Acceleration of Flowering during Shade Avoidance in Arbetween<i>FLOWERING LOCUS C</i>-Mediated Representation flowering Â

Plant Physiology 148, 1681-1694 DOI: 10.1104/pp.108.125468

Citation Report

#	Article	IF	CITATIONS
1	The Mediator Complex Subunit PFT1 Is a Key Regulator of Jasmonate-Dependent Defense in <i>Arabidopsis</i> Â Â. Plant Cell, 2009, 21, 2237-2252.	3.1	292
2	Interaction between the light quality and flowering time pathways in Arabidopsis. Plant Journal, 2009, 60, 257-267.	2.8	37
3	The flowering time regulator CONSTANS is recruited to the <i>FLOWERING LOCUS T</i> promoter via a unique <i>cis</i> â€element. New Phytologist, 2010, 187, 57-66.	3.5	370
4	Comparative Genomics of Flowering Time Pathways Using Brachypodium distachyon as a Model for the Temperate Grasses. PLoS ONE, 2010, 5, e10065.	1.1	247
5	Network Analysis Identifies ELF3 as a QTL for the Shade Avoidance Response in Arabidopsis. PLoS Genetics, 2010, 6, e1001100.	1.5	120
6	<i>Arabidopsis thaliana</i> life without phytochromes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4776-4781.	3.3	162
7	Involvement of brassinosteroid signals in the floral-induction network of Arabidopsis. Journal of Experimental Botany, 2010, 61, 4221-4230.	2.4	110
8	The structure of two CONSTANS-LIKE1 genes in potato and its wild relatives. Gene, 2011, 471, 37-44.	1.0	6
9	Diverse roles of the Mediator complex in plants. Seminars in Cell and Developmental Biology, 2011, 22, 741-748.	2.3	86
10	Jasmonate-induced defenses: a tale of intelligence, collaborators and rascals. Trends in Plant Science, 2011, 16, 249-257.	4.3	243
11	Flowering and expression of flowering-related genes under long-day conditions with light-emitting diodes. Planta, 2011, 234, 321-330.	1.6	26
12	The plant Mediator and its role in noncoding RNA production. Frontiers in Biology, 2011, 6, 125-132.	0.7	15
13	Transcriptomic, proteomic and metabolomic analysis of UV-B signaling in maize. BMC Genomics, 2011, 12, 321.	1.2	65
14	Characterization of Shade Avoidance Responses in <i>Lotus japonicus</i> . Bioscience, Biotechnology and Biochemistry, 2011, 75, 2148-2154.	0.6	9
15	Production of early flowering transgenic barley expressing the early flowering allele of <i>Cryptochrome2</i> gene. GM Crops, 2011, 2, 50-57.	1.8	3
16	Control of final organ size by Mediator complex subunit 25 in <i>Arabidopsis thaliana</i> . Development (Cambridge), 2011, 138, 4545-4554.	1.2	115
17	The Mediator Complex in Plants: Structure, Phylogeny, and Expression Profiling of Representative Genes in a Dicot (Arabidopsis) and a Monocot (Rice) during Reproduction and Abiotic Stress Â. Plant Physiology, 2011, 157, 1609-1627.	2.3	158
18	A High-Throughput Screening System for Arabidopsis Transcription Factors and Its Application to Med25-Dependent Transcriptional Regulation. Molecular Plant, 2011, 4, 546-555.	3.9	135

#	Article	IF	CITATIONS
19	The <i>Arabidopsis thaliana</i> Med25 mediator subunit integrates environmental cues to control plant development. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8245-8250.	3.3	139
20	The interplay between light and jasmonate signalling during defence and development. Journal of Experimental Botany, 2011, 62, 4087-4100.	2.4	151
21	Proteasome-Mediated Turnover of Arabidopsis MED25 Is Coupled to the Activation of <i>FLOWERING LOCUS T</i> Transcription Â. Plant Physiology, 2012, 160, 1662-1673.	2.3	46
22	MEDIATOR25 Acts as an Integrative Hub for the Regulation of Jasmonate-Responsive Gene Expression in Arabidopsis Â. Plant Physiology, 2012, 160, 541-555.	2.3	207
23	CRYPTIC PRECOCIOUS/MED12 is a Novel Flowering Regulator with Multiple Target Steps in Arabidopsis. Plant and Cell Physiology, 2012, 53, 287-303.	1.5	58
24	Arabidopsis <i>COP1</i> and <i>SPA</i> Genes Are Essential for Plant Elongation But Not for Acceleration of Flowering Time in Response to a Low Red Light to Far-Red Light Ratio. Plant Physiology, 2012, 160, 2015-2027.	2.3	49
25	The Mediator Complex Subunit PFT1 Interferes with COP1 and HY5 in the Regulation of Arabidopsis Light Signaling Â. Plant Physiology, 2012, 160, 289-307.	2.3	37
26	Far-red Light Supplemented with Weak Red Light Promotes Flowering of Gypsophila paniculata. Japanese Society for Horticultural Science, 2012, 81, 198-203.	0.8	16
27	Shade Avoidance. The Arabidopsis Book, 2012, 10, e0157.	0.5	321
28	The Phytochrome-Interacting VASCULAR PLANT ONE–ZINC FINGER1 and VOZ2 Redundantly Regulate Flowering in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 3248-3263.	3.1	84
29	PFT1, the MED25 subunit of the plant Mediator complex, promotes flowering through CONSTANS dependent and independent mechanisms in Arabidopsis. Plant Journal, 2012, 69, 601-612.	2.8	113
30	PHYTOCHROME-DEPENDENT LATE-FLOWERING accelerates flowering through physical interactions with phytochrome B and CONSTANS. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18017-18022.	3.3	81
31	Use of transcriptome sequencing to understand the pistillate flowering in hickory (Carya cathayensis) Tj ETQq0 0	0 _{1.2} BT /O	verlock 10 Tf
32	Flowering Newsletter bibliography for 2006. Journal of Experimental Botany, 2013, 64, 5819-5829.	2.4	37
33	BRANCHED1 Interacts with FLOWERING LOCUS T to Repress the Floral Transition of the Axillary Meristems in <i>Arabidopsis</i> ÂÂÂ. Plant Cell, 2013, 25, 1228-1242.	3.1	189
34	<scp>PFT</scp> 1, a transcriptional <scp>M</scp> ediator complex subunit, controls root hair differentiation through reactive oxygen species (<scp>ROS</scp>) distribution in <scp>A</scp> rabidopsis. New Phytologist, 2013, 197, 151-161.	3.5	95
35	Photoreceptor Signaling Networks in Plant Responses to Shade. Annual Review of Plant Biology, 2013, 64, 403-427.	8.6	651
36	High temperature acclimation through PIF4 signaling. Trends in Plant Science, 2013, 18, 59-64.	4.3	94

	CHATON		
#	Article	IF	CITATIONS
37	Dynamics of the Shade-Avoidance Response in Arabidopsis. Plant Physiology, 2013, 163, 331-353.	2.3	84
38	Flowering Newsletter bibliography for 2008. Journal of Experimental Botany, 2013, 64, 5831-5846.	2.4	0
39	Light quality regulates flowering in FvFT1/FvTFL1 dependent manner in the woodland strawberry Fragaria vesca. Frontiers in Plant Science, 2014, 5, 271.	1.7	42
40	Arabidopsis MSI1 functions in photoperiodic flowering time control. Frontiers in Plant Science, 2014, 5, 77.	1.7	32
41	The Conserved <i>PFT1</i> Tandem Repeat Is Crucial for Proper Flowering in <i>Arabidopsis thaliana</i> . Genetics, 2014, 198, 747-754.	1.2	19
42	Functional diversity of phytochrome family in the control of light and gibberellinâ€mediated germination in <scp>A</scp> rabidopsis. Plant, Cell and Environment, 2014, 37, 2014-2023.	2.8	43
43	PHYTOCHROME AND FLOWERING TIME1/MEDIATOR25 Regulates Lateral Root Formation via Auxin Signaling in Arabidopsis Â. Plant Physiology, 2014, 165, 880-894.	2.3	47
44	<i>VASCULAR PLANT ONE</i> - <i>ZINC FINGER1</i> and <i>VOZ2</i> repress the <i>FLOWERING LOCUS C</i> clade members to control flowering time in Arabidopsis. Bioscience, Biotechnology and Biochemistry, 2014, 78, 1850-1855.	0.6	16
45	The dynamics of <i><scp>FLOWERING LOCUS</scp> T</i> expression encodes longâ€day information. Plant Journal, 2015, 83, 952-961.	2.8	33
46	Effects of Far-Red LED Light on the Growth and Development of Tomato Seedlings in a Closed Seedling Production System. Shokubutsu Kankyo Kogaku, 2015, 27, 61-67.	0.1	2
47	GIGANTEA ââ,¬â€œ an emerging story. Frontiers in Plant Science, 2015, 6, 8.	1.7	150
48	Shade Avoidance Components and Pathways in Adult Plants Revealed by Phenotypic Profiling. PLoS Genetics, 2015, 11, e1004953.	1.5	76
49	Flowering Locus C's Lessons: Conserved Chromatin Switches Underpinning Developmental Timing and Adaptation. Plant Physiology, 2015, 168, 1237-1245.	2.3	86
50	Red Light-Mediated Degradation of CONSTANS by the E3 Ubiquitin Ligase HOS1 Regulates Photoperiodic Flowering in Arabidopsis. Plant Cell, 2015, 27, 2437-2454.	3.1	91
51	Involvement of cotton gene GhFPF1 in the regulation of shade avoidance responses in Arabidopsis thaliana. Plant Signaling and Behavior, 2015, 10, e1062195.	1.2	2
52	Bottom-up Assembly of the Phytochrome Network. PLoS Genetics, 2016, 12, e1006413.	1.5	40
53	Fluctuating, warm temperatures decrease the effect of a key floral repressor on flowering time in <i>Arabidopsis thaliana</i> . New Phytologist, 2016, 210, 564-576.	3.5	33
54	Emerging Hubs in Plant Light and Temperature Signaling. Photochemistry and Photobiology, 2016, 92, 3-13.	1.3	25

CITATION REPORT

#	Article	IF	CITATIONS
55	Light-Mediated Hormonal Regulation of Plant Growth and Development. Annual Review of Plant Biology, 2016, 67, 513-537.	8.6	328
56	Candidate gene prediction for a petal degeneration mutant, pdm, of the Chinese cabbage (Brassica) Tj ETQq1 1 36, 1.	0.784314 1.0	rgBT /Overloo 31
57	Fackel interacts with gibberellic acid signaling and vernalization to mediate flowering in Arabidopsis. Planta, 2017, 245, 939-950.	1.6	12
58	Far-red radiation promotes growth of seedlings by increasing leaf expansion and whole-plant net assimilation. Environmental and Experimental Botany, 2017, 136, 41-49.	2.0	177
59	PSEUDO RESPONSE REGULATORs stabilize CONSTANS protein to promote flowering in response to day length. EMBO Journal, 2017, 36, 904-918.	3.5	103
60	The Multitalented MEDIATOR25. Frontiers in Plant Science, 2017, 8, 999.	1.7	29
61	Variation in shade-induced flowering in Arabidopsis thaliana results from FLOWERING LOCUS T allelic variation. PLoS ONE, 2017, 12, e0187768.	1.1	7
62	Multiple Pathways in the Control of the Shade Avoidance Response. Plants, 2018, 7, 102.	1.6	34
63	Molecular basis of flowering under natural long-day conditions in Arabidopsis. Nature Plants, 2018, 4, 824-835.	4.7	115
64	Using light to improve commercial value. Horticulture Research, 2018, 5, 47.	2.9	50
65	Network Analysis Reveals a Role for Salicylic Acid Pathway Components in Shade Avoidance. Plant Physiology, 2018, 178, 1720-1732.	2.3	24
66	Cr3+ doped ZnGa2O4 far-red emission phosphor-in-glass: Toward high-power and color-stable plant growth LEDs with responds to all of phytochrome. Materials Research Bulletin, 2018, 108, 226-233.	2.7	47
67	Far-red radiation and photosynthetic photon flux density independently regulate seedling growth but interactively regulate flowering. Environmental and Experimental Botany, 2018, 155, 206-216.	2.0	43
68	A PIF7-CONSTANS-Centered Molecular Regulatory Network Underlying Shade-Accelerated Flowering. Molecular Plant, 2019, 12, 1587-1597.	3.9	45
69	PIF transcription factors link a neighbor threat cue to accelerated reproduction in Arabidopsis. Nature Communications, 2019, 10, 4005.	5.8	65
70	Genome of <i>Crucihimalaya himalaica</i> , a close relative of <i>Arabidopsis</i> , shows ecological adaptation to high altitude. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7137-7146.	3.3	108
71	Phenological and fitness responses to climate warming depend upon genotype and competitive neighbourhood in <i>Arabidopsis thaliana</i> . Functional Ecology, 2019, 33, 308-322.	1.7	9
72	FHY3 and FAR1 Integrate Light Signals with the miR156-SPL Module-Mediated Aging Pathway to Regulate Arabidopsis Flowering. Molecular Plant, 2020, 13, 483-498.	3.9	71

#	Article	IF	CITATIONS
73	Multiple Loci Control Variation in Plasticity to Foliar Shade Throughout Development in <i>Arabidopsis thaliana</i> . G3: Genes, Genomes, Genetics, 2020, 10, 4103-4114.	0.8	1
74	Low-light and its effects on crop yield: Genetic and genomic implications. Journal of Biosciences, 2020, 45, 1.	0.5	8
75	Synthesis and Photoluminescence Properties of Deep-Red-Emitting CaYAlO4:Cr3+ Phosphors. Journal of Electronic Materials, 2020, 49, 7464-7471.	1.0	7
76	Exploring Flowering Genes in Isabgol (Plantago ovata Forsk.) Through Transcriptome Analysis. Plant Molecular Biology Reporter, 2021, 39, 192-211.	1.0	2
77	Characteristics and Trends of Strawberry Cultivars throughout the Cultivation Season in a Greenhouse. Horticulturae, 2021, 7, 30.	1.2	12
78	Review—Photoluminescence Properties of Cr ³⁺ -Activated Fluoride Phosphors. ECS Journal of Solid State Science and Technology, 2021, 10, 036001.	0.9	21
79	Integration of light and hormone signaling pathways in the regulation of plant shade avoidance syndrome. ABIOTECH, 2021, 2, 131-145.	1.8	32
80	Regulation of Flowering Time by Improving Leaf Health Markers and Expansion by Salicylic Acid Treatment: A New Approach to Induce Flowering in Malus domestica. Frontiers in Plant Science, 2021, 12, 655974.	1.7	6
81	Functional Analysis of GmCPDs and Investigation of Their Roles in Flowering. PLoS ONE, 2015, 10, e0118476.	1.1	14
83	Shade-Inducible Gene Expression Change in <i>Arabidopsis thaliana</i> at Different Temperatures. American Journal of Plant Sciences, 2016, 07, 352-423.	0.3	1
85	Identification of Mdmed Family, Key Role of Mdmed81, and Salicylic Acid at the Right Time of Year Triggers Mdmed81 to Induce Flowering in Malus Domestica. SSRN Electronic Journal, 0, , .	0.4	0
86	Low Fluence Ultraviolet-B Promotes Ultraviolet Resistance 8-Modulated Flowering in Arabidopsis. Frontiers in Plant Science, 2022, 13, 840720.	1.7	6
87	Low-Intensity Blue Light Supplemented during Photoperiod in Controlled Environment Induces Flowering and Antioxidant Production in Kalanchoe. Antioxidants, 2022, 11, 811.	2.2	7
88	Genetic loci associated with freezing tolerance in a European rapeseed (<scp> <i>Brassica napus</i>) Tj ETQq1 I</scp>	0,784314	4 rgBT /Overl
89	Prediction of strawberry fruit yield based on cultivar-specific growth models in the tunnel-type greenhouse. Horticulture Environment and Biotechnology, 2022, 63, 467-476.	0.7	2
90	Identification of MdMED family, key role of MdMED81, and salicylic acid at the right time of year triggers MdMED81 to induce flowering in Malus domestica. Scientia Horticulturae, 2022, 304, 111341.	1.7	3
91	Agronomic evaluation of shade tolerance of 16 spring Camelina sativa (L.) Crantz genotypes under different artificial shade levels using a modified membership function. Frontiers in Plant Science, 0, 13,	1.7	2
92	Enhancement of Clover (Trifolium alexandrinum L.) Shade Tolerance and Nitrogen Fixation under Dense Stands-Based Cropping Systems. Agronomy, 2022, 12, 2332.	1.3	2

CITATION REPORT

#	Article	IF	CITATIONS
93	Parental methylation mediates how progeny respond to environments of parents and of progeny themselves. Annals of Botany, 0, , .	1.4	1
94	Root colonization by the endophytic fungus Piriformospora indica shortens the juvenile phase of Piper nigrum L. by fine tuning the floral promotion pathways. Frontiers in Plant Science, 0, 13, .	1.7	3
95	The Mediator complex subunit MED25 interacts with HDA9 and PIF4 to regulate thermomorphogenesis. Plant Physiology, 2023, 192, 582-600.	2.3	5
96	Spectral light quality regulates the morphogenesis, architecture, and flowering in pepper (Capsicum) Tj ETQq1 1	0.784314 1.7	rgBT /Overlo
97	A 5.5-kb LTR-retrotransposon insertion inside phytochrome B gene (CsPHYB) results in long hypocotyl and early flowering in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics, 2023, 136, .	1.8	2

CITATION REPORT