1	19
42	Transcriptional repressor Gal80 recruits corepressor complex Cyc8–Tup1 to structural genes of the Saccharomyces cerevisiae GAL regulon. Current Genetics, 2022, 68, 115-124.	0.8	5
44	Antimicrobial activity of <i>Annona muricata</i> leaf oleoresin. Natural Product Research, 2021, , 1-7.	1.0	2
46	A new function of a putative UDP-glucose 4-epimerase on the expression of glycoside hydrolase genes in Aspergillus aculeatus. Applied Microbiology and Biotechnology, 2023, 107, 785-795.	1.7	2
47	Transcription factor clusters enable target search but do not contribute to target gene activation. Nucleic Acids Research, 2023, 51, 5449-5468.	6.5	10

CITATION REPORT