Unraveling the molecular basis of subunit specificity in spectrometry

Proceedings of the National Academy of Sciences of the Unite 105, 12873-12878

DOI: 10.1073/pnas.0802177105

Citation Report

#	Article	IF	CITATIONS
1	Structural Determinants of Polymerization Reactivity of the P pilus Adaptor Subunit PapF. Structure, 2008, 16, 1724-1731.	1.6	22
3	Structural biology of the chaperone–usher pathway of pilus biogenesis. Nature Reviews Microbiology, 2009, 7, 765-774.	13.6	298
4	Use of a combined cryo-EM and X-ray crystallography approach to reveal molecular details of bacterial pilus assembly by the chaperone/usher pathway. Current Opinion in Microbiology, 2009, 12, 326-332.	2.3	10
5	Biological â€~glue' and â€~Velcro': molecular tools for adhesion and biofilm formation in the hairy and gluey bug <i>Pseudomonas aeruginosa</i> . Environmental Microbiology Reports, 2010, 2, 343-358.	1.0	23
6	The differential affinity of the usher for chaperone–subunit complexes is required for assembly of complete pili. Molecular Microbiology, 2010, 76, 159-172.	1.2	25
7	A sequestration feedback determines dynamics and temperature entrainment of the KaiABC circadian clock. Molecular Systems Biology, 2010, 6, 389.	3.2	56
8	Histidine Kinase-Mediated Production and Autoassembly of <i>Porphyromonas gingivalis</i> Fimbriae. Journal of Bacteriology, 2010, 192, 1975-1987.	1.0	34
9	The Outer Membrane Usher Guarantees the Formation of Functional Pili by Selectively Catalyzing Donor-Strand Exchange between Subunits That Are Adjacent in the Mature Pilus. Journal of Molecular Biology, 2010, 396, 1-8.	2.0	22
10	Two-step and one-step secretion mechanisms in Gram-negative bacteria: contrasting the typeÂlV secretion system and the chaperone-usher pathway of pilus biogenesis. Biochemical Journal, 2010, 425, 475-488.	1.7	55
11	Retinol and Retinol-Binding Protein Stabilize Transthyretin <i>via</i> Formation of Retinol Transport Complex. ACS Chemical Biology, 2010, 5, 1137-1146.	1.6	43
12	Pili and Flagella. Progress in Molecular Biology and Translational Science, 2011, 103, 21-72.	0.9	25
13	Site-specific methionine oxidation in calmodulin affects structural integrity and interaction with Ca2+/calmodulin-dependent protein kinase II. Journal of Structural Biology, 2011, 174, 187-195.	1.3	33
14	The PprA–PprB twoâ€component system activates CupE, the first nonâ€archetypal <i>Pseudomonas aeruginosa</i> chaperone–usher pathway system assembling fimbriae. Environmental Microbiology, 2011, 13, 666-683.	1.8	73
15	Function of the usher Nâ€ŧerminus in catalysing pilus assembly. Molecular Microbiology, 2011, 79, 954-967.	1.2	28
16	Crystal structure of the FimD usher bound to its cognate FimC–FimH substrate. Nature, 2011, 474, 49-53.	13.7	170
17	Quantitative Analysis of the Interaction Strength and Dynamics of Human IgG4 Half Molecules by Native Mass Spectrometry. Structure, 2011, 19, 1274-1282.	1.6	82
18	Mass spectrometry: come of age for structural and dynamical biology. Current Opinion in Structural Biology, 2011, 21, 641-649.	2.6	240
19	Second Order Rate Constants of Donor-Strand Exchange Reveal Individual Amino Acid Residues Important in Determining the Subunit Specificity of Pilus Biogenesis. Journal of the American Society for Mass Spectrometry, 2011, 22, 1214-1223.	1.2	9

CITATION REPORT

#	Article	IF	CITATIONS
21	(Re)Solution of a Protein Fold Without Solution. Angewandte Chemie - International Edition, 2011, 50, 3120-3122.	7.2	2
22	Chaperone–usher pathways: diversity and pilus assembly mechanism. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1112-1122.	1.8	118
23	The Structure of the PapD-PapGII Pilin Complex Reveals an Open and Flexible P5 Pocket. Journal of Bacteriology, 2012, 194, 6390-6397.	1.0	18
24	The Role of Chaperone-subunit Usher Domain Interactions in the Mechanism of Bacterial Pilus Biogenesis Revealed by ESI-MS. Molecular and Cellular Proteomics, 2012, 11, M111.015289-1-M111.015289-11.	2.5	14
25	Crystal structure of enterotoxigenic <i><scp>E</scp>scherichia coli</i> colonization factor <scp>CS</scp> 6 reveals a novel type of functional assembly. Molecular Microbiology, 2012, 86, 1100-1115.	1.2	28
26	Pilus biogenesis at the outer membrane of Gram-negative bacterial pathogens. Current Opinion in Structural Biology, 2012, 22, 500-506.	2.6	53
27	Inside the complex regulation of <i>Pseudomonas aeruginosa</i> chaperone usher systems. Environmental Microbiology, 2012, 14, 1805-1816.	1.8	14
28	Dissection of Pilus Tip Assembly by the FimD Usher Monomer. Journal of Molecular Biology, 2013, 425, 958-967.	2.0	20
29	Adhesive pili of the chaperone-usher family. , 2013, , 363-386.		1
30	Time Resolved Native Ion-Mobility Mass Spectrometry to Monitor Dynamics of IgG4 Fab Arm Exchange and "Bispecific―Monoclonal Antibody Formation. Analytical Chemistry, 2013, 85, 9785-9792.	3.2	62
31	Enterotoxigenic Escherichia coli CS1 Pilus: Not One Structure but Several. Journal of Bacteriology, 2013, 195, 1357-1359.	1.0	0
32	Growth Kinetics of Bacterial Pili from Pairwise Pilin Association Rates. PLoS ONE, 2013, 8, e63065.	1.1	3
33	Ordered and Ushered; the Assembly and Translocation of the Adhesive Type I and P Pili. Biology, 2013, 2, 841-860.	1.3	7
34	Analytical Approaches for Size and Mass Analysis of Large Protein Assemblies. Annual Review of Analytical Chemistry, 2014, 7, 43-64.	2.8	62
35	Biogenesis and adhesion of type 1 and P pili. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2783-2793.	1.1	55
36	Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria. Microbiology Spectrum, 2015, 3, .	1.2	39
37	Reprint of "Biogenesis and adhesion of type 1 and P pili― Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 554-564.	1.1	9
38	The pilus usher controls protein interactions via domain masking and is functional as an oligomer. Nature Structural and Molecular Biology, 2015, 22, 540-546.	3.6	27

CITATION REPORT

#	Article	IF	CITATIONS
39	Molecular mechanism of bacterial type 1 and P pili assembly. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20130153.	1.6	23
40	Structure of a Chaperone-Usher Pilus Reveals the Molecular Basis of Rod Uncoiling. Cell, 2016, 164, 269-278.	13.5	61
41	Structural and Molecular Biology of a Protein-Polymerizing Nanomachine for Pilus Biogenesis. Journal of Molecular Biology, 2017, 429, 2654-2666.	2.0	16
42	Structural basis for usher activation and intramolecular subunit transfer in P pilus biogenesis in Escherichia coli. Nature Microbiology, 2018, 3, 1362-1368.	5.9	17
43	Handover mechanism of the growing pilus by the bacterial outer-membrane usher FimD. Nature, 2018, 562, 444-447.	13.7	21
44	Small Molecule Anti-biofilm Agents Developed on the Basis of Mechanistic Understanding of Biofilm Formation. Frontiers in Chemistry, 2019, 7, 742.	1.8	70
45	The Biosynthesis and Structures of Bacterial Pili. Sub-Cellular Biochemistry, 2019, 92, 369-413.	1.0	40
46	Chaperone-tip adhesin complex is vital for synergistic activation of CFA/I fimbriae biogenesis. PLoS Pathogens, 2020, 16, e1008848.	2.1	2
48	Processive dynamics of the usher assembly platform during uropathogenic Escherichia coli P pilus biogenesis. Nature Communications, 2021, 12, 5207.	5.8	11
49	Crystallography and Electron Microscopy of Chaperone/Usher Pilus Systems. Advances in Experimental Medicine and Biology, 2011, 715, 159-174.	0.8	9
50	Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria. , 0, , 277-329.		1
51	Lifting the lid on pilus assembly. ELife, 2014, 3, .	2.8	4
52	Mass Spectrometry of Native Complexes. , 2013, , 11-16.		0
53	Methods Mass Spectrometry of Native Complexes. , 2013, , 780-785.		0