A Common β-Sheet Architecture Underlies in Vitro and Fibrils

Journal of Biological Chemistry 283, 17279-17286 DOI: 10.1074/jbc.m710351200

Citation Report

#	Article	IF	CITATIONS
1	A regulatable switch mediates self-association in an immunoglobulin fold. Nature Structural and Molecular Biology, 2008, 15, 965-971.	3.6	83
2	Prion Protein Amyloid Formation under Native-like Conditions Involves Refolding of the C-terminal α-Helical Domain. Journal of Biological Chemistry, 2008, 283, 34704-34711.	1.6	59
4	Glimpses of the molecular mechanisms of β ₂ â€microglobulin fibril formation in vitro: Aggregation on a complex energy landscape. FEBS Letters, 2009, 583, 2623-2629.	1.3	55
6	Mechanism of Lysophosphatidic Acid-Induced Amyloid Fibril Formation of β ₂ -Microglobulin <i>in Vitro</i> under Physiological Conditions. Biochemistry, 2009, 48, 5689-5699.	1.2	29
7	Delineating the Conformational Elements Responsible for Cu2+-Induced Oligomerization of β-2 Microglobulin. Biochemistry, 2009, 48, 6610-6617.	1.2	17
8	Influence of Aggregation Propensity and Stability on Amyloid Fibril Formation As Studied by Fourier Transform Infrared Spectroscopy and Two-Dimensional COS Analysis. Biochemistry, 2009, 48, 10582-10590.	1.2	28
9	Globular Tetramers of β2-Microglobulin Assemble into Elaborate Amyloid Fibrils. Journal of Molecular Biology, 2009, 389, 48-57.	2.0	73
10	Fibril Fragmentation Enhances Amyloid Cytotoxicity. Journal of Biological Chemistry, 2009, 284, 34272-34282.	1.6	326
11	β ₂ -microglobulin: from physiology to amyloidosis. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2009, 16, 151-173.	1.4	52
12	K3 Fragment of Amyloidogenic β ₂ -Microglobulin Forms Ion Channels: Implication for Dialysis Related Amyloidosis. Journal of the American Chemical Society, 2009, 131, 14938-14945.	6.6	50
14	Polymorphism in Alzheimer Aβ Amyloid Organization Reflects Conformational Selection in a Rugged Energy Landscape. Chemical Reviews, 2010, 110, 4820-4838.	23.0	265
15	Intermolecular Alignment in \hat{l}^2 (sub>2 (sub>-Microglobulin Amyloid Fibrils. Journal of the American Chemical Society, 2010, 132, 17077-17079.	6.6	69
16	Magic Angle Spinning NMR Analysis of β ₂ -Microglobulin Amyloid Fibrils in Two Distinct Morphologies. Journal of the American Chemical Society, 2010, 132, 10414-10423.	6.6	79
17	Fibrillar vs Crystalline Full-Length β-2-Microglobulin Studied by High-Resolution Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2010, 132, 5556-5557.	6.6	32
18	Differences in the Molecular Structure of β ₂ -Microglobulin between Two Morphologically Different Amyloid Fibrils. Biochemistry, 2010, 49, 742-751.	1.2	21
19	Structure and Dynamics of Oligomeric Intermediates in β2-Microglobulin Self-Assembly. Biophysical Journal, 2011, 101, 1238-1247.	0.2	25
20	Conformational Conversion during Amyloid Formation at Atomic Resolution. Molecular Cell, 2011, 41, 161-172.	4.5	160
21	An anti-Al² (amyloid l²) single-chain variable fragment prevents amyloid fibril formation and cytotoxicity by withdrawing Al² oligomers from the amyloid pathway. Biochemical Journal, 2011, 437, 25-34.	1.7	36

CITATION REPORT

#	Article	IF	CITATIONS
22	Understanding the complex mechanisms of β ₂ â€microglobulin amyloid assembly. FEBS Journal, 2011, 278, 3868-3883.	2.2	92
23	Enhanced molecular chaperone activity of the small heatâ€shock protein αB rystallin following covalent immobilization onto a solidâ€phase support. Biopolymers, 2011, 95, 376-389.	1.2	14
24	Direct three-dimensional visualization of membrane disruption by amyloid fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20455-20460.	3.3	162
25	The Interconversion between a Flexible β-Sheet and a Fibril β-Arrangement Constitutes the Main Conformational Event during Misfolding of PSD95-PDZ3 Domain. Biophysical Journal, 2012, 103, 738-747.	0.2	11
26	Pathological Self-Aggregation ofb2-Microglobulin: A Challenge for Protein Biophysics. Sub-Cellular Biochemistry, 2012, 65, 165-183.	1.0	8
27	The role of conformational flexibility in β 2 â€microglobulin amyloid fibril formation at neutral pH. Rapid Communications in Mass Spectrometry, 2012, 26, 1783-1792.	0.7	24
28	Super-resolved FT-IR spectroscopy: Strategies, challenges, and opportunities for membrane biophysics. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2272-2282.	1.4	13
29	Structural fingerprints and their evolution during oligomeric vs. oligomer-free amyloid fibril growth. Journal of Chemical Physics, 2013, 139, 121901.	1.2	24
31	The Molten Globule of β2-Microglobulin Accumulated at pH 4 and Its Role in Protein Folding. Journal of Molecular Biology, 2013, 425, 273-291.	2.0	21
32	Leveraging on nanomechanical sensors to single out active small ligands for β2-microglobulin. Sensors and Actuators B: Chemical, 2013, 176, 1026-1031.	4.0	10
33	IR spectroscopic analyses of amyloid fibril formation of β2-microglobulin using a simplified procedure for its in vitro generation at neutral pH. Biophysical Chemistry, 2013, 179, 35-46.	1.5	6
34	β2-Microglobulin Amyloid Fibril-Induced Membrane Disruption Is Enhanced by Endosomal Lipids and Acidic pH. PLoS ONE, 2014, 9, e104492.	1.1	30
35	β2-Microglobulin Amyloid Fibrils Are Nanoparticles That Disrupt Lysosomal Membrane Protein Trafficking and Inhibit Protein Degradation by Lysosomes. Journal of Biological Chemistry, 2014, 289, 35781-35794.	1.6	31
36	pH-induced molecular shedding drives the formation of amyloid fibril-derived oligomers. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5691-5696.	3.3	95
37	Stepwise unfolding of human β2-microglobulin into a disordered amyloidogenic precursor at low pH. European Biophysics Journal, 2017, 46, 65-76.	1.2	3
38	Proteins behaving badly. Substoichiometric molecular control and amplification of the initiation and nature of amyloid fibril formation: lessons from and for blood clotting. Progress in Biophysics and Molecular Biology, 2017, 123, 16-41.	1.4	64
39	Proline Residues as Switches in Conformational Changes Leading to Amyloid Fibril Formation. International Journal of Molecular Sciences, 2017, 18, 549.	1.8	20
40	The structure of a β2-microglobulin fibril suggests a molecular basis for its amyloid polymorphism. Nature Communications, 2018, 9, 4517.	5.8	124

#	Article	IF	CITATIONS
41	A new era for understanding amyloid structures and disease. Nature Reviews Molecular Cell Biology, 2018, 19, 755-773.	16.1	654
42	Extracellular matrix components modulate different stages in β2-microglobulin amyloid formation. Journal of Biological Chemistry, 2019, 294, 9392-9401.	1.6	19
43	Effect of Silica Nanoparticles on the Amyloid Fibrillation of Lysozyme. ACS Omega, 2019, 4, 1015-1026.	1.6	42
44	Collagen I Weakly Interacts with the β-Sheets of β ₂ -Microglobulin and Enhances Conformational Exchange To Induce Amyloid Formation. Journal of the American Chemical Society, 2020, 142, 1321-1331.	6.6	15
45	Half a century of amyloids: past, present and future. Chemical Society Reviews, 2020, 49, 5473-5509.	18.7	345
46	Protein Misfolding and Toxicity in Dialysis-Related Amyloidosis. , 2012, , 377-405.		2
47	Characterization of the Response of Primary Cells Relevant to Dialysis-Related Amyloidosis to β2-Microglobulin Monomer and Fibrils. PLoS ONE, 2011, 6, e27353.	1.1	24
48	The Impact of Extra-Domain Structures and Post-Translational Modifications in the Folding/Misfolding Behaviour of the Third PDZ Domain of MAGUK Neuronal Protein PSD-95. PLoS ONE, 2014, 9, e98124.	1.1	8
49	Insights into the Structure of Amyloid Fibrils. The Open Biology Journal, 2009, 2, 185-192.	0.5	13
50	Small Molecule-Assisted PET: Approaches to Imaging of Conformational Diseases of the Brain. World Journal of Neuroscience, 2017, 07, 106-139.	0.1	1
53	Second Sphere Interactions in Amyloidogenic Diseases. Chemical Reviews, 2022, 122, 12132-12206.	23.0	8
54	The Role of Heme and Copper in Alzheimer's Disease and Type 2 Diabetes Mellitus. Jacs Au, 2023, 3, 657-681.	3.6	7

CITATION REPORT