Global Emission and Production of Mercury during the Nonferrous Sulfide Ores

Environmental Science & amp; Technology 42, 5971-5977 DOI: 10.1021/es800495g

Citation Report

#	Article	IF	CITATIONS
2	Mercury contamination in vicinity of secondary copper smelters in Fuyang, Zhejiang Province, China: Levels and contamination in topsoils. Environmental Pollution, 2009, 157, 1787-1793.	7.5	22
3	Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics, 2010, 10, 5951-5964.	4.9	1,155
4	Mercury emission to atmosphere from primary Zn production in China. Science of the Total Environment, 2010, 408, 4607-4612.	8.0	45
5	Estimating mercury emissions from a zinc smelter in relation to China's mercury control policies. Environmental Pollution, 2010, 158, 3347-3353.	7.5	52
6	Anthropogenic mercury emission inventory with emission factors and total emission in Korea. Atmospheric Environment, 2010, 44, 2714-2721.	4.1	79
7	Sedimentary mercury stable isotope records of atmospheric and riverine pollution from two major European heavy metal refineries. Chemical Geology, 2010, 279, 90-100.	3.3	136
8	All-Time Releases of Mercury to the Atmosphere from Human Activities. Environmental Science & Technology, 2011, 45, 10485-10491.	10.0	434
9	On-line spectroscopic and spectrometric methods for the determination of metal species in industrial processesâ~†. Progress in Energy and Combustion Science, 2011, 37, 125-171.	31.2	71
10	Preliminary mercury emission estimates from non–ferrous metal smelting in India. Atmospheric Pollution Research, 2011, 2, 513-519.	3.8	16
11	Mercury Mobilization in a Contaminated Industrial Soil for Phytoremediation. Communications in Soil Science and Plant Analysis, 2011, 42, 2767-2777.	1.4	28
12	Update of mercury emissions from China's primary zinc, lead and copper smelters, 2000–2010. Atmospheric Chemistry and Physics, 2012, 12, 11153-11163.	4.9	80
13	Metallogeny and environmental impact of Hg in Zn deposits in China. Applied Geochemistry, 2012, 27, 151-160.	3.0	23
14	Were mercury emission factors for Chinese non-ferrous metal smelters overestimated? Evidence from onsite measurements in six smelters. Environmental Pollution, 2012, 171, 109-117.	7.5	60
15	Synthesis of current data for Hg in areas of geologic resource extraction contamination and aquatic systems in China. Science of the Total Environment, 2012, 421-422, 59-72.	8.0	17
16	Substance Flow Analysis of Mercury Affecting Water Quality in the European Union. Water, Air, and Soil Pollution, 2012, 223, 429-442.	2.4	23
17	Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium. Science of the Total Environment, 2013, 442, 290-301.	8.0	34
18	Contribution of contaminated sites to the global mercury budget. Environmental Research, 2013, 125, 160-170.	7.5	126
19	Use and Legacy of Mercury in the Andes. Environmental Science & amp; Technology, 2013, 47, 4181-4188.	10.0	97

#	Article	IF	CITATIONS
20	A Review of Key Hazardous Trace Elements in Chinese Coals: Abundance, Occurrence, Behavior during Coal Combustion and Their Environmental Impacts. Energy & Fuels, 2013, 27, 601-614.	5.1	153
21	A review of atmospheric mercury emissions, pollution and control in China. Frontiers of Environmental Science and Engineering, 2014, 8, 631-649.	6.0	111
22	Absorption characteristics of elemental mercury in mercury chloride solutions. Journal of Environmental Sciences, 2014, 26, 2257-2265.	6.1	12
23	Investigation on mercury removal method from flue gas in the presence of sulfur dioxide. Journal of Hazardous Materials, 2014, 279, 289-295.	12.4	34
24	Atmospheric mercury emissions from China's primary nonferrous metal (Zn, Pb and Cu) smelting during 1949–2010. Atmospheric Environment, 2015, 103, 331-338.	4.1	41
25	New Insight into Atmospheric Mercury Emissions from Zinc Smelters Using Mass Flow Analysis. Environmental Science & Technology, 2015, 49, 3532-3539.	10.0	58
26	Updated Emission Inventories for Speciated Atmospheric Mercury from Anthropogenic Sources in China. Environmental Science & Technology, 2015, 49, 3185-3194.	10.0	356
27	Removal of mercury (II), elemental mercury and arsenic from simulated flue gas by ammonium sulphide. Environmental Technology (United Kingdom), 2015, 36, 2691-2701.	2.2	4
28	Metal Toxicology in Developing Countries. , 2015, , 529-545.		4
29	Removal of mercury from flue gas from nonferrous metal smelting, by use of mercury chloride solution, and mechanisms of inhibition by sulfur dioxide. Research on Chemical Intermediates, 2015, 41, 5889-5905.	2.7	11
30	Mercury transformation and speciation in flue gases from anthropogenic emission sources: a critical review. Atmospheric Chemistry and Physics, 2016, 16, 2417-2433.	4.9	114
31	Flow Analysis of the Mercury Associated with Nonferrous Ore Concentrates: Implications on Mercury Emissions and Recovery in China. Environmental Science & Technology, 2016, 50, 1796-1803.	10.0	52
32	Removal of mercury using processes involving sulfuric acid during zinc production in an imperial smelting process (ISP) plant. Journal of Material Cycles and Waste Management, 2017, 19, 863-869.	3.0	5
33	Effect of copper ions on the mercury re-emission in a simulated wet scrubber. Fuel, 2017, 190, 379-385.	6.4	14
34	Air Contamination by Mercury, Emissions and Transformations—a Review. Water, Air, and Soil Pollution, 2017, 228, 123.	2.4	68
35	Estimation of anthropogenic mercury emission from various sources in Iran. Toxin Reviews, 2017, 36, 52-56.	3.4	2
36	Mercury Flows in China and Global Drivers. Environmental Science & amp; Technology, 2017, 51, 222-231.	10.0	121
37	Selective Removal of Elemental Mercury from High-Concentration SO ₂ Flue Gas by Thiourea Solution and Investigation of Mechanism. Industrial & Engineering Chemistry Research, 2017, 56, 4281-4287.	3.7	33

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
38	Environmental geochemistry of mercury in the area of emissions of the Karabashmed copper smelter. Geochemistry International, 2017, 55, 935-945.	0.7	5
39	Controllable ZnO architectures with the assistance of ethanolamine and their application for removing divalent heavy metals (Cu, Pb, Ni) from water. New Journal of Chemistry, 2018, 42, 3356-3362.	2.8	14
40	Estimation and Future Prediction of Mercury Emissions from Anthropogenic Sources in South Korea. Journal of Chemical Engineering of Japan, 2018, 51, 800-808.	0.6	6
41	Mitigation Options of Atmospheric Hg Emissions in China. Environmental Science & Technology, 2018, 52, 12368-12375.	10.0	84
42	Outstanding Resistance of H ₂ S-Modified Cu/TiO ₂ to SO ₂ for Capturing Gaseous Hg ⁰ from Nonferrous Metal Smelting Flue Gas: Performance and Reaction Mechanism. Environmental Science & Technology, 2018, 52, 10003-10010.	10.0	84
43	Behavior of Sulfur Oxides in Nonferrous Metal Smelters and Implications on Future Control and Emission Estimation. Environmental Science & amp; Technology, 2019, 53, 8796-8804.	10.0	28
44	Outstanding Performance of Recyclable Amorphous MoS ₃ Supported on TiO ₂ for Capturing High Concentrations of Gaseous Elemental Mercury: Mechanism, Kinetics, and Application. Environmental Science & Technology, 2019, 53, 4480-4489.	10.0	92
45	One Step Interface Activation of ZnS Using Cupric Ions for Mercury Recovery from Nonferrous Smelting Flue Gas. Environmental Science & Technology, 2019, 53, 4511-4518.	10.0	96
46	Primary Suppliers Driving Atmospheric Mercury Emissions through Global Supply Chains. One Earth, 2019, 1, 254-266.	6.8	50
47	Recyclable CuS sorbent with large mercury adsorption capacity in the presence of SO2 from non-ferrous metal smelting flue gas. Fuel, 2019, 235, 847-854.	6.4	139
48	Selective recovery of mercury from high mercury-containing smelting wastes using an iodide solution system. Journal of Hazardous Materials, 2019, 363, 179-186.	12.4	38
49	Study on the regenerable sulfur-resistant sorbent for mercury removal from nonferrous metal smelting flue gas. Fuel, 2019, 241, 451-458.	6.4	60
50	Tracing Mercury Pollution along the Norwegian Coast via Elemental, Speciation, and Isotopic Analysis of Liver and Muscle Tissue of Deep-Water Marine Fish (<i>Brosme brosme</i>). Environmental Science & Technology, 2019, 53, 1776-1785.	10.0	38
51	Remarkable improvement of Ti incorporation on Hg0 capture from smelting flue gas by sulfurated γ-Fe2O3: Performance and mechanism. Journal of Hazardous Materials, 2020, 381, 120967.	12.4	54
52	Zinc concentrate internal circulation technology for elemental mercury recovery from zinc smelting flue gas. Fuel, 2020, 280, 118566.	6.4	21
53	Online detection and measurement of elemental mercury vapor by ion mobility spectrometry with chloroform dopant. Journal of Chromatography A, 2020, 1634, 461676.	3.7	4
54	Mercury-bearing wastes: Sources, policies and treatment technologies for mercury recovery and safe disposal. Journal of Environmental Management, 2020, 270, 110945.	7.8	33
55	Acceleration of Hg ⁰ Adsorption onto Natural Sphalerite by Cu ²⁺ Activation during Flotation: Mechanism and Applications in Hg ⁰ Recovery. Environmental Science & amp; Technology, 2020, 54, 7687-7696.	10.0	35

ARTICLE IF CITATIONS # The potential wildfire effects on mercury remobilization from topsoils and biomass in a 8.2 7 56 smelter-polluted semi-arid area. Chemosphere, 2020, 247, 125972. Sulfation Kinetics of Low-Grade Nickel–Copper Sulfide Ore in the Sulfuric Acid Roasting Process. Russian Journal of Non-Ferrous Metals, 2020, 61, 27-41. Mercury throughput of the Austrian manufacturing industry $\hat{a} \in \hat{}$ Discussion of data and data gaps. 58 10.8 3 Resources, Conservation and Recycling, 2021, 166, 105344. Production of H₂S with a Novel Short-Process for the Removal of Heavy Metals in Acidic Effluents from Smelting Flue-Gas Scrubbing Systems. Environmental Science & amp; Technology, 2021, 59 55, 3988-3995. Current technologies for recovery of metals from industrial wastes: An overview. Environmental 60 6.1 91 Technology and Innovation, 2021, 22, 101525. Advances in flue gas mercury abatement by mineral chalcogenides. Chemical Engineering Journal, 2021, 12.7 411, 128608. Co9S8 nanoparticles-embedded porous carbon: A highly efficient sorbent for mercury capture from 62 12.4 38 nonferrous smelting flue gas. Journal of Hazardous Materials, 2021, 412, 124970. Nonferrous metal flue gas purification based on high-temperature electrostatic precipitation. 5.6 Chemical Engineering Research and Design, 2021, 154, 202-210. 65 Lime use in gold processing – A review. Minerals Engineering, 2021, 174, 107231. 4.3 7 Impacts of Removal Compensation Effect on the Mercury Emission Inventories for Nonferrous Metal (Zinc, Lead, and Copper) Smelting in China. Environmental Science & amp; Technology, 2022, 56, 2163-2171. Metal toxicology in low-income and lower-middle-income countries., 2022, 705-729. 68 1 Looping Mercury Cycle in Global Environmental–Economic System Modeling. Environmental Science & Technology, 2022, 56, 2861-2879. Differentiated emission control strategy based on comprehensive evaluation of multi-media 70 6.1 3 pollution: Case of mercury emission control. Journal of Environmental Sciences, 2023, 123, 222-234. Reduction mechanism and optimization of prepare metallic antimony through direct microwave carbothermal reduction of antimony oxide concentrate. Journal of Materials Research and 5.8 Technology, 2022, 18, 882-895. Distribution of mercury and methylmercury in river water and sediment of typical manganese mining 72 7 6.1 area. Journal of Environmental Sciences, 2022, 119, 11-22. Examining the inconsistency of mercury flow in post-Minamata Convention global trade concerning artisanal and small-scale gold mining activity. Resources, Conservation and Recycling, 2022, 185, 106461. Magnetically recyclable CoS-modified graphitic carbon nitride-based materials for efficient 74 6.4 43 immobilization of gaseous elemental mercury. Fuel, 2022, 326, 125117. Looping upcycling SO2 into value-added H2S by fast-induced reduction process for heavy metals 6.4 treatment in nonferrous smelting industry. Fuel, 2023, 331, 125867.

CITATION REPORT

#	Article	IF	CITATIONS
76	New utilizations of natural CuFeS2 as the raw material of Cu smelting for recovering Hg0 from Cu smelting flue gas. Fuel, 2023, 341, 126997.	6.4	2
77	Establishing a self-supporting system of H2S production from SO2 with induced catalytic reduction process for mercury capture with super-large enrichment. Chemical Engineering Journal, 2023, 459, 141493.	12.7	7
78	Highly selective adsorption of Hg (II) from aqueous solution by three-dimensional porous N-doped starch-based carbon. Environmental Science and Pollution Research, 2023, 30, 52107-52123.	5.3	3
79	Mercury Removal from Concentrated Sulfuric Acid by Electrochemical Alloy Formation on Platinum. ACS ES&T Engineering, 0, , .	7.6	1
80	Pyrometallurgy: urban mining and its future implications. , 2023, , 125-142.		0
81	Life cycle assessment of a typical lead smelting process in China. Journal of Cleaner Production, 2023, 415, 137796.	9.3	1
82	Improved Anthropogenic Mercury Emission Inventories for China from 1980 to 2020: Toward More Accurate Effectiveness Evaluation for the Minamata Convention. Environmental Science & Technology, 2023, 57, 8660-8670.	10.0	7
83	Selective separation and recovery of selenium and mercury from hazardous acid sludge obtained from the acid-making process of copper smelting plants. Hydrometallurgy, 2023, 221, 106133.	4.3	0
84	Pollution characteristics and quantitative source apportionment of heavy metals within a zinc smelting site by GIS-based PMF and APCS-MLR models. Journal of Environmental Sciences, 2023, , .	6.1	0