Exactly solvable model of avalanches dynamics for Bark

Advances in Physics 57, 287-359 DOI: 10.1080/00018730802420614

Citation Report

#	Article	IF	CITATIONS
1	Rate-Dependent Avalanche Size in Athermally Sheared Amorphous Solids. Physical Review Letters, 2009, 103, 065501.	2.9	220
2	Modeling scaled processes and 1/ <i>f</i> ^{l²} noise using nonlinear stochastic differential equations. Journal of Statistical Mechanics: Theory and Experiment, 2009, 2009, P02051.	0.9	39
3	Universal Additive Effect of Temperature on the Rheology of Amorphous Solids. Physical Review Letters, 2010, 105, 266001.	2.9	52
4	The noise of the needle: Avalanches of a single progressing needle domain in LaAlO3. Applied Physics Letters, 2010, 97, .	1.5	70
5	On the dynamics of ferroelastic domain boundaries under thermal and elastic forcing. Phase Transitions, 2010, 83, 657-669.	0.6	7
6	Avalanche spatial structure and multivariable scaling functions: Sizes, heights, widths, and views through windows. Physical Review E, 2011, 84, 061103.	0.8	30
7	Universality beyond power laws and the average avalanche shape. Nature Physics, 2011, 7, 316-320.	6.5	185
8	Model for domain wall avalanches in ferromagnetic thin films. Physica A: Statistical Mechanics and Its Applications, 2011, 390, 4192-4197.	1.2	6
9	Distribution of velocities in an avalanche. Europhysics Letters, 2012, 97, 46004.	0.7	25
10	Deep spin-glass hysteresis-area collapse and scaling in the three-dimensional±JIsing model. Physical Review E, 2012, 86, 041107.	0.8	8
11	Nonstationary dynamics of the Alessandro-Beatrice-Bertotti-Montorsi model. Physical Review E, 2012, 85, 031105.	0.8	30
12	Distribution of Maximum Velocities in Avalanches Near the Depinning Transition. Physical Review Letters, 2012, 109, 105702.	2.9	22
13	Distribution of velocities and acceleration for a particle in Brownian correlated disorder: Inertial case. Physical Review E, 2012, 85, 061116.	0.8	8
14	The Role of Interstitial Impurities in the Frictional Instability of Seismic Fault Models. Tribology Letters, 2012, 48, 89-94.	1.2	5
15	Multifractality in domain wall dynamics of a ferromagnetic film. Physical Review E, 2012, 86, 066117.	0.8	16
16	On the critical nature of plastic flow: One and two dimensional models. International Journal of Engineering Science, 2012, 59, 219-254.	2.7	37
17	Magnetic Barkhausen emission in lightly deformed AISI 1070 steel. Journal of Magnetism and Magnetic Materials, 2012, 324, 11-14.	1.0	26
18	Controlling avalanche criticality in 2D nano arrays. Scientific Reports, 2013, 3, 1845.	1.6	7

#	Article	IF	CITATIONS
19	Earthquake-like dynamics in <i>Myxococcus xanthus</i> social motility. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2330-2335.	3.3	31
20	Intrinsic anomalous scaling in a ferromagnetic thin film model. European Physical Journal B, 2013, 86, 1.	0.6	3
21	Heterogeneous relaxation dynamics in amorphous materials under cyclic loading. Physical Review E, 2013, 87, 052302.	0.8	72
22	Statistics of avalanches with relaxation and Barkhausen noise: A solvable model. Physical Review E, 2013, 88, 032106.	0.8	21
23	Universal properties of magnetization dynamics in polycrystalline ferromagnetic films. Physical Review E, 2013, 88, 032811.	0.8	12
24	Avalanche dynamics of elastic interfaces. Physical Review E, 2013, 88, 022106.	0.8	38
25	Universal fluctuations and extreme statistics of avalanches near the depinning transition. Physical Review E, 2013, 87, 022126.	0.8	55
26	Slow crack propagation through a disordered medium: Critical transition and dissipation. Europhysics Letters, 2013, 101, 16005.	0.7	6
27	The Barkhausen Effects and Nano-System Magnetizations in Fe. Materials Transactions, 2013, 54, 1661-1666.	0.4	5
28	Fluctuations of Clobal Energy Release and Crackling in Nominally Brittle Heterogeneous Fracture. Physical Review Letters, 2014, 113, 264301.	2.9	30
29	Avalanche shape and exponents beyond mean-field theory. Europhysics Letters, 2014, 108, 66002.	0.7	43
30	Statistical properties of Barkhausen noise in amorphous ferromagnetic films. Physical Review E, 2014, 90, 032821.	0.8	17
31	A model for the Barkhausen frequency spectrum as a function of applied stress. Journal of Applied Physics, 2014, 115, .	1.1	31
32	Avalanches and hysteresis in frustrated superconductors andXYspin glasses. Physical Review E, 2014, 90, 042103.	0.8	6
33	Barkhausen noise in metallic glasses with strong local anisotropy: model and theory. Journal of Statistical Mechanics: Theory and Experiment, 2014, 2014, P08020.	0.9	5
34	Aftershock production rate of driven viscoelastic interfaces. Physical Review E, 2014, 90, 042129.	0.8	16
35	Scale-Free Bursting in Human Cortex following Hypoxia at Birth. Journal of Neuroscience, 2014, 34, 6557-6572.	1.7	53
36	Creep dynamics of viscoelastic interfaces. Europhysics Letters, 2014, 105, 46003.	0.7	5

#	Article	IF	CITATIONS
37	Computer Simulations on Barkhausen Effects and Magnetizations in Fe Nano-Structure Systems. Materials Transactions, 2014, 55, 1591-1598.	0.4	2
38	Scaling properties of a ferromagnetic thin film model at the depinning transition. Journal of Statistical Mechanics: Theory and Experiment, 2015, 2015, P10015.	0.9	1
39	Simulation of the Magnetic Hysteresis Loop in Ferrimagnetism. Materials Transactions, 2015, 56, 1488-1490.	0.4	5
40	Spatial shape of avalanches in the Brownian force model. Journal of Statistical Mechanics: Theory and Experiment, 2015, 2015, P08019.	0.9	11
41	Modeling Barkhausen Noise in magnetic glasses with dipole-dipole interactions. Europhysics Letters, 2015, 112, 17011.	0.7	6
42	Acoustic emission during the ferroelectric transition Pm3Â ⁻ m to P4mm in BaTiO3 and the ferroelastic transition R3Â ⁻ m-C2/c in Pb3(PO4)2. Applied Physics Letters, 2015, 106, .	1.5	27
43	Moving line model and avalanche statistics of Bingham fluid flow in porous media. European Physical Journal E, 2015, 38, 76.	0.7	10
44	Identification of different processes in magnetization dynamics of API steels using magnetic Barkhausen noise. Journal Physics D: Applied Physics, 2015, 48, 295002.	1.3	14
45	Accurate mean-field modeling of the Barkhausen noise power in ferromagnetic materials, using a positive-feedback theory of ferromagnetism. Journal of Applied Physics, 2015, 118, 023904.	1.1	3
46	Statistical features of magnetic noise in mixed-type impact fracture. Applied Physics Letters, 2015, 106, 064102.	1.5	3
47	Parabolic temporal profiles of non-spanning avalanches and their importance for ferroic switching. Applied Physics Letters, 2016, 108, .	1.5	16
48	Quantitative Scaling of Magnetic Avalanches. Physical Review Letters, 2016, 117, 087201.	2.9	48
49	Distribution of joint local and total size and of extension for avalanches in the Brownian force model. Physical Review E, 2016, 93, 052142.	0.8	8
50	Increasing â€~ease of sliding' also increases friction: when is a lubricant effective?. Journal of Physics Condensed Matter, 2016, 28, 134001.	0.7	4
51	Strain intermittency due to avalanches in ferroelastic and porous materials. Journal of Physics Condensed Matter, 2017, 29, 224002.	0.7	10
52	The noise of many needles: Jerky domain wall propagation in PbZrO3 and LaAlO3. APL Materials, 2017, 5, .	2.2	28
53	Simple unified view of branching process statistics: Random walks in balanced logarithmic potentials. Physical Review E, 2017, 95, 032115.	0.8	46
54	Universal temporal characteristics and vanishing of multifractality in Barkhausen avalanches. Physical Review E, 2017, 96, 022159.	0.8	23

#	Article	IF	CITATIONS
55	Creep and thermal rounding close to the elastic depinning threshold. Physical Review E, 2017, 96, 022112.	0.8	17
56	Temporal profiles of avalanches on networks. Nature Communications, 2017, 8, 1227.	5.8	43
57	Towards a Quantitative Analysis of Crackling Noise by Strain Drop Measurements. Understanding Complex Systems, 2017, , 59-76.	0.3	1
58	Ferroelastic Domain Collapse and Acoustic Emission: Non-equilibrium Behaviour of Multiferroic Materials. Understanding Complex Systems, 2017, , 137-156.	0.3	3
59	On dissipation in crackling noise systems. Europhysics Letters, 2018, 121, 26001.	0.7	0
60	Diverging Relaxation Times of Domain Wall Motion Indicating Glassy Dynamics in Ferroelastics. Materials Research, 2018, 21, .	0.6	2
61	First-passage distributions for the one-dimensional Fokker-Planck equation. Physical Review E, 2018, 98, .	0.8	23
62	Avalanche dynamics in higher-dimensional fiber bundle models. Physical Review E, 2018, 98, .	0.8	7
63	Shapes and velocity relaxation of dislocation avalanches in Au and Nb microcrystals. Acta Materialia, 2018, 152, 86-95.	3.8	39
64	Kinetics of State Switching in Quasi-One-Dimensional Nanosystems. Statistical Model of the Influence of Defects. Crystallography Reports, 2018, 63, 245-249.	0.1	0
65	Playing with universality classes of Barkhausen avalanches. Scientific Reports, 2018, 8, 11294.	1.6	30
66	Nano-indentation and avalanches in compressed porous SiO2. Applied Physics Letters, 2019, 115, 071902.	1.5	5
67	Simulation of Exchange Bias by Two-Phase Ferrimagnetic Model Using Antiferromagnetic Interlayer Coupling for the Fe ₃ O ₄ Thin Film. Materials Transactions, 2019, 60, 55-60.	0.4	0
68	Magnetic domain dynamics in an insulating quantum ferromagnet. Physical Review B, 2019, 100, .	1.1	4
69	Breakdown of Scaling and Friction Weakening in Intermittent Granular Flow. Scientific Reports, 2019, 9, 16962.	1.6	6
70	Micro-macro characteristics between domain wall motion and magnetic Barkhausen noise under tensile stress. Journal of Magnetism and Magnetic Materials, 2020, 493, 165719.	1.0	48
71	High-spatial-resolution magnetic Barkhausen noise sensor with shielded receiver. Sensors and Actuators A: Physical, 2020, 316, 112334.	2.0	4
72	Asymmetric Damage Avalanche Shape in Quasibrittle Materials and Subavalanche (Aftershock) Clusters. Physical Review Letters, 2020, 125, 105502.	2.9	18

	CITATION RE	PORT	
#	Article	IF	Citations
73	Waiting-time statistics in magnetic systems. Scientific Reports, 2020, 10, 9692.	1.6	3
74	Time-Response-Histogram-Based Feature of Magnetic Barkhausen Noise for Material Characterization Considering Influences of Grain and Grain Boundary under In Situ Tensile Test. Sensors, 2021, 21, 2350.	2.1	4
75	Local Probe Comparison of Ferroelectric Switching Event Statistics in the Creep and Depinning Regimes in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi>Pb</mml:mi><mml:mrow><mml:mo stretchy="false">(<mml:msub><mml:mrow><mml:mi>Zr</mml:mi></mml:mrow><mml:mrow><mml:mi< td=""><td>2.9 mn>0.2<!--</td--><td>13 /mml:mn></td></td></mml:mi<></mml:mrow></mml:msub></mml:mo </mml:mrow></mml:mrow></mml:math>	2.9 mn>0.2 </td <td>13 /mml:mn></td>	13 /mml:mn>
76	Maximum entropy in the dimensional transition of the magnetic domain wall dynamics. Physica A: Statistical Mechanics and Its Applications, 2021, 568, 125730.	1.2	4
77	Mean-field theories for depinning and their experimental signatures. Physical Review E, 2021, 103, 052114.	0.8	5
78	Universal excursion and bridge shapes in ABBM/CIR/Bessel processes. Journal of Statistical Mechanics: Theory and Experiment, 2021, 2021, 083211.	0.9	5
79	Segmental front line dynamics of randomly pinned ferroelastic domain walls. Physical Review Materials, 2018, 2, .	0.9	3
80	Ferroelectric switching and scale invariant avalanches in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>BaTi</mml:mi><mml:msub><mml: mathvariant="normal">O<mml:mn>3</mml:mn></mml: </mml:msub></mml:mrow>. Physical Review Materials, 2019, 3.</mml:math 	^{mi} 0.9	52
81	Analysis of the Barkhausen Effect with Domain Energy System and the Retarded Trace Method. IEEJ Transactions on Fundamentals and Materials, 2013, 133, 489-499.	0.2	5
82	Crackling Noise in Basalt and Gabbro. Springer Theses, 2014, , 101-120.	0.0	0
83	Temperature Dependence of the Magnetic Hysteresis Curves in Magnetic Multilayers. Materials Transactions, 2017, 58, 716-719.	0.4	1
84	Universality, criticality and complexity of information propagation in social media. Nature Communications, 2022, 13, 1308.	5.8	13
85	Statistical properties of avalanches via the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>c</mml:mi> -record process. Physical Review E, 2021, 104, 064129.</mml:math 	0.8	0
86	Magnetic Barkhausen Noise Transient Analysis for Microstructure Evolution Characterization with Tensile Stress in Elastic and Plastic Status. Sensors, 2021, 21, 8310.	2.1	7
87	Temporal evolution of failure avalanches of the fiber bundle model on complex networks. Chaos, 2022, 32, 063121.	1.0	1
88	Theory and experiments for disordered elastic manifolds, depinning, avalanches, and sandpiles. Reports on Progress in Physics, 2022, 85, 086502.	8.1	19
89	Equivalence of mean-field avalanches and branching diffusions: From the Brownian force model to the super-Brownian motion. Journal of Physics A: Mathematical and Theoretical, 0, , .	0.7	1
90	Force Correlations in Disordered Magnets. Physical Review Letters, 2022, 129, .	2.9	4

#	Article	IF	CITATIONS
91	Scaling of Average Avalanche Shapes for Acoustic Emission during Jerky Motion of Single Twin Boundary in Single-Crystalline Ni2MnGa. Materials, 2023, 16, 2089.	1.3	1