Low dimensional behavior of large systems of globally of

Chaos 18, 037113 DOI: 10.1063/1.2930766

Citation Report

#	Article	IF	CITATIONS
1	Partially Integrable Dynamics of Hierarchical Populations of Coupled Oscillators. Physical Review Letters, 2008, 101, 264103.	2.9	253
2	External periodic driving of large systems of globally coupled phase oscillators. Chaos, 2008, 18, 037112.	1.0	73
3	Echo phenomena in large systems of coupled oscillators. Chaos, 2008, 18, 037115.	1.0	22
4	Introduction to Focus Issue: Synchronization in Complex Networks. Chaos, 2008, 18, 037101.	1.0	68
5	Stability diagram for the forced Kuramoto model. Chaos, 2008, 18, 043128.	1.0	143
6	Synchronization in interacting populations of heterogeneous oscillators with time-varying coupling. Chaos, 2008, 18, 037114.	1.0	61
7	Existence of hysteresis in the Kuramoto model with bimodal frequency distributions. Physical Review E, 2009, 80, 046215.	0.8	67
8	Invariant submanifold for series arrays of Josephson junctions. Chaos, 2009, 19, 013132.	1.0	69
9	Exact results for the Kuramoto model with a bimodal frequency distribution. Physical Review E, 2009, 79, 026204.	0.8	230
10	Large Coupled Oscillator Systems with Heterogeneous Interaction Delays. Physical Review Letters, 2009, 103, 044101.	2.9	103
11	Collective-phase description of coupled oscillators with general network structure. Physical Review E, 2009, 80, 036207.	0.8	54
12	Chimera states in heterogeneous networks. Chaos, 2009, 19, 013113.	1.0	188
13	Identical phase oscillators with global sinusoidal coupling evolve by Möbius group action. Chaos, 2009, 19, 043104.	1.0	163
14	Non-Abelian Kuramoto models and synchronization. Journal of Physics A: Mathematical and Theoretical, 2009, 42, 395101.	0.7	129
15	Low dimensional description of pedestrian-induced oscillation of the Millennium Bridge. Chaos, 2009, 19, 013129.	1.0	39
16	The dynamics of chimera states in heterogeneous Kuramoto networks. Physica D: Nonlinear Phenomena, 2009, 238, 1569-1588.	1.3	290
17	Simple model for bursting dynamics of neurons. Physical Review E, 2009, 80, 041930.	0.8	12
18	Long time evolution of phase oscillator systems. Chaos, 2009, 19, 023117.	1.0	386

#	Article	IF	CITATIONS
19	Periodically forced ensemble of nonlinearly coupled oscillators: From partial to full synchrony. Physical Review E, 2009, 80, 046211.	0.8	20
20	Dynamical origin of complex motor patterns. European Physical Journal D, 2010, 60, 361-367.	0.6	13
21	Nonuniversal Results Induced by Diversity Distribution in Coupled Excitable Systems. Physical Review Letters, 2010, 105, 084101.	2.9	55
22	Spontaneous synchrony breaking. Nature Physics, 2010, 6, 164-165.	6.5	133
23	Spontaneous synchronization of coupled oscillator systems with frequency adaptation. Physical Review E, 2010, 81, 046214.	0.8	39
24	Solvable Model of Spiral Wave Chimeras. Physical Review Letters, 2010, 104, 044101.	2.9	242
25	Synchronization transition in the Kuramoto model with colored noise. Physical Review E, 2010, 81, 055201.	0.8	15
26	Resonance tongues in a system of globally coupled FitzHugh–Nagumo oscillators with time-periodic coupling strength. Chaos, 2010, 20, 043114.	1.0	27
27	Phase synchronization between collective rhythms of globally coupled oscillator groups: Noiseless nonidentical case. Chaos, 2010, 20, 043110.	1.0	36
28	Phase synchronization between collective rhythms of globally coupled oscillator groups: Noisy identical case. Chaos, 2010, 20, 043109.	1.0	28
29	Chimeras in a network of three oscillator populations with varying network topology. Chaos, 2010, 20, 043122.	1.0	70
30	Bistable chimera attractors on a triangular network of oscillator populations. Physical Review E, 2010, 82, 016216.	0.8	77
31	Phase resetting of collective rhythm in ensembles of oscillators. Physical Review E, 2010, 82, 056202.	0.8	58
32	Chimeras in networks of planar oscillators. Physical Review E, 2010, 81, 066221.	0.8	102
33	Self-emerging and turbulent chimeras in oscillator chains. Physical Review E, 2010, 82, 035205.	0.8	117
34	Robust features of chimera states and the implementation of alternating chimera states. Europhysics Letters, 2010, 91, 40006.	0.7	68
35	Order parameter expansion and finite-size scaling study of coherent dynamics induced by quenched noise in the active rotator model. Physical Review E, 2010, 82, 051127.	0.8	6
36	Chimera states induced by spatially modulated delayed feedback. Physical Review E, 2010, 82, 066201.	0.8	15

#	Article	IF	CITATIONS
37	Noise-induced synchronization of a large population of globally coupled nonidentical oscillators. Physical Review E, 2010, 81, 065202.	0.8	68
38	Mass synchronization: Occurrence and its control with possible applications to brain dynamics. Chaos, 2010, 20, 045106.	1.0	8
39	Chimera states as chaotic spatiotemporal patterns. Physical Review E, 2010, 81, 065201.	0.8	133
40	Complex dynamics of an oscillator ensemble with uniformly distributed natural frequencies and global nonlinear coupling. Physical Review E, 2010, 82, 016212.	0.8	15
41	Collective phase chaos in the dynamics of interacting oscillator ensembles. Chaos, 2010, 20, 043134.	1.0	8
42	The dynamics of network coupled phase oscillators: An ensemble approach. Chaos, 2011, 21, 025103.	1.0	26
43	Effects of nonresonant interaction in ensembles of phase oscillators. Physical Review E, 2011, 84, 016210.	0.8	24
44	Generating macroscopic chaos in a network of globally coupled phase oscillators. Chaos, 2011, 21, 033127.	1.0	34
45	Desynchronizing anti-resonance effect ofm:nON–OFF coordinated reset stimulation. Journal of Neural Engineering, 2011, 8, 036019.	1.8	79
46	Spectral properties of chimera states. Chaos, 2011, 21, 013112.	1.0	163
46 47	Spectral properties of chimera states. Chaos, 2011, 21, 013112. Kuramoto Model of Coupled Oscillators with Positive and Negative Coupling Parameters: An Example of Conformist and Contrarian Oscillators. Physical Review Letters, 2011, 106, 054102.	1.0 2.9	163 302
46 47 48	Spectral properties of chimera states. Chaos, 2011, 21, 013112. Kuramoto Model of Coupled Oscillators with Positive and Negative Coupling Parameters: An Example of Conformist and Contrarian Oscillators. Physical Review Letters, 2011, 106, 054102. Collective phase description of globally coupled excitable elements. Physical Review E, 2011, 84, 046211.	1.0 2.9 0.8	163 302 30
46 47 48 49	Spectral properties of chimera states. Chaos, 2011, 21, 013112. Kuramoto Model of Coupled Oscillators with Positive and Negative Coupling Parameters: An Example of Conformist and Contrarian Oscillators. Physical Review Letters, 2011, 106, 054102. Collective phase description of globally coupled excitable elements. Physical Review E, 2011, 84, 046211. Chaos in Symmetric Phase Oscillator Networks. Physical Review Letters, 2011, 107, 244101.	1.0 2.9 0.8 2.9	163 302 30 52
46 47 48 49 50	Spectral properties of chimera states. Chaos, 2011, 21, 013112. Kuramoto Model of Coupled Oscillators with Positive and Negative Coupling Parameters: An Example of Conformist and Contrarian Oscillators. Physical Review Letters, 2011, 106, 054102. Collective phase description of globally coupled excitable elements. Physical Review E, 2011, 84, 046211. Chaos in Symmetric Phase Oscillator Networks. Physical Review Letters, 2011, 107, 244101. Chimera states are chaotic transients. Physical Review E, 2011, 84, 015201.	1.0 2.9 0.8 2.9 0.8	 163 302 30 52 225
46 47 48 49 50 51	Spectral properties of chimera states. Chaos, 2011, 21, 013112. Kuramoto Model of Coupled Oscillators with Positive and Negative Coupling Parameters: An Example of Conformist and Contrarian Oscillators. Physical Review Letters, 2011, 106, 054102. Collective phase description of globally coupled excitable elements. Physical Review E, 2011, 84, 046211. Chaos in Symmetric Phase Oscillator Networks. Physical Review Letters, 2011, 107, 244101. Chimera states are chaotic transients. Physical Review E, 2011, 84, 015201. Feature extraction and hypothesis testing using collective synchronization in a network of nonsymmetrically coupled phase oscillators. Nonlinear Theory and Its Applications IEICE, 2011, 2, 128-138.	1.0 2.9 0.8 2.9 0.8 0.8	 163 302 30 52 225 1
 46 47 48 49 50 51 52 	Spectral properties of chimera states. Chaos, 2011, 21, 013112. Kuramoto Model of Coupled Oscillators with Positive and Negative Coupling Parameters: An Example of Conformist and Contrarian Oscillators. Physical Review Letters, 2011, 106, 054102. Collective phase description of globally coupled excitable elements. Physical Review E, 2011, 84, 046211. Chaos in Symmetric Phase Oscillator Networks. Physical Review Letters, 2011, 107, 244101. Chimera states are chaotic transients. Physical Review E, 2011, 84, 015201. Feature extraction and hypothesis testing using collective synchronization in a network of nonsymmetrically coupled phase oscillators. Nonlinear Theory and Its Applications IEICE, 2011, 2, 128-138. Macroscopic entrainment of periodically forced oscillatory ensembles. Progress in Biophysics and Molecular Biology, 2011, 105, 98-108.	1.0 2.9 0.8 2.9 0.8 0.4	 163 302 30 52 225 1 26
 46 47 48 49 50 51 52 53 	Spectral properties of chimera states. Chaos, 2011, 21, 013112. Kuramoto Model of Coupled Oscillators with Positive and Negative Coupling Parameters: An Example of Conformist and Contrarian Oscillators. Physical Review Letters, 2011, 106, 054102. Collective phase description of globally coupled excitable elements. Physical Review E, 2011, 84, 046211. Chaos in Symmetric Phase Oscillator Networks. Physical Review Letters, 2011, 107, 244101. Chimera states are chaotic transients. Physical Review E, 2011, 84, 015201. Feature extraction and hypothesis testing using collective synchronization in a network of nonsymmetrically coupled phase oscillators. Nonlinear Theory and Its Applications IEICE, 2011, 2, 128-138. Macroscopic entrainment of periodically forced oscillatory ensembles. Progress in Biophysics and Molecular Biology, 2011, 105, 98-108. Fronts and bumps in spatially extended Kuramoto networks. Physica D: Nonlinear Phenomena, 2011, 240, 1960-1971.	1.0 2.9 0.8 2.9 0.8 0.4 1.4	 163 302 30 52 225 1 26 72

#	Article	IF	CITATIONS
55	Dynamics of heterogeneous oscillator ensembles in terms of collective variables. Physica D: Nonlinear Phenomena, 2011, 240, 872-881.	1.3	104
56	Hyperbolic chaos in a system of resonantly coupled weakly nonlinear oscillators. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 1407-1411.	0.9	8
57	Dynamics of multi-frequency oscillator ensembles with resonant coupling. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 2714-2719.	0.9	12
58	Collective synchronization in the presence of reactive coupling and shear diversity. Physical Review E, 2011, 84, 046206.	0.8	21
59	Conformists and contrarians in a Kuramoto model with identical natural frequencies. Physical Review E, 2011, 84, 046202.	0.8	120
60	Comment on "Long time evolution of phase oscillator systems―[Chaos 19 , 023117 (2009)]. Chaos, 2011, 21, 025112.	1.0	64
61	Spatiotemporal mode structure of nonlinearly coupled drift wave modes. Physical Review E, 2011, 84, 056405.	0.8	15
62	General coupled-nonlinear-oscillator model for event-related (de)synchronization. Physical Review E, 2011, 84, 036210.	0.8	7
63	Center manifold reduction for large populations of globally coupled phase oscillators. Chaos, 2011, 21, 043103.	1.0	45
64	Cluster synchrony in systems of coupled phase oscillators with higher-order coupling. Physical Review E, 2011, 84, 036208.	0.8	70
65	Shear Diversity Prevents Collective Synchronization. Physical Review Letters, 2011, 106, 254101.	2.9	49
66	Dynamics and pattern formation in large systems of spatially-coupled oscillators with finite response times. Chaos, 2011, 21, 023122.	1.0	40
67	Average dynamics of a driven set of globally coupled excitable units. Chaos, 2011, 21, 023102.	1.0	19
68	Multi-frequency activation of neuronal networks by coordinated reset stimulation. Interface Focus, 2011, 1, 75-85.	1.5	18
69	The Kuramoto model with distributed shear. Europhysics Letters, 2011, 95, 60007.	0.7	17
70	Interaction between telencephalic signals and respiratory dynamics in songbirds. Journal of Neurophysiology, 2012, 107, 2971-2983.	0.9	15
71	Disorder-induced dynamics in a pair of coupled heterogeneous phase oscillator networks. Chaos, 2012, 22, 043104.	1.0	51
72	Hierarchical synchrony of phase oscillators in modular networks. Physical Review E, 2012, 85, 016208.	0.8	65

#	Article	IF	CITATIONS
73	Multiscale dynamics in communities of phase oscillators. Chaos, 2012, 22, 013102.	1.0	28
74	Collective Modes of Coupled Phase Oscillators with Delayed Coupling. Physical Review Letters, 2012, 108, 204101.	2.9	52
75	Kuramoto model with time-varying parameters. Physical Review E, 2012, 86, 046212.	0.8	53
76	Nonuniversal Transitions to Synchrony in the Sakaguchi-Kuramoto Model. Physical Review Letters, 2012, 109, 164101.	2.9	104
77	Möbius transformations and electronic transport properties of large disorderless networks. Physical Review E, 2012, 85, 057202.	0.8	7
78	The asymptotic behavior of the order parameter for the infinite- <i>N</i> Kuramoto model. Chaos, 2012, 22, 043118.	1.0	27
79	NONLINEAR DYNAMICS AND THE SYNTHESIS OF ZEBRA FINCH SONG. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1250235.	0.7	4
80	Global attractor and asymptotic dynamics in the Kuramoto model for coupled noisy phase oscillators. Nonlinearity, 2012, 25, 1247-1273.	0.6	27
81	Global dynamics of oscillator populations under common noise. Europhysics Letters, 2012, 99, 20006.	0.7	12
82	Multistability of twisted states in non-locally coupled Kuramoto-type models. Chaos, 2012, 22, 013114.	1.0	47
83	Synchronization of clocks. Physics Reports, 2012, 517, 1-69.	10.3	112
84	The oscillating two-cluster chimera state in non-locally coupled phase oscillators. Europhysics Letters, 2012, 97, 10009.	0.7	47
85	Persistent fluctuations in synchronization rate in globally coupled oscillators with periodic external forcing. Physical Review E, 2012, 85, 056207.	0.8	7
86	Mean-field behavior in coupled oscillators with attractive and repulsive interactions. Physical Review E, 2012, 85, 056210.	0.8	63
87	Stationary patterns of coherence and incoherence in two-dimensional arrays of non-locally-coupled phase oscillators. Physical Review E, 2012, 85, 036210.	0.8	119
88	Synchronization analysis of resonate-and-fire neuron models with delayed resets. , 2012, , .		2
89	Photic Desynchronization of Two Subgroups of Circadian Oscillators in a Network Model of the Suprachiasmatic Nucleus with Dispersed Coupling Strengths. PLoS ONE, 2012, 7, e36900.	1.1	29
90	Chimeras in random non-complete networks of phase oscillators. Chaos, 2012, 22, 013132.	1.0	80

#	Article	IF	CITATIONS
91	Structure of cell networks critically determines oscillation regularity. Journal of Theoretical Biology, 2012, 297, 61-72.	0.8	32
92	Forced synchronization of a delayed-feedback oscillator. Physica D: Nonlinear Phenomena, 2012, 241, 372-381.	1.3	7
93	A dynamical study of pulse-coupled oscillators in the brain. BMC Neuroscience, 2012, 13, .	0.8	0
94	Phase and amplitude dynamics in large systems of coupled oscillators: Growth heterogeneity, nonlinear frequency shifts, and cluster states. Chaos, 2013, 23, 033116.	1.0	13
95	Bifurcations in the Sakaguchi–Kuramoto model. Physica D: Nonlinear Phenomena, 2013, 263, 74-85.	1.3	48
96	Synchrony suppression in ensembles of coupled oscillators <i>via</i> adaptive vanishing feedback. Chaos, 2013, 23, 033122.	1.0	25
97	Dynamics in hybrid complex systems of switches and oscillators. Chaos, 2013, 23, 033142.	1.0	0
98	Multiplicity of Singular Synchronous States in the Kuramoto Model of Coupled Oscillators. Physical Review Letters, 2013, 111, 204101.	2.9	59
99	Stationary and Traveling Wave States of the Kuramoto Model with an Arbitrary Distribution of Frequencies and Coupling Strengths. Physical Review Letters, 2013, 110, 064101.	2.9	69
100	Approximate solution to the stochastic Kuramoto model. Physical Review E, 2013, 88, 052111.	0.8	41
101	Chimeras with multiple coherent regions. Physical Review E, 2013, 88, 032902.	0.8	35
102	Stationary States in Infinite Networks of Spiking Oscillators with Noise. SIAM Journal on Applied Dynamical Systems, 2013, 12, 415-449.	0.7	3
103	Robustness of chimera states in complex dynamical systems. Scientific Reports, 2013, 3, 3522.	1.6	49
104	Relaxation dynamics of the Kuramoto model with uniformly distributed natural frequencies. Physica A: Statistical Mechanics and Its Applications, 2013, 392, 3812-3818.	1.2	6
105	Spontaneous synchrony in power-grid networks. Nature Physics, 2013, 9, 191-197.	6.5	563
106	Chimera States on a Flat Torus. Physical Review Letters, 2013, 110, 094102.	2.9	96
107	Hyperbolic chaos at blinking coupling of noisy oscillators. Physical Review E, 2013, 87, .	0.8	0
108	Dynamics of Multifrequency Oscillator Communities. Physical Review Letters, 2013, 110, 134101.	2.9	31

#	Article	IF	CITATIONS
109	Autonomous and forced dynamics of oscillator ensembles with global nonlinear coupling: An experimental study. Physical Review E, 2013, 87, 062917.	0.8	22
110	Excitable elements controlled by noise and network structure. European Physical Journal: Special Topics, 2013, 222, 2517-2529.	1.2	22
111	Reversed two-cluster chimera state in non-locally coupled oscillators with heterogeneous phase lags. Europhysics Letters, 2013, 103, 10007.	0.7	19
112	Conformists and Contrarians in a Kuramoto Model with Uniformly Distributed Natural Frequencies. Communications in Theoretical Physics, 2013, 59, 684-688.	1.1	8
113	Coherence–incoherence patterns in a ring of non-locally coupled phase oscillators. Nonlinearity, 2013, 26, 2469-2498.	0.6	115
114	Complete Classification of the Macroscopic Behavior of a Heterogeneous Network of Theta Neurons. Neural Computation, 2013, 25, 3207-3234.	1.3	127
115	Analysis of a solvable model of a phase oscillator network on a circle with infinite-range Mexican-hat-type interaction. Physical Review E, 2013, 88, 032918.	0.8	3
116	Three-state network design for robust loop-searching systems. Physical Review E, 2013, 87, 052920.	0.8	4
117	Mean-field approximation of two coupled populations of excitable units. Physical Review E, 2013, 87, 012922.	0.8	17
118	Mean-field and mean-ensemble frequencies of a system of coupled oscillators. Physical Review E, 2013, 87, .	0.8	42
119	Stable and flexible system for glucose homeostasis. Physical Review E, 2013, 88, 032711.	0.8	16
120	Noise-induced synchronization, desynchronization, and clustering in globally coupled nonidentical oscillators. Physical Review E, 2013, 88, 012905.	0.8	44
121	Four-cluster chimera state in non-locally coupled phase oscillator systems with an external potential. Chinese Physics B, 2013, 22, 100505.	0.7	2
122	Macroscopic complexity from an autonomous network of networks of theta neurons. Frontiers in Computational Neuroscience, 2014, 8, 145.	1.2	22
123	Partially coherent twisted states in arrays of coupled phase oscillators. Chaos, 2014, 24, 023102.	1.0	43
124	Nonlinear Dynamics of an Array of Nano Spin Transfer Oscillators. Understanding Complex Systems, 2014, , 25-38.	0.3	0
125	Structure-Function Discrepancy: Inhomogeneity and Delays in Synchronized Neural Networks. PLoS Computational Biology, 2014, 10, e1003736.	1.5	36
126	Mouse Hair Cycle Expression Dynamics Modeled as Coupled Mesenchymal and Epithelial Oscillators. PLoS Computational Biology, 2014, 10, e1003914.	1.5	12

ARTICLE IF CITATIONS # Solvable model of the collective motion of heterogeneous particles interacting on a sphere. New 127 1.2 28 Journal of Physics, 2014, 16, 023016. Derivation of a neural field model from a network of theta neurons. Physical Review E, 2014, 90, 0.8 010901. Phase diagram for the Kuramoto model with van Hemmen interactions. Physical Review E, 2014, 89, 129 0.8 21 012904. Controlling synchrony in oscillatory networks via an act-and-wait algorithm. Physical Review E, 2014, 90.032914. Kuramoto dynamics in Hamiltonian systems. Physical Review E, 2014, 90, 032917. 131 0.8 35 Homogeneous delays in the Kuramoto model with time-variable parameters. Physical Review E, 2014, 90, 0.8 052903. The Nonlinear Heat Equation on Dense Graphs and Graph Limits. SIAM Journal on Mathematical 133 0.9 62 Analysis, 2014, 46, 2743-2766. Low-Dimensional Dynamics of Populations of Pulse-Coupled Oscillators. Physical Review X, 2014, 4, . 134 2.8 93 135 Control of collective network chaos. Chaos, 2014, 24, 023127. 1.0 6 Mean-field theory of assortative networks of phase oscillators. Europhysics Letters, 2014, 107, 60006. Dynamics in the Kuramoto Model with a Discontinuous Bimodal Distribution of Natural Frequencies. 137 3 1.3 Chinese Physics Letters, 2014, 31, 060507. A mathematical model of dysfunction of the thalamo-cortical loop in schizophrenia. Theoretical 138 2.1 Biology and Medical Modelling, 2014, 11, 45. The Nonlinear Heat Equation on W-Random Graphs. Archive for Rational Mechanics and Analysis, 2014, 139 1.1 37 212, 781-803. Transition to synchronization in a Kuramoto model with the first- and second-order interaction terms. Physical Review E, 2014, 89, 032917. 140 0.8 14 Dynamics of the Kuramoto model in the presence of correlation between distributions of frequencies 141 0.8 24 and coupling strengths. Physical Review E, 2014, 89, 012910. Chimera states on complex networks. Physical Review E, 2014, 89, 022914. 142 Controlling Unstable Chaos: Stabilizing Chimera States by Feedback. Physical Review Letters, 2014, 112, 143 2.9 123 054102. 144 Synchronization in complex networks of phase oscillators: A survey. Automatica, 2014, 50, 1539-1564.

#	Article	IF	CITATIONS
145	From the Kuramoto-Sakaguchi model to the Kuramoto-Sivashinsky equation. Physical Review E, 2014, 89, 010901.	0.8	11
146	Dynamics in the Sakaguchi-Kuramoto model with two subpopulations. Physical Review E, 2014, 90, 012903.	0.8	5
147	Chimera Type Behavior in Nonlocal Coupling System with Two Different Inherent Frequencies. Journal of the Physical Society of Japan, 2014, 83, 034002.	0.7	0
148	Multicluster and traveling chimera states in nonlocal phase-coupled oscillators. Physical Review E, 2014, 90, 022919.	0.8	104
149	The Kuramoto model of coupled oscillators with a bi-harmonic coupling function. Physica D: Nonlinear Phenomena, 2014, 289, 18-31.	1.3	30
150	Cooperative behavior between oscillatory and excitable units: the peculiar role of positive coupling-frequency correlations. European Physical Journal B, 2014, 87, 1.	0.6	9
151	Hysteretic transitions in the Kuramoto model with inertia. Physical Review E, 2014, 90, 042905.	0.8	99
152	Solitary state at the edge of synchrony in ensembles with attractive and repulsive interactions. Physical Review E, 2014, 89, 060901.	0.8	103
153	Periodic synchronization and chimera in conformist and contrarian oscillators. Physical Review E, 2014, 89, 062924.	0.8	17
154	Collective phase dynamics of globally coupled oscillators: Noise-induced anti-phase synchronization. Physica D: Nonlinear Phenomena, 2014, 270, 20-29.	1.3	24
155	Glassy states and super-relaxation in populations of coupled phase oscillators. Nature Communications, 2014, 5, 4118.	5.8	49
156	Complex macroscopic behavior in systems of phase oscillators with adaptive coupling. Physica D: Nonlinear Phenomena, 2014, 267, 27-35.	1.3	31
157	Networks of theta neurons with time-varying excitability: Macroscopic chaos, multistability, and final-state uncertainty. Physica D: Nonlinear Phenomena, 2014, 267, 16-26.	1.3	56
158	Average dynamics of a finite set of coupled phase oscillators. Chaos, 2014, 24, 023112.	1.0	0
159	Taking the Pulse. Physics Magazine, 2014, 7, .	0.1	5
160	Frequency assortativity can induce chaos in oscillator networks. Physical Review E, 2015, 91, 060902.	0.8	24
161	Intercommunity resonances in multifrequency ensembles of coupled oscillators. Physical Review E, 2015, 92, 012906.	0.8	8
162	Collective phase response curves for heterogeneous coupled oscillators. Physical Review E, 2015, 92, 022923.	0.8	22

#	Article		CITATIONS
163	Twisted chimera states and multicore spiral chimera states on a two-dimensional torus. Physical Review E, 2015, 92, 042921.	0.8	53
164	Chimeras in networks with purely local coupling. Physical Review E, 2015, 92, 050904.	0.8	150
165	Experimental study of synchronization of coupled electrical self-oscillators and comparison to the Sakaguchi-Kuramoto model. Physical Review E, 2015, 92, 052912.	0.8	14
166	Persistent chimera states in nonlocally coupled phase oscillators. Physical Review E, 2015, 92, 060901.	0.8	37
167	Optimal synchronization of Kuramoto oscillators: A dimensional reduction approach. Physical Review E, 2015, 92, 062801.	0.8	26
168	Synchronization and plateau splitting of coupled oscillators with long-range power-law interactions. Physical Review E, 2015, 92, 062918.	0.8	7
169	Macroscopic Description for Networks of Spiking Neurons. Physical Review X, 2015, 5, .	2.8	184
170	Control of coupled oscillator networks with application to microgrid technologies. Science Advances, 2015, 1, e1500339.	4.7	82
171	Correspondence between Phase Oscillator Network and Classical XY Model with the Same Infinite-Range Interaction in Statics. Journal of the Physical Society of Japan, 2015, 84, 033001.	0.7	4
172	Explosive or Continuous: Incoherent state determines the route to synchronization. Scientific Reports, 2015, 5, 12039.	1.6	31
173	Entropy constraints on convergence in the infinite-N Kuramoto model. Chaos, 2015, 25, 073109.	1.0	7
174	Star-type oscillatory networks with generic Kuramoto-type coupling: A model for "Japanese drums synchrony― Chaos, 2015, 25, 123120.	1.0	23
175	Emergence of multicluster chimera states. Scientific Reports, 2015, 5, 12988.	1.6	30
176	Driven synchronization in random networks of oscillators. Chaos, 2015, 25, 073119.	1.0	14
177	Effects of multimodal distribution of delays in brain network dynamics. BMC Neuroscience, 2015, 16, .	0.8	4
178	Low dimensional behavior of explosive synchronization on star graphs. Journal of Statistical Mechanics: Theory and Experiment, 2015, 2015, P10007.	0.9	3
179	Phase Response Synchronization in Neuronal Population with Time-Varying Coupling Strength. Computational and Mathematical Methods in Medicine, 2015, 2015, 1-6.	0.7	1
180	Synchronization Dynamics in a System of Multiple Interacting Populations of Phase Oscillators. Chinese Physics Letters, 2015, 32, 030502.	1.3	4

	C	tation Report	
#	Article	IF	Citations
181	Collective dynamics from stochastic thermodynamics. New Journal of Physics, 2015, 17, 045024.	1.2	11
182	Dimensionality reduction in epidemic spreading models. Europhysics Letters, 2015, 111, 68006.	0.7	3
183	Exact Neural Fields Incorporating Gap Junctions. SIAM Journal on Applied Dynamical Systems, 2015, 1 1899-1929.	.4, 0.7	59
184	Designing a deep brain stimulator to suppress pathological neuronal synchrony. Neural Networks, 2015, 63, 282-292.	3.3	4
185	Synchronization transitions in ensembles of noisy oscillators with bi-harmonic coupling. Journal of Physics A: Mathematical and Theoretical, 2015, 48, 105101.	0.7	8
186	Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity, 2015, 28, R67-R87.	0.6	629
187	Susceptibility of large populations of coupled oscillators. Physical Review E, 2015, 91, 012925.	0.8	23
188	Chimera states in time-varying complex networks. Physical Review E, 2015, 91, 022817.	0.8	88
189	Parameter estimation, nonlinearity, and Occam's razor. Chaos, 2015, 25, 033104.	1.0	2
190	Dynamics of globally coupled oscillators: Progress and perspectives. Chaos, 2015, 25, 097616.	1.0	189
191	Chimera states in systems of nonlocal nonidentical phase-coupled oscillators. Physical Review E, 2015 91, 032918.	5, 0.8	12
192	Critical behavior of the relaxation rate, the susceptibility, and a pair correlation function in the Kuramoto model on scale-free networks. Physical Review E, 2015, 91, 032814.	0.8	34
193	An approach to normal forms of Kuramoto model with distributed delays and the effect of minimal delay. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 2018-2024.	0.9	3
194	Model reduction for networks of coupled oscillators. Chaos, 2015, 25, 053111.	1.0	37
195	Energy redistribution in hierarchical systems of oscillators. European Physical Journal B, 2015, 88, 1.	0.6	2
196	Explosive synchronization with partial degree-frequency correlation. Physical Review E, 2015, 91, 022818.	0.8	26
197	Phase synchronization between collective rhythms of fully locked oscillator groups. Scientific Reports, 2014, 4, 4832.	1.6	19
198	Onset and suffusing transitions towards synchronization in complex networks. Europhysics Letters, 2015, 109, 60005.	0.7	3

		CITATION RE	PORT	
#	Article		IF	CITATIONS
199	The Dependence of Chimera States on Initial Conditions. Chinese Physics Letters, 2015, 3	2,060502.	1.3	8
200	Chimera states in three dimensions. New Journal of Physics, 2015, 17, 073037.		1.2	108
201	Finite-size-induced transitions to synchrony in oscillator ensembles with nonlinear global o Physical Review E, 2015, 92, 020901.	coupling.	0.8	38
202	Clustering and phase synchronization in populations of coupled phase oscillators. Europe Journal B, 2015, 88, 1.	an Physical	0.6	5
203	Hopf Bifurcation in Two Groups of Delay-Coupled Kuramoto Oscillators. International Jour Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1550129.	nal of	0.7	3
204	Frustrated hierarchical synchronization and emergent complexity in the human connector Scientific Reports, 2014, 4, 5990.	ne network.	1.6	75
205	Bumps in Small-World Networks. Frontiers in Computational Neuroscience, 2016, 10, 53.		1.2	10
206	Basins of attraction for chimera states. New Journal of Physics, 2016, 18, 022002.		1.2	70
207	Dynamics of weakly inhomogeneous oscillator populations: perturbation theory on top of Watanabe–Strogatz integrability. Journal of Physics A: Mathematical and Theoretical, 2	016, 49, 31LTO2.	0.7	19
208	Is there an impact of small phase lags in the Kuramoto model?. Chaos, 2016, 26, 094806.		1.0	6
209	Chimera states in two populations with heterogeneous phase-lag. Chaos, 2016, 26, 0948	19.	1.0	51
210	On effective temperature in network models of collective behavior. Chaos, 2016, 26, 043	109.	1.0	12
211	Ott-Antonsen attractiveness for parameter-dependent oscillatory systems. Chaos, 2016, 2	26, 103101.	1.0	39
212	Bistability of patterns of synchrony in Kuramoto oscillators with inertia. Chaos, 2016, 26,	094822.	1.0	45
213	Resynchronization of circadian oscillators and the east-west asymmetry of jet-lag. Chaos, 094811.	2016, 26,	1.0	58
214	Continuous and discontinuous transitions to synchronization. Chaos, 2016, 26, 113119.		1.0	4
215	Travelling Wave in the Generalized Kuramoto Model with Inertia. Chinese Physics Letters, 050502.	2016, 33,	1.3	0
216	Dynamics of coupled oscillator systems in the presence of a local potential. Europhysics L 116, 30003.	etters, 2016,	0.7	1

#	Article	IF	Citations
217	Dynamics of phase oscillators with generalized frequency-weighted coupling. Physical Review E, 2016, 94, 062204.	0.8	22
218	Self-synchronization in an ensemble of nonlinear oscillators. Chaos, 2016, 26, 063107.	1.0	1
219	Travelling waves in arrays of delay-coupled phase oscillators. Chaos, 2016, 26, 094802.	1.0	21
220	Average activity of excitatory and inhibitory neural populations. Chaos, 2016, 26, 093104.	1.0	15
221	The Ott-Antonsen Ansatz in Globally Coupled Phase Oscillators. Chinese Physics Letters, 2016, 33, 070501.	1.3	1
222	Effect of the coupling strength on the nonlinear synchronization of a single-stage gear transmission. Nonlinear Dynamics, 2016, 85, 123-140.	2.7	13
223	Spatiotemporal dynamics of the Kuramoto-Sakaguchi model with time-dependent connectivity. Physical Review E, 2016, 94, 022213.	0.8	4
224	Symmetric States Requiring System Asymmetry. Physical Review Letters, 2016, 117, 114101.	2.9	74
225	Macroscopic self-oscillations and aging transition in a network of synaptically coupled quadratic integrate-and-fire neurons. Physical Review E, 2016, 94, 032215.	0.8	36
226	Linked and knotted chimera filaments in oscillatory systems. Physical Review E, 2016, 94, 010204.	0.8	21
227	Heterogeneity of time delays determines synchronization of coupled oscillators. Physical Review E, 2016, 94, 012209.	0.8	49
228	Existence of Chimera State on Two Parallel Circles. Journal of the Physical Society of Japan, 2016, 85, 064005.	0.7	0
229	Order parameter analysis for low-dimensional behaviors of coupled phase-oscillators. Scientific Reports, 2016, 6, 30184.	1.6	6
230	Landau damping effects in the synchronization of conformist and contrarian oscillators. Scientific Reports, 2016, 5, 18235.	1.6	7
231	Incoherent chimera and glassy states in coupled oscillators with frustrated interactions. Physical Review E, 2016, 94, 032205.	0.8	14
232	Phase oscillators in modular networks: The effect of nonlocal coupling. Physical Review E, 2016, 93, 012207.	0.8	14
233	Onset of time dependence in ensembles of excitable elements with global repulsive coupling. Physical Review E, 2016, 93, 020201.	0.8	13
234	Collective frequency variation in network synchronization and reverse PageRank. Physical Review E, 2016, 93, 042314.	0.8	11

	Сіта	tion Report	
#	Article	IF	CITATIONS
235	Dynamics of a population of oscillatory and excitable elements. Physical Review E, 2016, 93, 062203.	0.8	19
236	Tweezers for Chimeras in Small Networks. Physical Review Letters, 2016, 116, 114101.	2.9	76
237	From Quasiperiodic Partial Synchronization to Collective Chaos in Populations of Inhibitory Neurons with Delay. Physical Review Letters, 2016, 116, 238101.	2.9	57
238	Dynamics of two populations of phase oscillators with different frequency distributions. Physical Review E, 2016, 94, 012213.	0.8	9
239	Synchronization in the random-field Kuramoto model on complex networks. Physical Review E, 2016, 94, 012308.	0.8	8
240	From mechanical to biological oscillator networks: The role of long range interactions. European Physical Journal: Special Topics, 2016, 225, 1017-1035.	1.2	5
241	Bifurcations and Singularities for Coupled Oscillators with Inertia and Frustration. Physical Review Letters, 2016, 117, 214102.	2.9	31
242	Equivalence of coupled networks and networks with multimodal frequency distributions: Conditions for the bimodal and trimodal case. Physical Review E, 2016, 94, 052211.	0.8	20
243	Explosive transitions in complex networks' structure and dynamics: Percolation and synchronization. Physics Reports, 2016, 660, 1-94.	10.3	251
244	Excitation and suppression of chimera states by multiplexing. Physical Review E, 2016, 94, 052205.	0.8	119
245	Collective dynamics of identical phase oscillators with high-order coupling. Scientific Reports, 2016, 6, 31133.	1.6	17
246	Interplay of coupling and common noise at the transition to synchrony in oscillator populations. Scientific Reports, 2016, 6, 38518.	1.6	33
247	Self-Sustained Irregular Activity in an Ensemble of Neural Oscillators. Physical Review X, 2016, 6, .	2.8	20
248	Turbulence in the Ott–Antonsen equation for arrays of coupled phase oscillators. Nonlinearity, 2016, 29, 257-270.	0.6	21
249	Chimera states in networks of phase oscillators: The case of two small populations. Physical Review E, 2016, 93, 012218.	0.8	84
250	Dynamics in the Kuramoto model with a bi-harmonic coupling function. Communications in Nonlinear Science and Numerical Simulation, 2016, 38, 23-29.	1.7	6
251	Chimera states in spatiotemporal systems: Theory and Applications. International Journal of Modern Physics B, 2016, 30, 1630002.	1.0	36
252	Eliminating synchronization in bistable networks. Nonlinear Dynamics, 2016, 83, 1137-1151.	2.7	9

#	Article	IF	CITATIONS
253	Nonstandard transitions in the Kuramoto model: a role of asymmetry in natural frequency distributions. Journal of Statistical Mechanics: Theory and Experiment, 2017, 2017, 013403.	0.9	10
254	Chimera patterns in the Kuramoto–Battogtokh model. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 08LT01.	0.7	27
255	Numerical and analytical investigation of the chimera state excitation conditions in the Kuramoto-Sakaguchi oscillator network. Proceedings of SPIE, 2017, , .	0.8	2
256	Order parameter analysis of synchronization transitions on star networks. Frontiers of Physics, 2017, 12, 1.	2.4	12
257	Relating high dimensional stochastic complex systems to low-dimensional intermittency. European Physical Journal: Special Topics, 2017, 226, 341-351.	1.2	4
258	Modeling the network dynamics of pulse-coupled neurons. Chaos, 2017, 27, 033102.	1.0	24
259	Chimera-like states in structured heterogeneous networks. Chaos, 2017, 27, 043109.	1.0	6
260	Nontrivial standing wave state in frequency-weighted Kuramoto model. Frontiers of Physics, 2017, 12, 1.	2.4	7
261	Lotka–Volterra Like Dynamics in Phase Oscillator Networks. Advances in Dynamics, Patterns, Cognition, 2017, , 115-125.	0.2	0
262	Frequency and phase synchronization in large groups: Low dimensional description of synchronized clapping, firefly flashing, and cricket chirping. Chaos, 2017, 27, 051101.	1.0	20
263	Chimeras in Two-Dimensional Domains: Heterogeneity and the Continuum Limit. SIAM Journal on Applied Dynamical Systems, 2017, 16, 974-1014.	0.7	31
264	Complex behavior in chains of nonlinear oscillators. Chaos, 2017, 27, 063104.	1.0	10
265	Collective phase reduction of globally coupled noisy dynamical elements. Physical Review E, 2017, 95, 032225.	0.8	6
266	Macroscopic phase-resetting curves for spiking neural networks. Physical Review E, 2017, 96, 042311.	0.8	31
267	Stability of entrainment of a continuum of coupled oscillators. Chaos, 2017, 27, 103108.	1.0	4
268	Chimera and modulated drift states in a ring of nonlocally coupled oscillators with heterogeneous phase lags. Physical Review E, 2017, 96, 032224.	0.8	8
269	Synchronization scenarios in the Winfree model of coupled oscillators. Physical Review E, 2017, 96, 042208.	0.8	20
270	Symmetry breaking in two interacting populations of quadratic integrate-and-fire neurons. Physical Review E, 2017, 96, 042212.	0.8	17

#	Article	IF	Citations
271	Adaptive elimination of synchronization in coupled oscillator. New Journal of Physics, 2017, 19, 083004.	1.2	24
272	Synchronization of phase oscillators in the generalized Sakaguchi-Kuramoto model. Europhysics Letters, 2017, 118, 60005.	0.7	15
273	Nonlinear dynamics in the study of birdsong. Chaos, 2017, 27, 092101.	1.0	21
274	Spontaneous collective synchronization in the Kuramoto model with additional non-local interactions. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 424001.	0.7	4
275	Uncovering low dimensional macroscopic chaotic dynamics of large finite size complex systems. Chaos, 2017, 27, 083121.	1.0	2
276	Noise-induced stabilization of collective dynamics. Physical Review E, 2017, 95, 062221.	0.8	7
277	A mean field model for movement induced changes in the beta rhythm. Journal of Computational Neuroscience, 2017, 43, 143-158.	0.6	36
278	Synchronous dynamics in the Kuramoto model with biharmonic interaction and bimodal frequency distribution. Physical Review E, 2017, 96, 022202.	0.8	12
279	Hyperbolic geometry of Kuramoto oscillator networks. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 355101.	0.7	27
280	Synchronization of coupled active rotators by common noise. Physical Review E, 2017, 96, 062204.	0.8	24
281	Multiplexing induced explosive synchronization in Kuramoto oscillators with inertia. Europhysics Letters, 2017, 119, 60005.	0.7	20
282	The WS transform for the Kuramoto model with distributed amplitudes, phase lag and time delay. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 505101.	0.7	8
283	Breathing chimera in a system of phase oscillators. JETP Letters, 2017, 106, 393-399.	0.4	18
284	Finite-size effects in a stochastic Kuramoto model. Chaos, 2017, 27, 101103.	1.0	18
285	Dynamical phase transitions in generalized Kuramoto model with distributed Sakaguchi phase. Journal of Statistical Mechanics: Theory and Experiment, 2017, 2017, 113402.	0.9	1
286	Synchrony-induced modes of oscillation of a neural field model. Physical Review E, 2017, 96, 052407.	0.8	23
287	Asymmetric couplings enhance the transition from chimera state to synchronization. Physical Review E, 2017, 96, 052209.	0.8	14
288	Relaxation time of the global order parameter on multiplex networks: The role of interlayer coupling in Kuramoto oscillators. Physical Review E, 2017, 96, 042312.	0.8	8

#	Article	IF	CITATIONS
289	Coupling functions: Universal insights into dynamical interaction mechanisms. Reviews of Modern Physics, 2017, 89, .	16.4	196
290	Renormalization of Collective Modes in Large-Scale Neural Dynamics. Journal of Statistical Physics, 2017, 167, 543-558.	0.5	2
291	Boundary in the dynamic phase of globally coupled oscillatory and excitable units. Physical Review E, 2017, 96, 012210.	0.8	2
292	Collective chaos and period-doubling bifurcation in globally coupled phase oscillators. Nonlinear Dynamics, 2017, 89, 2273-2281.	2.7	8
293	Competing influence of common noise and desynchronizing coupling on synchronization in the Kuramoto-Sakaguchi ensemble. European Physical Journal: Special Topics, 2017, 226, 1921-1937.	1.2	9
294	Dynamics of oscillators globally coupled via two mean fields. Scientific Reports, 2017, 7, 2104.	1.6	11
295	Interplay of inertia and heterogeneous dynamics in an ensemble of Kuramoto oscillators. Analysis and Applications, 2017, 15, 837-861.	1.2	8
296	Codimension-two bifurcations induce hysteresis behavior and multistabilities in delay-coupled Kuramoto oscillators. Nonlinear Dynamics, 2017, 87, 803-814.	2.7	2
297	Connecting the Kuramoto Model and the Chimera State. Physical Review Letters, 2017, 119, 264101.	2.9	37
298	Coarse-Grained Descriptions of Dynamics for Networks with Both Intrinsic and Structural Heterogeneities. Frontiers in Computational Neuroscience, 2017, 11, 43.	1.2	6
299	Periodic synchronization in a system of coupled phase oscillators with attractive and repulsive interactions. Frontiers of Physics, 2018, 13, 1.	2.4	9
300	Breathing multichimera states in nonlocally coupled phase oscillators. Physical Review E, 2018, 97, 042212.	0.8	14
301	Chimera Patterns in One-Dimensional Oscillatory Medium. , 2018, , 159-180.		0
302	Simple and complex chimera states in a nonlinearly coupled oscillatory medium. Chaos, 2018, 28, 045101.	1.0	27
303	Symmetries and synchronization in multilayer random networks. Physical Review E, 2018, 97, 042304.	0.8	11
304	Theoretical Analysis of Bistability in Kuramoto Model with Connectivity-Frequency Correlations. Journal of the Physical Society of Japan, 2018, 87, 014004.	0.7	0
305	Stability of Phase Difference Trajectories of Networks of Kuramoto Oscillators with Time-Varying Couplings and Intrinsic Frequencies. SIAM Journal on Applied Dynamical Systems, 2018, 17, 457-483.	0.7	14
306	Landau Damping to Partially Locked States in the Kuramoto Model. Communications on Pure and Applied Mathematics, 2018, 71, 953-993.	1.2	14

	CITATION	Report	
#	Article	IF	CITATIONS
307	Chimera states in a bipartite network of phase oscillators. Nonlinear Dynamics, 2018, 92, 741-749.	2.7	13
308	Optimal design of tweezer control for chimera states. Physical Review E, 2018, 97, 012216.	0.8	26
309	Chimera states in two-dimensional networks of locally coupled oscillators. Physical Review E, 2018, 97, 022201.	0.8	58
310	Resonances and multistability in a Josephson junction connected to a resonator. Physical Review E, 2018, 97, 022203.	0.8	3
311	Stability of Spiral Chimera States on a Torus. SIAM Journal on Applied Dynamical Systems, 2018, 17, 97-127.	0.7	27
312	Relationship between the mechanisms of gamma rhythm generation and the magnitude of the macroscopic phase response function in a population of excitatory and inhibitory modified quadratic integrate-and-fire neurons. Physical Review E, 2018, 97, 012209.	0.8	16
313	Transition to collective oscillations in finite Kuramoto ensembles. Physical Review E, 2018, 97, 032310.	0.8	16
314	Complex Chimera States in a Nonlinearly Coupled Oscillatory Medium. , 2018, , .		1
315	The mathematics of asymptotic stability in the Kuramoto model. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474, 20180467.	1.0	14
316	Bifurcation mechanism for emergence of spontaneous oscillations in coupled heterogeneous excitable units. Physical Review E, 2018, 98, .	0.8	3
317	Origin of Bellerophon states in globally coupled phase oscillators. Physical Review E, 2018, 98, .	0.8	28
318	Macroscopic oscillations of a quadratic integrate-and-fire neuron network with global distributed-delay coupling. Physical Review E, 2018, 98, .	0.8	18
319	Periodic coupling suppresses synchronization in coupled phase oscillators. New Journal of Physics, 2018, 20, 113013.	1.2	9
320	First-order phase transitions in the Kuramoto model with compact bimodal frequency distributions. Physical Review E, 2018, 98, .	0.8	16
321	Solitary synchronization waves in distributed oscillator populations. Physical Review E, 2018, 98, .	0.8	5
322	Kuramoto model of weakly conformed oscillators. Physical Review E, 2018, 98, .	0.8	2
323	Self-consistent method and steady states of second-order oscillators. Physical Review E, 2018, 98, .	0.8	11
324	A multiple timescales approach to bridging spiking- and population-level dynamics. Chaos, 2018, 28, 083123.	1.0	2

		CITATION RE	PORT	
#	Article		IF	CITATIONS
325	Collective mode reductions for populations of coupled noisy oscillators. Chaos, 2018,	28, 101101.	1.0	35
326	Dynamics of a large system of spiking neurons with synaptic delay. Physical Review E,	2018, 98, .	0.8	38
327	Symmetry-broken states on a spherical surface of coupled oscillators: From modulated spot and spiral chimeras. Physical Review E, 2018, 98, .	coherence to	0.8	10
328	Synchronizing Systems. SpringerBriefs in Complexity, 2018, , 1-38.		0.1	Ο
329	Macroscopic chimeralike behavior in a multiplex network. Physical Review E, 2018, 98,	022320.	0.8	25
330	Mean-field approach for frequency synchronization in complex networks of two oscilla Physical Review E, 2018, 97, 052310.	tor types.	0.8	0
331	Emergent Dynamics of Kuramoto Oscillators with Adaptive Couplings: Conservation La Learning. SIAM Journal on Applied Dynamical Systems, 2018, 17, 1560-1588.	aw and Fast	0.7	12
332	Stability Diagram, Hysteresis, and Critical Time Delay and Frequency for the Kuramoto Heterogeneous Interaction Delays. International Journal of Bifurcation and Chaos in Ap and Engineering, 2018, 28, 1830014.	Model with pplied Sciences	0.7	9
333	Desynchronization induced by time-varying network. Europhysics Letters, 2018, 121, 5	50008.	0.7	16
334	Dynamics of Noisy Oscillator Populations beyond the Ott-Antonsen Ansatz. Physical Ro 2018, 120, 264101.	eview Letters,	2.9	73
335	Volcano Transition in a Solvable Model of Frustrated Oscillators. Physical Review Lette 264102.	rs, 2018, 120,	2.9	20
336	Multiple-parameter bifurcation analysis in a Kuramoto model with time delay and distri AIP Advances, 2018, 8, 055111.	buted shear.	0.6	2
337	Rare slips in fluctuating synchronized oscillator networks. Chaos, 2018, 28, 071106.		1.0	13
338	Macroscopic models for networks of coupled biological oscillators. Science Advances, e1701047.	2018, 4,	4.7	41
339	Symmetry-broken coherent state in a ring of nonlocally coupled identical oscillators. P E, 2018, 98, 012210.	hysical Review	0.8	4
340	Effective Subnetwork Topology for Synchronizing Interconnected Networks of Couple Oscillators. Frontiers in Computational Neuroscience, 2018, 12, 17.	d Phase	1.2	17
341	Model reduction for Kuramoto models with complex topologies. Physical Review E, 20	18, 98, 012307.	0.8	21
342	Chaos in Kuramoto oscillator networks. Chaos, 2018, 28, 071102.		1.0	34

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
343	Enhancing network synchronization by phase modulation. Physical Review E, 2018, 98,	012212.	0.8	11
344	The Dynamics of Networks of Identical Theta Neurons. Journal of Mathematical Neuros 4.	cience, 2018, 8,	2.4	26
345	Low-dimensional dynamics in non-Abelian Kuramoto model on the 3-sphere. Chaos, 202	18, 28, 083105.	1.0	22
346	Low-dimensional dynamics of the Kuramoto model with rational frequency distribution: Review E, 2018, 98, 022207.	s. Physical	0.8	17
347	Kuramoto Model for Excitation-Inhibition-Based Oscillations. Physical Review Letters, 20 244101.	018, 120,	2.9	26
348	Phase transition in coupled star networks. Nonlinear Dynamics, 2018, 94, 1267-1275.		2.7	8
349	Universal relations of local order parameters for partially synchronized oscillators. Physi E, 2018, 97, 062207.	cal Review	0.8	4
350	Next Generation Neural Mass Models. PoliTO Springer Series, 2019, , 1-16.		0.3	45
351	Twisted states in nonlocally coupled phase oscillators with bimodal frequency distribut Communications in Nonlinear Science and Numerical Simulation, 2019, 68, 139-146.	ion.	1.7	2
352	Optimal global synchronization of partially forced Kuramoto oscillators. Chaos, 2019, 2	9, 073115.	1.0	12
353	Conductance-Based Refractory Density Approach for a Population of Bursting Neurons. Mathematical Biology, 2019, 81, 4124-4143.	. Bulletin of	0.9	2
354	Phase transition to synchronization in generalized Kuramoto model with low-pass filter Review E, 2019, 100, 012209.	. Physical	0.8	13
355	Synchronization in time-varying random networks with vanishing connectivity. Scientifi 2019, 9, 10207.	c Reports,	1.6	14
356	Stability analysis of nonlinear oscillator networks based on the mechanism of cascading Chaos, Solitons and Fractals, 2019, 128, 5-15.	g failures.	2.5	8
357	Synchronization in starlike networks of phase oscillators. Physical Review E, 2019, 100,	,012212.	0.8	20
358	Chimerapedia: coherence–incoherence patterns in one, two and three dimensions. N Physics, 2019, 21, 093034.	ew Journal of	1.2	36
359	Universal phase transitions to synchronization in Kuramoto-like models with heterogen coupling. New Journal of Physics, 2019, 21, 113018.	eous	1.2	23
360	Macroscopic Models for Human Circadian Rhythms. Journal of Biological Rhythms, 201	9, 34, 658-671.	1.4	19

#	Article	IF	CITATIONS
361	Solitary states and partial synchrony in oscillatory ensembles with attractive and repulsive interactions. Chaos, 2019, 29, 093124.	1.0	27
362	On the concept of dynamical reduction: the case of coupled oscillators. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20190041.	1.6	31
363	Bifurcation of the collective oscillatory state in phase oscillators with heterogeneity coupling. Nonlinear Dynamics, 2019, 98, 2365-2373.	2.7	10
364	Coupling functions: dynamical interaction mechanisms in the physical, biological and social sciences. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20190039.	1.6	17
365	Anti-phase collective synchronization with intrinsic in-phase coupling of two groups of electrochemical oscillators. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20190095.	1.6	5
366	Chaos in networks of coupled oscillators with multimodal natural frequency distributions. Chaos, 2019, 29, 093127.	1.0	10
367	Exact firing rate model reveals the differential effects of chemical versus electrical synapses in spiking networks. Physical Review E, 2019, 100, 042412.	0.8	37
368	Self-adaptation of chimera states. Physical Review E, 2019, 99, 010201.	0.8	13
369	Critical dynamics of the Kuramoto model on sparse random networks. Journal of Statistical Mechanics: Theory and Experiment, 2019, 2019, 053403.	0.9	9
370	Dynamics and stability of chimera states in two coupled populations of oscillators. Physical Review E, 2019, 100, 042211.	0.8	19
371	Clustering and Bellerophon state in Kuramoto model with second-order coupling. Chaos, 2019, 29, 043102.	1.0	10
372	Explosive phenomena in complex networks. Advances in Physics, 2019, 68, 123-223.	35.9	125
373	Random temporal connections promote network synchronization. Physical Review E, 2019, 100, 032302.	0.8	13
374	Stability in the Kuramoto–Sakaguchi model for finite networks of identical oscillators. Nonlinear Dynamics, 2019, 98, 539-550.	2.7	9
375	Predicting the effects of deep brain stimulation using a reduced coupled oscillator model. PLoS Computational Biology, 2019, 15, e1006575.	1.5	41
376	Microscopic correlations in the finite-size Kuramoto model of coupled oscillators. Physical Review E, 2019, 100, 032210.	0.8	3
377	Human cognition involves the dynamic integration of neural activity and neuromodulatory systems. Nature Neuroscience, 2019, 22, 289-296.	7.1	341
378	Traveling chimera states. Journal of Physics A: Mathematical and Theoretical, 2019, 52, 104001.	0.7	23

#	Article	IF	Citations
379	Multifaceted Dynamics of Janus Oscillator Networks. Physical Review X, 2019, 9, .	2.8	10
380	Spiral Wave Chimera. Springer Theses, 2019, , 55-97.	0.0	1
381	Synchronization clusters emerge as the result of a global coupling among classical phase oscillators. New Journal of Physics, 2019, 21, 053002.	1.2	9
382	Abrupt Desynchronization and Extensive Multistability in Globally Coupled Oscillator Simplexes. Physical Review Letters, 2019, 122, 248301.	2.9	161
383	Synchronization behavior in a ternary phase model. Chaos, 2019, 29, 063115.	1.0	5
384	Between phase and amplitude oscillators. Physical Review E, 2019, 99, 062201.	0.8	12
385	Macroscopic phase resetting-curves determine oscillatory coherence and signal transfer in inter-coupled neural circuits. PLoS Computational Biology, 2019, 15, e1007019.	1.5	51
386	Pattern selection in a ring of Kuramoto oscillators. Communications in Nonlinear Science and Numerical Simulation, 2019, 78, 104868.	1.7	10
387	Complexity reduction ansatz for systems of interacting orientable agents: Beyond the Kuramoto model. Chaos, 2019, 29, 053107.	1.0	23
388	Observable for a Large System of Globally Coupled Excitable Units. Mathematical and Computational Applications, 2019, 24, 37.	0.7	4
389	Bifurcations in the Time-Delayed Kuramoto Model of Coupled Oscillators: Exact Results. Journal of Statistical Physics, 2019, 176, 279-298.	0.5	9
390	Observing microscopic transitions from macroscopic bursts: Instability-mediated resetting in the incoherent regime of the D-dimensional generalized Kuramoto model. Chaos, 2019, 29, 033124.	1.0	10
391	Relationships Between the Distribution of Watanabe–Strogatz Variables and Circular Cumulants for Ensembles of Phase Elements. Fluctuation and Noise Letters, 2019, 18, 1940002.	1.0	10
392	Two-Bunch Solutions for the Dynamics of Ott–Antonsen Phase Ensembles. Radiophysics and Quantum Electronics, 2019, 61, 640-649.	0.1	11
393	Twisted states in nonlocally coupled phase oscillators with frequency distribution consisting of two Lorentzian distributions with the same mean frequency and different widths. PLoS ONE, 2019, 14, e0213471.	1.1	2
394	Repulsively coupled Kuramoto-Sakaguchi phase oscillators ensemble subject to common noise. Chaos, 2019, 29, 033127.	1.0	18
395	The Winfree model with heterogeneous phase-response curves: analytical results. Journal of Physics A: Mathematical and Theoretical, 2019, 52, 154001.	0.7	6
396	Interplay of the mechanisms of synchronization by common noise and global coupling for a general class of limit-cycle oscillators. Communications in Nonlinear Science and Numerical Simulation, 2019, 75, 94-108.	1.7	14

#	Article	IF	CITATIONS
397	Cluster singularity: The unfolding of clustering behavior in globally coupled Stuart-Landau oscillators. Chaos, 2019, 29, 023107.	1.0	17
398	Chimera state on a spherical surface of nonlocally coupled oscillators with heterogeneous phase lags. Chaos, 2019, 29, 023101.	1.0	3
399	Chimera patterns in three-dimensional locally coupled systems. Physical Review E, 2019, 99, 022204.	0.8	40
400	Symmetry and symmetry breaking in coupled oscillator communities. European Physical Journal B, 2019, 92, 1.	0.6	6
401	Stabilization of direct numerical simulation for finite truncations of circular cumulant expansions. IOP Conference Series: Materials Science and Engineering, 2019, 581, 012008.	0.3	1
402	Twisted States in a System of Nonlinearly Coupled Phase Oscillators. Regular and Chaotic Dynamics, 2019, 24, 717-724.	0.3	7
403	Aging transition under weighted conjugate coupling. Europhysics Letters, 2019, 128, 58003.	0.7	5
404	Relaxation dynamics of Kuramoto model with heterogeneous coupling*. Chinese Physics B, 2019, 28, 120503.	0.7	4
405	Noise-induced macroscopic oscillations in a network of synaptically coupled quadratic integrate-and-fire neurons. Physical Review E, 2019, 100, 052211.	0.8	32
406	Characterizing nonstationary coherent states in globally coupled conformist and contrarian oscillators. Physical Review E, 2019, 100, 052310.	0.8	1
407	Low-dimensional dynamics for higher-order harmonic, globally coupled phase-oscillator ensembles. Physical Review E, 2019, 100, 062210.	0.8	23
408	Two scenarios for the onset and suppression of collective oscillations in heterogeneous populations of active rotators. Physical Review E, 2019, 100, 062211.	0.8	16
409	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mi>D</mml:mi></mml:mrow> -Dimensional Generalized Kuramoto Model: Odd <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi>D</mml:mi></mml:mrow></mml:math> is Different. Physical	2.8	40
410	Review X, 2019, 9, . Multiscale interaction promotes chimera states in complex networks. Communications in Nonlinear Science and Numerical Simulation, 2019, 71, 118-129.	1.7	33
411	Next-generation neural field model: The evolution of synchrony within patterns and waves. Physical Review E, 2019, 99, 012313.	0.8	27
412	The Kuramoto Model on Power Law Graphs: Synchronization and Contrast States. Journal of Nonlinear Science, 2020, 30, 2405-2427.	1.0	6
413	The dynamics in globally coupled phase oscillators with multi-peaked frequency distribution. Communications in Nonlinear Science and Numerical Simulation, 2020, 81, 104997.	1.7	3
414	Linear Quadratic Mean Field Games: Asymptotic Solvability and Relation to the Fixed Point Approach. IEEE Transactions on Automatic Control, 2020, 65, 1397-1412.	3.6	41

#	Article	IF	CITATIONS
415	Travelling chimera states in systems of phase oscillators with asymmetric nonlocal coupling. Nonlinearity, 2020, 33, 611-642.	0.6	13
416	Linear response theory for coupled phase oscillators with general coupling functions. Journal of Physics A: Mathematical and Theoretical, 2020, 53, 044001.	0.7	4
417	Inverse Problem in the Kuramoto Model with a Phase Lag: Application to the Sun. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2050165.	0.7	2
418	Dynamics of periodically forced finite N-oscillators, with implications for the social synchronization of animal rest–activity rhythms. Chaos, 2020, 30, 103106.	1.0	0
419	Collective in-plane magnetization in a two-dimensional XY macrospin system within the framework of generalized Ott–Antonsen theory. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190259.	1.6	3
420	Entangled chimeras in nonlocally coupled bicomponent phase oscillators: From synchronous to asynchronous chimeras. Frontiers of Physics, 2020, 15, 1.	2.4	6
422	Seasonality and light phase-resetting in the mammalian circadian rhythm. Scientific Reports, 2020, 10, 19506.	1.6	13
423	The Winfree model with non-infinitesimal phase-response curve: Ott–Antonsen theory. Chaos, 2020, 30, 073139.	1.0	4
424	Dynamics of the generalized Kuramoto model with nonlinear coupling: Bifurcation and stability. Physical Review E, 2020, 102, 012219.	0.8	15
425	Coupled Möbius maps as a tool to model Kuramoto phase synchronization. Physical Review E, 2020, 102, 022206.	0.8	6
426	Locking and regularization of chimeras by periodic forcing. Physical Review E, 2020, 102, 042218.	0.8	7
427	Polaritons and excitons: Hamiltonian design for enhanced coherence. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20200278.	1.0	39
428	Symmetry-Independent Stability Analysis of Synchronization Patterns. SIAM Review, 2020, 62, 817-836.	4.2	27
429	Universal scaling and phase transitions of coupled phase oscillator populations. Physical Review E, 2020, 102, 042310.	0.8	10
430	Computational and theoretical analysis of electron plasma cooling by resonant interaction with a microwave cavity. Physics of Plasmas, 2020, 27, .	0.7	1
431	Model reduction for the collective dynamics of globally coupled oscillators: From finite networks to the thermodynamic limit. Chaos, 2020, 30, 093107.	1.0	9
432	Higher order interactions in complex networks of phase oscillators promote abrupt synchronization switching. Communications Physics, 2020, 3, .	2.0	131
433	Emergent excitability in populations of nonexcitable units. Physical Review E, 2020, 102, 050201.	0.8	8

#	Article	IF	CITATIONS
434	Discontinuous Transitions and Rhythmic States in the D-Dimensional Kuramoto Model Induced by a Positive Feedback with the Global Order Parameter. Physical Review Letters, 2020, 125, 194101.	2.9	58
435	Low-dimensional description for ensembles of identical phase oscillators subject to Cauchy noise. Physical Review E, 2020, 102, 052315.	0.8	13
436	Exact Mean-Field Theory Explains the Dual Role of Electrical Synapses in Collective Synchronization. Physical Review Letters, 2020, 125, 248101.	2.9	32
437	Low-dimensional dynamics of phase oscillators driven by Cauchy noise. Physical Review E, 2020, 102, 042220.	0.8	11
438	Cross frequency coupling in next generation inhibitory neural mass models. Chaos, 2020, 30, 053121.	1.0	22
439	Dynamical model for the neural activity of singing Serinus canaria. Chaos, 2020, 30, 053134.	1.0	3
440	Moving bumps in theta neuron networks. Chaos, 2020, 30, 043117.	1.0	19
441	The role of timescale separation in oscillatory ensembles with competitive coupling. Chaos, 2020, 30, 051101.	1.0	2
442	Emergence of second coherent regions for breathing chimera states. Physical Review E, 2020, 101, 062203.	0.8	8
443	Multi-mode attractors and spatio-temporal canards. Physica D: Nonlinear Phenomena, 2020, 411, 132544.	1.3	3
444	Effective-potential approach to hybrid synchronization transitions. Physical Review E, 2020, 101, 052313.	0.8	3
445	Effective low-dimensional dynamics of a mean-field coupled network of slow-fast spiking lasers. Physical Review E, 2020, 101, 052208.	0.8	9
446	Emergent Spaces for Coupled Oscillators. Frontiers in Computational Neuroscience, 2020, 14, 36.	1.2	16
447	Synaptic Diversity Suppresses Complex Collective Behavior in Networks of Theta Neurons. Frontiers in Computational Neuroscience, 2020, 14, 44.	1.2	4
448	Networks beyond pairwise interactions: Structure and dynamics. Physics Reports, 2020, 874, 1-92.	10.3	661
449	When three is a crowd: Chaos from clusters of Kuramoto oscillators with inertia. Physical Review E, 2020, 101, 062206.	0.8	17
450	The effects of within-neuron degree correlations in networks of spiking neurons. Biological Cybernetics, 2020, 114, 337-347.	0.6	7
451	Bumps and oscillons in networks of spiking neurons. Chaos, 2020, 30, 033133.	1.0	23

#	Article	IF	CITATIONS
452	Amplification of explosive width in complex networks. Chaos, 2020, 30, 031101.	1.0	12
453	Nonstationary coherence–incoherence patterns in nonlocally coupled heterogeneous phase oscillators. Chaos, 2020, 30, 043103.	1.0	7
454	Introduction to Focus Issue: Symmetry and optimization in the synchronization and collective behavior of complex systems. Chaos, 2020, 30, 060401.	1.0	4
455	Competing synchronization on random networks. Journal of Statistical Mechanics: Theory and Experiment, 2020, 2020, 073407.	0.9	1
456	Small and finite inertia in stochastic systems: Moment and cumulant formalisms. AIP Conference Proceedings, 2020, , .	0.3	1
457	Kuramoto model in the presence of additional interactions that break rotational symmetry. Physical Review E, 2020, 102, 012206.	0.8	9
458	Synchronization of active rotators interacting with environment. Physical Review E, 2020, 101, 022613.	0.8	5
459	Critical Switching in Globally Attractive Chimeras. Physical Review X, 2020, 10, .	2.8	15
460	Phase diagram of noisy systems of coupled oscillators with a bimodal frequency distribution. Journal of Physics A: Mathematical and Theoretical, 2020, 53, 154001.	0.7	5
461	Circular cumulant reductions for macroscopic dynamics of Kuramoto ensemble with multiplicative intrinsic noise. Journal of Physics A: Mathematical and Theoretical, 2020, 53, 08LT01.	0.7	6
462	Linear quadratic mean field games with a major player: The multi-scale approach. Automatica, 2020, 113, 108774.	3.0	18
463	Symmetry breakings in two populations of oscillators coupled via diffusive environments: Chimera and heterosynchrony. Physical Review E, 2020, 101, 042213.	0.8	5
464	Classification of bifurcation diagrams in coupled phase-oscillator models with asymmetric natural frequency distributions. Journal of Statistical Mechanics: Theory and Experiment, 2020, 2020, 033403.	0.9	1
465	Synchronization of phase oscillators under asymmetric and bimodal distributions of natural frequencies. Chaos, Solitons and Fractals, 2020, 136, 109777.	2.5	3
466	On reversibility of macroscopic and microscopic dynamics in the Kuramoto model. Physica D: Nonlinear Phenomena, 2021, 415, 132762.	1.3	1
467	Stable plane waves in nonlocally coupled phase oscillators. AIP Advances, 2021, 11, 015304.	0.6	0
469	Spectrum of extensive multiclusters in the Kuramoto model with higher-order interactions. Physical Review Research, 2021, 3, .	1.3	23
470	A unified analytical framework for optimal control problems on networks with input homogeneity. IEEE Transactions on Control of Network Systems, 2021, , 1-1.	2.4	1

#	Article	IF	CITATIONS
471	Spatiotemporal Regimes in the Kuramoto–Battogtokh System of Nonidentical Oscillators. Journal of Experimental and Theoretical Physics, 2021, 132, 127-147.	0.2	4
472	Multifidelity Approximate Bayesian Computation with Sequential Monte Carlo Parameter Sampling. SIAM-ASA Journal on Uncertainty Quantification, 2021, 9, 788-817.	1.1	9
474	Noise-Driven Oscillations in Coupled Excitable Systems. SIAM Journal on Applied Dynamical Systems, 2021, 20, 826-852.	0.7	1
476	Coherence resonance in influencer networks. Nature Communications, 2021, 12, 72.	5.8	15
477	High-Order Accuracy Computation of Coupling Functions for Strongly Coupled Oscillators. SIAM Journal on Applied Dynamical Systems, 2021, 20, 1464-1484.	0.7	5
479	Dynamics of a Large-Scale Spiking Neural Network with Quadratic Integrate-and-Fire Neurons. Neural Plasticity, 2021, 2021, 1-10.	1.0	1
480	Eliminating synchronization of coupled neurons adaptively by using feedback coupling with heterogeneous delays. Chaos, 2021, 31, 023114.	1.0	5
482	Bifurcation of the neuronal population dynamics of the modified theta model: Transition to macroscopic gamma oscillation. Physica D: Nonlinear Phenomena, 2021, 416, 132789.	1.3	1
483	Birth and destruction of collective oscillations in a network of two populations of coupled type 1 neurons. Chaos, 2021, 31, 023141.	1.0	3
484	Solitons in complex systems of chiral fields with Kuramoto interactions. Chaos, 2021, 31, 023138.	1.0	2
485	Dynamics of Structured Networks of Winfree Oscillators. Frontiers in Systems Neuroscience, 2021, 15, 631377.	1.2	6
486	Stability and bifurcation of collective dynamics in phase oscillator populations with general coupling. Physical Review E, 2021, 103, 032307.	0.8	9
487	Synchronization Conditions of a Mixed Kuramoto Ensemble in Attractive and Repulsive Couplings. Journal of Nonlinear Science, 2021, 31, 1.	1.0	3
488	Topological phase transition in the periodically forced Kuramoto model. Chaos, Solitons and Fractals, 2021, 145, 110816.	2.5	3
489	Non-reciprocal phase transitions. Nature, 2021, 592, 363-369.	13.7	203
490	Discordant synchronization patterns on directed networks of identical phase oscillators with attractive and repulsive couplings. Physical Review E, 2021, 103, 042210.	0.8	5
491	Effect of noise on the collective dynamics of a heterogeneous population of active rotators. Chaos, 2021, 31, 043101.	1.0	7
492	Reduction of the collective dynamics of neural populations with realistic forms of heterogeneity. Physical Review E, 2021, 103, L040302.	0.8	12

# 493	ARTICLE Collective dynamics in the presence of finite-width pulses. Chaos, 2021, 31, 043135.	IF 1.0	CITATIONS
494	A universal route to explosive phenomena. Science Advances, 2021, 7, .	4.7	56
495	Modeling synchronization in globally coupled oscillatory systems using model order reduction. Chaos, 2021, 31, 053127.	1.0	3
496	Dynamics in two interacting subpopulations of nonidentical phase oscillators. Physical Review E, 2021, 103, 052208.	0.8	3
497	Mean-Field Models for EEG/MEG: From Oscillations to Waves. Brain Topography, 2022, 35, 36-53.	0.8	14
498	Effects of degree distributions in random networks of type-I neurons. Physical Review E, 2021, 103, 052305.	0.8	3
499	The changing notion of chimera states, a critical review. Journal of Physics Complexity, 2021, 2, 032001.	0.9	27
500	On synchronization in Kuramoto models on spheres. Analysis and Mathematical Physics, 2021, 11, 1.	0.6	8
501	Using phase dynamics to study partial synchrony: three examples. European Physical Journal: Special Topics, 0, , 1.	1.2	1
502	Distinct effects of heterogeneity and noise on gamma oscillation in a model of neuronal network with different reversal potential. Scientific Reports, 2021, 11, 12960.	1.6	3
503	Paradoxical phase response of gamma rhythms facilitates their entrainment in heterogeneous networks. PLoS Computational Biology, 2021, 17, e1008575.	1.5	4
504	Exact solutions of the abrupt synchronization transitions and extensive multistability in globally coupled phase oscillator populations. Journal of Physics A: Mathematical and Theoretical, 2021, 54, 285702.	0.7	6
505	Anticipating synchronization with machine learning. Physical Review Research, 2021, 3, .	1.3	32
506	Higher-order simplicial synchronization of coupled topological signals. Communications Physics, 2021, 4, .	2.0	64
507	The lower bound of the network connectivity guaranteeing in-phase synchronization. Chaos, 2021, 31, 063124.	1.0	3
508	Desynchronization of jammed oscillators by avalanches. Physical Review Research, 2021, 3, .	1.3	2
509	Feedback-induced desynchronization and oscillation quenching in a population of globally coupled oscillators. Physical Review E, 2021, 103, 062217.	0.8	1
510	Four approaches for description of stochastic systems with small and finite inertia. Journal of Physics: Conference Series, 2021, 1945, 012050.	0.3	0

ARTICLE IF CITATIONS # Suppression of synchronous spiking in two interacting populations of excitatory and inhibitory 511 0.8 5 quadratic integrate-and-fire neurons. Physical Review E, 2021, 104, 014203. Synchronization of coupled Kuramoto oscillators under resource constraints. Physical Review E, 0.8 2021, 104, 014211. Binary mixtures of locally coupled mobile oscillators. Physical Review E, 2021, 104, 014204. 513 0.8 1 Emergence of chimera states in a neuronal model of delayed oscillators. Physical Review Research, 514 2021, 3, . Transition to synchrony in a three-dimensional swarming model with helical trajectories. Physical 515 0.8 6 Review E, 2021, 104, 014216. Global and local reduced models for interacting, heterogeneous agents. Chaos, 2021, 31, 073139. 1.0 Mesoscopic model reduction for the collective dynamics of sparse coupled oscillator networks. 517 1.0 2 Chaos, 2021, 31, 073116. Phase-dynamic causalities within dynamical effects framework. Chaos, 2021, 31, 073127. 1.0 519 Generalized splay states in phase oscillator networks. Chaos, 2021, 31, 073128. 1.0 12 Reduction Methodology for Fluctuation Driven Population Dynamics. Physical Review Letters, 2021, 127, 038301. The Sakaguchi–Kuramoto model in presence of asymmetric interactions that break phase-shift 521 1.0 2 symmetry. Chaos, 2021, 31, 083130. Impact of field heterogeneity on the dynamics of the forced Kuramoto model. Physical Review E, 2021, 0.8 104, 024313. Moving spiral wave chimeras. Physical Review E, 2021, 104, L022203. 523 0.8 11 Ordered slow and fast dynamics of unsynchronized coupled phase oscillators. Chaos, 2021, 31, 081102. 524 1.0 Noise-induced dynamical regimes in a system of globally coupled excitable units. Chaos, 2021, 31, 083103. 525 1.0 5 A two-frequency-two-coupling model of coupled oscillators. Chaos, 2021, 31, 083124. Mean-field models of populations of quadratic integrate-and-fire neurons with noise on the basis of 527 1.0 8 the circular cumulant approach. Chaos, 2021, 31, 083112. Asymmetry-induced isolated fully synchronized state in coupled oscillator populations. Physical 528 Review E, 2021, 104, L022202.

#	Article	IF	CITATIONS
529	Optimal closed-loop deep brain stimulation using multiple independently controlled contacts. PLoS Computational Biology, 2021, 17, e1009281.	1.5	13
531	Patient-Specific Network Connectivity Combined With a Next Generation Neural Mass Model to Test Clinical Hypothesis of Seizure Propagation. Frontiers in Systems Neuroscience, 2021, 15, 675272.	1.2	12
532	Neuronal Cascades Shape Whole-Brain Functional Dynamics at Rest. ENeuro, 2021, 8, ENEURO.0283-21.2021.	0.9	34
533	Proposal for a Spin-Torque-Oscillator Maser Enabled by Microwave Photon-Spin Coupling. Physical Review Applied, 2021, 16, .	1.5	2
534	Cut the noise or couple up: Coordinating circadian and synthetic clocks. IScience, 2021, 24, 103051.	1.9	7
535	The Kuramoto model on a sphere: Explaining its low-dimensional dynamics with group theory and hyperbolic geometry. Chaos, 2021, 31, 093113.	1.0	18
536	Emergence of Stripe-Core Mixed Spiral Chimera on a Spherical Surface of Nonlocally Coupled Oscillators. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31, 2150182.	0.7	2
537	Synchronization in multilayer networks through different coupling mechanisms. Chinese Physics B, O,	0.7	0
538	Collective dynamics of heterogeneously and nonlinearly coupled phase oscillators. Physical Review Research, 2021, 3, .	1.3	25
539	Explosive synchronization in bipartite networks. Chaos, Solitons and Fractals, 2021, 152, 111435.	2.5	2
540	Synchronization of Heterogeneous Forced First-Order Kuramoto Oscillator Networks: A Differential Inequality Approach. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 757-770.	3.5	4
542	An Introduction to Emergence Dynamics in Complex Systems. Soft and Biological Matter, 2021, , 133-196.	0.3	5
543	Synchronization and spatial patterns in forced swarmalators. Chaos, 2020, 30, 053112.	1.0	22
544	Analytical approach to synchronous states of globally coupled noisy rotators. New Journal of Physics, 2020, 22, 023036.	1.2	10
545	Irregular collective dynamics in a Kuramoto–Daido system. Journal of Physics Complexity, 2021, 2, 014002.	0.9	3
551	Competitive suppression of synchronization and nonmonotonic transitions in oscillator communities with distributed time delay. Physical Review Research, 2019, 1, .	1.3	3
552	Ott-Antonsen ansatz truncation of a circular cumulant series. Physical Review Research, 2019, 1, .	1.3	21
553	Coexistence of fast and slow gamma oscillations in one population of inhibitory spiking neurons. Physical Review Research, 2020, 2, .	1.3	27

#	Article	IF	CITATIONS
554	Chimera states in small optomechanical arrays. Physical Review Research, 2020, 2, .	1.3	15
555	Collective dynamics of random Janus oscillator networks. Physical Review Research, 2020, 2, .	1.3	6
556	Is the Ott-Antonsen manifold attracting?. Physical Review Research, 2020, 2, .	1.3	18
557	Onset of synchronization in networks of second-order Kuramoto oscillators with delayed coupling: Exact results and application to phase-locked loops. Physical Review Research, 2020, 2, .	1.3	7
558	Scaling law of transient lifetime of chimera states under dimension-augmenting perturbations. Physical Review Research, 2020, 2, .	1.3	6
559	Threefold way to the dimension reduction of dynamics on networks: An application to synchronization. Physical Review Research, 2020, 2, .	1.3	14
560	Data-driven selection of coarse-grained models of coupled oscillators. Physical Review Research, 2020, 2, .	1.3	4
561	Phase-dependence of response curves to deep brain stimulation and their relationship: from essential tremor patient data to a Wilson–Cowan model. Journal of Mathematical Neuroscience, 2020, 10, 4.	2.4	27
562	Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: a review. Journal of Mathematical Neuroscience, 2020, 10, 9.	2.4	145
563	The Effect of Gap Junctional Coupling on the Spatiotemporal Patterns of Ca2+ Signals and the Harmonization of Ca2+-Related Cellular Responses. PLoS Computational Biology, 2016, 12, e1005295.	1.5	9
564	Firing rate equations require a spike synchrony mechanism to correctly describe fast oscillations in inhibitory networks. PLoS Computational Biology, 2017, 13, e1005881.	1.5	73
565	Exact neural mass model for synaptic-based working memory. PLoS Computational Biology, 2020, 16, e1008533.	1.5	32
566	ĐÑ"Ñ"ĐµĐºÑ, Ñ€ĐºÑÑ…Đ¾Đ¶ĐƊµĐ½Đ,Ñ•Ñ‡ĐºÑÑ,Đ¾Ñ, Đ² ĐºĐ½ÑĐºĐ¼Đ±Đ»ÑÑ… ĐºĐ²Ñ,Đ¾ĐºĐ¾Đ»Đµ	ıУÐſÑ,Ð	µÐ ≱ ьнÑ
567	Control of Chimera States in Multilayer Networks. Frontiers in Applied Mathematics and Statistics, 2019, 4, .	0.7	27
568	Practical synchronization of generalized Kuramoto systems with an intrinsic dynamics. Networks and Heterogeneous Media, 2015, 10, 787-807.	0.5	19
569	Emergence of local synchronization in an ensemble of heterogeneous Kuramoto oscillators. Networks and Heterogeneous Media, 2017, 12, 1-24.	0.5	3
570	Partial synchronization in complex networks: Chimera state, remote synchronization, and cluster synchronization. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 088902.	0.2	12
571	Optimal Control of Oscillation Timing and Entrainment Using Large Magnitude Inputs: An Adaptive Phase-Amplitude-Coordinate-Based Approach. SIAM Journal on Applied Dynamical Systems, 2021, 20, 1814-1843.	0.7	12

#	Article	IF	CITATIONS
572	Mean-field approximations of networks of spiking neurons with short-term synaptic plasticity. Physical Review E, 2021, 104, 044310.	0.8	14
575	Chimera Dynamics in Networks of Boolean Phase Oscillators. Springer Theses, 2015, , 107-132.	0.0	0
576	Synchronization in Kuramoto Oscillators Under Single External Oscillator. Studies in Systems, Decision and Control, 2018, , 229-249.	0.8	0
577	Experimental Analysis and Mean-field Dynamics of a Fully Connected Network of Chaotic Optical Devices. , 2018, , .		0
578	Chimera States. SpringerBriefs in Applied Sciences and Technology, 2018, , 39-56.	0.2	0
583	Dynamics in the Sakaguchi-Kuramoto model with bimodal frequency distribution. PLoS ONE, 2020, 15, e0243196.	1.1	2
585	Cluster Synchrony of High-Dimensional Kuramoto Models with Higher-Order Couplings. SIAM Journal on Control and Optimization, 2021, 59, 4110-4135.	1.1	1
586	Synchronization of coupled phase oscillators: Order parameter theory. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 080502.	0.2	1
587	Attracting Poisson chimeras in two-population networks. Chaos, 2021, 31, 113101.	1.0	8
588	Collective dynamics of phase oscillator populations with three-body interactions. Physical Review E, 2021, 104, 054208.	0.8	12
589	Partial synchronization in the second-order Kuramoto model: An auxiliary system method. Chaos, 2021, 31, 113113.	1.0	7
590	Ott–Antonsen ansatz for the D-dimensional Kuramoto model: A constructive approach. Chaos, 2021, 31, 113141.	1.0	7
591	Interpolating between bumps and chimeras. Chaos, 2021, 31, 113116.	1.0	4
592	Kuramoto model for populations of quadratic integrate-and-fire neurons with chemical and electrical coupling. Chaos, 2022, 32, 013105.	1.0	8
593	Asynchronous and Coherent Dynamics in Balanced Excitatory-Inhibitory Spiking Networks. Frontiers in Systems Neuroscience, 2021, 15, 752261.	1.2	11
594	Normalizing the brain connectome for communication through synchronization. Network Neuroscience, 2022, 6, 722-744.	1.4	9
595	Collective behavior of swarmalators on a ring. Physical Review E, 2022, 105, 014211.	0.8	25
596	Mathematical Framework for Breathing Chimera States. Journal of Nonlinear Science, 2022, 32, 1.	1.0	9

		LPORT	
#	Article	IF	CITATIONS
597	Retinal Processing: Insights from Mathematical Modelling. Journal of Imaging, 2022, 8, 14.	1.7	1
598	Hierarchy of Exact Low-Dimensional Reductions for Populations of Coupled Oscillators. Physical Review Letters, 2022, 128, 054101.	2.9	11
599	Chimeras with uniformly distributed heterogeneity: Two coupled populations. Physical Review E, 2022, 105, 024306.	0.8	0
600	Coherent oscillations in balanced neural networks driven by endogenous fluctuations. Chaos, 2022, 32, 023120.	1.0	14
601	Stability of rotatory solitary states in Kuramoto networks with inertia. Physical Review E, 2022, 105, 024203.	0.8	6
602	RateML: A Code Generation Tool for Brain Network Models. Frontiers in Network Physiology, 2022, 2, .	0.8	5
603	Extended mean-field approach for chimera states in random complex networks. Chaos, 2022, 32, 033108.	1.0	1
604	Influence of asymmetric parameters in higher-order coupling with bimodal frequency distribution. Physical Review E, 2022, 105, 034307.	0.8	4
605	Collective states in a ring network of theta neurons. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, 20210817.	1.0	6
606	Collective Activity Bursting in a Population of Excitable Units Adaptively Coupled to a Pool of Resources. Frontiers in Network Physiology, 2022, 2, .	0.8	3
607	Thalamic bursts modulate cortical synchrony locally to switch between states of global functional connectivity in a cognitive task. PLoS Computational Biology, 2022, 18, e1009407.	1.5	1
608	Phase-locking in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si8.svg"><mml:mi>k</mml:mi></mml:math> -partite networks of delay-coupled oscillators. Chaos, Solitons and Fractals, 2022, 157, 111947.	2.5	0
609	Metamorphoses and explosively remote synchronization in dynamical networks. Chaos, 2022, 32, 043110.	1.0	0
610	Role of phase-dependent influence function in the Winfree model of coupled oscillators. Physical Review E, 2021, 104, 064206.	0.8	0
611	A new class of chimeras in locally coupled oscillators with small-amplitude, high-frequency asynchrony and large-amplitude, low-frequency synchrony. Chaos, 2021, 31, 123111.	1.0	2
612	Mean-field equationsÂfor neural populations with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>q</mml:mi> -Gaussian heterogeneities. Physical Review E, 2022, 105, 044402.</mml:math 	0.8	9
613	Bursting in a next generation neural mass model with synaptic dynamics: a slow–fast approach. Nonlinear Dynamics, 2022, 108, 4261-4285.	2.7	16
614	Enlarged Kuramoto model: Secondary instability and transition to collective chaos. Physical Review E, 2022, 105, L042201.	0.8	11

#	Article	IF	CITATIONS
616	Editorial: From Structure to Function in Neuronal Networks: Effects of Adaptation, Time-Delays, and Noise. Frontiers in Systems Neuroscience, 2022, 16, 871165.	1.2	0
617	Higher-order interactions promote chimera states. Physical Review E, 2022, 105, L042202.	0.8	18
618	Tiered synchronization in coupled oscillator populations with interaction delays and higher-order interactions. Chaos, 2022, 32, .	1.0	6
619	Exploring Parameter and Hyper-Parameter Spaces of Neuroscience Models on High Performance Computers With Learning to Learn. Frontiers in Computational Neuroscience, 0, 16, .	1.2	5
620	Partial locking in phase-oscillator populations with heterogenous coupling. Chaos, 2022, 32, 063106.	1.0	5
621	Mean-field analysis of Stuart–Landau oscillator networks with symmetric coupling and dynamical noise. Chaos, 2022, 32, 063114.	1.0	0
623	Understanding the surface wave characteristics using 2D particle-in-cell simulation and deep neural network. Physics of Plasmas, 2022, 29, .	0.7	2
624	Biophysical mechanism underlying compensatory preservation of neural synchrony over the adult lifespan. Communications Biology, 2022, 5, .	2.0	14
625	Learning emergent partial differential equations in a learned emergent space. Nature Communications, 2022, 13, .	5.8	12
626	Swarmalators on a ring with distributed couplings. Physical Review E, 2022, 105, .	0.8	10
627	Efficient moment-based approach to the simulation of infinitely many heterogeneous phase oscillators. Chaos, 2022, 32, 063124.	1.0	1
628	Minimal nonlinear dynamical system for the interaction between vorticity waves and shear flows. Physical Review E, 2022, 105, .	0.8	1
629	Synchronization Regimes in an Ensemble of Phase Oscillators Coupled Through a Diffusion Field. Radiophysics and Quantum Electronics, 2022, 64, 709-725.	0.1	2
630	First-order route to antiphase clustering in adaptive simplicial complexes. Physical Review E, 2022, 105,	0.8	18
631	Exact mean-field models for spiking neural networks with adaptation. Journal of Computational Neuroscience, 2022, 50, 445-469.	0.6	7
633	Multiple Self-Locking in the Kuramoto–Sakaguchi System with Delay. SIAM Journal on Applied Dynamical Systems, 2022, 21, 1709-1725.	0.7	1
634	Generation and Disruption of Circadian Rhythms in the Suprachiasmatic Nucleus: A Core-Shell Model. Journal of Biological Rhythms, 2022, 37, 545-561.	1.4	4
695	Synchronization in the Kuramoto model in presence of stochastic resetting. Chaos: 2022-32	1.0	13

щ		IF	CITATIONS
#		IF	CHAHONS
636	Employing Interacting Qubits for Distributed Microgrid Control. IEEE Transactions on Power Systems, 2022, , 1-13.	4.6	0
637	The study of the dynamics of the order parameter of coupled oscillators in the Ott–Antonsen scheme for generic frequency distributions. Chaos, 2022, 32, .	1.0	2
638	Chimeras on annuli. Chaos, 2022, 32, .	1.0	1
639	Generic criterion for explosive synchronization in heterogeneous phase oscillator populations. Physical Review Research, 2022, 4, .	1.3	9
640	Anticipating measure synchronization in coupled Hamiltonian systems with machine learning. Chaos, 2022, 32, 083136.	1.0	1
641	Low-dimensional behavior of generalized Kuramoto model. Nonlinear Dynamics, 0, , .	2.7	1
642	A global bifurcation organizing rhythmic activity in a coupled network. Chaos, 2022, 32, .	1.0	2
643	Synchronization in phase-coupled oscillator with attractive–repulsive frequencies. Journal of Statistical Mechanics: Theory and Experiment, 2022, 2022, 083401.	0.9	2
644	Symmetry breaking yields chimeras in two small populations of Kuramoto-type oscillators. Chaos, 2022, 32, .	1.0	11
645	Dynamics of a Reduced System Connected to the Investigation of an Infinite Network of Identical Theta Neurons. Mathematics, 2022, 10, 3245.	1.1	0
646	Cluster synchronization induced by manifold deformation. Chaos, 2022, 32, 093139.	1.0	2
647	Matrix coupling and generalized frustration in Kuramoto oscillators. Chaos, 2022, 32, .	1.0	6
648	Basins of attraction of chimera states on networks. Frontiers in Physiology, 0, 13, .	1.3	2
649	Cross-scale excitability in networks of quadratic integrate-and-fire neurons. PLoS Computational Biology, 2022, 18, e1010569.	1.5	3
650	Theta neuron subject to delayed feedback: a prototypical model for self-sustained pulsing. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, .	1.0	2
652	Emergence of explosive synchronization bombs in networks of oscillators. Communications Physics, 2022, 5, .	2.0	5
653	Multiple first-order transitions in simplicial complexes on multilayer systems. Physical Review E, 2022, 106, .	0.8	10
654	Dirac synchronization is rhythmic and explosive. Communications Physics, 2022, 5, .	2.0	10

#	ARTICLE	IF	CITATIONS
655	Modulations of local synchrony over time lead to resting-state functional connectivity in a parsimonious large-scale brain model. PLoS ONE, 2022, 17, e0275819.	1.1	2
656	Collective excitability in highly diluted random networks of oscillators. Chaos, 2022, 32, 103108.	1.0	0
657	Entrainment degree of globally coupled Winfree oscillators under external forcing. Chaos, 2022, 32, 103121.	1.0	0
658	Exact finite-dimensional reduction for a population of noisy oscillators and its link to Ott–Antonsen and Watanabe–Strogatz theories. Chaos, 2022, 32, .	1.0	5
659	Graphop mean-field limits and synchronization for the stochastic Kuramoto model. Chaos, 2022, 32, .	1.0	4
660	Sync and Swarm: Solvable Model of Nonidentical Swarmalators. Physical Review Letters, 2022, 129, .	2.9	11
661	Extracting Phase Coupling Functions between Collectively Oscillating Networks from Time-Series Data. Journal of the Physical Society of Japan, 2022, 91, .	0.7	0
662	Synchronization in the network-frustrated coupled oscillator with attractive-repulsive frequencies. Physical Review E, 2022, 106, .	0.8	2
663	Periodic orbits in the Ott–Antonsen manifold. Nonlinearity, 2023, 36, 845-861.	0.6	5
664	Noise-induced swarming of active particles. Physical Review E, 2022, 106, .	0.8	2
665	Synchronization Transition of the Second-Order Kuramoto Model on Lattices. Entropy, 2023, 25, 164.	1.1	3
666	Introduction to Focus Issue: Dynamics of oscillator populations. Chaos, 2023, 33, .	1.0	1
667	Chimeras on a ring of oscillator populations. Chaos, 2023, 33, .	1.0	4
668	Chimera state in a feed-forward neuronal network. Cognitive Neurodynamics, 2023, 17, 1119-1130.	2.3	4
669	Shot noise in next-generation neural mass models for finite-size networks. Physical Review E, 2022, 106, .	0.8	3
670	From Two-Cluster State to Chimera. Springer Theses, 2023, , 31-137.	0.0	0
671	Generalization of the Kuramoto model to the Winfree model by a symmetry breaking coupling. European Physical Journal Plus, 2023, 138, .	1.2	1
672	Synchronization transitions on connectome graphs with external force. Frontiers in Physics, 0, 11, .	1.0	2

#	Article	IF	CITATIONS
673	Moving from phenomenological to predictive modelling: Progress and pitfalls of modelling brain stimulation in-silico. NeuroImage, 2023, 272, 120042.	2.1	5
674	Generalized frustration in the multidimensional Kuramoto model. Physical Review E, 2023, 107, .	0.8	4
675	Heterogeneous Nucleation in Finite-Size Adaptive Dynamical Networks. Physical Review Letters, 2023, 130, .	2.9	14
676	Macroscopic dynamics of neural networks with heterogeneous spiking thresholds. Physical Review E, 2023, 107, .	0.8	7
677	Population spiking and bursting in next-generation neural masses with spike-frequency adaptation. Physical Review E, 2023, 107, .	0.8	4
678	Asymmetric spiral chimeras on a spheric surface of nonlocally coupled phase oscillators. Physical Review E, 2023, 107, .	0.8	1
679	Multistability in coupled oscillator systems with higher-order interactions and community structure. Chaos, 2023, 33, .	1.0	6
680	Exact finite-dimensional description for networks of globally coupled spiking neurons. Physical Review E, 2023, 107, .	0.8	9
681	Synchronization-desynchronization transitions in networks of circle maps with sinusoidal coupling. Chinese Physics B, 0, , .	0.7	1
682	Next generation neural population models. Frontiers in Applied Mathematics and Statistics, 0, 9, .	0.7	8
683	Cyclops States in Repulsive Kuramoto Networks: The Role of Higher-Order Coupling. Physical Review Letters, 2023, 130, .	2.9	5
684	Synchronization of phase oscillators on complex hypergraphs. Chaos, 2023, 33, .	1.0	10
685	Alternating chimera states in complex networks with modular structures. Chaos, 2023, 33, 033136.	1.0	0
686	Abrupt symmetry-preserving transition from the chimera state. Physical Review E, 2023, 107, .	0.8	0
687	Stability and multistability of synchronization in networks of coupled phase oscillators. Chinese Physics B, O, , .	0.7	0
716	The seasons within: a theoretical perspective on photoperiodic entrainment and encoding. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 0, , .	0.7	1
729	A Frequency-Sweeping Approach for Establishing Stability Region for Complex-Valued Parameter for a Class of Linear Time-Invariant Systems with Discrete or Distributed Delay *. , 2023, , .		0
731	Coevolution Dynamics and the Biosemiotics of Human Change. Contributions To Management Science, 2024, , 129-149.	0.4	0

	Сітатіо	CITATION REPORT	
#	Article	IF	CITATIONS
740	Generative learning for nonlinear dynamics. Nature Reviews Physics, 2024, 6, 194-206.	11.9	0