Cytokinins are central regulators of cambial activity

Proceedings of the National Academy of Sciences of the Unite 105, 20027-20031

DOI: 10.1073/pnas.0805619105

Citation Report

#	Article	IF	CITATIONS
1	The prognostic significance of thymic germinal center proliferation in myasthenia gravis. Neurology, 1973, 23, 69-69.	1.1	15
2	The Histidine Kinases CYTOKININ-INDEPENDENT1 and ARABIDOPSIS HISTIDINE KINASE2 and 3 Regulate Vascular Tissue Development in <i>Arabidopsis</i> Shoots. Plant Cell, 2009, 21, 2008-2021.	6.6	121
3	Cytokinin action in plant development. Current Opinion in Plant Biology, 2009, 12, 527-538.	7.1	583
4	Cytokinin–auxin crosstalk. Trends in Plant Science, 2009, 14, 557-562.	8.8	295
5	Floral induction in mature, perennial angiosperm fruit trees: Similarities and discrepancies with annual/biennial plants and the involvement of plant hormones. Scientia Horticulturae, 2009, 122, 153-163.	3.6	90
6	Stem cell function during plant vascular development. Seminars in Cell and Developmental Biology, 2009, 20, 1097-1106.	5.0	78
7	Chapter 1 Cytokinin Signaling During Root Development. International Review of Cell and Molecular Biology, 2009, 276, 1-48.	3.2	26
8	Functional Analyses of <i>LONELY GUY</i> Cytokinin-Activating Enzymes Reveal the Importance of the Direct Activation Pathway in <i>Arabidopsis</i> Â Â. Plant Cell, 2009, 21, 3152-3169.	6.6	376
9	The Cytokinin Type-B Response Regulator PtRR13 Is a Negative Regulator of Adventitious Root Development in <i>Populus</i> Â Â Â Â. Plant Physiology, 2009, 150, 759-771.	4.8	154
10	"Lateral Control― Phytohormone Relations in the Conifer Treetop and the Short- and Long-Term Effects of Bud Excision in Abies nordmanniana. Journal of Plant Growth Regulation, 2010, 29, 268-279.	5.1	9
11	Cell-to-cell communication in vascular morphogenesis. Current Opinion in Plant Biology, 2010, 13, 59-65.	7.1	26
12	The molecular basis of cytokinin function. Current Opinion in Plant Biology, 2010, 13, 21-26.	7.1	170
13	Regulation of plant biomass production. Current Opinion in Plant Biology, 2010, 13, 298-303.	7.1	206
14	Metabolism and Longâ€distance Translocation of Cytokinins. Journal of Integrative Plant Biology, 2010, 52, 53-60.	8.5	262
15	Regulation of Vascular Development by CLE Peptideâ€receptor Systems. Journal of Integrative Plant Biology, 2010, 52, 8-16.	8.5	67
16	Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation. Plant Journal, 2010, 63, 811-822.	5.7	198
17	Involvement of cytokinins in the grain filling of rice under alternate wetting and drying irrigation. Journal of Experimental Botany, 2010, 61, 3719-3733.	4.8	141
18	TDIF Peptide Signaling Regulates Vascular Stem Cell Proliferation via the <i>WOX4</i> Homeobox Gene in <i>Arabidopsis</i> Á. Plant Cell, 2010, 22, 2618-2629.	6.6	435

#	Article	IF	CITATIONS
19	Regulatory Mechanisms for Specification and Patterning of Plant Vascular Tissues. Annual Review of Cell and Developmental Biology, 2010, 26, 605-637.	9.4	109
20	Grafting as a Research Tool. Methods in Molecular Biology, 2010, 655, 11-26.	0.9	21
21	The Perception of Cytokinin: A Story 50 Years in the Making: Figure 1 Plant Physiology, 2010, 154, 487-492.	4.8	64
22	Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin. Journal of Experimental Botany, 2011, 62, 1399-1409.	4.8	418
23	Cytokinins and plant immunity: old foes or new friends?. Trends in Plant Science, 2011, 16, 388-394.	8.8	197
24	A Data-Driven Integrative Model of Sepal Primordium Polarity in <i>Arabidopsis</i> Â Â. Plant Cell, 2011, 23, 4318-4333.	6.6	54
25	Molecular features of secondary vascular tissue regeneration after bark girdling in <i>Populus</i> . New Phytologist, 2011, 192, 869-884.	7.3	43
26	Establishment and maintenance of vascular cell communities through local signaling. Current Opinion in Plant Biology, 2011, 14, 17-23.	7.1	44
27	Exogenous nitrate induces root branching and inhibits primary root growth in Capsicum chinense Jacq Plant Physiology and Biochemistry, 2011, 49, 1456-1464.	5.8	14
28	Phloem-Transported Cytokinin Regulates Polar Auxin Transport and Maintains Vascular Pattern in the Root Meristem. Current Biology, 2011, 21, 927-932.	3.9	231
29	Transformation of kiwifruit using the ipt gene alters tree architecture. Plant Cell, Tissue and Organ Culture, 2011, 107, 45-53.	2.3	8
30	Signaling and gene regulatory programs in plant vascular stem cells. Genesis, 2011, 49, 885-904.	1.6	13
31	Arabidopsis as a model for wood formation. Current Opinion in Biotechnology, 2011, 22, 293-299.	6.6	91
32	The CKH1/EER4 Gene Encoding a TAF12-Like Protein Negatively Regulates Cytokinin Sensitivity in Arabidopsis thaliana. Plant and Cell Physiology, 2011, 52, 629-637.	3.1	20
33	Auxin, cytokinin and the control of shoot branching. Annals of Botany, 2011, 107, 1203-1212.	2.9	404
34	Cytokinin receptors in sporophytes are essential for male and female functions in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2011, 6, 66-71.	2.4	61
35	Molecular Mechanisms of Signalling Specificity Via Phosphorelay Pathways in Arabidopsis. Current Protein and Peptide Science, 2011, 12, 126-136.	1.4	9
36	CLE Peptides can Negatively Regulate Protoxylem Vessel Formation via Cytokinin Signaling. Plant and Cell Physiology, 2011, 52, 37-48.	3.1	118

ARTICLE

IF CITATIONS

Root-synthesized cytokinins improve shoot growth and fruit yield in salinized tomato (Solanum) Tj ETQq000 rgBT 4.8 verlock 10 Tf 507

38	Root-Specific Reduction of Cytokinin Causes Enhanced Root Growth, Drought Tolerance, and Leaf Mineral Enrichment in <i>Arabidopsis</i> and Tobacco Â. Plant Cell, 2011, 22, 3905-3920.	6.6	417
39	Cytokinin Regulates the Activity of Reproductive Meristems, Flower Organ Size, Ovule Formation, and Thus Seed Yield in <i>Arabidopsis thaliana</i> Â Â Â. Plant Cell, 2011, 23, 69-80.	6.6	566
40	Leaf-Induced Gibberellin Signaling Is Essential for Internode Elongation, Cambial Activity, and Fiber Differentiation in Tobacco Stems Â. Plant Cell, 2012, 24, 66-79.	6.6	117
41	Graft-union development: a delicate process that involves cell–cell communication between scion and stock for local auxin accumulation. Journal of Experimental Botany, 2012, 63, 4219-4232.	4.8	154
42	Stem cell function during plant vascular development. EMBO Journal, 2012, 32, 178-193.	7.8	200
43	To Divide and to Rule; Regulating Cell Division in Roots During Post-embryonic Growth. Progress in Botany Fortschritte Der Botanik, 2012, , 57-80.	0.3	5
44	Hormone symphony during root growth and development. Developmental Dynamics, 2012, 241, 1867-1885.	1.8	76
45	Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends in Plant Science, 2012, 17, 172-179.	8.8	466
46	Co-ordinated development of the leaf midrib xylem with the lamina in Nicotiana tabacum. Annals of Botany, 2012, 110, 35-45.	2.9	14
47	Cotton shoot plays a major role in mediating senescence induced by potassium deficiency. Journal of Plant Physiology, 2012, 169, 327-335.	3.5	29
48	Peptides Regulating Plant Vascular Development. Signaling and Communication in Plants, 2012, , 59-75.	0.7	2
49	Cytokinin Signaling Networks. Annual Review of Plant Biology, 2012, 63, 353-380.	18.7	614
50	Plant Stem Cell Niches. Annual Review of Plant Biology, 2012, 63, 615-636.	18.7	280
51	Remodeling of Cytokinin Metabolism at Infection Sites of Colletotrichum graminicola on Maize Leaves. Molecular Plant-Microbe Interactions, 2012, 25, 1073-1082.	2.6	41
52	Roles and regulation of cytokinins in tomato fruit development. Journal of Experimental Botany, 2012, 63, 5569-5579.	4.8	151
53	Stem anatomy supports <i>Arabidopsis thaliana</i> as a model for insular woodiness. New Phytologist, 2012, 193, 12-17.	7.3	48
54	Towards optimizing wood development in bioenergy trees. New Phytologist, 2012, 194, 46-53.	7.3	52

#	Article	IF	CITATIONS
55	Arabidopsis lonely guy (LOG) multiple mutants reveal a central role of the LOGâ€dependent pathway in cytokinin activation. Plant Journal, 2012, 69, 355-365.	5.7	167
56	Properties, functions and evolution of cytokinin receptors. European Journal of Cell Biology, 2012, 91, 246-256.	3.6	90
57	Cytokininâ€facilitated proteolysis of ARABIDOPSIS RESPONSE REGULATOR 2 attenuates signaling output in twoâ€component circuitry. Plant Journal, 2012, 69, 934-945.	5.7	51
58	Responses to environmental stresses in woody plants: key to survive and longevity. Journal of Plant Research, 2012, 125, 1-10.	2.4	34
59	Genetic and hormonal regulation of cambial development. Physiologia Plantarum, 2013, 147, 36-45.	5.2	66
60	Tracing a key player in the regulation of plant architecture: the columnar growth habit of apple trees (MalusÂ×Âdomestica). Planta, 2013, 238, 1-22.	3.2	53
61	Side-Chain Modification of Cytokinins Controls Shoot Growth in Arabidopsis. Developmental Cell, 2013, 27, 452-461.	7.0	180
62	Diverse Roles of Strigolactones in Plant Development. Molecular Plant, 2013, 6, 18-28.	8.3	323
63	Characterization of cytokinin signaling and homeostasis gene families in two hardwood tree species: Populus trichocarpa and Prunus persica. BMC Genomics, 2013, 14, 885.	2.8	38
64	Overexpression of the anaphase-promoting complex (APC) genes in Nicotiana tabacum promotes increasing biomass accumulation. Molecular Biology Reports, 2013, 40, 7093-7102.	2.3	11
65	Xylem tissue specification, patterning, and differentiation mechanisms. Journal of Experimental Botany, 2013, 64, 11-31.	4.8	197
66	Brassica napus Growth is Promoted by Ascophyllum nodosum (L.) Le Jol. Seaweed Extract: Microarray Analysis and Physiological Characterization of N, C, and S Metabolisms. Journal of Plant Growth Regulation, 2013, 32, 31-52.	5.1	192
67	Going with the wind – Adaptive dynamics of plant secondary meristems. Mechanisms of Development, 2013, 130, 34-44.	1.7	37
68	Crossing paths: cytokinin signalling and crosstalk. Development (Cambridge), 2013, 140, 1373-1383.	2.5	200
69	Hormone interactions in xylem development: a matter of signals. Plant Cell Reports, 2013, 32, 867-883.	5.6	48
70	The Plant Vascular System: Evolution, Development and Functions ^F . Journal of Integrative Plant Biology, 2013, 55, 294-388.	8.5	553
71	Hormonal signals involved in the regulation of cambial activity, xylogenesis and vessel patterning in trees. Plant Cell Reports, 2013, 32, 885-898.	5.6	92
72	The Role of Hormones in Controlling Vascular Differentiation. Plant Cell Monographs, 2013, , 99-139.	0.4	31

#	Article	IF	CITATIONS
73	Xylem Development in Trees: From Cambial Divisions to Mature Wood Cells. Plant Cell Monographs, 2013, , 3-39.	0.4	32
74	Regulation of Phytohormone Biosynthesis and Accumulation in Arabidopsis Following Treatment with Commercial Extract from the Marine Macroalga Ascophyllum nodosum. Journal of Plant Growth Regulation, 2013, 32, 324-339.	5.1	177
75	TDIF., 2013, , 71-75.		0
76	Phloem development in nematode-induced feeding sites: the implications of auxin and cytokinin. Frontiers in Plant Science, 2013, 4, 241.	3.6	63
77	Nitrogen-Dependent Regulation of De Novo Cytokinin Biosynthesis in Rice: The Role of Glutamine Metabolism as an Additional Signal. Plant and Cell Physiology, 2013, 54, 1881-1893.	3.1	100
78	Effect of exogenous growth regulators on pattern of xylogenesis in young shoots ofLeucaena leucocephala. Acta Botanica Hungarica, 2013, 55, 81-97.	0.3	0
79	Digital Gene Expression Analysis of Corky Split Vein Caused by Boron Deficiency in â€`Newhall' Navel Orange (Citrus sinensis Osbeck) for Selecting Differentially Expressed Genes Related to Vascular Hypertrophy. PLoS ONE, 2013, 8, e65737.	2.5	27
80	Small but thick enough–Âthe Arabidopsis hypocotyl as a model to study secondary growth. Physiologia Plantarum, 2014, 151, 164-171.	5.2	31
81	Xylem formation can be modeled statistically as a function of primary growth and cambium activity. New Phytologist, 2014, 203, 831-841.	7.3	85
83	Adventitious Root Development in Ornamental Plants: Insights from Carnation Stem Cuttings. Soil Biology, 2014, , 423-441.	0.8	1
84	The Biotechnological Potential of Cytokinin Status Manipulation. Plant Cell Monographs, 2014, , 103-130.	0.4	2
85	Genetic variation in yield under hot ambient temperatures spotlights a role for cytokinin in protection of developing floral primordia. Plant, Cell and Environment, 2014, 37, 643-657.	5.7	31
86	Long-distance call from phosphate: systemic regulation of phosphate starvation responses. Journal of Experimental Botany, 2014, 65, 1817-1827.	4.8	77
87	The formation of wood and its control. Current Opinion in Plant Biology, 2014, 17, 56-63.	7.1	126
88	<i>CLE6</i> expression recovers gibberellin deficiency to promote shoot growth in Arabidopsis. Plant Journal, 2014, 78, 241-252.	5.7	29
89	ABCG Transporters Are Required for Suberin and Pollen Wall Extracellular Barriers in <i>Arabidopsis</i> Â Â. Plant Cell, 2014, 26, 3569-3588.	6.6	241
90	Tissue regeneration after bark girdling: an ideal research tool to investigate plant vascular development and regeneration. Physiologia Plantarum, 2014, 151, 147-155.	5.2	16
91	Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins. Nature Communications, 2014, 5, 3274.	12.8	214

#	Article	IF	CITATIONS
92	Rhizobium-induced elevation in xylem cytokinin delivery in pigeonpea induces changes in shoot development and leaf physiology. Functional Plant Biology, 2014, 41, 1323.	2.1	26
93	Integration of growth and patterning during vascular tissue formation in <i>Arabidopsis</i> . Science, 2014, 345, 1255215.	12.6	286
94	Lateral meristems of higher plants: Phytohormonal and genetic control. Russian Journal of Plant Physiology, 2014, 61, 571-589.	1.1	10
95	<i>Arabidopsis</i> ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7150-7155.	7.1	271
96	Long―and shortâ€distance signaling in the regulation of lateral plant growth. Physiologia Plantarum, 2014, 151, 134-141.	5.2	21
97	Cytokinins. The Arabidopsis Book, 2014, 12, e0168.	0.5	450
98	Manipulation of the hypocotyl sink activity by reciprocal grafting of two <i>Raphanus sativus</i> varieties: its effects on morphological and physiological traits of source leaves and wholeâ€plant growth. Plant, Cell and Environment, 2015, 38, 2629-2640.	5.7	32
99	Low expression of PIN gene family members is involved in triggering the dwarfing effect in M9 interstem but not in M9 rootstock apple trees. Acta Physiologiae Plantarum, 2015, 37, 1.	2.1	21
100	Q&A: How do plants respond to cytokinins and what is their importance?. BMC Biology, 2015, 13, 102.	3.8	114
101	(Pro)cambium formation and proliferation: two sides of the same coin?. Current Opinion in Plant Biology, 2015, 23, 54-60.	7.1	75
102	Molecular control of wood formation in trees. Journal of Experimental Botany, 2015, 66, 4119-4131.	4.8	148
103	Dynamics of long-distance signaling via plant vascular tissues. Frontiers in Plant Science, 2015, 6, 161.	3.6	108
104	Cell-Type-Specific Cytokinin Distribution within the Arabidopsis Primary Root Apex. Plant Cell, 2015, 27, 1955-1967.	6.6	143
105	The poplar basic helix-loop-helix transcription factor BEE3 – Like gene affects biomass production by enhancing proliferation of xylem cells in poplar. Biochemical and Biophysical Research Communications, 2015, 462, 64-70.	2.1	42
106	Cytokinin-dependent secondary growth determines root biomass in radish (<i>Raphanus sativus</i> L.). Journal of Experimental Botany, 2015, 66, 4607-4619.	4.8	47
107	CYCD3 D-type cyclins regulate cambial cell proliferation and secondary growth in <i>Arabidopsis</i> . Journal of Experimental Botany, 2015, 66, 4595-4606.	4.8	43
108	Molecular and physiological mechanisms regulating tissue reunion in incised plant tissues. Journal of Plant Research, 2015, 128, 381-388.	2.4	22
110	Cytokinin–auxin crosstalk in cell type specification. Trends in Plant Science, 2015, 20, 291-300.	8.8	102

	Сітаті	CITATION REPORT	
#	Article	IF	CITATIONS
111	Xylem development – from the cradle to the grave. New Phytologist, 2015, 207, 519-535.	7.3	112
112	<i>AINTEGUMENTA</i> and the D-type cyclin <i>CYCD3;1</i> regulate root secondary growth and respond to cytokinins. Biology Open, 2015, 4, 1229-1236.	1.2	89
113	Vascular Cambium Development. The Arabidopsis Book, 2015, 13, e0177.	0.5	108
114	Ecophysiological implications of vascular differentiation and plant evolution. Trees - Structure and Function, 2015, 29, 1-16.	1.9	103

Recent Progress in Molecular Studies on Storage Root Formation in Sweetpotato (<i>Ipomoea) Tj ETQq0 0 0 rgBT /Over19ck 10 Tf

116	Tissue- and Cell-Specific Cytokinin Activity in Populus × canescens Monitored by ARR5::GUS Reporter Lines in Summer and Winter. Frontiers in Plant Science, 2016, 7, 652.	3.6	11
117	Phytohormonal Regulation of Biomass Allocation and Morphological and Physiological Traits of Leaves in Response to Environmental Changes in Polygonum cuspidatum. Frontiers in Plant Science, 2016, 7, 1189.	3.6	18
118	Overexpression of <i>INCREASED CAMBIAL ACTIVITY</i> , a putative methyltransferase, increases cambial activity and plant growth. Journal of Integrative Plant Biology, 2016, 58, 874-889.	8.5	5
119	Functional network analysis of genes differentially expressed during xylogenesis in <i>soc1ful</i> woody Arabidopsis plants. Plant Journal, 2016, 86, 376-390.	5.7	27
120	The Role of Cytokinin During Infection of <i>Arabidopsis thaliana</i> by the Cyst Nematode <i>Heterodera schachtii</i> . Molecular Plant-Microbe Interactions, 2016, 29, 57-68.	2.6	44
121	Differential Cellular Control by Cotyledon-Derived Phytohormones Involved in Graft Reunion of Arabidopsis Hypocotyls. Plant and Cell Physiology, 2016, 57, 2620-2631.	3.1	72
122	Cytokinin Synthesis, Signaling, and Function—Advances and New Insights. International Review of Cell and Molecular Biology, 2016, 324, 1-38.	3.2	129
123	Cellular and Molecular Features of the Procambium and Cambium in Plant Vascular Tissue Development. , 2016, , 236-256.		0
124	Cytokinin and Auxin Display Distinct but Interconnected Distribution and Signaling Profiles to Stimulate Cambial Activity. Current Biology, 2016, 26, 1990-1997.	3.9	170
125	Transcriptional regulation of vascular cambium activity during the transition from juvenile to mature stages in Cunninghamia lanceolata. Journal of Plant Physiology, 2016, 200, 7-17.	3.5	19
126	Long-distance transport of phytohormones through the plant vascular system. Current Opinion in Plant Biology, 2016, 34, 1-8.	7.1	102
127	New data about anatomy, branching, and inferred growth patterns in the Early Devonian plant Armoricaphyton chateaupannense, Montjean-sur-Loire, France. Review of Palaeobotany and Palynology, 2016, 224, 38-53.	1.5	17
128	Genetic and hormonal control of vascular tissue proliferation. Current Opinion in Plant Biology, 2016, 29, 50-56.	7.1	27

#	Article	IF	CITATIONS
129	MultiSite Gateway-Compatible Cell Type-Specific Gene-Inducible System for Plants. Plant Physiology, 2016, 170, 627-641.	4.8	119
130	The role of cytokinins in clubroot disease. European Journal of Plant Pathology, 2016, 145, 543-557.	1.7	49
131	Secondary growth of the Arabidopsis hypocotyl — vascular development in dimensions. Current Opinion in Plant Biology, 2016, 29, 9-15.	7.1	20
132	Identification, expression, and functional analysis of CLE genes in radish (Raphanus sativus L.) storage root. BMC Plant Biology, 2016, 16, 7.	3.6	25
133	Response of Organ Structure and Physiology to Autotetraploidization in Early Development of Energy Willow <i>Salix viminalis</i> . Plant Physiology, 2016, 170, 1504-1523.	4.8	79
134	Plant vascular development: from early specification to differentiation. Nature Reviews Molecular Cell Biology, 2016, 17, 30-40.	37.0	195
135	Leaf-mining by Phyllonorycter blancardella reprograms the host-leaf transcriptome to modulate phytohormones associated with nutrient mobilization and plant defense. Journal of Insect Physiology, 2016, 84, 114-127.	2.0	44
136	Gain-of-Function Mutants of the Cytokinin Receptors AHK2 and AHK3 Regulate Plant Organ Size, Flowering Time and Plant Longevity. Plant Physiology, 2017, 173, 1783-1797.	4.8	94
137	Participation of cytokinin on gas exchange and antioxidant enzymes activities. Indian Journal of Plant Physiology, 2017, 22, 16-29.	0.8	16
138	<i><scp>WOX</scp>14</i> promotes bioactive gibberellin synthesis and vascular cell differentiation in Arabidopsis. Plant Journal, 2017, 90, 560-572.	5.7	62
139	Methodological Advances in Auxin and Cytokinin Biology. Methods in Molecular Biology, 2017, 1569, 1-29.	0.9	7
140	Proteomics analysis reveals the molecular mechanism underlying the transition from primary to secondary growth of poplar. Journal of Plant Physiology, 2017, 213, 1-15.	3.5	7
141	Genomic dissection of host–microbe and microbe–microbe interactions for advanced plant breeding. Current Opinion in Plant Biology, 2017, 36, 71-78.	7.1	70
142	A Role of Cytokinin Transporter in <i>Arabidopsis</i> Immunity. Molecular Plant-Microbe Interactions, 2017, 30, 325-333.	2.6	12
143	Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch. Nature Genetics, 2017, 49, 904-912.	21.4	221
144	Interspecies hormonal control of host root morphology by parasitic plants. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5283-5288.	7.1	82
145	Synergistic action of auxin and cytokinin mediates aluminumâ€induced root growth inhibition in <i>Arabidopsis</i> . EMBO Reports, 2017, 18, 1213-1230.	4.5	80
147	Cytokinin Transporters: GO and STOP in Signaling. Trends in Plant Science, 2017, 22, 455-461.	8.8	49

#	Article	IF	CITATIONS
148	Light Controls Cytokinin Signaling via Transcriptional Regulation of Constitutively Active Sensor Histidine Kinase CKI1. Plant Physiology, 2017, 174, 387-404.	4.8	27
149	Role of Phytohormones and miRNAs in Nitrogen and Sulphur Deficiency Stress Signaling in Plants. , 2017, , 317-340.		3
150	Stem development through vascular tissues: EPFL–ERECTA family signaling that bounces in and out of phloem. Journal of Experimental Botany, 2017, 68, 45-53.	4.8	36
151	Emergence of plant vascular system: roles of hormonal and non-hormonal regulatory networks. Current Opinion in Plant Biology, 2017, 35, 91-97.	7.1	14
152	Regulation of vascular cell division. Journal of Experimental Botany, 2017, 68, 27-43.	4.8	69
153	Direct Determination of Six Cytokinin Nucleotide Monophosphates in Coconut Flesh by Reversed-Phase Liquid Chromatography–Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2017, 65, 9909-9915.	5.2	8
154	Genetic Networks in Plant Vascular Development. Annual Review of Genetics, 2017, 51, 335-359.	7.6	66
155	Systemic transport of trans-zeatin and its precursor have differing roles in Arabidopsis shoots. Nature Plants, 2017, 3, 17112.	9.3	127
156	Mechanisms Underlying the Regulation of Root Formation in Malus hupehensis Stem Cuttings by Using Exogenous Hormones. Journal of Plant Growth Regulation, 2017, 36, 174-185.	5.1	16
157	Depletion of carbohydrate reserves limits nitrate uptake during early regrowth in Lolium perenne L Journal of Experimental Botany, 2017, 68, 1569-1583.	4.8	23
158	Drought effects on the tissue- and cell-specific cytokinin activity in poplar. AoB PLANTS, 2018, 10, plx067.	2.3	16
159	Boron deficiency inhibits root growth by controlling meristem activity under cytokinin regulation. Plant Science, 2018, 270, 176-189.	3.6	51
160	Transcriptome dynamics at <i>Arabidopsis</i> graft junctions reveal an intertissue recognition mechanism that activates vascular regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2447-E2456.	7.1	124
161	Nitrate modulates stem cell dynamics in <i>Arabidopsis</i> shoot meristems through cytokinins. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1382-1387.	7.1	134
162	Antibody-mediated modulation of cytokinins in tobacco: organ-specific changes in cytokinin homeostasis. Journal of Experimental Botany, 2018, 69, 441-454.	4.8	8
163	Reconstitutive approach for investigating plant vascular development. Journal of Plant Research, 2018, 131, 23-29.	2.4	8
164	Insights into Pivotal Role of Phytohormonal Cross Talk in Tailoring Underground Plant Root System Architecture. Soil Biology, 2018, , 1-41.	0.8	0
165	Same tune, different song — cytokinins as virulence factors in plant–pathogen interactions?. Current Opinion in Plant Biology, 2018, 44, 82-87.	7.1	50

#	ARTICLE	IF	Citations
166	Long-Distance Signaling: What Grafting has Revealed?. Journal of Plant Growth Regulation, 2018, 37, 694-704.	5.1	18
167	Secondary growth as a determinant of plant shape and form. Seminars in Cell and Developmental Biology, 2018, 79, 58-67.	5.0	69
168	The role of plant hormones during grafting. Journal of Plant Research, 2018, 131, 49-58.	2.4	87
169	Advances in research on tortuous traits of plants. Euphytica, 2018, 214, 1.	1.2	8
170	Plant Vascular Tissues—Connecting Tissue Comes in All Shapes. Plants, 2018, 7, 109.	3.5	16
171	Molecular role of cytokinin in bud activation and outgrowth in apple branching based on transcriptomic analysis. Plant Molecular Biology, 2018, 98, 261-274.	3.9	23
172	Modulation of Asymmetric Division Diversity through Cytokinin and SPEECHLESS Regulatory Interactions in the Arabidopsis Stomatal Lineage. Developmental Cell, 2018, 47, 53-66.e5.	7.0	88
173	Genome-wide identification and expression analysis of GRF genes regulating apple tree architecture. Tree Genetics and Genomes, 2018, 14, 1.	1.6	18
174	Induced cell fate transitions at multiple cell layers configure haustorium development in parasitic plants. Development (Cambridge), 2018, 145, .	2.5	29
175	CRISPR/Cas9-Mediated Mutagenesis of Four Putative Symbiosis Genes of the Tropical Tree Parasponia andersonii Reveals Novel Phenotypes. Frontiers in Plant Science, 2018, 9, 284.	3.6	41
176	Sensing and Signaling of Phosphate Starvation: From Local to Long Distance. Plant and Cell Physiology, 2018, 59, 1714-1722.	3.1	83
177	BIL1-mediated MP phosphorylation integrates PXY and cytokinin signalling in secondary growth. Nature Plants, 2018, 4, 605-614.	9.3	71
178	Boron Deficiency Effects on Sugar, Ionome, and Phytohormone Profiles of Vascular and Non-Vascular Leaf Tissues of Common Plantain (Plantago major L.). International Journal of Molecular Sciences, 2019, 20, 3882.	4.1	19
179	Role of Smoke Stimulatory and Inhibitory Biomolecules in Phytochrome-Regulated Seed Germination of <i>Lactuca sativa</i> . Plant Physiology, 2019, 181, 458-470.	4.8	25
180	Comparing Primary and Secondary Growth of Co-Occurring Deciduous and Evergreen Conifers in an Alpine Habitat. Forests, 2019, 10, 574.	2.1	9
181	Phytohormone involved in salt tolerance regulation of <i>Elaeagnus angustifolia</i> L. seedlings. Journal of Forest Research, 2019, 24, 235-242.	1.4	10
182	Genome-Wide Identification of Long Non-coding RNA in Trifoliate Orange (Poncirus trifoliata (L.) Raf) Leaves in Response to Boron Deficiency. International Journal of Molecular Sciences, 2019, 20, 5419.	4.1	15
183	Molecular Responses during Plant Grafting and Its Regulation by Auxins, Cytokinins, and Gibberellins. Biomolecules, 2019, 9, 397.	4.0	37

#	Article	IF	CITATIONS
184	ABC transporter OsABCG18 controls the shootward transport of cytokinins and grain yield in rice. Journal of Experimental Botany, 2019, 70, 6277-6291.	4.8	66
185	The Synthesis of 3H-Labelled 8-Azido-N6-Benzyladenine and Related Compounds for Photoaffinity Labelling of Cytokinin-Binding Proteins. Molecules, 2019, 24, 349.	3.8	3
186	Loss of Wood Formation Genes in Monocot Genomes. Genome Biology and Evolution, 2019, 11, 1986-1996.	2.5	20
187	Comparison of alfalfa plants overexpressing glutamine synthetase with those overexpressing sucrose phosphate synthase demonstrates a signaling mechanism integrating carbon and nitrogen metabolism between the leaves and nodules. Plant Direct, 2019, 3, e00115.	1.9	15
188	The Dynamics of Cambial Stem Cell Activity. Annual Review of Plant Biology, 2019, 70, 293-319.	18.7	122
189	What makes turnips: anatomy, physiology and transcriptome during early stages of its hypocotyl-tuber development. Horticulture Research, 2019, 6, 38.	6.3	24
190	The role of cytokinin in selenium stress response in Arabidopsis. Plant Science, 2019, 281, 122-132.	3.6	23
191	Cytokinins, the Cinderella of plant growth regulators. Phytochemistry Reviews, 2019, 18, 1387-1408.	6.5	24
192	The Medicago truncatula nodule identity gene MtNOOT1 is required for coordinated apical-basal development of the root. BMC Plant Biology, 2019, 19, 571.	3.6	5
193	Tissueâ€specific hormone profiles from woody poplar roots under bending stress. Physiologia Plantarum, 2019, 165, 101-113.	5.2	14
194	Digging in wood: New insights in the regulation of wood formation in tree species. Advances in Botanical Research, 2019, 89, 201-233.	1.1	14
195	Cytokinin – A Developing Story. Trends in Plant Science, 2019, 24, 177-185.	8.8	150
196	High levels of auxin signalling define the stem-cell organizer of the vascular cambium. Nature, 2019, 565, 485-489.	27.8	213
197	<i>Big Grain3,</i> encoding a purine permease, regulates grain size via modulating cytokinin transport in rice. Journal of Integrative Plant Biology, 2019, 61, 581-597.	8.5	73
198	Regulation of vascular cambium activity. Plant Science, 2020, 291, 110322.	3.6	24
199	Soil Temperature Prior to Veraison Alters Grapevine Carbon Partitioning, Xylem Sap Hormones, and Fruit Set. American Journal of Enology and Viticulture, 2020, 71, 52-61.	1.7	8
200	Multifeature analyses of vascular cambial cells reveal longevity mechanisms in old <i>Ginkgo biloba</i> trees. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2201-2210.	7.1	81
201	A fluorescence-based high-throughput screening method for cytokinin translocation mutants. Plant Methods, 2020, 16, 134.	4.3	1

	CITATION	CITATION REPORT		
#	Article	IF	Citations	
202	Genetic Control of Storage Root Development. Russian Journal of Plant Physiology, 2020, 67, 589-605.	1.1	2	
203	Cytokinin Signaling Downstream of the His-Asp Phosphorelay Network: Cytokinin-Regulated Genes and Their Functions. Frontiers in Plant Science, 2020, 11, 604489.	3.6	18	
204	The Toolbox for Fiber Flax Breeding: A Pipeline From Gene Expression to Fiber Quality. Frontiers in Genetics, 2020, 11, 589881.	2.3	12	
205	Difference Between Day and Night Temperatures Affects Stem Elongation in Tomato (Solanum) Tj ETQq1 1 0 2020, 11, 577235.	.784314 rgB1 3.6	[Overlock] 26	
206	Phytohormone-Mediated Homeostasis of Root System Architecture. , 2020, , .		4	
207	Connections in the cambium, receptors in the ring. Current Opinion in Plant Biology, 2020, 57, 96-103.	7.1	8	
208	Genome-wide analysis of IncRNA and mRNA expression and endogenous hormone regulation during tension wood formation in Catalpa bungei. BMC Genomics, 2020, 21, 609.	2.8	9	
209	Earlyâ€stage sugar beet taproot development is characterized by three distinct physiological phases. Plant Direct, 2020, 4, e00221.	1.9	13	
210	Reaction Wood Anatomical Traits and Hormonal Profiles in Poplar Bent Stem and Root. Frontiers in Plant Science, 2020, 11, 590985.	3.6	11	
211	Insights Into Plant Surgery: An Overview of the Multiple Grafting Techniques for Arabidopsis thaliana. Frontiers in Plant Science, 2020, 11, 613442.	3.6	31	
212	Endoplasmic Reticulum-Localized PURINE PERMEASE1 Regulates Plant Height and Grain Weight by Modulating Cytokinin Distribution in Rice. Frontiers in Plant Science, 2020, 11, 618560.	3.6	20	
213	Effect of 6-BAP application on shoot production of Melaleuca alternifolia seedlings. IOP Conference Series: Earth and Environmental Science, 2020, 528, 012063.	0.3	2	
214	Systemic Long-Distance Signaling and Communication Between Rootstock and Scion in Grafted Vegetables. Frontiers in Plant Science, 2020, 11, 460.	3.6	54	
215	Plant Stem Cells. Molecular Biology, 2020, 54, 163-177.	1.3	3	
216	Differences in xylem development between Dutch and Japanese tomato (Solanum lycopersicum) correlate with cytokinin levels in hypocotyls. Annals of Botany, 2020, 126, 315-322.	2.9	8	
217	Identification of Conserved Gene-Regulatory Networks that Integrate Environmental Sensing and Growth in the Root Cambium. Current Biology, 2020, 30, 2887-2900.e7.	3.9	22	
218	Plant vascular development: mechanisms and environmental regulation. Cellular and Molecular Life Sciences, 2020, 77, 3711-3728.	5.4	41	
219	Changes in DNA Methylation in Response to 6-Benzylaminopurine Affect Allele-Specific Gene Expression in Populus Tomentosa. International Journal of Molecular Sciences, 2020, 21, 2117.	4.1	3	

#	Article	IF	CITATIONS
220	Evolution and roles of cytokinin genes in angiosperms 1: Do ancient IPTs play housekeeping while non-ancient IPTs play regulatory roles?. Horticulture Research, 2020, 7, 28.	6.3	27
221	A metabolite roadmap of the woodâ€forming tissue in <i>Populus tremula</i> . New Phytologist, 2020, 228, 1559-1572.	7.3	32
222	Cut and paste: temperature-enhanced cotyledon micrografting for Arabidopsis thaliana seedlings. Plant Methods, 2020, 16, 12.	4.3	11
223	Synchronization of developmental, molecular and metabolic aspects of source–sink interactions. Nature Plants, 2020, 6, 55-66.	9.3	107
224	Taxonomy and anatomy. , 2020, , 1-60.		4
225	Steady-State Levels of Cytokinins and Their Derivatives May Serve as a Unique Classifier of Arabidopsis Ecotypes. Plants, 2020, 9, 116.	3.5	4
226	Mechanism of exogenous cytokinins inducing bulbil formation in Lilium lancifolium in vitro. Plant Cell Reports, 2020, 39, 861-872.	5.6	18
228	There and back again: An evolutionary perspective on long-distance coordination of plant growth and development. Seminars in Cell and Developmental Biology, 2021, 109, 55-67.	5.0	32
229	Cytokinins as central regulators during plant growth and stress response. Plant Cell Reports, 2021, 40, 271-282.	5.6	98
230	Cytokinin biosynthesis and transport for systemic nitrogen signaling. Plant Journal, 2021, 105, 421-430.	5.7	80
231	Phenotypic, Transcriptomic, and Metabolomic Signatures of Root-Specifically Overexpressed OsCKX2 in Rice. Frontiers in Plant Science, 2020, 11, 575304.	3.6	3
232	The influence of gall position over xylem features in leaflets of Inga ingoides (Rich.) Willd.Â(Fabaceae:) Tj ETQq1	1 0.784314 1.9	4 ggBT /Ove
233	The Hormonal Signals that Regulate Plant Vascular Differentiation. , 2021, , 55-96.		2
234	Cytokinin-Mediated Signalling During Environmental Stress in Plants. , 2021, , 133-151.		1
235	Regulation of Cambium Activity. , 2021, , 199-214.		1
236	Hormonal Control of Wood Evolution. , 2021, , 273-291.		0
237	<i>S</i> -nitrosoglutathione Reductase-Mediated Nitric Oxide Affects Axillary Buds Outgrowth of <i>Solanum lycopersicum</i> L. by Regulating Auxin and Cytokinin Signaling. Plant and Cell Physiology, 2021, 62, 458-471.	3.1	11
238	Cytokininâ€promoted secondary growth and nutrient storage in the perennial stem zone of <i>Arabis alpina</i> . Plant Journal, 2021, 105, 1459-1476.	5.7	5

#	Article	IF	CITATIONS
239	The Hulks and the Deadpools of the Cytokinin Universe: A Dual Strategy for Cytokinin Production, Translocation, and Signal Transduction. Biomolecules, 2021, 11, 209.	4.0	35
240	Stage-specific events in tomato graft formation and the regulatory effects of auxin and cytokinin. Plant Science, 2021, 304, 110803.	3.6	26
242	Differential Subcellular Distribution of Cytokinins: How Does Membrane Transport Fit into the Big Picture?. International Journal of Molecular Sciences, 2021, 22, 3428.	4.1	16
243	Cytokinin signaling localized in phloem noncellâ€autonomously regulates cambial activity during secondary growth of <i>Populus</i> stems. New Phytologist, 2021, 230, 1476-1488.	7.3	19
244	Phloem unloading via the apoplastic pathway is essential for shoot distribution of root-synthesized cytokinins. Plant Physiology, 2021, 186, 2111-2123.	4.8	16
245	A cellophane-supported <i>Arabidopsis</i> culture for seamless transfer between different media is useful for studying various nitrogen responses. Soil Science and Plant Nutrition, 2021, 67, 277-282.	1.9	4
246	Cytokinin and auxin modulate cucumber parthenocarpy fruit development. Scientia Horticulturae, 2021, 282, 110026.	3.6	22
247	Does scion–rootstock compatibility modulate photoassimilate and hormone trafficking through the graft junction in melon–pumpkin graft combinations?. Plant Science, 2021, 306, 110852.	3.6	9
248	Evaluation of morphological traits, hormonal metabolism, and transcriptional abundance in bitter gourd (Momordica charantia L.) plants in response to ethephon inducement. Scientia Horticulturae, 2021, 282, 110033.	3.6	3
249	Genome-wide identification and analysis of cytokinin dehydrogenase/oxidase (CKX) family genes in Brassica oleracea L. reveals their involvement in response to Plasmodiophora brassicae infections. Horticultural Plant Journal, 2022, 8, 68-80.	5.0	15
250	Sugars enhance parthenocarpic fruit formation in cucumber by promoting auxin and cytokinin signaling. Scientia Horticulturae, 2021, 283, 110061.	3.6	16
251	Overproduction of <scp>ABA</scp> in rootstocks alleviates salinity stress in tomato shoots. Plant, Cell and Environment, 2021, 44, 2966-2986.	5.7	30
252	Tuber and Tuberous Root Development. Annual Review of Plant Biology, 2021, 72, 551-580.	18.7	77
253	The transcriptional dynamics during <i>de novo</i> shoot organogenesis of Ma bamboo (<i>Dendrocalamus latiflorus</i> Munro): implication of the contributions of the abiotic stress response in this process. Plant Journal, 2021, 107, 1513-1532.	5.7	10
254	Gibberellin Signaling Promotes the Secondary Growth of Storage Roots in Panax ginseng. International Journal of Molecular Sciences, 2021, 22, 8694.	4.1	21
255	Vascular Cambium: The Source of Wood Formation. Frontiers in Plant Science, 2021, 12, 700928.	3.6	27
256	Cytokinins initiate secondary growth in the Arabidopsis root through a set of LBD genes. Current Biology, 2021, 31, 3365-3373.e7.	3.9	46
257	Transcriptome Analysis of Cambium Tissue of Paulownia Collected during Winter and Spring. Diversity, 2021, 13, 423.	1.7	1

		CITATION REPORT		
#	Article		IF	CITATIONS
260	Grafting with Arabidopsis thaliana. Methods in Molecular Biology, 2017, 1497, 9-18.		0.9	28
261	Stimulation of root growth and enhanced nitrogenous metabolite content in habanero (Capsicum chinense Jacq.) treated with a d-amino acid mixture. Theoretical and Experi Physiology, 2020, 32, 31-47.	pepper mental Plant	2.4	8
263	Spatiotemporal changes in the role of cytokinin during root development. New Phytolo 324-338.	ogist, 2013, 199,	7.3	50
264	Dynamics of Cell-Fate Determination and Patterning in the Vascular Bundles of Arabido PLoS ONE, 2013, 8, e63108.	opsis thaliana.	2.5	16
265	Modeling hormonal control of cambium proliferation. PLoS ONE, 2017, 12, e0171927		2.5	13
266	Improving the Performance, Productivity and Resistance of Vigna radiate to Fusarium of Cytokinins and β-sitosterol. Research Journal of Microbiology, 2016, 11, 186-193.	oxysporum by	0.2	2
267	Laying it on thick: a study in secondary growth. Journal of Experimental Botany, 2022,	73, 665-679.	4.8	15
268	Une synthèse sur le fonctionnement et la régulation des processus cellulaires de la bois. Revue Forestiere Francaise, 2014, , Fr.], ISSN 0035.	formation du	0.2	0
270	Soil Moisture Stress and Nitrogen Supply Affect the Growth Characteristics and Yield c Cultivars. International Journal of Plant & Soil Science, 2017, 15, 1-10.	of Upland Rice	0.2	0
275	Effects of Cytokinin and Auxin on Plant Development and Vascular Tissues in Lens culi Commagene Journal of Biology, 0, , .	naris.	0.2	2
281	Non-cell autonomous and spatiotemporal signalling from a tissue organizer orchestrat vascular development. Nature Plants, 2021, 7, 1485-1494.	es root	9.3	42
282	Dynamic cytokinin signalling landscapes during lateral root formation in Arabidopsis. C Plant Biology, 2021, 2, .	Juantitative	2.0	3
283	Effects of root restriction on phytohormone levels in different growth stages and grap Scientific Reports, 2022, 12, 1323.	evine organs.	3.3	2
284	Root-specific Reduction of Cytokinin Perception Enhances Shoot Growth in <i>Arabido thaliana</i> . Plant and Cell Physiology, 2022, 63, 484-493.	opsis	3.1	4
285	The <i>LONELY GUY</i> gene family: from mosses to wheat, the key to the formation cytokinins in plants. Plant Biotechnology Journal, 2022, 20, 625-645.	of active	8.3	16
286	Plant hormones coordinate monolignol biosynthesis with seasonal changes in Populus Environmental and Experimental Botany, 2022, 195, 104784.	tomentosa.	4.2	3
287	Transcriptome Analysis Reveals Genetic Factors Related to Callus Induction in Barley. A 12, 749.	gronomy, 2022,	3.0	4
288	Mix-and-match: an improved, fast and accessible protocol for hypocotyl micrografting seedlings with systemic ACC responses as a case study. Plant Methods, 2022, 18, 24.	of Arabidopsis	4.3	2

#	Article	IF	CITATIONS
289	Identification of novel regulators required for early development of vein pattern in the cotyledons by singleâ€cell <scp>RNA</scp> â€sequencing. Plant Journal, 2022, 110, 7-22.	5.7	38
290	Control of cambium initiation and activity in Arabidopsis by the transcriptional regulator AHL15. Current Biology, 2022, 32, 1764-1775.e3.	3.9	21
291	<i>OsCOMT</i> , encoding a caffeic acid Oâ€methyltransferase in melatonin biosynthesis, increases rice grain yield through dual regulation of leaf senescence and vascular development. Plant Biotechnology Journal, 2022, 20, 1122-1139.	8.3	36
292	Pericycle cell division competence underlies various developmental programs. Plant Biotechnology, 2022, 39, 29-36.	1.0	2
293	Cytokinin Perception in Ancient Plants beyond Angiospermae. International Journal of Molecular Sciences, 2021, 22, 13077.	4.1	10
294	AUXIN RESPONSE FACTOR7 integrates gibberellin and auxin signaling via interactions between DELLA and AUX/IAA proteins to regulate cambial activity in poplar. Plant Cell, 2022, 34, 2688-2707.	6.6	46
320	Hormonal Signaling in the Progamic Phase of Fertilization in Plants. Horticulturae, 2022, 8, 365.	2.8	4
322	Nitrate enhances the secondary growth of storage roots in Panax ginseng. Journal of Ginseng Research, 2023, 47, 469-478.	5.7	6
323	The end of flowering: interactions between cytokinin and regulatory genes. Trends in Plant Science, 2022, 27, 840-842.	8.8	2
324	Identification of BcARR Genes and CTK Effects on Stalk Development of Flowering Chinese Cabbage. International Journal of Molecular Sciences, 2022, 23, 7412.	4.1	5
325	Delayed Leaf Senescence by Upregulation of Cytokinin Biosynthesis Specifically in Tomato Roots. Frontiers in Plant Science, 0, 13, .	3.6	6
326	A Constitutively Active Cytokinin Receptor Variant Increases Cambial Activity and Stem Growth in Poplar. International Journal of Molecular Sciences, 2022, 23, 8321.	4.1	2
327	Comparative transcriptome and metabolome analyses identified the mode of sucrose degradation as a metabolic marker for early vegetative propagation in bulbs of <i>Lycoris</i> . Plant Journal, 2022, 112, 115-134.	5.7	13
328	Optimum Nitrogen Application Promotes Sweetpotato Storage Root Initiation. Horticulturae, 2022, 8, 710.	2.8	1
329	Germination, physio-anatomical behavior, and productivity of wheat plants irrigated with magnetically treated seawater. Frontiers in Plant Science, 0, 13, .	3.6	1
330	How the Three Organ-Produced Signals: Auxin, Cytokinin and Gibberellin, Induce and Regulate Wood Formation and Adaptation. Signaling and Communication in Plants, 2022, , 1-23.	0.7	1
331	The role of APC/C in cell cycle dynamics, growth and development in cereal crops. Frontiers in Plant Science, 0, 13, .	3.6	1
332	Arabidopsis ABCG14 forms a homodimeric transporter for multiple cytokinins and mediates long-distance transport of isopentenyladenine-type cytokinins. Plant Communications, 2023, 4, 100468.	7.7	6

#	Article	IF	CITATIONS
333	IPT9, a cis-zeatin cytokinin biosynthesis gene, promotes root growth. Frontiers in Plant Science, 0, 13, .	3.6	5
334	Molecular Mechanisms Underlying the Establishment and Maintenance of Vascular Stem Cells in <i>Arabidopsis thaliana</i> . Plant and Cell Physiology, 2023, 64, 274-283.	3.1	6
335	Unraveling genetic variation among white spruce families generated through different breeding strategies: Heritability, growth, physiology, hormones and gene expression. Frontiers in Plant Science, 0, 14, .	3.6	1
336	Lilium morphology, physiology, anatomy and postharvest flower quality in response to plant growth regulators. South African Journal of Botany, 2023, 156, 43-53.	2.5	1
337	A mathematical model integrates diverging PXY and MP interactions in cambium development. In Silico Plants, 2023, 5, .	1.9	0
338	Morphological and physiological responses of proliferating shoots of bamboo to cytokinin. Vegetos, 2024, 37, 6-15.	1.5	2
339	Key Stages of Flax Bast Fiber Development Through the Prism of Transcriptomics. Compendium of Plant Genomes, 2023, , 149-198.	0.5	1
340	Effects of Cytokinin, Ethylene and Propiconazole Combinational Treatment on Growth and Ginsenoside Content of 4-year-old Panax ginseng C. A. Meyer. Korean Journal of Medicinal Crop Science, 2023, 31, 18-26.	0.4	0
341	Plant Hormone Transport and Localization: Signaling Molecules on the Move. Annual Review of Plant Biology, 2023, 74, 453-479.	18.7	19
342	<scp>AZG1</scp> is a cytokinin transporter that interacts with auxin transporter <scp>PIN1</scp> and regulates the root stress response. New Phytologist, 2023, 238, 1924-1941.	7.3	7
343	Influence of Plant Growth-Promoting Rhizobacteria on the Formation of Apoplastic Barriers and Uptake of Water and Potassium by Wheat Plants. Microorganisms, 2023, 11, 1227.	3.6	5
344	Sweetpotato storage root formation as affected by soil organic amendment applications. Acta Physiologiae Plantarum, 2023, 45, .	2.1	1
345	Cytokinin activity – transport and homeostasis at the whole plant, cell, and subcellular levels. New Phytologist, 2023, 239, 1603-1608.	7.3	3
346	From procambium patterning to cambium activation and maintenance in the Arabidopsis root. Current Opinion in Plant Biology, 2023, 75, 102404.	7.1	2
347	Signaling crosstalk between cytokinins and abscisic acid in plant defense, growth, and development. , 2023, , 149-170.		0
348	Organ-specific responses during acclimation of mycorrhizal and non-mycorrhizal tomato plants to a mild water stress reveal differential local and systemic hormonal and nutritional adjustments. Planta, 2023, 258, .	3.2	0
349	Effect of foliar application of bio-stimulants on growth, yield and nutritional quality of broccoli. Brazilian Journal of Biology, 0, 83, .	0.9	0
350	Influence of cultivation practices on the metabolism of cytokinin and its correlation in rice production. Food and Energy Security, 2023, 12, .	4.3	4

#	Article	IF	CITATIONS
353	Changes in Phytohormone Contents During Growth and Development of Female and Bisexual Flowers of Bitter Gourd (Momordica charantia L.). Journal of Plant Growth Regulation, 0, , .	5.1	0
354	A cell wall–localized cytokinin/purine riboside nucleosidase is involved in apoplastic cytokinin metabolism in <i>Oryza sativa</i> . Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	1
355	Genes expression profiles in vascular cambium of Eucalyptus urophylla × Eucalyptus grandis at different ages. BMC Plant Biology, 2023, 23, .	3.6	1
356	How Environment-Plant Interactions Regulate Vascular Architecture and Ecological Adaptation. Environmental Science and Engineering, 2023, , 53-68.	0.2	0
357	Cytokinin signaling promotes root secondary growth and bud formation in Panax ginseng. Journal of Ginseng Research, 2024, 48, 220-228.	5.7	0
358	Spatio-temporal dynamics of phytohormones in the tomato graft healing process. Horticultural Plant Journal, 2023, , .	5.0	0
359	How Moving Hormonal Signals Regulate Plant Vascular Differentiation, Adaptation, and Evolution: Hypotheses and Evidence. Progress in Botany Fortschritte Der Botanik, 2023, , .	0.3	0
360	Woody plant cell walls: Fundamentals and utilization. Molecular Plant, 2024, 17, 112-140.	8.3	1
361	Cytokinin Response of the Streptophyte Alga Coleochaete scutata provides a clue to the evolution of cytokinin signaling. , 0, 1, .		0
362	A cytokinin response factor PtCRF1 is involved in the regulation of wood formation in poplar. Tree Physiology, 2024, 44, .	3.1	0
363	Cytokinin: From autoclaved DNA to two-component signaling. Plant Cell, 2024, 36, 1429-1450.	6.6	0
364	TARGET OF MONOPTEROS: key transcription factors orchestrating plant development and environmental response. Journal of Experimental Botany, 2024, 75, 2214-2234.	4.8	0
365	The homeodomain of the Raphanus sativus WOX4 binds to the promoter of the LOG3 cytokinin biosynthesis gene. Ecological Genetics, 0, , .	0.5	0
366	The effect of nitrogen source and levels on hybrid aspen tree physiology and wood formation. Physiologia Plantarum, 2024, 176, .	5.2	0
367	Plant hormone profiling of scion and rootstock incision sites and intra- and inter-family graft junctions in <i>Nicotiana benthamiana</i> . Plant Signaling and Behavior, 2024, 19, .	2.4	0