Histone Deacetylase Inhibitor Panobinostat Induces Cli Alterations in Gene Expression Profiles in Cutaneous T-

Clinical Cancer Research 14, 4500-4510 DOI: 10.1158/1078-0432.ccr-07-4262

Citation Report

#	Article	IF	CITATIONS
1	Epigenetics and dermatological disease. Pharmacogenomics, 2008, 9, 1835-1850.	0.6	52
2	Cutaneous T-cell lymphoma and emerging therapies. Drug Discovery Today Disease Mechanisms, 2008, 5, e69-e79.	0.8	0
3	Histone Deacetylation. Drugs in R and D, 2008, 9, 369-383.	1.1	36
4	Clinical Studies of Histone Deacetylase Inhibitors. Clinical Cancer Research, 2009, 15, 3958-3969.	3.2	334
5	Angiogenesis and antiangiogenic therapy in non-Hodgkin's lymphoma. Annals of Oncology, 2009, 20, 413-424.	0.6	86
6	Panobinostat (LBH589): a potent pan-deacetylase inhibitor with promising activity against hematologic and solid tumors. Future Oncology, 2009, 5, 601-612.	1.1	119
7	Epigenetics of neurological cancers. Future Oncology, 2009, 5, 1615-1629.	1.1	20
8	IgA nephropathy associated with cutaneous T cell lymphoma. Leukemia and Lymphoma, 2009, 50, 2083-2085.	0.6	9
9	The HDAC inhibitor panobinostat (LBH589) inhibits mesothelioma and lung cancer cells <i>in vitro</i> and <i>in vivo</i> with particular efficacy for small cell lung cancer. Molecular Cancer Therapeutics, 2009, 8, 2221-2231.	1.9	106
10	LBH589 induces up to 10-fold SMN protein levels by several independent mechanisms and is effective even in cells from SMA patients non-responsive to valproate. Human Molecular Genetics, 2009, 18, 3645-3658.	1.4	100
11	Phase II Multi-Institutional Trial of the Histone Deacetylase Inhibitor Romidepsin As Monotherapy for Patients With Cutaneous T-Cell Lymphoma. Journal of Clinical Oncology, 2009, 27, 5410-5417.	0.8	687
12	Epigenetic mechanisms in glioblastoma multiforme. Seminars in Cancer Biology, 2009, 19, 188-197.	4.3	154
13	Targeting histone deacetylases for the treatment of disease. Journal of Cellular and Molecular Medicine, 2009, 13, 826-852.	1.6	41
14	Molecular Epigenetics and Genetics in Neuro-Oncology. Neurotherapeutics, 2009, 6, 436-446.	2.1	52
15	Natural killer-cell neoplasms. Current Hematologic Malignancy Reports, 2009, 4, 245-252.	1.2	27
16	The future of small molecule inhibitors in lymphoma. Current Oncology Reports, 2009, 11, 378-385.	1.8	2
17	The histone deacetylase inhibitor LBH589 inhibits expression of mitotic genes causing G2/M arrest and cell death in head and neck squamous cell carcinoma cell lines. Journal of Pathology, 2009, 218, 467-477.	2.1	46
18	Preliminary evidence of disease response to the pan deacetylase inhibitor panobinostat (LBH589) in refractory Hodgkin Lymphoma. British Journal of Haematology, 2009, 147, 97-101.	1.2	89

TATION REDO

		CITATION REPORT		
#	Article		IF	CITATIONS
19	Targeting tumor angiogenesis with histone deacetylase inhibitors. Cancer Letters, 200	9, 280, 145-153.	3.2	218
20	Development of the pan-DAC inhibitor panobinostat (LBH589): Successes and challeng Letters, 2009, 280, 233-241.	ges. Cancer	3.2	358
21	Histone deacetylase inhibitors as anti-neoplastic agents. Cancer Letters, 2009, 280, 19	<i>)</i> 2-200.	3.2	146
22	Biomarkers for predicting clinical responses to HDAC inhibitors. Cancer Letters, 2009,	280, 177-183.	3.2	89
23	Histone Deacetylase Inhibitors in Cancer Therapy. Journal of Clinical Oncology, 2009, 2	27, 5459-5468.	0.8	793
24	Novel therapies for peripheral T-cell non-Hodgkin's lymphomas. Current Opinion in I 16, 299-305.	Hematology, 2009,	1.2	20
25	Cotreatment with BCL-2 antagonist sensitizes cutaneous T-cell lymphoma to lethal act HDAC7-Nur77–based mechanism. Blood, 2009, 113, 4038-4048.	ion of	0.6	50
26	The histone deacetylase inhibitors LAQ824 and LBH589 do not require death receptor functional apoptosome to mediate tumor cell death or therapeutic efficacy. Blood, 200	signaling or a 09, 114, 380-393.	0.6	108
27	How I treat mycosis fungoides and Sézary syndrome. Blood, 2009, 114, 4337-4353.		0.6	144
28	Epigenetic Modulation in Hematologic Malignancies: Challenges and Progress. Journal Comprehensive Cancer Network: JNCCN, 2009, 7, S-1-S-12.	of the National	2.3	8
29	Mantle cell lymphoma in relapse: the role of emerging new drugs. Current Opinion in C 22, 419-423.)ncology, 2010,	1.1	15
30	Role of Histone Deacetylases and Their Inhibitors in Cancer Biology and Treatment. Cu Pharmacology, 2010, 5, 196-208.	rrent Clinical	0.2	62
31	Gene Expression-Based Pharmacodynamic Biomarkers: The Beginning of a New Era in E Anti-Tumor Drug Development. Current Molecular Medicine, 2010, 10, 596-607.	3iomarker-Driven	0.6	0
32	In vitro and in vivo rationale for the triple combination of panobinostat (LBH589) and o with either bortezomib or lenalidomide in multiple myeloma. Haematologica, 2010, 95	dexamethasone , 794-803.	1.7	144
33	Recent advances in histone deacetylase targeted cancer therapy. Surgery Today, 2010	, 40, 809-815.	0.7	43
34	Targeted treatment and new agents in peripheral T-cell lymphoma. International Journa Hematology, 2010, 92, 33-44.	al of	0.7	26
35	Targeting histone deacetyalses in the treatment of B- and T-cell malignancies. Investiga Drugs, 2010, 28, 58-78.	ational New	1.2	59
36	Histone deacetylase inhibitors: potential targets responsible for their anti-cancer effect Investigational New Drugs, 2010, 28, 3-20.		1.2	123

#	Article	IF	CITATIONS
37	Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents. Journal of Hematology and Oncology, 2010, 3, 5.	6.9	373
38	HDAC inhibitor valproic acid enhances tumor cell kill in adenovirusâ€HSVtk mediated suicide gene therapy in HNSCC xenograft mouse model. International Journal of Cancer, 2010, 126, 733-742.	2.3	16
39	Activity of deacetylase inhibitor panobinostat (LBH589) in cutaneous Tâ€cell lymphoma models: Defining molecular mechanisms of resistance. International Journal of Cancer, 2010, 127, 2199-2208.	2.3	79
40	Novel agents for B-cell non-Hodgkin lymphoma: Science and the promise. Blood Reviews, 2010, 24, 69-82.	2.8	13
41	Laboratory correlates for a phase II trial of romidepsin in cutaneous and peripheral Tâ€cell lymphoma. British Journal of Haematology, 2010, 148, 256-267.	1.2	74
42	Histone deacetylases and the immunological network: implications in cancer and inflammation. Oncogene, 2010, 29, 157-173.	2.6	177
43	Suppression of Autoimmune Arthritis by Small Molecule Inhibitors of the JAK/STAT Pathway. Pharmaceuticals, 2010, 3, 1446-1455.	1.7	17
44	Histone Deacetylase Inhibitors: Advancing Therapeutic Strategies in Hematological and Solid Malignancies. Pharmaceuticals, 2010, 3, 2441-2469.	1.7	55
45	Overview of Histone Deacetylase Inhibitors in Haematological Malignancies. Pharmaceuticals, 2010, 3, 2674-2688.	1.7	7
47	Clinical Toxicities of Histone Deacetylase Inhibitors. Pharmaceuticals, 2010, 3, 2751-2767.	1.7	281
48	Three-Dimensional Cell Growth Confers Radioresistance by Chromatin Density Modification. Cancer Research, 2010, 70, 3925-3934.	0.4	165
49	New Strategies in Peripheral T-Cell Lymphoma: Understanding Tumor Biology and Developing Novel Therapies. Clinical Cancer Research, 2010, 16, 5608-5617.	3.2	21
50	Investigational histone deacetylase inhibitors for non-Hodgkin lymphomas. Expert Opinion on Investigational Drugs, 2010, 19, 1113-1127.	1.9	12
51	Mechanisms of Synergistic Antileukemic Interactions between Valproic Acid and Cytarabine in Pediatric Acute Myeloid Leukemia. Clinical Cancer Research, 2010, 16, 5499-5510.	3.2	71
52	Romidepsin and Belinostat Synergize the Antineoplastic Effect of Bortezomib in Mantle Cell Lymphoma. Clinical Cancer Research, 2010, 16, 554-565.	3.2	65
53	The HDAC inhibitor LBH589 (panobinostat) is an inhibitory modulator of aromatase gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11032-11037.	3.3	50
54	Romidepsin: a new therapy for cutaneous T-cell lymphoma and a potential therapy for solid tumors. Expert Review of Anticancer Therapy, 2010, 10, 997-1008.	1.1	215
55	Histone Deacetylases: Anti-Angiogenic Targets in Cancer Therapy. Current Cancer Drug Targets, 2010, 10, 898-913.	0.8	30

#	Article	IF	Citations
56	Emerging role of epigenetic therapies in cutaneous T-cell lymphomas. Expert Review of Hematology, 2010, 3, 187-203.	1.0	31
57	Histone deacetylases and epigenetic therapies of hematological malignancies. Pharmacological Research, 2010, 62, 18-34.	3.1	121
58	Personalized therapies in the cancer "omics" era. Molecular Cancer, 2010, 9, 202.	7.9	52
59	The Role of Histone Deacetylase Inhibitors in the Treatment of Patients With Cutaneous T-Cell Lymphoma. Clinical Lymphoma, Myeloma and Leukemia, 2010, 10, 98-109.	0.2	25
60	New Strategies to Optimize Outcomes in Patients With T-Cell Lymphoma. Clinical Lymphoma, Myeloma and Leukemia, 2010, 10, S84-S87.	0.2	1
61	Association of a Leukemic Stem Cell Gene Expression Signature With Clinical Outcomes in Acute Myeloid Leukemia. JAMA - Journal of the American Medical Association, 2010, 304, 2706.	3.8	339
62	Peripheral Tâ€cell lymphoma gene expression profiling and potential therapeutic exploitations. British Journal of Haematology, 2010, 150, 21-27.	1.2	17
63	Allogeneic hematopoietic cell transplant for peripheral T-cell non-Hodgkin lymphoma results in long-term disease control. Leukemia and Lymphoma, 2011, 52, 1463-1473.	0.6	37
64	HDAC Inhibitors and Cancer Therapy. , 2011, 67, 175-195.		55
65	Promises and challenges of anticancer drugs that target the epigenome. Epigenomics, 2011, 3, 547-565.	1.0	21
66	Histone deacetylase inhibitor treatment dramatically reduces cholesterol accumulation in Niemann-Pick type C1 mutant human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5620-5625.	3.3	175
67	Epigenetics and Disease. , 2011, , .		5
68	Clinical development of panobinostat in classical Hodgkin's lymphoma. Expert Review of Hematology, 2011, 4, 245-252.	1.0	18
69	Low-dose LBH589 increases the sensitivity of cisplatin to cisplatin-resistant ovarian cancer cells. Taiwanese Journal of Obstetrics and Gynecology, 2011, 50, 165-171.	0.5	12
70	Mycosis fungoÃ ⁻ des and Sézary syndrome. Hematologie, 2011, 17, 411-421.	0.0	0
71	Romidepsin in the treatment of cutaneous T-cell lymphoma. Journal of Blood Medicine, 2011, 2, 37.	0.7	27
72	Accumulation of Specific Epigenetic Abnormalities During Development and Progression of T Cell Leukemia/Lymphoma. , 2011, , .		0
73	Interpreting clinical assays for histone deacetylase inhibitors. Cancer Management and Research, 0, , 117.	0.9	3

		CITATION REP	PORT	
#	Article		IF	CITATIONS
74	HDACi - going through the mechanisms. Frontiers in Bioscience - Landmark, 2011, 16, 3	340.	3.0	47
75	Concurrent HDAC and mTORC1 Inhibition Attenuate Androgen Receptor and Hypoxia S Associated with Alterations in MicroRNA Expression. PLoS ONE, 2011, 6, e27178.	Signaling	1.1	16
76	Current and Emerging Therapies in Peripheral T-cell Lymphoma: Focus on Pralatrexate. Medicine Insights Therapeutics, 2011, 3, CMT.S3778.	Clinical	0.4	2
77	Epigenetic Multiple Modulators. Current Topics in Medicinal Chemistry, 2011, 11, 2749	9-2787.	1.0	11
78	HIV cure and eradication: how will we get from the laboratory to effective clinical trials? 25, 885-897.	2. Aids, 2011,	1.0	113
79	Deciphering the molecular and biologic processes that mediate histone deacetylase inh thrombocytopenia. Blood, 2011, 117, 3658-3668.	ibitor–induced	0.6	128
80	Phase 2 trial of romidepsin in patients with peripheral T-cell lymphoma. Blood, 2011, 11	7, 5827-5834.	0.6	428
81	Overexpression of enhancer of zeste homolog 2 with trimethylation of lysine 27 on his adult T-cell leukemia/lymphoma as a target for epigenetic therapy. Haematologica, 201	cone H3 in 1, 96, 712-719.	1.7	91
82	Clinical Applications of Histone Deacetylase Inhibitors. , 2011, , 597-615.			2
83	Evolving Insights in the Pathogenesis and Therapy of Cutaneous Tâ< cell lymphoma (My	cosis Fungoides) Tj ETQq1	1 0.7843 1.2	14 rgBT /O
84	Rapid recovery from panobinostat (LBH589)-induced thrombocytopenia in mice involve effect of bone marrow megakaryocytes. Leukemia, 2011, 25, 362-365.	es a rebound	3.3	30
85	Histone deacetylase inhibitors for the treatment of myelodysplastic syndrome and acut leukemia. Leukemia, 2011, 25, 226-235.	e myeloid	3.3	144
86	LBH589, a deacetylase inhibitor, induces apoptosis in adult T-cell leukemia/lymphoma c activation of a novel RAIDD-caspase-2 pathway. Leukemia, 2011, 25, 575-587.	ells via	3.3	45
87	Romidepsin: a novel histone deacetylase inhibitor for cancer. Expert Opinion on Investig 2011, 20, 1151-1158.	gational Drugs,	1.9	129
88	Treatment algorithms for mature T-cell and natural killer-cell neoplasms. Future Oncolo 1101-1112.	gy, 2011, 7,	1.1	9
89	Identification of genes associated with chemosensitivity to SAHA/taxane combination t taxane-resistant breast cancer cells. Breast Cancer Research and Treatment, 2011, 125	reatment in , 55-63.	1.1	48
90	Effect of ketoconazole-mediated CYP3A4 inhibition on clinical pharmacokinetics of par (LBH589), an orally active histone deacetylase inhibitor. Cancer Chemotherapy and Pha 68, 805-813.	obinostat ırmacology, 2011,	1.1	42
91	The histone deacetylase inhibitor vorinostat selectively sensitizes fibrosarcoma cells to chemotherapy. Journal of Orthopaedic Research, 2011, 29, 623-632.		1.2	24

#	Article	IF	CITATIONS
92	Cutaneous Tâ€cell lymphoma: 2011 update on diagnosis, riskâ€stratification, and management. American Journal of Hematology, 2011, 86, 928-948.	2.0	61
93	Phase 2 trial of the histone deacetylase inhibitor romidepsin for the treatment of refractory multiple myeloma. Cancer, 2011, 117, 336-342.	2.0	116
94	The synergistic effect of panobinostat (LBH589) with melphalan or doxorubicin on multiple myeloma cells; rationale for the use of combination regimens in myeloma patients. Leukemia Research, 2011, 35, 295-296.	0.4	10
95	Antiangiogenic Therapies in Non-Hodgkin's Lymphoma. Current Cancer Drug Targets, 2011, 11, 1030-1043.	0.8	12
96	Classifying short gene expression time-courses with Bayesian estimation of piecewise constant functions. Bioinformatics, 2011, 27, 946-952.	1.8	14
97	Deciphering the Molecular Events Necessary for Synergistic Tumor Cell Apoptosis Mediated by the Histone Deacetylase Inhibitor Vorinostat and the BH3 Mimetic ABT-737. Cancer Research, 2011, 71, 3603-3615.	0.4	51
98	Belinostat: clinical applications in solid tumors and lymphoma. Expert Opinion on Investigational Drugs, 2011, 20, 1723-1732.	1.9	34
99	New drug therapies in peripheral T-cell lymphoma. Expert Review of Anticancer Therapy, 2011, 11, 457-472.	1.1	28
100	Manipulating Protein Acetylation in Breast Cancer: A Promising Approach in Combination with Hormonal Therapies?. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-15.	3.0	28
101	Myelodysplastic Syndrome and Histone Deacetylase Inhibitors: "To Be or Not to Be Acetylated�. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-15.	3.0	18
102	Cutaneous Lymphomas: Molecular Pathways Leading to New Drugs. Journal of Investigative Dermatology, 2012, 132, 517-525.	0.3	11
103	Romidepsin for Cutaneous T-cell Lymphoma. Clinical Cancer Research, 2012, 18, 3509-3515.	3.2	77
104	Intrinsic and Extrinsic Apoptotic Pathway Signaling as Determinants of Histone Deacetylase Inhibitor Antitumor Activity. Advances in Cancer Research, 2012, 116, 165-197.	1.9	101
105	Chromatin-targeting small molecules cause class-specific transcriptional changes in pancreatic endocrine cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5364-5369.	3.3	53
106	Development therapeutics. , 0, , 616-631.		0
107	Cutaneous T cell lymphoma: update on treatment. International Journal of Dermatology, 2012, 51, 1019-1036.	0.5	27
108	Trials with â€~epigenetic' drugs: An update. Molecular Oncology, 2012, 6, 657-682.	2.1	208
109	Targeting triple-negative breast cancer cells with the histone deacetylase inhibitor panobinostat. Breast Cancer Research, 2012, 14, R79.	2.2	213

#	Article	IF	CITATIONS
110	Role of Histone Deacetylase Inhibitors in the Treatment of Lymphomas and Multiple Myeloma. Hematology/Oncology Clinics of North America, 2012, 26, 671-704.	0.9	16
111	HDAC inhibitors for the treatment of cutaneous T-cell lymphomas. Future Medicinal Chemistry, 2012, 4, 471-486.	1.1	61
112	Novel therapeutic agents for cutaneous T-Cell lymphoma. Journal of Hematology and Oncology, 2012, 5, 24.	6.9	47
113	Characterizing the disposition, metabolism, and excretion of an orally active pan-deacetylase inhibitor, panobinostat, via trace radiolabeled 14C material in advanced cancer patients. Cancer Chemotherapy and Pharmacology, 2012, 70, 513-522.	1.1	51
114	HDAC inhibitors in cancer biology: emerging mechanisms and clinical applications. Immunology and Cell Biology, 2012, 90, 85-94.	1.0	392
115	Pan-Histone Deacetylase Inhibitor Panobinostat Sensitizes Gastric Cancer Cells to Anthracyclines via Induction of CITED2. Gastroenterology, 2012, 143, 99-109.e10.	0.6	36
116	Tumor-specific MAGE proteins as regulators of p53 function. Cancer Letters, 2012, 325, 11-17.	3.2	34
117	Phase I study of the histone deacetylase inhibitor entinostat in combination with 13-cis retinoic acid in patients with solid tumours. British Journal of Cancer, 2012, 106, 77-84.	2.9	136
118	Mechanisms of Resistance to Histone Deacetylase Inhibitors. Advances in Cancer Research, 2012, 116, 39-86.	1.9	91
119	Panobinostat for the treatment of multiple myeloma. Expert Opinion on Investigational Drugs, 2012, 21, 733-747.	1.9	34
120	Phase II trial of the pan-deacetylase inhibitor panobinostat as a single agent in advanced relapsed/refractory multiple myeloma. Leukemia and Lymphoma, 2012, 53, 1820-1823.	0.6	109
121	Vorinostat approved in Japan for treatment of cutaneous T-cell lymphomas: status and prospects. OncoTargets and Therapy, 2012, 5, 67.	1.0	17
122	Management of cutaneous T cell lymphoma: new and emerging targets and treatment options. Cancer Management and Research, 2012, 4, 75.	0.9	35
123	Valproic acid synergistically enhances the cytotoxicity of clofarabine in pediatric acute myeloid leukemia cells. Pediatric Blood and Cancer, 2012, 59, 1245-1251.	0.8	21
124	HDAC inhibitors in HIV. Immunology and Cell Biology, 2012, 90, 47-54.	1.0	113
125	A phase I study of oral panobinostat (LBH589) in Japanese patients with advanced solid tumors. Investigational New Drugs, 2012, 30, 1096-1106.	1.2	45
126	Recent Advances in the Management of Cutaneous Lymphomas. Seminars in Oncology, 2012, 39, 150-162.	0.8	6
127	Cytotoxic activity of the histone deacetylase inhibitor panobinostat (LBH589) in anaplastic thyroid cancer <i>in vitro</i> and <i>in vivo</i> . International Journal of Cancer, 2012, 130, 694-704.	2.3	47

#	Article	IF	CITATIONS
129	T-Cell Lymphomas. , 2013, , .		1
130	Deregulated Chromatin Remodeling in the Pathobiology of Brain Tumors. NeuroMolecular Medicine, 2013, 15, 1-24.	1.8	19
131	A phase I dose-escalation study of intravenous panobinostat in patients with lymphoma and solid tumors. Investigational New Drugs, 2013, 31, 974-985.	1.2	28
132	The Role of Angiogenesis in Human Non-Hodgkin Lymphomas. Neoplasia, 2013, 15, 231-238.	2.3	70
133	Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nature Reviews Genetics, 2013, 14, 765-780.	7.7	373
134	VPA response in SMA is suppressed by the fatty acid translocase CD36. Human Molecular Genetics, 2013, 22, 398-407.	1.4	50
135	Toxicological and metabolic considerations for histone deacetylase inhibitors. Expert Opinion on Drug Metabolism and Toxicology, 2013, 9, 441-457.	1.5	46
136	Panobinostat activity in both bexarotene-exposed and -naÃ ⁻ ve patients with refractory cutaneous T-cell lymphoma: Results of a phase II trial. European Journal of Cancer, 2013, 49, 386-394.	1.3	124
137	Comparison of HDAC inhibitors in clinical development. Human Vaccines and Immunotherapeutics, 2013, 9, 993-1001.	1.4	173
138	Epigenetic Alterations in Pancreatic Cancer. , 2013, , 185-207.		1
138 139	Epigenetic Alterations in Pancreatic Cancer. , 2013, , 185-207. Metalloprotein–Inhibitor Binding: Human Carbonic Anhydrase II as a Model for Probing Metal–Ligand Interactions in a Metalloprotein Active Site. Inorganic Chemistry, 2013, 52, 12207-12215.	1.9	1 30
138 139 140	 Epigenetic Alterations in Pancreatic Cancer., 2013, , 185-207. Metalloprotein–Inhibitor Binding: Human Carbonic Anhydrase II as a Model for Probing Metal–Ligand Interactions in a Metalloprotein Active Site. Inorganic Chemistry, 2013, 52, 12207-12215. The role of cytokines in the initiation and progression of myelofibrosis. Cytokine and Growth Factor Reviews, 2013, 24, 133-145. 	1.9 3.2	1 30 128
138 139 140 141	Epigenetic Alterations in Pancreatic Cancer., 2013, , 185-207. Metalloprotein–Inhibitor Binding: Human Carbonic Anhydrase II as a Model for Probing Metal–Ligand Interactions in a Metalloprotein Active Site. Inorganic Chemistry, 2013, 52, 12207-12215. The role of cytokines in the initiation and progression of myelofibrosis. Cytokine and Growth Factor Reviews, 2013, 24, 133-145. New Insights into the Treatment of Multiple Myeloma with Histone Deacetylase Inhibitors. Current Pharmaceutical Design, 2013, 19, 734-744.	1.9 3.2 0.9	1 30 128 38
138 139 140 141 142	Epigenetic Alterations in Pancreatic Cancer. , 2013, , 185-207. Metalloprotein–Inhibitor Binding: Human Carbonic Anhydrase II as a Model for Probing Metal–Ligand Interactions in a Metalloprotein Active Site. Inorganic Chemistry, 2013, 52, 12207-12215. The role of cytokines in the initiation and progression of myelofibrosis. Cytokine and Growth Factor Reviews, 2013, 24, 133-145. New Insights into the Treatment of Multiple Myeloma with Histone Deacetylase Inhibitors. Current Pharmaceutical Design, 2013, 19, 734-744. A clinical investigation of inhibitory effect of panobinostat on CYP2D6 substrate in patients with advanced cancer. Cancer Chemotherapy and Pharmacology, 2013, 72, 747-755.	1.9 3.2 0.9 1.1	1 30 128 38 14
 138 139 140 141 142 143 	Epigenetic Alterations in Pancreatic Cancer., 2013, , 185-207. Metalloprotein–Inhibitor Binding: Human Carbonic Anhydrase II as a Model for Probing Metal–Ligand Interactions in a Metalloprotein Active Site. Inorganic Chemistry, 2013, 52, 12207-12215. The role of cytokines in the initiation and progression of myelofibrosis. Cytokine and Growth Factor Reviews, 2013, 24, 133-145. New Insights into the Treatment of Multiple Myeloma with Histone Deacetylase Inhibitors. Current Pharmaceutical Design, 2013, 19, 734-744. A clinical investigation of inhibitory effect of panobinostat on CYP2D6 substrate in patients with advanced cancer. Cancer Chemotherapy and Pharmacology, 2013, 72, 747-755. Angiogenesis as a treatment target in leukemia. International Journal of Hematologic Oncology, 2013, 2, 229-242.	1.9 3.2 0.9 1.1 0.7	1 30 128 38 14 1
 138 139 140 141 142 143 144 	Epigenetic Alterations in Pancreatic Cancer., 2013, , 185-207. Metalloprotein–Inhibitor Binding: Human Carbonic Anhydrase II as a Model for Probing Metal–Ligand Interactions in a Metalloprotein Active Site. Inorganic Chemistry, 2013, 52, 12207-12215. The role of cytokines in the initiation and progression of myelofibrosis. Cytokine and Growth Factor Reviews, 2013, 24, 133-145. New Insights into the Treatment of Multiple Myeloma with Histone Deacetylase Inhibitors. Current Pharmaceutical Design, 2013, 19, 734-744. A clinical investigation of inhibitory effect of panobinostat on CYP2D6 substrate in patients with advanced cancer. Cancer Chemotherapy and Pharmacology, 2013, 72, 747-755. Angiogenesis as a treatment target in leukemia. International Journal of Hematologic Oncology, 2013, 2, 229-242. Modulation of Epigenetic Targets for Anticancer Therapy: Clinicopathological Relevance, Structural Data and Drug Discovery Perspectives. Current Pharmaceutical Design, 2013, 19, 578-613.	1.9 3.2 0.9 1.1 0.7	1 30 128 38 14 1 69
 138 139 140 141 142 143 144 145 	Epigenetic Alterations in Pancreatic Cancer. , 2013, , 185-207. Metalloproteinâ€"Inhibitor Binding: Human Carbonic Anhydrase II as a Model for Probing Metalâ€"Ligand Interactions in a Metalloprotein Active Site. Inorganic Chemistry, 2013, 52, 12207-12215. The role of cytokines in the initiation and progression of myelofibrosis. Cytokine and Growth Factor Reviews, 2013, 24, 133-145. New Insights into the Treatment of Multiple Myeloma with Histone Deacetylase Inhibitors. Current Pharmaceutical Design, 2013, 19, 734-744. A clinical investigation of inhibitory effect of panobinostat on CYP2D6 substrate in patients with advanced cancer. Cancer Chemotherapy and Pharmacology, 2013, 72, 747-755. Angiogenesis as a treatment target in leukemia. International Journal of Hematologic Oncology, 2013, 2, 229-242. Modulation of Epigenetic Targets for Anticancer Therapy: Clinicopathological Relevance, Structural Data and Drug Discovery Perspectives. Current Pharmaceutical Design, 2013, 19, 578-613. Romidepsin for cutaneous T-cell lymphoma. Future Oncology, 2013, 9, 1819-1827.	1.9 3.2 0.9 1.1 0.7 0.9	1 30 128 38 14 69 19

#	Article	IF	CITATIONS
147	Histone Deacetylase Inhibitors in Cutaneous T-cell Lymphoma. Journal of the Dermatology Nurses' Association, 2013, 5, 305-313.	0.1	2
148	Phase I Trial of a New Schedule of Romidepsin in Patients with Advanced Cancers. Clinical Cancer Research, 2013, 19, 4499-4507.	3.2	55
149	Panobinostat in lymphoid and myeloid malignancies. Expert Opinion on Investigational Drugs, 2013, 22, 1211-1223.	1.9	39
150	Physical Interaction between MYCN Oncogene and Polycomb Repressive Complex 2 (PRC2) in Neuroblastoma. Journal of Biological Chemistry, 2013, 288, 8332-8341.	1.6	77
151	Sirtuin and pan-class I/II deacetylase (DAC) inhibition is synergistic in preclinical models and clinical studies of lymphoma. Blood, 2013, 122, 2104-2113.	0.6	52
152	Histone deacetylase inhibitors: recent outcomes from clinical trials and the implications for oncology treatment approaches. Clinical Investigation, 2013, 3, 571-594.	0.0	2
153	A phase II trial of panobinostat in patients with advanced pretreated soft tissue sarcoma. A study from the French Sarcoma Group. British Journal of Cancer, 2013, 109, 909-914.	2.9	54
155	Inhibition of Plk1 and Cyclin B1 Expression Results in Panobinostat-Induced G2 Delay and Mitotic Defects. Scientific Reports, 2013, 3, 2640.	1.6	12
156	LBH589 Promotes Osteogenic and Dentinogenic Differentiation of Stem Cells from the Apical Papilla by Inhibiting Histone Deacetylation. Journal of Hard Tissue Biology, 2014, 23, 335-342.	0.2	1
157	Targeting Histone Deacetylases for Cancer Therapy: From Molecular Mechanisms to Clinical Implications. International Journal of Biological Sciences, 2014, 10, 757-770.	2.6	133
158	Profile of belinostat for the treatment of relapsed or refractory peripheral T-cell lymphoma. OncoTargets and Therapy, 2014, 7, 1971.	1.0	10
159	Isoform-Selective HDAC Inhibition in Autoimmune DiseaseNicole L Regna1* and Christopher M Reilly2. Journal of Clinical & Cellular Immunology, 2014, 05, .	1.5	2
160	Novel therapies for cutaneous T-cell lymphoma: what does the future hold?. Expert Opinion on Investigational Drugs, 2014, 23, 457-467.	1.9	28
161	A phase I, open-label, multicenter study to evaluate the pharmacokinetics and safety of oral panobinostat in patients with advanced solid tumors and various degrees of hepatic function. Cancer Chemotherapy and Pharmacology, 2014, 74, 1089-1098.	1.1	38
162	Use of panobinostat in patients with classical Hodgkin lymphoma. International Journal of Hematologic Oncology, 2014, 3, 203-210.	0.7	1
163	Modeling the Timing of Antilatency Drug Administration during HIV Treatment. Journal of Virology, 2014, 88, 14050-14056.	1.5	19
164	Altered Histone Modifications in Gliomas. Brain Tumor Research and Treatment, 2014, 2, 7.	0.4	54
165	Differentiation therapy for the treatment of t(8;21) acute myeloid leukemia using histone deacetylase	0.6	107

# 166	ARTICLE Tentative first steps to eradicate latent HIV. Lancet HIV,the, 2014, 1, e2-e3.	IF 2.1	CITATIONS
167	Cutaneous Tâ€cell lymphoma: 2014 Update on diagnosis, riskâ€stratification, and management. American Journal of Hematology, 2014, 89, 837-851.	2.0	58
168	Epigenetic drugs against cancer: an evolving landscape. Archives of Toxicology, 2014, 88, 1651-1668.	1.9	50
169	A phase 1/2 study of oral panobinostat combined with melphalan for patients with relapsed or refractory multiple myeloma. Annals of Hematology, 2014, 93, 89-98.	0.8	35
171	From empiric to mechanism-based therapy for peripheral T cell lymphoma. International Journal of Hematology, 2014, 99, 249-262.	0.7	16
172	Predicting response to epigenetic therapy. Journal of Clinical Investigation, 2014, 124, 47-55.	3.9	78
173	Romidepsin in peripheral and cutaneous Tâ€cell lymphoma: mechanistic implications from clinical and correlative data. British Journal of Haematology, 2015, 170, 96-109.	1.2	51
174	Histone acetyltransferases and histone deacetylases in B- and T-cell development, physiology and malignancy. Genes and Cancer, 2015, 6, 184-213.	0.6	78
175	Critical appraisal of belinostat in the management of T-cell lymphoma – patient considerations. Blood and Lymphatic Cancer: Targets and Therapy, 2015, , 109.	1.2	0
176	Analysis of class I and II histone deacetylase gene expression in human leukemia. Leukemia and Lymphoma, 2015, 56, 3426-3433.	0.6	20
177	A phase I, open-label, multicenter study to evaluate the pharmacokinetics and safety of oral panobinostat in patients with advanced solid tumors and varying degrees of renal function. Cancer Chemotherapy and Pharmacology, 2015, 75, 87-95.	1.1	40
178	Follow-up of patients with mycosis fungoides after interferon α2b treatment failure. Postepy Dermatologii I Alergologii, 2015, 2, 67-72.	0.4	6
179	Panobinostat in combination with bortezomib in patients with relapsed or refractory peripheral T-cell lymphoma: an open-label, multicentre phase 2 trial. Lancet Haematology,the, 2015, 2, e326-e333.	2.2	50
180	Angiogenesis in glaucoma filtration surgery and neovascular glaucoma: A review. Survey of Ophthalmology, 2015, 60, 524-535.	1.7	48
181	Why weight? Modelling sample and observational level variability improves power in RNA-seq analyses. Nucleic Acids Research, 2015, 43, e97-e97.	6.5	430
182	Histone Deacetylase Inhibitors in Medical Therapeutics. , 2016, , 633-655.		3
183	Clinical developments in the treatment of relapsed or relapsed and refractory multiple myeloma: impact of panobinostat, the first-in-class histone deacetylase inhibitor. OncoTargets and Therapy, 2016, 9, 2783.	1.0	11
184	DNA Methylation and Chromatin Remodeling: The Blueprint of Cancer Epigenetics. Scientifica, 2016, 2016, 1-11.	0.6	26

#	Article	IF	CITATIONS
185	Dysregulation of Aromatase in Breast, Endometrial, and Ovarian Cancers. Progress in Molecular Biology and Translational Science, 2016, 144, 487-537.	0.9	29
186	Epigenetic silencing of tumor suppressor genes: Paradigms, puzzles, and potential. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1865, 275-288.	3.3	118
187	Cutaneous <scp>T</scp> ell lymphoma: 2016 update on diagnosis, riskâ€stratification, and management. American Journal of Hematology, 2016, 91, 151-165.	2.0	118
188	Albumin–Polymer–Drug Conjugates: Long Circulating, High Payload Drug Delivery Vehicles. ACS Macro Letters, 2016, 5, 1089-1094.	2.3	34
189	Cardiovascular effects of histone deacetylase inhibitors epigenetic therapies: Systematic review of 62 studies and new hypotheses for future research. International Journal of Cardiology, 2016, 219, 396-403.	0.8	34
190	Panoptic clinical review of the current and future treatment of relapsed/refractory T-cell lymphomas: Cutaneous T-cell lymphomas. Critical Reviews in Oncology/Hematology, 2016, 99, 228-240.	2.0	29
191	An overview of investigational Histone deacetylase inhibitors (HDACis) for the treatment of non-Hodgkin's lymphoma. Expert Opinion on Investigational Drugs, 2016, 25, 687-696.	1.9	21
192	Clinical pharmacokinetics of panobinostat, a novel histone deacetylase (HDAC) inhibitor: review and perspectives. Xenobiotica, 2017, 47, 354-368.	0.5	27
193	Epigenetic modification in chromatin machinery and its deregulation in pediatric brain tumors: Insight into epigenetic therapies. Epigenetics, 2017, 12, 353-369.	1.3	36
194	Risk Factors for 30-Day Readmission in Adults with Sickle Cell Disease. American Journal of Medicine, 2017, 130, 601.e9-601.e15.	0.6	28
195	Cellular analysis of the action of epigenetic drugs and probes. Epigenetics, 2017, 12, 308-322.	1.3	5
196	Discovery of ErbB/HDAC inhibitors by combining the core pharmacophores of HDAC inhibitor vorinostat and kinase inhibitors vandetanib, BMS-690514, neratinib, and TAK-285. Chinese Chemical Letters, 2017, 28, 1220-1227.	4.8	22
197	Synergy of BCL2 and histone deacetylase inhibition against leukemic cells from cutaneous T-cell lymphoma patients. Blood, 2017, 130, 2073-2083.	0.6	42
198	Cutaneous Tâ€cell lymphoma: 2017 update on diagnosis, riskâ€stratification, and management. American Journal of Hematology, 2017, 92, 1085-1102.	2.0	104
199	A strategy for effective latent HIV reactivation using subtherapeutic drug doses. Scientific Reports, 2017, 7, 16644.	1.6	0
200	Synthesis and investigation of novel 6-(1,2,3-triazol-4-yl)-4-aminoquinazolin derivatives possessing hydroxamic acid moiety for cancer therapy. Bioorganic and Medicinal Chemistry, 2017, 25, 27-37.	1.4	45
201	Targeting histone deacetylases in T-cell lymphoma. Leukemia and Lymphoma, 2017, 58, 1306-1319.	0.6	84
202	Potential New Therapies for Pediatric Diffuse Intrinsic Pontine Clioma. Frontiers in Pharmacology, 2017, 8, 495.	1.6	48

#	Article	IF	CITATIONS
203	Clinical Applications of Histone Deacetylase Inhibitors. , 2017, , 605-621.		7
204	Novel Proteasome Inhibitors and Histone Deacetylase Inhibitors: Progress in Myeloma Therapeutics. Pharmaceuticals, 2017, 10, 40.	1.7	33
205	Epigenetic Targeted Therapy for Diffuse Intrinsic Pontine Glioma. Neurologia Medico-Chirurgica, 2017, 57, 331-342.	1.0	36
206	HDAC6 inhibitor WT161 downregulates growth factor receptors in breast cancer. Oncotarget, 2017, 8, 80109-80123.	0.8	23
207	Single-agent panobinostat for relapsed/refractory diffuse large B-cell lymphoma: clinical outcome and correlation with genomic data. A phase 2 study of the Fondazione Italiana Linfomi. Leukemia and Lymphoma, 2018, 59, 2904-2910.	0.6	11
208	The Future of Combination Therapies for Peripheral T Cell Lymphoma (PTCL). Current Hematologic Malignancy Reports, 2018, 13, 13-24.	1.2	21
209	Blazing Signature Filter: a library for fast pairwise similarity comparisons. BMC Bioinformatics, 2018, 19, 221.	1.2	6
210	Diverse Impacts of HIV Latency-Reversing Agents on CD8+ T-Cell Function: Implications for HIV Cure. Frontiers in Immunology, 2018, 9, 1452.	2.2	26
211	Pharmacology and Molecular Mechanisms of Antineoplastic Agents for Hematologic Malignancies. , 2018, , 849-912.		29
212	Small molecule inhibitors for cutaneous T-cell lymphomas. Expert Opinion on Orphan Drugs, 2018, 6, 345-350.	0.5	0
213	Regulatory mechanisms of PD-L1 expression in cancer cells. Cancer Immunology, Immunotherapy, 2018, 67, 1481-1489.	2.0	59
214	Integrating novel systemic therapies for the treatment of mycosis fungoides and Sézary syndrome. Best Practice and Research in Clinical Haematology, 2018, 31, 322-335.	0.7	8
215	Mycosis fungoides and Sézary syndrome: 2019 update on diagnosis, riskâ€stratification, and management. American Journal of Hematology, 2019, 94, 1027-1041.	2.0	77
216	Leukaemic variants of cutaneous T-cell lymphoma: Erythrodermic mycosis fungoides and Sézary syndrome. Best Practice and Research in Clinical Haematology, 2019, 32, 239-252.	0.7	5
218	Histone Deacetylases (HDACs) Guided Novel Therapies for T-cell lymphomas. International Journal of Medical Sciences, 2019, 16, 424-442.	1.1	51
219	Mechanism of Action for HDAC Inhibitors—Insights from Omics Approaches. International Journal of Molecular Sciences, 2019, 20, 1616.	1.8	48
220	Identification and Characterization of AES-135, a Hydroxamic Acid-Based HDAC Inhibitor That Prolongs Survival in an Orthotopic Mouse Model of Pancreatic Cancer. Journal of Medicinal Chemistry, 2019, 62, 2651-2665.	2.9	28
221	Cutaneous T-Cell Lymphoma and Cutaneous B-Cell Lymphoma. , 2020, , 1948-1964.e5.		0

#	Article	IF	CITATIONS
222	Characterizing the pharmacokinetics of panobinostat in a non-human primate model for the treatment of diffuse intrinsic pontine glioma. Cancer Chemotherapy and Pharmacology, 2020, 85, 827-830.	1.1	10
223	Targeting epigenetic regulators in the treatment of T-cell lymphoma. Expert Review of Hematology, 2020, 13, 127-139.	1.0	8
224	Class I/IIb-Selective HDAC Inhibitor Exhibits Oral Bioavailability and Therapeutic Efficacy in Acute Myeloid Leukemia. ACS Medicinal Chemistry Letters, 2020, 11, 56-64.	1.3	15
225	B-ALL Complexity: Is Targeted Therapy Still A Valuable Approach for Pediatric Patients?. Cancers, 2020, 12, 3498.	1.7	11
226	Synergistic effects of BKM120 and panobinostat on pre-B acute lymphoblastic cells: an emerging perspective for the simultaneous inhibition of PI3K and HDACs. Journal of Receptor and Signal Transduction Research, 2022, 42, 100-108.	1.3	1
227	Recent Update of HDAC Inhibitors in Lymphoma. Frontiers in Cell and Developmental Biology, 2020, 8, 576391.	1.8	48
228	Chidamide increases the sensitivity of refractory or relapsed acute myeloid leukemia cells to anthracyclines via regulation of the HDAC3 -AKT-P21-CDK2 signaling pathway. Journal of Experimental and Clinical Cancer Research, 2020, 39, 278.	3.5	27
229	A Multitargeted Approach: Organorhodium Anticancer Agent Based on Vorinostat as a Potent Histone Deacetylase Inhibitor. Angewandte Chemie - International Edition, 2020, 59, 14609-14614.	7.2	22
230	Selective Class I HDAC Inhibitors Based on Aryl Ketone Zinc Binding Induce HIV-1 Protein for Clearance. ACS Medicinal Chemistry Letters, 2020, 11, 1476-1483.	1.3	21
231	PTC-0861: A novel HDAC6-selective inhibitor as a therapeutic strategy in acute myeloid leukaemia. European Journal of Medicinal Chemistry, 2020, 201, 112411.	2.6	27
232	Impact of HDAC Inhibitors on Protein Quality Control Systems: Consequences for Precision Medicine in Malignant Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 425.	1.8	28
233	Anti-leukemic effects of histone deacetylase (HDAC) inhibition in acute lymphoblastic leukemia (ALL) cells: Shedding light on mitigating effects of NF-κB and autophagy on panobinostat cytotoxicity. European Journal of Pharmacology, 2020, 875, 173050.	1.7	20
234	Anti-Cancer Effects of CKD-581, a Potent Histone Deacetylase Inhibitor against Diffuse Large B-Cell Lymphoma. International Journal of Molecular Sciences, 2020, 21, 4377.	1.8	5
235	Romidepsin Plus Liposomal Doxorubicin Is Safe and Effective in Patients with Relapsed or Refractory T-Cell Lymphoma: Results of a Phase I Dose-Escalation Study. Clinical Cancer Research, 2020, 26, 1000-1008.	3.2	26
236	Histone Mutations and Cancer. Advances in Experimental Medicine and Biology, 2021, , .	0.8	3
237	Novel therapies targeting cutaneous T cell lymphomas and their microenvironment. Seminars in Hematology, 2021, 58, 103-113.	1.8	4
238	Direct Amidation to Access 3-Amido-1,8-Naphthalimides Including Fluorescent Scriptaid Analogues as HDAC Inhibitors. Cells, 2021, 10, 1505.	1.8	6
239	Development of HDAC Inhibitors Exhibiting Therapeutic Potential in T-Cell Prolymphocytic Leukemia. Journal of Medicinal Chemistry, 2021, 64, 8486-8509.	2.9	28

#	Article	IF	CITATIONS
240	HDAC Inhibitors: Dissecting Mechanisms of Action to Counter Tumor Heterogeneity. Cancers, 2021, 13, 3575.	1.7	35
241	Histone deacetylase 2 selective inhibitors: A versatile therapeutic strategy as next generation drug target in cancer therapy. Pharmacological Research, 2021, 170, 105695.	3.1	38
242	Cutaneous T ell lymphomas: 2021 update on diagnosis, riskâ€stratification, and management. American Journal of Hematology, 2021, 96, 1313-1328.	2.0	21
243	A Multitargeted Approach: Organorhodium Anticancer Agent Based on Vorinostat as a Potent Histone Deacetylase Inhibitor. Angewandte Chemie, 2020, 132, 14717-14722.	1.6	4
245	Current Epigenetic Therapy for T-Cell Lymphoma. , 2013, , 279-296.		2
246	Resistance to Histone Deacetylase Inhibitors in the Treatment of Lymphoma. Resistance To Targeted Anti-cancer Therapeutics, 2019, , 87-110.	0.1	1
247	Review of the Treatment of Mycosis Fungoides and SéZary Syndrome : A Stage-Based Approach. International Journal of Health Sciences, 2013, 7, 220-239.	0.4	22
248	Biomarkers of Histone Deacetylase Inhibitor Activity in a Phase 1 Combined-Modality Study with Radiotherapy. PLoS ONE, 2014, 9, e89750.	1.1	7
249	Histone Deacetylases and Cancer-Associated Angiogenesis: Current Understanding of the Biology and Clinical Perspectives. Critical Reviews in Oncogenesis, 2015, 20, 119-137.	0.2	18
250	Current perspective of histone deacetylase inhibitors: A review. International Journal of Pharmaceutical Chemistry and Analysis, 2020, 5, 108-122.	0.1	1
251	Combinatorial antitumor effect of HDACs and the PI3K-Akt-mTOR pathway inhibition in a Pten deficient model of prostate cancer. Oncotarget, 2013, 4, 2225-2236.	0.8	64
252	Interpreting clinical assays for histone deacetylase inhibitors. Cancer Management and Research, 2011, 3, 117.	0.9	33
253	The Role of Phenolic Compounds in the Fight against Cancer – A Review. Anti-Cancer Agents in Medicinal Chemistry, 2013, 13, 1236-1258.	0.9	211
254	A Novel Suberoylanilide Hydroxamic Acid Histone Deacetylase Inhibitor Derivative, N25, Exhibiting Improved Antitumor Activity in both Human U251 and H460 Cells. Asian Pacific Journal of Cancer Prevention, 2014, 15, 4331-4338.	0.5	9
255	Targeting Epigenetic Modifiers Can Reduce the Clonogenic Capacities of Sézary Cells. Frontiers in Oncology, 2021, 11, 775253.	1.3	3
256	Epigenetic Profiling of Gliomas. , 2009, , 615-650.		1
257	Molecular Genetics of Mature T/NK Neoplasms. Molecular Pathology Library, 2010, , 309-327.	0.1	0
259	Novel Targeted Therapeutics for Peripheral T-Cell Lymphoma. , 2012, , 349-372.		0

#	Article	IF	Citations
260	Syndromes and Clinical Management Issues Associated with T-Cell Lymphomas. , 2013, , 317-331.		0
261	Cutaneous T-Cell Lymphoma. , 2014, , 133-167.		0
262	Cutaneous T-Cell Lymphoma and Cutaneous B-Cell Lymphoma. , 2014, , 2060-2075.e5.		0
263	Development of Drug-Induced Cutaneous Vasculitis in a Patient with Relapsed Angioimmunoblastic T-cell Lymphoma Treated with Novel Bortezomib and Panobinostat Combination: A Possible Surrogate Marker of Response. Cancer Science & Research Open Access, 2014, 1, 1-4.	1.4	0
264	Targeted Cancer Therapy. Nishinihon Journal of Dermatology, 2016, 78, 221-228.	0.0	0
266	Epigenetic-Targeted Treatments for H3K27M-Mutant Midline Gliomas. Advances in Experimental Medicine and Biology, 2021, 1283, 73-84.	0.8	3
267	Review of the treatment of mycosis fungoides and Sézary syndrome: A stage-based approach. International Journal of Health Sciences, 2013, 7, 220-39.	0.4	10
268	New insights into the treatment of multiple myeloma with histone deacetylase inhibitors. Current Pharmaceutical Design, 2013, 19, 734-44.	0.9	23
269	Epigenetics in diagnosis, prognostic assessment and treatment of cancer: an update. EXCLI Journal, 2014, 13, 954-76.	0.5	6
270	Synthesis and biological evaluation of aminobenzamides containing purine moiety as class I histone deacetylases inhibitors. Bioorganic and Medicinal Chemistry, 2022, 56, 116599.	1.4	5
271	The tubulin code in platelet biogenesis Seminars in Cell and Developmental Biology, 2022, , .	2.3	2
272	Panobinostat, a Pan-HDAC Inhibitor, Substantially Decreases the Quiescent Population of Leukemic Cells either in Monoculture or in Co-culture with Bone Marrow Stromal Cells International Journal of Cancer Management, 2022, 15, .	0.2	1
274	Singleâ€cell profilingâ€guided combination therapy of câ€Fos and histone deacetylase inhibitors in diffuse large Bâ€cell lymphoma. Clinical and Translational Medicine, 2022, 12, e798.	1.7	10
275	Discovery of Histone Deacetylase Inhibitor Using Molecular Modeling and Free Energy Calculations. ACS Omega, 2022, 7, 18786-18794.	1.6	5
276	Clinical Applications of Histone Deacetylase Inhibitors. , 2023, , 793-819.		0
277	Evaluation of Small-Molecule HDAC Inhibitors Through In Vitro and In Cellulo Approaches. Methods in Molecular Biology, 2023, , 157-177.	0.4	0
278	Cutaneous T ell lymphomas: 2023 update on diagnosis, riskâ€stratification, and management. American Journal of Hematology, 2023, 98, 193-209.	2.0	12
279	DOT1L inhibition does not modify the sensitivity of cutaneous T cell lymphoma to pan-HDAC inhibitors in vitro. Frontiers in Genetics, 0, 13, .	1.1	0

#	Article	IF	CITATIONS
280	Recent advances in epigenetic anticancer therapeutics and future perspectives. Frontiers in Genetics, 0, 13, .	1.1	3
281	Clinical advances in epigenetic therapies for lymphoma. Clinical Epigenetics, 2023, 15, .	1.8	3