A role for the mitochondrial deacetylase Sirt3 in regulat

Proceedings of the National Academy of Sciences of the Unite 105, 14447-14452

DOI: 10.1073/pnas.0803790105

Citation Report

#	Article	IF	CITATIONS
3	Urea cycle regulation by mitochondrial sirtuin, SIRT5. Aging, 2009, 1, 578-581.	1.4	62
4	Crystal Structures of Human SIRT3 Displaying Substrate-induced Conformational Changes. Journal of Biological Chemistry, 2009, 284, 24394-24405.	1.6	177
5	Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. Journal of Clinical Investigation, 2009, 119, 2758-71.	3.9	781
6	The Emerging Characterization of Lysine Residue Deacetylation on the Modulation of Mitochondrial Function and Cardiovascular Biology. Circulation Research, 2009, 105, 830-841.	2.0	55
7	The hypoxic response and aging. Cell Cycle, 2009, 8, 2324-2324.	1.3	32
8	Calorie restriction and the exercise of chromatin. Genes and Development, 2009, 23, 1849-1869.	2.7	130
9	Metabolic regulation and redox activity as mechanisms for angioprevention by dietary phytochemicals. International Journal of Cancer, 2009, 125, 1997-2003.	2.3	64
10	Identification of GATA2 and AP-1 Activator Elements within the Enhancer VNTR Occurring in Intron 5 of the Human SIRT3 Gene. Molecules and Cells, 2009, 28, 87-92.	1.0	22
11	Sirt1's Complex Roles in Neuroprotection. Cellular and Molecular Neurobiology, 2009, 29, 1093-1103.	1.7	35
12	Recent progress in the biology and physiology of sirtuins. Nature, 2009, 460, 587-591.	13.7	1,329
13	Mitochondria in the elderly: Is acetylcarnitine a rejuvenator?â~†. Advanced Drug Delivery Reviews, 2009, 61, 1332-1342.	6.6	75
14	Novel antibody-based strategies for the rapid diagnosis of mitochondrial disease and dysfunction. International Journal of Biochemistry and Cell Biology, 2009, 41, 2081-2088.	1.2	7
15	SIRT5 Deacetylates Carbamoyl Phosphate Synthetase 1 and Regulates the Urea Cycle. Cell, 2009, 137, 560-570.	13.5	677
16	Ure(k)a! Sirtuins Regulate Mitochondria. Cell, 2009, 137, 404-406.	13.5	17
17	Fasting-Induced Hypothermia and Reduced Energy Production in Mice Lacking Acetyl-CoA Synthetase 2. Cell Metabolism, 2009, 9, 191-202.	7.2	88
18	Type 2 diabetes, mitochondrial biology and the heart. Journal of Molecular and Cellular Cardiology, 2009, 46, 842-849.	0.9	47
19	Domestication of the cardiac mitochondrion for energy conversion. Journal of Molecular and Cellular Cardiology, 2009, 46, 832-841.	0.9	77
20	Chapter 8 Acetylation of Mitochondrial Proteins. Methods in Enzymology, 2009, 457, 137-147.	0.4	48

#	Article	IF	CITATIONS
21	Expansion of the human mitochondrial proteome by intra- and inter-compartmental protein duplication. Genome Biology, 2009, 10, R135.	13.9	23
22	Chapter 5 Sirtuins and p53. Advances in Cancer Research, 2009, 102, 171-195.	1.9	68
23	Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1α in skeletal muscle. Aging, 2009, 1, 771-783.	1.4	428
24	The Importance of NAD in Multiple Sclerosis. Current Pharmaceutical Design, 2009, 15, 64-99.	0.9	70
25	SIRT3 SNPs validation in 640 individuals, functional analyses and new insights into SIRT3 stability. International Journal of Oncology, 2010, 36, 955-60.	1.4	7
26	Sirt3 protects in vitro–fertilized mouse preimplantation embryos against oxidative stress–induced p53-mediated developmental arrest. Journal of Clinical Investigation, 2010, 120, 2817-2828.	3.9	140
27	Cellular Stress Responses, The Hormesis Paradigm, and Vitagenes: Novel Targets for Therapeutic Intervention in Neurodegenerative Disorders. Antioxidants and Redox Signaling, 2010, 13, 1763-1811.	2.5	649
28	Current Views of the Structure of the Mammalian Mitochondrial Ribosome. Israel Journal of Chemistry, 2010, 50, 45-59.	1.0	37
29	When a theory of aging ages badly. Cellular and Molecular Life Sciences, 2010, 67, 1-8.	2.4	232
30	Protein deacetylation by sirtuins: delineating a post-translational regulatory program responsive to nutrient and redox stressors. Cellular and Molecular Life Sciences, 2010, 67, 3073-3087.	2.4	54
31	Somatic polyploidy promotes cell function under stress and energy depletion: evidence from tissue-specific mammal transcriptome. Functional and Integrative Genomics, 2010, 10, 433-446.	1.4	58
32	Continuous multiparametric monitoring of cell metabolism in response to transient overexpression of the sirtuin deacetylase SIRT3. Clinical Epigenetics, 2010, 1, 55-60.	1.8	2
33	Acetate metabolism and aging: An emerging connection. Mechanisms of Ageing and Development, 2010, 131, 511-516.	2.2	67
34	Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends in Biochemical Sciences, 2010, 35, 669-675.	3.7	549
35	Role of Sirtuin 1 in metabolic regulation. Drug Discovery Today, 2010, 15, 781-791.	3.2	51
36	Multi-site control and regulation of mitochondrial energy production. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 698-709.	0.5	102
37	SIRT3 Is a Mitochondria-Localized Tumor Suppressor Required for Maintenance of Mitochondrial Integrity and Metabolism during Stress. Cancer Cell, 2010, 17, 41-52.	7.7	705
38	Reactive oxygen species, cellular redox systems, and apoptosis. Free Radical Biology and Medicine, 2010, 48, 749-762.	1.3	2,779

#	Article	IF	CITATIONS
39	SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity. Free Radical Biology and Medicine, 2010, 49, 1230-1237.	1.3	148
40	Characterization of the murine SIRT3 mitochondrial localization sequence and comparison of mitochondrial enrichment and deacetylase activity of long and short SIRT3 isoforms. Journal of Cellular Biochemistry, 2010, 110, 238-247.	1.2	99
41	Characterization of murine SIRT3 transcript variants and corresponding protein products. Journal of Cellular Biochemistry, 2010, 111, 1051-1058.	1.2	34
42	Function and regulation of the mitochondrial Sirtuin isoform Sirt5 in Mammalia. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 1658-1665.	1.1	62
43	Sirtuin regulation in calorie restriction. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 1576-1583.	1.1	46
44	Mitochondrial sirtuins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 1645-1651.	1.1	199
45	The effect of marathon on mRNA expression of anti-apoptotic and pro-apoptotic proteins and sirtuins family in male recreational long-distance runners. BMC Physiology, 2010, 10, 7.	3.6	32
46	SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature, 2010, 464, 121-125.	13.7	1,388
47	Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature, 2010, 468, 701-704.	13.7	383
48	Deconstructing repression: evolving models of co-repressor action. Nature Reviews Genetics, 2010, 11, 109-123.	7.7	466
49	Ethanol sensitizes mitochondria to the permeability transition by inhibiting deacetylation of cyclophilin-D mediated by sirtuin-3. Journal of Cell Science, 2010, 123, 4117-4127.	1.2	73
50	Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria. Journal of Cell Science, 2010, 123, 894-902.	1.2	158
51	The Secret Life of NAD+: An Old Metabolite Controlling New Metabolic Signaling Pathways. Endocrine Reviews, 2010, 31, 194-223.	8.9	731
52	NAD+-dependent Deacetylase SIRT3 Regulates Mitochondrial Protein Synthesis by Deacetylation of the Ribosomal Protein MRPL10. Journal of Biological Chemistry, 2010, 285, 7417-7429.	1.6	143
53	SIRT6 Deficiency Results in Severe Hypoglycemia by Enhancing Both Basal and Insulin-stimulated Glucose Uptake in Mice. Journal of Biological Chemistry, 2010, 285, 36776-36784.	1.6	181
54	Evidence for Physical Association of Mitochondrial Fatty Acid Oxidation and Oxidative Phosphorylation Complexes. Journal of Biological Chemistry, 2010, 285, 29834-29841.	1.6	137
55	Inflammation, HIF-1, and the Epigenetics That Follows. Mediators of Inflammation, 2010, 2010, 1-5.	1.4	30
56	Mitochondrial SIRT3 and heart disease. Cardiovascular Research, 2010, 88, 250-256.	1.8	122

# 57	ARTICLE The proteomic response of the mussel congeners <i>Mytilus galloprovincialis</i> and <i>M. trossulus</i> to acute heat stress: implications for thermal tolerance limits and metabolic costs of thermal stress. Journal of Experimental Biology, 2010, 213, 3559-3574.	IF 0.8	Citations 253
58	At the crossroad of lifespan, calorie restriction, chromatin and disease: Meeting on sirtuins. Cell Cycle, 2010, 9, 1907-1912.	1.3	20
59	Muscle contractile activity regulates Sirt3 protein expression in rat skeletal muscles. Journal of Applied Physiology, 2010, 109, 332-340.	1.2	71
60	Mammalian Sirtuins: Biological Insights and Disease Relevance. Annual Review of Pathology: Mechanisms of Disease, 2010, 5, 253-295.	9.6	1,742
61	Posttranslational Modification of Proteins. , 2010, , 433-468.		2
62	Pharmacological manipulations of CNS sirtuins: Potential effects on metabolic homeostasis. Pharmacological Research, 2010, 62, 48-54.	3.1	8
63	Regulation of Succinate Dehydrogenase Activity by SIRT3 in Mammalian Mitochondria. Biochemistry, 2010, 49, 304-311.	1.2	397
64	Exogenous NAD Blocks Cardiac Hypertrophic Response via Activation of the SIRT3-LKB1-AMP-activated Kinase Pathway. Journal of Biological Chemistry, 2010, 285, 3133-3144.	1.6	351
65	Mitochondrial Energetics and Therapeutics. Annual Review of Pathology: Mechanisms of Disease, 2010, 5, 297-348.	9.6	610
66	Energetics, epigenetics, mitochondrial genetics. Mitochondrion, 2010, 10, 12-31.	1.6	428
67	Sirt3-Mediated Deacetylation of Evolutionarily Conserved Lysine 122 Regulates MnSOD Activity in Response to Stress. Molecular Cell, 2010, 40, 893-904.	4.5	794
68	Crosstalk between the DNA damage response, histone modifications and neovascularisation. International Journal of Biochemistry and Cell Biology, 2010, 42, 193-197.	1.2	12
69	Sirt3 Mediates Reduction of Oxidative Damage and Prevention of Age-Related Hearing Loss under Caloric Restriction. Cell, 2010, 143, 802-812.	13.5	1,008
70	Hepatic-Specific Disruption of SIRT6 in Mice Results in Fatty Liver Formation Due to Enhanced Glycolysis and Triglyceride Synthesis. Cell Metabolism, 2010, 12, 224-236.	7.2	433
71	SIRT3 Deacetylates Mitochondrial 3-Hydroxy-3-Methylglutaryl CoA Synthase 2 and Regulates Ketone Body Production. Cell Metabolism, 2010, 12, 654-661.	7.2	418
72	Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trends in Pharmacological Sciences, 2010, 31, 212-220.	4.0	393
73	The Lifespan-Regulator p66Shc in Mitochondria: Redox Enzyme or Redox Sensor?. Antioxidants and Redox Signaling, 2010, 13, 1417-1428.	2.5	72
74	Sirtuins as Novel Targets for Alzheimer's Disease and Other Neurodegenerative Disorders: Experimental and Genetic Evidence. Journal of Alzheimer's Disease, 2010, 19, 11-26.	1.2	112

#	Article	IF	CITATIONS
75	SIRT1-independent mechanisms of the putative sirtuin enzyme activators SRT1720 and SRT2183. Future Medicinal Chemistry, 2010, 2, 1751-1759.	1.1	41
76	Mammalian Mitochondrial Complex I: Biogenesis, Regulation, and Reactive Oxygen Species Generation. Antioxidants and Redox Signaling, 2010, 12, 1431-1470.	2.5	353
78	4-Hydroxynonenal Inhibits SIRT3 via Thiol-Specific Modification. Chemical Research in Toxicology, 2011, 24, 651-662.	1.7	107
79	SIRT3 Substrate Specificity Determined by Peptide Arrays and Machine Learning. ACS Chemical Biology, 2011, 6, 146-157.	1.6	65
80	Mitochondrial Sirtuins in the Regulation of Mitochondrial Activity and Metabolic Adaptation. Handbook of Experimental Pharmacology, 2011, 206, 163-188.	0.9	108
82	Histone Deacetylases: the Biology and Clinical Implication. Handbook of Experimental Pharmacology, 2011, , .	0.9	7
83	Sirtuins, Aging, and Medicine. New England Journal of Medicine, 2011, 364, 2235-2244.	13.9	490
84	Sirt3, Mitochondrial ROS, Ageing, and Carcinogenesis. International Journal of Molecular Sciences, 2011, 12, 6226-6239.	1.8	92
85	Mitochondrial–nuclear epistasis: Implications for human aging and longevity. Ageing Research Reviews, 2011, 10, 238-252.	5.0	53
86	PARP-1 Inhibition Increases Mitochondrial Metabolism through SIRT1 Activation. Cell Metabolism, 2011, 13, 461-468.	7.2	673
87	Murine Sirt3 protein isoforms have variable half-lives. Gene, 2011, 488, 46-51.	1.0	12
88	Sirt3 Promotes the Urea Cycle and Fatty Acid Oxidation during Dietary Restriction. Molecular Cell, 2011, 41, 139-149.	4.5	344
89	The SirT3 Divining Rod Points to Oxidative Stress. Molecular Cell, 2011, 42, 561-568.	4.5	202
90	SIRT3 Deficiency and Mitochondrial Protein Hyperacetylation Accelerate the Development of the Metabolic Syndrome. Molecular Cell, 2011, 44, 177-190.	4.5	691
91	Melatonin—A pleiotropic, orchestrating regulator molecule. Progress in Neurobiology, 2011, 93, 350-384.	2.8	680
92	Protective effects and mechanisms of sirtuins in the nervous system. Progress in Neurobiology, 2011, 95, 373-395.	2.8	178
93	Acetylation of MnSOD directs enzymatic activity responding to cellular nutrient status or oxidative stress. Aging, 2011, 3, 102-107.	1.4	132
95	Mammalian Sirtuins and Energy Metabolism. International Journal of Biological Sciences, 2011, 7, 575-587.	2.6	169

	CITATION RE	PORT	
# 96	ARTICLE Sirtuins in Aging and Age-Related Diseases. , 2011, , 243-274.	IF	CITATIONS
97	Distinct Effects of Calorie Restriction and Resveratrol on Diet-Induced Obesity and Fatty Liver Formation. Journal of Nutrition and Metabolism, 2011, 2011, 1-10.	0.7	71
98	Differential Effects of Krill Oil and Fish Oil on the Hepatic Transcriptome in Mice. Frontiers in Genetics, 2011, 2, 45.	1.1	66
99	Neuronal Sirt3 Protects against Excitotoxic Injury in Mouse Cortical Neuron Culture. PLoS ONE, 2011, 6, e14731.	1.1	139
100	Screening for Active Small Molecules in Mitochondrial Complex I Deficient Patient's Fibroblasts, Reveals AICAR as the Most Beneficial Compound. PLoS ONE, 2011, 6, e26883.	1.1	95
101	Cellular and molecular effects of sirtuins in health and disease. Clinical Science, 2011, 121, 191-203.	1.8	116
102	Genomic organization and localization of the NAD-dependent histone deacetylase gene sirtuin 3 (Sirt3) in the mouse. International Journal of Oncology, 2011, 38, 813-22.	1.4	6
103	The human sirtuin family: Evolutionary divergences and functions. Human Genomics, 2011, 5, 485.	1.4	148
104	Pathways for Ischemic Cytoprotection: Role of Sirtuins in Caloric Restriction, Resveratrol, and Ischemic Preconditioning. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 1003-1019.	2.4	119
105	Regulation of intermediary metabolism by protein acetylation. Trends in Biochemical Sciences, 2011, 36, 108-116.	3.7	323
106	Mediterranean diet and cardioprotection: The role of nitrite, polyunsaturated fatty acids, and polyphenols. Nutrition, 2011, 27, 733-744.	1.1	112
107	Allosteric nucleotide-binding site in the mitochondrial NADH:ubiquinone oxidoreductase (respiratory) Tj ETQq1 1	0.784314 1.3	rgBT /Overlo
108	SIRT3 attenuates palmitate-induced ROS production and inflammation in proximal tubular cells. Free Radical Biology and Medicine, 2011, 51, 1258-1267.	1.3	121
109	Caloric excess or restriction mediated modulation of metabolic enzyme acetylation—proposed effects on cardiac growth and function. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1279-1285.	1.9	12
110	SIRT3 and cancer: Tumor promoter or suppressor?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2011, 1816, 80-88.	3.3	105
111	SIRT3 Opposes Reprogramming of Cancer Cell Metabolism through HIF1α Destabilization. Cancer Cell, 2011, 19, 416-428.	7.7	690
112	SIRT2 Maintains Genome Integrity and Suppresses Tumorigenesis through Regulating APC/C Activity. Cancer Cell, 2011, 20, 487-499.	7.7	460
113	Nicotinamide mononucleotide protects against pro-inflammatory cytokine-mediated impairment of mouse islet function. Diabetologia, 2011, 54, 3083-3092.	2.9	115

ARTICLE IF CITATIONS After the grape rush: Sirtuins as epigenetic drug targets in neurodegenerative disorders. Bioorganic 114 1.4 54 and Medicinal Chemistry, 2011, 19, 3616-3624. Lysine deacetylation in ischaemic preconditioning: the role of SIRT1. Cardiovascular Research, 2011, 89, 1.8 114 643-649. 116 "Micromanaging―metabolic syndrome. Cell Cycle, 2011, 10, 3249-3252. 1.3 23 Hepatic FoxOs Regulate Lipid Metabolism via Modulation of Expression of the Nicotinamide Phosphoribosyltransferase Gene. Journal of Biological Chemistry, 2011, 286, 14681-14690. Role of cAMP-responsive Element-binding Protein (CREB)-regulated Transcription Coactivator 3 (CRTC3) in the Initiation of Mitochondrial Biogenesis and Stress Response in Liver Cells. Journal of 118 1.6 63 Biological Chemistry, 2011, 286, 22047-22054. Proteins of Diverse Function and Subcellular Location Are Lysine Acetylated in Arabidopsis Â. Plant Physiology, 2011, 155, 1779-1790. 2.3 Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. 120 1.7 339 Biochemical Journal, 2011, 433, 505-514. Sirtuins, Aging, and Metabolism. Cold Spring Harbor Symposia on Quantitative Biology, 2011, 76, 81-90. 121 171 122 Mitochondrial Acetylation and Diseases of Aging. Journal of Aging Research, 2011, 2011, 1-13. 0.4 45 Sirtuins, Bioageing, and Cancer. Journal of Aging Research, 2011, 2011, 1-11. 0.4 Resveratrol Potentiates Glucose-stimulated Insulin Secretion in INS-1E Î²-Cells and Human Islets 124 1.6 145 through a SIRT1-dependent Mechanism. Journal of Biological Chemistry, 2011, 286, 6049-6060. The Mitochondrial Cascade Hypothesis for Parkinsons Disease. Current Pharmaceutical Design, 2011, 39 17, 3390-3397. Sirtuins at a glance. Journal of Cell Science, 2011, 124, 833-838. 126 1.2 262 Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14608-14613. 127 3.3 Sirtuin 1 (SIRT1): The Misunderstood HDAC. Journal of Biomolecular Screening, 2011, 16, 1153-1169. 128 128 2.6 SIRT3 Regulates Mitochondrial Protein Acetylation and Intermediary Metabolism. Cold Spring Harbor 129 159 Symposia on Quantitative Biology, 2011, 76, 267-277. Beyond Histone and Deacetylase: An Overview of Cytoplasmic Histone Deacetylases and Their 130 3.082 Nonhistone Substrates. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-15. Emerging characterization of the role of SIRT3-mediated mitochondrial protein deacetylation in the 1.5 heart. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H2191-H2197.

#	Article	IF	CITATIONS
132	Bovine sirtuins: Initial characterization and expression of sirtuins 1 and 3 in liver, muscle, and adipose tissue1,2. Journal of Animal Science, 2011, 89, 2529-2536.	0.2	28
133	C. elegans SIRT6/7 Homolog SIR-2.4 Promotes DAF-16 Relocalization and Function during Stress. PLoS Genetics, 2012, 8, e1002948.	1.5	58
134	Regulation of oxidative phosphorylation complex activity: effects of tissue-specific metabolic stress within an allometric series and acute changes in workload. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R1034-R1048.	0.9	59
135	Identification of a molecular component of the mitochondrial acetyltransferase programme: a novel role for GCN5L1. Biochemical Journal, 2012, 443, 655-661.	1.7	184
136	Altered Gene Expression, Mitochondrial Damage and Oxidative Stress: Converging Routes in Motor Neuron Degeneration. International Journal of Cell Biology, 2012, 2012, 1-9.	1.0	11
137	Friedreich's ataxia reveals a mechanism for coordinate regulation of oxidative metabolism via feedback inhibition of the SIRT3 deacetylase. Human Molecular Genetics, 2012, 21, 2688-2697.	1.4	62
138	NAD ⁺ /NADH and skeletal muscle mitochondrial adaptations to exercise. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E308-E321.	1.8	140
139	Progression of Chronic Liver Inflammation and Fibrosis Driven by Activation of c-JUN Signaling in Sirt6 Mutant Mice. Journal of Biological Chemistry, 2012, 287, 41903-41913.	1.6	142
140	Body temperature modulates the antioxidant and acute immune responses to exercise. Free Radical Research, 2012, 46, 799-808.	1.5	43
141	Mitochondrial dysfunction induced by heat stress in cultured rat CNS neurons. Journal of Neurophysiology, 2012, 108, 2203-2214.	0.9	35
142	Banting Lecture 2011. Diabetes, 2012, 61, 4-13.	0.3	247
143	SIRT3 Protein Deacetylates Isocitrate Dehydrogenase 2 (IDH2) and Regulates Mitochondrial Redox Status. Journal of Biological Chemistry, 2012, 287, 14078-14086.	1.6	361
144	Mitochondrial Roles and Cytoprotection in Chronic Liver Injury. Biochemistry Research International, 2012, 2012, 1-16.	1.5	111
145	Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis. Scientific Reports, 2012, 2, 425.	1.6	126
146	The mPTP and its regulatory proteins: final common targets of signalling pathways for protection against necrosis. Cardiovascular Research, 2012, 94, 181-189.	1.8	89
147	Mitochondrial Protein Acetylation and Sirtuin-Mediated Deacetylation. Oxidative Stress and Disease, 2012, , 245-267.	0.3	0
148	Mitochondrial Regulation by Protein Acetylation. Oxidative Stress and Disease, 2012, , 269-298.	0.3	1
149	The Warburg effect in 2012. Current Opinion in Oncology, 2012, 24, 62-67.	1.1	164

#	Article	IF	CITATIONS
150	Direct Renin Inhibition Exerts an Anti-hypertrophic Effect Associated with Improved Mitochondrial Function in Post-infarction Heart Failure in Diabetic Rats. Cellular Physiology and Biochemistry, 2012, 29, 841-850.	1,1	48
151	The Sirtuin System: The Holy Grail of Resveratrol?. Journal of Clinical & Experimental Cardiology, 2012, 03, .	0.0	48
152	A Molecular Mechanism for Direct Sirtuin Activation by Resveratrol. PLoS ONE, 2012, 7, e49761.	1.1	231
153	Sirtuins and Pyridine Nucleotides. Circulation Research, 2012, 111, 642-656.	2.0	33
154	trans-(â^')-ε-Viniferin Increases Mitochondrial Sirtuin 3 (SIRT3), Activates AMP-activated Protein Kinase (AMPK), and Protects Cells in Models of Huntington Disease. Journal of Biological Chemistry, 2012, 287, 24460-24472.	1.6	192
155	Mitochondrial protein acetylation regulates metabolism. Essays in Biochemistry, 2012, 52, 23-35.	2.1	207
156	Glucose Modulates Respiratory Complex I Activity in Response to Acute Mitochondrial Dysfunction. Journal of Biological Chemistry, 2012, 287, 38729-38740.	1.6	46
157	Dietary restriction attenuates ageâ€associated muscle atrophy by lowering oxidative stress in mice even in complete absence of CuZnSOD. Aging Cell, 2012, 11, 770-782.	3.0	82
158	Mitochondrial sirtuins: regulators of protein acylation and metabolism. Trends in Endocrinology and Metabolism, 2012, 23, 467-476.	3.1	231
159	Mitochondrial Metabolism, Sirtuins, and Aging. Cold Spring Harbor Perspectives in Biology, 2012, 4, a013102-a013102.	2.3	174
160	Sirtuin-3 Modulates Bak/Bax Dependent Apoptosis. Journal of Cell Science, 2012, 126, 274-88.	1.2	23
161	Proteomic Analysis of Lysine Acetylation Sites in Rat Tissues Reveals Organ Specificity and Subcellular Patterns. Cell Reports, 2012, 2, 419-431.	2.9	493
162	Respiratory chain complex I, a main regulatory target of the cAMP/PKA pathway is defective in different human diseases. FEBS Letters, 2012, 586, 568-577.	1.3	75
163	Redox regulation of mitochondrial biogenesis. Free Radical Biology and Medicine, 2012, 53, 2043-2053.	1.3	140
164	Acetylation of malate dehydrogenase 1 promotes adipogenic differentiation via activating its enzymatic activity. Journal of Lipid Research, 2012, 53, 1864-1876.	2.0	74
165	NAD ⁺ metabolism and oxidative stress: the golden nucleotide on a crown of thorns. Redox Report, 2012, 17, 28-46.	1.4	116
166	The role of SIRT3 in mitochondrial homeostasis and cardiac adaptation to hypertrophy and aging. Journal of Molecular and Cellular Cardiology, 2012, 52, 520-525.	0.9	58
167	Sirtuin 1 and Sirtuin 3: Physiological Modulators of Metabolism. Physiological Reviews, 2012, 92, 1479-1514.	13.1	551

#	Article	IF	CITATIONS
168	Sirtuin biology and relevance to diabetes treatment. Diabetes Management, 2012, 2, 243-257.	0.5	26
169	Regulation and protection of mitochondrial physiology by sirtuins. Mitochondrion, 2012, 12, 66-76.	1.6	39
170	Cytoprotection by the modulation of mitochondrial electron transport chain: The emerging role of mitochondrial STAT3. Mitochondrion, 2012, 12, 180-189.	1.6	104
171	Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 753-783.	1.8	351
172	Sirt3 inhibits hepatocellular carcinoma cell growth through reducing Mdm2-mediated p53 degradation. Biochemical and Biophysical Research Communications, 2012, 423, 26-31.	1.0	94
173	The NAD+ Precursor Nicotinamide Riboside Enhances Oxidative Metabolism and Protects against High-Fat Diet-Induced Obesity. Cell Metabolism, 2012, 15, 838-847.	7.2	957
174	Exploring the electrostatic repulsion model in the role of Sirt3 in directing MnSOD acetylation status and enzymatic activity. Free Radical Biology and Medicine, 2012, 53, 828-833.	1.3	52
175	SIRT3, a pivotal actor in mitochondrial functions: metabolism, cell death and aging. Biochemical Journal, 2012, 444, 1-10.	1.7	218
176	Mitochondrial Acetylome Analysis in a Mouse Model of Alcohol-Induced Liver Injury Utilizing SIRT3 Knockout Mice. Journal of Proteome Research, 2012, 11, 1633-1643.	1.8	113
177	Mitochondrial Protein Acylation and Intermediary Metabolism: Regulation by Sirtuins and Implications for Metabolic Disease. Journal of Biological Chemistry, 2012, 287, 42436-42443.	1.6	187
178	Lipoic Acid Improves Mitochondrial Function in Nonalcoholic Steatosis Through the Stimulation of Sirtuin 1 and Sirtuin 3. Obesity, 2012, 20, 1974-1983.	1.5	72
179	Nucleus-encoded regulators of mitochondrial function: Integration of respiratory chain expression, nutrient sensing and metabolic stress. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 1088-1097.	0.9	120
180	Regulation of mammalian mitochondrial translation by post-translational modifications. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 1055-1066.	0.9	54
181	Mitochondrial sirtuins and metabolic homeostasis. Best Practice and Research in Clinical Endocrinology and Metabolism, 2012, 26, 759-770.	2.2	47
182	Identification of a sirtuin 3 inhibitor that displays selectivity over sirtuin 1 and 2. European Journal of Medicinal Chemistry, 2012, 55, 58-66.	2.6	39
183	Metabolic regulation by SIRT3: implications for tumorigenesis. Trends in Molecular Medicine, 2012, 18, 516-523.	3.5	108
184	Emerging beneficial roles of sirtuins in heart failure. Basic Research in Cardiology, 2012, 107, 273.	2.5	123
185	Actions and interactions of AMPK with insulin, the peroxisomal-proliferator activated receptors and sirtuins. Expert Review of Endocrinology and Metabolism, 2012, 7, 191-208.	1.2	3

#	ADTICLE	IE	CITATIONS
#	Sirt5 Deacylation Activities Show Differential Sensitivities to Nicotinamide Inhibition PLoS ONE 2012	IF	CHAHONS
187	7, e45098.	1.1	75
188	Cellular Links between Neuronal Activity and Energy Homeostasis. Frontiers in Pharmacology, 2012, 3, 43.	1.6	59
189	Making Sense of Oxidative Stress in Obstructive Sleep Apnea: Mediator or Distracter?. Frontiers in Neurology, 2012, 3, 179.	1.1	26
190	Regulation of Mitochondrial Function by Deacetylase in Early Embryos. Journal of Mammalian Ova Research, 2012, 29, 161-169.	0.1	0
191	Mechanism-based Modulator Discovery for Sirtuin-catalyzed Deacetylation Reaction. Mini-Reviews in Medicinal Chemistry, 2012, 13, 132-154.	1.1	1
192	The updated biology of hypoxia-inducible factor. EMBO Journal, 2012, 31, 2448-2460.	3.5	473
193	Sirtuins mediate mammalian metabolic responses to nutrient availability. Nature Reviews Endocrinology, 2012, 8, 287-296.	4.3	288
194	Sirtuins as regulators of metabolism and healthspan. Nature Reviews Molecular Cell Biology, 2012, 13, 225-238.	16.1	1,633
195	Receptorâ€interacting protein (RIP) and Sirtuinâ€3 (SIRT3) are on opposite sides of anoikis and tumorigenesis. Cancer, 2012, 118, 5800-5810.	2.0	35
196	SIRT3 Is a Mitochondrial Tumor Suppressor: A Scientific Tale That Connects Aberrant Cellular ROS, the Warburg Effect, and Carcinogenesis. Cancer Research, 2012, 72, 2468-2472.	0.4	166
197	Mitochondria and Cardiovascular Aging. Circulation Research, 2012, 110, 1109-1124.	2.0	345
198	Redox Regulation of Mitochondrial Function. Antioxidants and Redox Signaling, 2012, 16, 1323-1367.	2.5	436
199	Histone deacetylase modulators provided by Mother Nature. Genes and Nutrition, 2012, 7, 357-367.	1.2	60
200	Unsaturation of Mitochondrial Membrane Lipids is Related to Palmitate Oxidation in Subsarcolemmal and Intermyofibrillar Mitochondria. Journal of Membrane Biology, 2012, 245, 165-176.	1.0	15
201	Sirtuin 4 identification in normal human epidermal keratinocytes and its relation to sirtuin 3 and energy metabolism under normal conditions and UVBâ€induced stress. Experimental Dermatology, 2012, 21, 231-233.	1.4	17
202	Acetylationâ€dependent regulation of mitochondrial ALDH2 activation by SIRT3 mediates acute ethanolâ€induced eNOS activation. FEBS Letters, 2012, 586, 137-142.	1.3	60
203	The role of sirtuins in modulating redox stressors. Free Radical Biology and Medicine, 2012, 52, 281-290.	1.3	86
204	Activation of the cAMP cascade in human fibroblast cultures rescues the activity of oxidatively damaged complex I. Free Radical Biology and Medicine, 2012, 52, 757-764.	1.3	35

#	Article	IF	CITATIONS
205	In mammalian muscle, SIRT3 is present in mitochondria and not in the nucleus; and SIRT3 is upregulated by chronic muscle contraction in an adenosine monophosphate-activated protein kinase–independent manner. Metabolism: Clinical and Experimental, 2012, 61, 733-741.	1.5	51
206	Mitochondrial sirtuins – a new therapeutic target for repair and protection in multiple sclerosis. European Journal of Neuroscience, 2012, 35, 1887-1893.	1.2	21
207	Modulatory effect of resveratrol on SIRT1, SIRT3, SIRT4, PGC1α and NAMPT gene expression profiles in wild-type adult zebrafish liver. Molecular Biology Reports, 2012, 39, 3281-3289.	1.0	65
208	Sirt3 Regulates Metabolic Flexibility of Skeletal Muscle Through Reversible Enzymatic Deacetylation. Diabetes, 2013, 62, 3404-3417.	0.3	234
209	Impact of the renin–angiotensin system on cardiac energy metabolism in heart failure. Journal of Molecular and Cellular Cardiology, 2013, 63, 98-106.	0.9	51
210	Studies on Arthritis and Joint Disorders. , 2013, , .		1
211	Cardiac Adaptations. , 2013, , .		4
212	Sirt3 modulation may be beneficial in the treatment of ejaculation dysfunction. Medical Hypotheses, 2013, 81, 448-449.	0.8	0
213	Sirtuin 3 regulates mouse pancreatic beta cell function and is suppressed in pancreatic islets isolated from human type 2 diabetic patients. Diabetologia, 2013, 56, 1068-1077.	2.9	101
214	SIRT3 overexpression antagonizes high glucose accelerated cellular senescence in human diploid fibroblasts via the SIRT3–FOXO1 signaling pathway. Age, 2013, 35, 2237-2253.	3.0	66
215	Release of targeted p53 from the mitochondrion as an early signal during mitochondrial dysfunction. Cellular Signalling, 2013, 25, 2383-2390.	1.7	4
216	Skeletal Muscle MnSOD, Mitochondrial Complex II, and SIRT3 Enzyme Activities Are Decreased in Maternal Obesity During Human Pregnancy and Gestational Diabetes Mellitus. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E1601-E1609.	1.8	56
218	Sirtuin 3: a major control point for obesity-related metabolic diseases?. Drug Discovery Today Disease Mechanisms, 2013, 10, e35-e40.	0.8	14
219	NAD ⁺ acts on mitochondrial SirT3 to prevent axonal caspase activation and axonal degeneration. FASEB Journal, 2013, 27, 4712-4722.	0.2	42
221	Calorie restriction influences key metabolic enzyme activities and markers of oxidative damage in distinct mouse liver mitochondrial sub-populations. Life Sciences, 2013, 93, 941-948.	2.0	10
222	A bioenergetic profile of non-transformed fibroblasts uncovers a link between death-resistance and enhanced spare respiratory capacity. Mitochondrion, 2013, 13, 662-667.	1.6	45
223	Berberine reverts hepatic mitochondrial dysfunction in high-fat fed rats: A possible role for SirT3 activation. Mitochondrion, 2013, 13, 637-646.	1.6	93
224	Sirtuin-3 (SIRT3) and the Hallmarks of Cancer. Genes and Cancer, 2013, 4, 164-171.	0.6	53

#	Article	IF	CITATIONS
225	Silencing Histone Deacetylase–Specific Isoforms Enhances Expression of Pluripotency Genes in Bovine Fibroblasts. Cellular Reprogramming, 2013, 15, 397-404.	0.5	15
226	Resveratrol Induces a Mitochondrial Complex I-dependent Increase in NADH Oxidation Responsible for Sirtuin Activation in Liver Cells. Journal of Biological Chemistry, 2013, 288, 36662-36675.	1.6	110
227	Oxidative stress response elicited by mitochondrial dysfunction: Implication in the pathophysiology of aging. Experimental Biology and Medicine, 2013, 238, 450-460.	1.1	267
228	Melatonin and the theories of aging: a critical appraisal of melatonin's role in antiaging mechanisms. Journal of Pineal Research, 2013, 55, 325-356.	3.4	236
230	Mitochondrial Dysfunction and NAD+ Metabolism Alterations in the Pathophysiology of Acute Brain Injury. Translational Stroke Research, 2013, 4, 618-634.	2.3	37
231	NAD ⁺ metabolism: A therapeutic target for age-related metabolic disease. Critical Reviews in Biochemistry and Molecular Biology, 2013, 48, 397-408.	2.3	163
232	Mitochondrial protein acetylation as a cell-intrinsic, evolutionary driver of fat storage: Chemical and metabolic logic of acetyl-lysine modifications. Critical Reviews in Biochemistry and Molecular Biology, 2013, 48, 561-574.	2.3	73
233	Sirtuin deacylases: a molecular link between metabolism and immunity. Journal of Leukocyte Biology, 2013, 93, 669-680.	1.5	117
235	Synergistic impact of endurance training and intermittent hypobaric hypoxia on cardiac function and mitochondrial energetic and signaling. International Journal of Cardiology, 2013, 168, 5363-5371.	0.8	32
236	Seven sirtuins for seven deadly diseases ofaging. Free Radical Biology and Medicine, 2013, 56, 133-171.	1.3	332
237	Maintaining good hearing: Calorie restriction, Sirt3, and glutathione. Experimental Gerontology, 2013, 48, 1091-1095.	1.2	38
238	Metabolic and Neuropsychiatric Effects of Calorie Restriction and Sirtuins. Annual Review of Physiology, 2013, 75, 669-684.	5.6	74
239	SIRT3 Reverses Aging-Associated Degeneration. Cell Reports, 2013, 3, 319-327.	2.9	358
240	Melatonin and mitochondrial dysfunction in the central nervous system. Hormones and Behavior, 2013, 63, 322-330.	1.0	85
241	Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3. Mitochondrion, 2013, 13, 755-761.	1.6	203
242	The Tangled Circuitry of Metabolism and Apoptosis. Molecular Cell, 2013, 49, 399-410.	4.5	111
243	Mitochondrial Medicine. , 2013, , 1-153.		5
244	<scp>NAD</scp> and <scp>ADP</scp> â€ribose metabolism in mitochondria. FEBS Journal, 2013, 280, 3530-3541.	2.2	86

#	Article	IF	CITATIONS
245	Regulation of longevity and oxidative stress by nutritional interventions: Role of methionine restriction. Experimental Gerontology, 2013, 48, 1030-1042.	1.2	126
246	Cuscuta chinensis seeds water extraction protecting murine osteoblastic MC3T3-E1 cells against tertiary butyl hydroperoxide induced injury. Journal of Ethnopharmacology, 2013, 148, 587-595.	2.0	20
247	Mitochondrial and skeletal muscle health with advancing age. Molecular and Cellular Endocrinology, 2013, 379, 19-29.	1.6	46
248	SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radical Biology and Medicine, 2013, 63, 222-234.	1.3	339
249	Complex I deficiencies in neurological disorders. Trends in Molecular Medicine, 2013, 19, 61-69.	3.5	65
250	Regulation of mitochondrial FoF1ATPase activity by Sirt3-catalyzed deacetylation and its deficiency in human cells harboring 4977 bp deletion of mitochondrial DNA. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 216-227.	1.8	84
251	Effects of Maternal Aging on Expression of Sirtuin Genes in Ovulated Oocyte and Cumulus Cells. Journal of Mammalian Ova Research, 2013, 30, 24-29.	0.1	7
252	Quantification of Mitochondrial Acetylation Dynamics Highlights Prominent Sites of Metabolic Regulation. Journal of Biological Chemistry, 2013, 288, 26209-26219.	1.6	105
253	Mitochondrial dysfunction in rabies virus infection of neurons. Journal of NeuroVirology, 2013, 19, 537-549.	1.0	37
254	SIRT3 regulation of mitochondrial oxidative stress. Experimental Gerontology, 2013, 48, 634-639.	1.2	248
255	Regulation of Lifespan by the Mitochondrial Electron Transport Chain: Reactive Oxygen Species-Dependent and Reactive Oxygen Species-Independent Mechanisms. Antioxidants and Redox Signaling, 2013, 19, 1953-1969.	2.5	59
256	HINT2 and fatty liver disease: Mitochondrial protein hyperacetylation gives a hint?. Hepatology, 2013, 57, 1681-1683.	3.6	3
257	SIRT3: A Central Regulator of Mitochondrial Adaptation in Health and Disease. Genes and Cancer, 2013, 4, 118-124.	0.6	58
258	Mechanism-based Modulator Discovery for Sirtuin-catalyzed Deacetylation Reaction. Mini-Reviews in Medicinal Chemistry, 2013, 13, 132-154.	1.1	22
259	Mitochondrial Sirtuins as Therapeutic Targets for Age-Related Disorders. Genes and Cancer, 2013, 4, 91-96.	0.6	29
260	Metabolic inflexibility and protein lysine acetylation in heart mitochondria of a chronic model of TypeÂ1 diabetes. Biochemical Journal, 2013, 449, 253-261.	1.7	53
261	Bioenergetic and autophagic control by Sirt3Âin response to nutrient deprivation in mouse embryonic fibroblasts. Biochemical Journal, 2013, 454, 249-257.	1.7	64
262	Mitochondrial Dysfunction: A Basic Mechanism in Inflammation-Related Non-Communicable Diseases and Therapeutic Opportunities. Mediators of Inflammation, 2013, 2013, 1-13.	1.4	116

#	Article	IF	CITATIONS
263	The emerging and diverse roles of sirtuins in cancer: a clinical perspective. OncoTargets and Therapy, 2013, 6, 1399.	1.0	118
264	Mitochondrial Nucleases ENDOG and EXOG Participate in Mitochondrial DNA Depletion Initiated by Herpes Simplex Virus 1 UL12.5. Journal of Virology, 2013, 87, 11787-11797.	1.5	24
265	Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6601-6606.	3.3	414
266	Interaction of Sirt3 with OGG1 contributes to repair of mitochondrial DNA and protects from apoptotic cell death under oxidative stress. Cell Death and Disease, 2013, 4, e731-e731.	2.7	167
267	The Diversity of Histone Versus Nonhistone Sirtuin Substrates. Genes and Cancer, 2013, 4, 148-163.	0.6	119
268	SIRT3 regulates cell proliferation and apoptosis related to energy metabolism in non-small cell lung cancer cells through deacetylation of NMNAT2. International Journal of Oncology, 2013, 43, 1420-1430.	1.4	63
269	Extranuclear Localization of SIRT1 and PGC-1α: An Insight into Possible Roles in Diseases Associated with Mitochondrial Dysfunction. Current Molecular Medicine, 2013, 13, 140-154.	0.6	50
270	Potential role of sirtuins in livestock production. Animal, 2013, 7, 101-108.	1.3	14
271	The sirtuin family's role in aging and age-associated pathologies. Journal of Clinical Investigation, 2013, 123, 973-979.	3.9	195
272	Proteomic Biomarkers for Ageing the Mosquito Aedes aegypti to Determine Risk of Pathogen Transmission. PLoS ONE, 2013, 8, e58656.	1.1	28
273	Sirtuins: from metabolic regulation to brain aging. Frontiers in Aging Neuroscience, 2013, 5, 36.	1.7	75
274	Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration. Frontiers in Aging Neuroscience, 2013, 5, 48.	1.7	255
275	Increased Nitroxidative Stress Promotes Mitochondrial Dysfunction in Alcoholic and Nonalcoholic Fatty Liver Disease. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-14.	1.9	54
276	SIRT4 regulates ATP homeostasis and mediates a retrograde signaling via AMPK. Aging, 2013, 5, 835-849.	1.4	130
277	Sirtuins in Hematological Aging and Malignancy. Critical Reviews in Oncogenesis, 2013, 18, 531-547.	0.2	28
278	Cisplatin-induced Kidney Dysfunction and Perspectives on Improving Treatment Strategies. Electrolyte and Blood Pressure, 2014, 12, 55.	0.6	143
279	Age-Related Decrease in the Mitochondrial Sirtuin Deacetylase Sirt3 Expression Associated with ROS Accumulation in the Auditory Cortex of the Mimetic Aging Rat Model. PLoS ONE, 2014, 9, e88019.	1.1	83
280	New Insights into the Role of Mitochondrial Dynamics and Autophagy during Oxidative Stress and Aging in the Heart. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1-13.	1.9	92

		CITATION R	EPORT	
#	Article		IF	CITATIONS
281	Sirt3 Protects Cortical Neurons against Oxidative Stress via Regulating Mitochondrial Mitochondrial Mitochondrial Biogenesis. International Journal of Molecular Sciences, 2014, 15, 1459	Ca2+ and 1-14609.	1.8	103
282	Effects of downregulation of SIRT3 expression on proliferation and apoptosis in esoph squamous cell carcinoma EC9706 cells and its molecular mechanisms. Bio-Medical Ma Engineering, 2014, 24, 3883-3890.	ageal terials and	0.4	11
283	The effects of sleep loss on capacity and effort. Sleep Science, 2014, 7, 213-224.		0.4	63
284	The NAD ⁺ synthesizing enzyme nicotinamide mononucleotide adenylyltra (NMNAT-2) is a p53 downstream target. Cell Cycle, 2014, 13, 1041-1048.	nsferase 2	1.3	30
285	Sirtuin-3 (SIRT3), a therapeutic target with oncogenic and tumor-suppressive function Death and Disease, 2014, 5, e1047-e1047.	in cancer. Cell	2.7	177
286	Epigenetics and Cardiovascular Disease. , 2014, , 747-782.			0
287	SIRT3 deficiency exacerbates ischemia-reperfusion injury: implication for aged hearts. A of Physiology - Heart and Circulatory Physiology, 2014, 306, H1602-H1609.	American Journal	1.5	183
288	Pharmacological activation of NQO1 increases NAD+ levels and attenuates cisplatin-m kidney injury in mice. Kidney International, 2014, 85, 547-560.	ediated acute	2.6	113
289	Metabolism leaves its mark on the powerhouse: recent progress in post-translational r of lysine in mitochondria. Frontiers in Physiology, 2014, 5, 301.	nodifications	1.3	71
290	Role of Mitochondria in Nonalcoholic Fatty Liver Disease. International Journal of Mole Sciences, 2014, 15, 8713-8742.	cular	1.8	271
291	Arginine Starvation Impairs Mitochondrial Respiratory Function in ASS1-Deficient Brea Science Signaling, 2014, 7, ra31.	st Cancer Cells.	1.6	144
292	Impact of caloric restriction on myocardial ischaemia/reperfusion injury and new thera to mimic its effects. British Journal of Pharmacology, 2014, 171, 2964-2992.	peutic options	2.7	28
293	SIRT3 interactions with FOXO3 acetylation, phosphorylation and ubiquitinylation med cell responses to hypoxia. Biochemical Journal, 2014, 464, 157-168.	iate endothelial	1.7	90
294	SIRT3 and SIRT4 are mitochondrial tumor suppressor proteins that connect mitochond and carcinogenesis. Cancer & Metabolism, 2014, 2, 15.	Irial metabolism	2.4	63
295	Impact of Various Exercise Modalities on Hepatic Mitochondrial Function. Medicine an Sports and Exercise, 2014, 46, 1089-1097.	d Science in	0.2	48
296	Acetylation in the Control of Mitochondrial Metabolism and Integrity. , 2014, , 115-12	7.		0
297	In Vitro Toxicology Systems. Methods in Pharmacology and Toxicology, 2014, , .		0.1	8
298	Fasting mitigates immediate hypersensitivity: a pivotal role of endogenous D-beta-hyd Nutrition and Metabolism, 2014, 11, 40.	roxybutyrate.	1.3	5

#	Article	IF	CITATIONS
299	Regulation of MnSOD Enzymatic Activity by Sirt3 Connects the Mitochondrial Acetylome Signaling Networks to Aging and Carcinogenesis. Antioxidants and Redox Signaling, 2014, 20, 1646-1654.	2.5	148
300	Sirtuins in stress response: guardians of the genome. Oncogene, 2014, 33, 3764-3775.	2.6	91
301	Are sirtuin deacylase enzymes important modulators of mitochondrial energy metabolism?. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1295-1302.	1.1	43
302	Deletion of Sirt3 does not affect atherosclerosis but accelerates weight gain and impairs rapid metabolic adaptation in LDL receptor knockout mice: implications for cardiovascular risk factor development. Basic Research in Cardiology, 2014, 109, 399.	2.5	54
303	SIRT5 is under the control of PGCâ€1α and AMPK and is involved in regulation of mitochondrial energy metabolism. FASEB Journal, 2014, 28, 3225-3237.	0.2	105
304	Extended Wakefulness: Compromised Metabolics in and Degeneration of Locus Ceruleus Neurons. Journal of Neuroscience, 2014, 34, 4418-4431.	1.7	125
305	Regulation of autophagy and mitophagy by nutrient availability and acetylation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 525-534.	1.2	56
306	Post-translational modification of mitochondria as a novel mode of regulation. Experimental Gerontology, 2014, 56, 202-220.	1.2	58
307	Mitochondrial protein acetylation is driven by acetyl-CoA from fatty acid oxidation. Human Molecular Genetics, 2014, 23, 3513-3522.	1.4	140
308	Roles of sirtuins in the regulation of antioxidant defense and bioenergetic function of mitochondria under oxidative stress. Free Radical Research, 2014, 48, 1070-1084.	1.5	42
309	SIRT3: As Simple As It Seems?. Gerontology, 2014, 60, 56-64.	1.4	75
310	SIRT3 Deacetylates and Activates OPA1 To Regulate Mitochondrial Dynamics during Stress. Molecular and Cellular Biology, 2014, 34, 807-819.	1.1	331
311	Pre-diabetes alters testicular PGC1-α/SIRT3 axis modulating mitochondrial bioenergetics and oxidative stress. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 335-344.	0.5	122
312	Superoxide Mediates Acute Liver Injury in Irradiated Mice Lacking Sirtuin 3. Antioxidants and Redox Signaling, 2014, 20, 1423-1435.	2.5	30
313	Small-molecule inhibitors at the PSD-95/nNOS interface attenuate MPP+-induced neuronal injury through Sirt3 mediated inhibition of mitochondrial dysfunction. Neurochemistry International, 2014, 79, 57-64.	1.9	27
314	SIRT3 Deacetylates ATP Synthase F ₁ Complex Proteins in Response to Nutrient- and Exercise-Induced Stress. Antioxidants and Redox Signaling, 2014, 21, 551-564.	2.5	159
315	Over-expression of the Sirt3 sirtuin Protects neuronally differentiated PC12 Cells from degeneration induced by oxidative stress and trophic withdrawal. Brain Research, 2014, 1587, 40-53.	1.1	25
316	Mitochondrial response to nutrient availability and its role in metabolic disease. EMBO Molecular Medicine, 2014, 6, 580-589.	3.3	120

#	Article	IF	CITATIONS
317	Sirtuin 3 Deficiency Is Associated with Inhibited Mitochondrial Function and Pulmonary Arterial Hypertension in Rodents and Humans. Cell Metabolism, 2014, 20, 827-839.	7.2	170
318	<i>Drosophila</i> Sirt2/mammalian SIRT3 deacetylates ATP synthase β and regulates complex V activity. Journal of Cell Biology, 2014, 206, 289-305.	2.3	104
319	Regulation of Akt Signaling by Sirtuins. Circulation Research, 2014, 114, 368-378.	2.0	222
320	AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity. FASEB Journal, 2014, 28, 3211-3224.	0.2	182
321	The life of plant mitochondrial complex I. Mitochondrion, 2014, 19, 295-313.	1.6	103
322	Toward a new STATe: The role of STATs in mitochondrial function. Seminars in Immunology, 2014, 26, 20-28.	2.7	140
323	Proteomic analysis of A2780/S ovarian cancer cell response to the cytotoxic organogold(III) compound Aubipyc. Journal of Proteomics, 2014, 103, 103-120.	1.2	37
324	Mitochondrial SIRT3 and its target glutamate dehydrogenase are altered in follicular cells of women with reduced ovarian reserve or advanced maternal age. Human Reproduction, 2014, 29, 1490-1499.	0.4	79
325	A Redox-resistant Sirtuin-1 Mutant Protects against Hepatic Metabolic and Oxidant Stress. Journal of Biological Chemistry, 2014, 289, 7293-7306.	1.6	58
326	An integrated perspective and functional impact of the mitochondrial acetylome. Expert Review of Proteomics, 2014, 11, 383-394.	1.3	14
327	MnSOD in Oxidative Stress Response-Potential Regulation <i>via</i> Mitochondrial Protein Influx. Antioxidants and Redox Signaling, 2014, 20, 1599-1617.	2.5	250
328	Sorting out functions of sirtuins in cancer. Oncogene, 2014, 33, 1609-1620.	2.6	212
329	Sirt3 attenuates hydrogen peroxide-induced oxidative stress through the preservation of mitochondrial function in HT22 cells. International Journal of Molecular Medicine, 2014, 34, 1159-1168.	1.8	55
331	Mitochondrion as a Target for Heart Failure Therapy – Role of Protein Lysine Acetylation –. Circulation Journal, 2015, 79, 1863-1870.	0.7	37
332	Aerobic Training Increases Expression Levels of SIRT3 and PGC-1α in Skeletal Muscle of Overweight Adolescents Without Change in Caloric Intake. Pediatric Exercise Science, 2015, 27, 177-184.	0.5	25
333	Altered FoF1 ATP synthase and susceptibility to mitochondrial permeability transition pore during ischaemia and reperfusion in aging cardiomyocytes. Thrombosis and Haemostasis, 2015, 113, 441-451.	1.8	46
334	Caffeic acid ethanolamide prevents cardiac dysfunction through sirtuin dependent cardiac bioenergetics preservation. Journal of Biomedical Science, 2015, 22, 80.	2.6	20
335	Metabolic control of signalling pathways and metabolic autoâ€regulation. Biology of the Cell, 2015, 107, 251-272.	0.7	64

#	Article	IF	CITATIONS
336	The É›â€Amino Group of Protein Lysine Residues Is Highly Susceptible to Nonenzymatic Acylation by Several Physiological Acyl oA Thioesters. ChemBioChem, 2015, 16, 2337-2347.	1.3	46
337	Oxidative stress and ROS metabolism via down-regulation of sirtuin 3 expression in Cmah-null mice affect hearing loss. Aging, 2015, 7, 579-594.	1.4	42
338	The Tree of Sirtuins and the Garden of Cardiovascular Youth. Current Vascular Pharmacology, 2015, 14, 80-87.	0.8	5
339	The Role of SIRT3 in Mediating Cardioprotective Effects of RAS Inhibition on Cardiac Ischemia-Reperfusion. Journal of Pharmacy and Pharmaceutical Sciences, 2015, 18, 547.	0.9	5
340	Pivotal Importance of STAT3 in Protecting the Heart from Acute and Chronic Stress: New Advancement and Unresolved Issues. Frontiers in Cardiovascular Medicine, 2015, 2, 36.	1.1	64
341	Differential expression of sirtuins in the aging rat brain. Frontiers in Cellular Neuroscience, 2015, 9, 167.	1.8	119
342	SIRT3 Enhances Glycolysis and Proliferation in SIRT3-Expressing Gastric Cancer Cells. PLoS ONE, 2015, 10, e0129834.	1.1	79
343	Improvement of Endurance Based on Muscle Fiber-Type Composition by Treatment with Dietary Apple Polyphenols in Rats. PLoS ONE, 2015, 10, e0134303.	1.1	26
344	AMP-activated protein kinase controls exercise training- and AICAR-induced increases in SIRT3 and MnSOD. Frontiers in Physiology, 2015, 6, 85.	1.3	71
345	Sirtuin Functions in Female Fertility: Possible Role in Oxidative Stress and Aging. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-11.	1.9	110
347	Sirtuin 3–dependent mitochondrial dynamic improvements protect against acute kidney injury. Journal of Clinical Investigation, 2015, 125, 715-726.	3.9	335
348	The role of mitochondrial dysfunction in age-related diseases. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1387-1400.	0.5	162
349	Impact of Oxidative Stress on Exercising Skeletal Muscle. Biomolecules, 2015, 5, 356-377.	1.8	287
350	Changes in gene expression in SIRT3 knockout liver cells. Turkish Journal of Biology, 2015, 39, 380-387.	2.1	2
352	Caffeic acid attenuates rat liver reperfusion injury through sirtuin 3-dependent regulation of mitochondrial respiratory chain. Free Radical Biology and Medicine, 2015, 85, 237-249.	1.3	31
353	Nuclear respiratory factor 2 induces <scp>SIRT</scp> 3 expression. Aging Cell, 2015, 14, 818-825.	3.0	68
354	The promise and perils of <scp>HDAC</scp> inhibitors in neurodegeneration. Annals of Clinical and Translational Neurology, 2015, 2, 79-101.	1.7	90
355	Ionizing radiation induces immediate protein acetylation changes in human cardiac microvascular endothelial cells. Journal of Radiation Research, 2015, 56, 623-632.	0.8	21

ARTICLE IF CITATIONS # Dynamics of Fat Mass in DUhTP Mice Selected for Running Performance - Fat Mobilization in a Walk. 356 1.6 8 Óbesity Facts, 2015, 8, 373-385. The metabolic regulation of aging. Nature Medicine, 2015, 21, 1416-1423. 15.2 272 358 Sirtuin 3 regulates Foxo3a-mediated antioxidant pathway in microglia. Neuroscience, 2015, 311, 398-414. 1.1 107 Mechanisms of cell death pathway activation following drug-induced inhibition of mitochondrial 3.9 complex I. Redox Biology, 2015, 4, 279-288. Differential prooxidative effects of the green tea polyphenol, (â€")â€epigallocatechinâ€3â€gallate, in normal 360 and oral cancer cells are related to differences in sirtuin 3 signaling. Molecular Nutrition and Food 1.561 Research, 2015, 59, 203-211. Mitochondrial Sirtuins and Their Relationships with Metabolic Disease and Cancer. Antioxidants and Redox Signaling, 2015, 22, 1060-1077. 2.5 The renoprotective effect of curcumin in cisplatin-induced nephrotoxicity. Renal Failure, 2015, 37, 362 0.8 83 332-336. SIRT3 Attenuates MPTP-Induced Nigrostriatal Degeneration Via Enhancing Mitochondrial Antioxidant 1.6 69 Capacity. Neurochemical Research, 2015, 40, 600-608. SIRT1 attenuates high glucose-induced insulin resistance via reducing mitochondrial dysfunction in 364 1.1 33 skeletal muscle cells. Experimental Biology and Medicine, 2015, 240, 557-565. Acetyl-CoA and the regulation of metabolism: mechanisms and consequences. Current Opinion in Cell 2.6 Biology, 2015, 33, 125-131. Sirtuin and metabolic kidney disease. Kidney International, 2015, 88, 691-698. 366 100 2.6 Arsenic Induces Insulin Resistance in Mouse Adipocytes and Myotubes Via Oxidative Stress-Regulated Mitochondrial Sirt3-FOXO3a Signaling Pathway. Toxicological Sciences, 2015, 146, 290-300. 1.4 79 The role of mammalian sirtuins in cancer metabolism. Seminars in Cell and Developmental Biology, 368 2.3 39 2015, 43, 33-42. Sirtuins and the Metabolic Hurdles in Cancer. Current Biology, 2015, 25, R569-R583. 1.8 SIRT3 regulates progression and development of diseases of aging. Trends in Endocrinology and 370 3.1167 Metabolism, 2015, 26, 486-492. Increased SIRT3 Expression and Antioxidant Defense under Hyperglycemic Conditions in HepG2 Cells. 371 Metabolic Syndrome and Related Disorders, 2015, 13, 255-263. Mitochondrial Sirt3 Expression is Decreased in APP/PS1 Double Transgenic Mouse Model of 372 1.6 62 Alzheimer's Disease. Neurochemical Research, 2015, 40, 1576-1582. Mitochondrial complex I defect and increased fatty acid oxidation enhance protein lysine acetylation 373 1.8 in the diabetic heart. Cardiovascular Research, 2015, 107, 453-465.

#	Article	IF	CITATIONS
374	Biotin starvation causes mitochondrial protein hyperacetylation and partial rescue by the SIRT3-like deacetylase Hst4p. Nature Communications, 2015, 6, 7726.	5.8	47
375	Sirtuins: double players in Huntington's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2183-2194.	1.8	40
376	Targeting aberrant cancer metabolism – The role of sirtuins. Pharmacological Reports, 2015, 67, 1068-1080.	1.5	43
377	PGCâ€1α overexpression by <i>in vivo</i> transfection attenuates mitochondrial deterioration of skeletal muscle caused by immobilization. FASEB Journal, 2015, 29, 4092-4106.	0.2	68
378	The role of mitochondrial disturbances in Alzheimer, Parkinson and Huntington diseases. Expert Review of Neurotherapeutics, 2015, 15, 867-884.	1.4	39
379	Protective effects of sirtuins in cardiovascular diseases: from bench to bedside. European Heart Journal, 2015, 36, 3404-3412.	1.0	354
380	Transition from metabolic adaptation to maladaptation of the heart in obesity: role of apelin. International Journal of Obesity, 2015, 39, 312-320.	1.6	38
381	SIRT3-SOD2-mROS-dependent autophagy in cadmium-induced hepatotoxicity and salvage by melatonin. Autophagy, 2015, 11, 1037-1051.	4.3	261
382	Sirtuin-3 (SIRT3) Protein Attenuates Doxorubicin-induced Oxidative Stress and Improves Mitochondrial Respiration in H9c2 Cardiomyocytes. Journal of Biological Chemistry, 2015, 290, 10981-10993.	1.6	142
383	Highâ€fat diet induces cardiac remodelling and dysfunction: assessment of the role played by <scp>SIRT</scp> 3 loss. Journal of Cellular and Molecular Medicine, 2015, 19, 1847-1856.	1.6	106
384	Intersections between mitochondrial sirtuin signaling and tumor cell metabolism. Critical Reviews in Biochemistry and Molecular Biology, 2015, 50, 242-255.	2.3	18
385	Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3. Nature Communications, 2015, 6, 6656.	5.8	336
386	Oroxylin A inhibits glycolysis-dependent proliferation of human breast cancer via promoting SIRT3-mediated SOD2 transcription and HIF1α destabilization. Cell Death and Disease, 2015, 6, e1714-e1714.	2.7	71
387	Dietary restriction, mitochondrial function and aging: from yeast to humans. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1434-1447.	0.5	111
388	SIRT3 deficiency impairs mitochondrial and contractile function in the heart. Basic Research in Cardiology, 2015, 110, 36.	2.5	157
389	Oxidative Stress Events and Neuronal Dysfunction in Alzheimer's Disease: Focus on APE1/Ref-1-Mediated Survival Strategies. , 2015, , 175-207.		9
390	Sirt3 prevents maternal obesity-associated oxidative stress and meiotic defects in mouse oocytes. Cell Cycle, 2015, 14, 2959-2968.	1.3	80
391	SIRT3 Is Crucial for Maintaining Skeletal Muscle Insulin Action and Protects Against Severe Insulin Resistance in High-Fat–Fed Mice. Diabetes, 2015, 64, 3081-3092.	0.3	119

#	Article	IF	CITATIONS
392	Role of SIRT3 in Angiotensin II-induced human umbilical vein endothelial cells dysfunction. BMC Cardiovascular Disorders, 2015, 15, 81.	0.7	27
393	The balance of powers: Redox regulation of fibrogenic pathways in kidney injury. Redox Biology, 2015, 6, 495-504.	3.9	76
394	Nicotinamide N-methyltransferase increases complex I activity in SH-SY5Y cells via sirtuin 3. Biochemical and Biophysical Research Communications, 2015, 467, 491-496.	1.0	25
395	Cold acclimation increases levels of some heat shock protein and sirtuin isoforms in threespine stickleback. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2015, 188, 139-147.	0.8	44
396	Sirtuin regulation in aging and injury. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2442-2455.	1.8	199
397	CDK1-Mediated SIRT3 Activation Enhances Mitochondrial Function and Tumor Radioresistance. Molecular Cancer Therapeutics, 2015, 14, 2090-2102.	1.9	87
398	Schistosome sirtuins as drug targets. Future Medicinal Chemistry, 2015, 7, 765-782.	1.1	19
399	The role of sirtuins in cardiac disease. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1375-H1389.	1.5	267
400	Activation of SIRT3 by resveratrol ameliorates cardiac fibrosis and improves cardiac function via the TGF-β/Smad3 pathway. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H424-H434.	1.5	143
401	Activation of <scp>TRPV1</scp> attenuates high saltâ€induced cardiac hypertrophy through improvement of mitochondrial function. British Journal of Pharmacology, 2015, 172, 5548-5558.	2.7	58
402	Mitochondrial sirtuins: Emerging roles in metabolic regulations, energy homeostasis and diseases. Experimental Gerontology, 2015, 61, 130-141.	1.2	98
403	SIRT3 protects cells from hypoxia via PGC-1α- and MnSOD-dependent pathways. Neuroscience, 2015, 286, 109-121.	1.1	65
404	Sirtuins and nonalcoholic fatty liver disease. World Journal of Gastroenterology, 2016, 22, 10084.	1.4	99
405	Metabolically Relevant Cell Biology – Role of Intracellular Organelles for Cardiac Metabolism. , 2016, , 19-38.		3
406	Post-Translational Modifications of Cardiac Mitochondrial Proteins in Cardiovascular Disease: Not Lost in Translation. Korean Circulation Journal, 2016, 46, 1.	0.7	18
407	SIRT3 Expression Decreases with Reactive Oxygen Species Generation in Rat Cortical Neurons during Early Brain Injury Induced by Experimental Subarachnoid Hemorrhage. BioMed Research International, 2016, 2016, 1-9.	0.9	24
408	The neurobiology of acetyl-L-carnitine. Frontiers in Bioscience - Landmark, 2016, 21, 1314-1329.	3.0	64
409	PDE5 inhibitors protect against post-infarction heart failure. Frontiers in Bioscience - Landmark, 2016, 21, 1194-1210.	3.0	15

		CITATION R	EPORT	
#	Article		IF	CITATIONS
410	SIRT3 in Cardiac Physiology and Disease. Frontiers in Cardiovascular Medicine, 2016, 3	, 38.	1.1	48
411	Phosphorylation Modulates Catalytic Activity of Mycobacterial Sirtuins. Frontiers in Mi 2016, 7, 677.	crobiology,	1.5	7
412	SIRT Is Required for EDP-Mediated Protective Responses toward Hypoxia–Reoxygena Cardiac Cells. Frontiers in Pharmacology, 2016, 7, 124.	ation Injury in	1.6	12
413	Autophagy in Ischemic Livers: A Critical Role of Sirtuin 1/Mitofusin 2 Axis in Autophagy Toxicological Research, 2016, 32, 35-46.	Induction.	1.1	17
414	SIRT3 in cardiovascular diseases: Emerging roles and therapeutic implications. Internat of Cardiology, 2016, 220, 700-705.	ional Journal	0.8	37
415	Mitochondrial Sirtuin 3 and Renal Diseases. Nephron, 2016, 134, 14-19.		0.9	58
416	Fusaric acid induces mitochondrial stress in human hepatocellular carcinoma (HepG2) 2016, 119, 336-344.	cells. Toxicon,	0.8	34
417	Sirtuins and Aging. , 2016, , 213-227.			2
418	STAT3 Undergoes Acetylation-dependent Mitochondrial Translocation to Regulate Pyro Metabolism. Scientific Reports, 2016, 6, 39517.	Jvate	1.6	95
419	Post-translational modifications in mitochondria: protein signaling in the powerhouse. Molecular Life Sciences, 2016, 73, 4063-4073.	Cellular and	2.4	129
420	Mitochondrial Sirt3 supports cell proliferation by regulating glutamine-dependent oxid cell carcinoma. Biochemical and Biophysical Research Communications, 2016, 474, 54	ation in renal 7-553.	1.0	36
421	Role of Sirtuins in Regulating Pathophysiology of the Heart. Trends in Endocrinology at 2016, 27, 563-573.	nd Metabolism,	3.1	60
422	Activation of SIRT3 attenuates triptolide-induced toxicity through closing mitochondri transition pore in cardiomyocytes. Toxicology in Vitro, 2016, 34, 128-137.	al permeability	1.1	31
423	Ablation of SIRT3 causes coronary microvascular dysfunction and impairs cardiac recommy ocardial ischemia. International Journal of Cardiology, 2016, 215, 349-357.	very post	0.8	68
424	Mitochondrial Sirtuins in Cancer: Emerging Roles and Therapeutic Potential. Cancer Re 76, 2500-2506.	search, 2016,	0.4	64
425	Mild endothelial dysfunction in Sirt3 knockout mice fed a high-cholesterol diet: protec novel C/EBP-β-dependent feedback regulation of SOD2. Basic Research in Cardiology,	tive role of a 2016, 111, 33.	2.5	28
426	Mitochondrial Function, Biology, and Role in Disease. Circulation Research, 2016, 118,	1960-1991.	2.0	330
427	Aging and Autophagy in the Heart. Circulation Research, 2016, 118, 1563-1576.		2.0	359

		CITATION RE	PORT	
#	Article		IF	CITATIONS
428	Mitochondrial Metabolism in Aging Heart. Circulation Research, 2016, 118, 1593-1611.		2.0	249
429	Sirtuin activation as a therapeutic approach against inborn errors of metabolism. Journal of Inher Metabolic Disease, 2016, 39, 565-572.	ited	1.7	11
430	The role of mitochondrial sirtuins in health and disease. Free Radical Biology and Medicine, 2016 164-174.	, 100,	1.3	137
431	Sirtuins and the Estrogen Receptor as Regulators of the Mammalian Mitochondrial UPR in Cance Aging. Advances in Cancer Research, 2016, 130, 211-256.	r and	1.9	30
432	Is fructose-induced mitochondrial dysfunction in L6 myotubes mediated by epigenetic changes in Sirt3 promoter?. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, e29.	n the	0.5	0
433	Acetylation control of cardiac fatty acid β-oxidation and energy metabolism in obesity, diabetes, heart failure. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 2211-2220	and).	1.8	77
434	Metabolic control and oxidative stress in pathological cardiac remodelling. European Heart Journ 2017, 38, ehw199.	al,	1.0	11
435	Acidosis Drives the Reprogramming of Fatty Acid Metabolism in Cancer Cells through Changes ir Mitochondrial and Histone Acetylation. Cell Metabolism, 2016, 24, 311-323.	, 1	7.2	244
436	NMNAT3 is involved in the protective effect of SIRT3 in Ang II-induced cardiac hypertrophy. Experimental Cell Research, 2016, 347, 261-273.		1.2	44
437	MicroRNAs in heart failure: Non-coding regulators of metabolic function. Biochimica Et Biophysic Acta - Molecular Basis of Disease, 2016, 1862, 2276-2287.	a	1.8	19
438	Enzyme Complexes Important for the Glutamate–Glutamine Cycle. Advances in Neurobiology, 59-98.	2016, 13,	1.3	27
439	Metabolic control of epigenetics in cancer. Nature Reviews Cancer, 2016, 16, 694-707.		12.8	317
440	Integration of superoxide formation and cristae morphology for mitochondrial redox signaling. International Journal of Biochemistry and Cell Biology, 2016, 80, 31-50.		1.2	47
441	Roles of SIRT3 in heart failure: from bench to bedside. Journal of Zhejiang University: Science B, 2 17, 821-830.	2016,	1.3	25
442	Sirtuin 3: A Janus face in cancer (Review). International Journal of Oncology, 2016, 49, 2227-223	5.	1.4	37
443	Sirtuins. , 2016, , .			0
444	Mitochondrial Sirtuin Network Reveals Dynamic SIRT3-Dependent Deacetylation in Response to Membrane Depolarization. Cell, 2016, 167, 985-1000.e21.		13.5	259
445	Sirtuin 3 (SIRT3) maintains bone homeostasis by regulating AMPK-PGC-1Î ² axis in mice. Scientific 2016, 6, 22511.	: Reports,	1.6	70

#	Article	IF	CITATIONS
446	Melatonin improves age-induced fertility decline and attenuates ovarian mitochondrial oxidative stress in mice. Scientific Reports, 2016, 6, 35165.	1.6	106
447	An Artificial Reaction Promoter Modulates Mitochondrial Functions via Chemically Promoting Protein Acetylation. Scientific Reports, 2016, 6, 29224.	1.6	6
449	The world of protein acetylation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1372-1401.	1.1	601
450	The role of mitochondrial DNA damage in the development of atherosclerosis. Free Radical Biology and Medicine, 2016, 100, 223-230.	1.3	68
451	Altered cellular redox status, sirtuin abundance and clock gene expression in a mouse model of developmentally primed NASH. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 584-593.	1.2	24
452	Cloning and Characterization of Sirtuin3 (SIRT3). Methods in Molecular Biology, 2016, 1436, 201-211.	0.4	0
454	Mitochondrial sirtuins in the heart. Heart Failure Reviews, 2016, 21, 519-528.	1.7	37
455	<i>SIRT3</i> gene expression but not SIRT3 subcellular localization is altered in response to fasting and exercise in human skeletal muscle. Experimental Physiology, 2016, 101, 1101-1113.	0.9	17
456	Mitophagy plays a central role in mitochondrial ageing. Mammalian Genome, 2016, 27, 381-395.	1.0	114
457	The Hypoxic Response and Aging. , 2016, , 133-159.		0
457 458	The Hypoxic Response and Aging. , 2016, , 133-159. SIRT3 Blocks Aging-Associated Tissue Fibrosis in Mice by Deacetylating and Activating Glycogen Synthase Kinase 3I ² . Molecular and Cellular Biology, 2016, 36, 678-692.	1.1	0 150
457 458 459	The Hypoxic Response and Aging. , 2016, , 133-159. SIRT3 Blocks Aging-Associated Tissue Fibrosis in Mice by Deacetylating and Activating Glycogen Synthase Kinase 31 ² . Molecular and Cellular Biology, 2016, 36, 678-692. SIRT3 Deacetylates Ceramide Synthases. Journal of Biological Chemistry, 2016, 291, 1957-1973.	1.1	0 150 63
457 458 459 460	The Hypoxic Response and Aging., 2016, , 133-159. SIRT3 Blocks Aging-Associated Tissue Fibrosis in Mice by Deacetylating and Activating Glycogen Synthase Kinase 31². Molecular and Cellular Biology, 2016, 36, 678-692. SIRT3 Deacetylates Ceramide Synthases. Journal of Biological Chemistry, 2016, 291, 1957-1973. Preserved recovery of cardiac function following ischemia–reperfusion in mice lacking SIRT3. Canadian Journal of Physiology and Pharmacology, 2016, 94, 72-80.	1.1 1.6 0.7	0 150 63 43
457 458 459 460 461	The Hypoxic Response and Aging., 2016,, 133-159. SIRT3 Blocks Aging-Associated Tissue Fibrosis in Mice by Deacetylating and Activating Glycogen Synthase Kinase 31 ² . Molecular and Cellular Biology, 2016, 36, 678-692. SIRT3 Deacetylates Ceramide Synthases. Journal of Biological Chemistry, 2016, 291, 1957-1973. Preserved recovery of cardiac function following ischemia–reperfusion in mice lacking SIRT3. Canadian Journal of Physiology and Pharmacology, 2016, 94, 72-80. Mitochondrial Dynamics Is Linked to Longevity and Protects from End-Organ Injury: The Emerging Role of Sirtuin 3. Antioxidants and Redox Signaling, 2016, 25, 185-199.	1.1 1.6 0.7 2.5	0 150 63 43
457 458 459 460 461	The Hypoxic Response and Aging., 2016, 133-159. SIRT3 Blocks Aging-Associated Tissue Fibrosis in Mice by Deacetylating and Activating Glycogen Synthase Kinase 312. Molecular and Cellular Biology, 2016, 36, 678-692. SIRT3 Deacetylates Ceramide Synthases. Journal of Biological Chemistry, 2016, 291, 1957-1973. Preserved recovery of cardiac function following ischemia– reperfusion in mice lacking SIRT3. Canadian Journal of Physiology and Pharmacology, 2016, 94, 72-80. Mitochondrial Dynamics Is Linked to Longevity and Protects from End-Organ Injury: The Emerging Role of Sirtuin 3. Antioxidants and Redox Signaling, 2016, 25, 185-199. Manganese Superoxide Dismutase Acetylation and Dysregulation, Due to Loss of SIRT3 Activity, Promote a Luminal B-Like Breast Carcinogenic-Permissive Phenotype. Antioxidants and Redox Signaling, 2016, 25, 326-336.	1.1 1.6 0.7 2.5 2.5	0 150 63 43 46 36
457 458 459 460 461 462	The Hypoxic Response and Aging., 2016, , 133-159. SIRT3 Blocks Aging-Associated Tissue Fibrosis in Mice by Deacetylating and Activating Glycogen Synthase Kinase 31 ² . Molecular and Cellular Biology, 2016, 36, 678-692. SIRT3 Deacetylates Ceramide Synthases. Journal of Biological Chemistry, 2016, 291, 1957-1973. Preserved recovery of cardiac function following ischemia– reperfusion in mice lacking SIRT3. Canadian Journal of Physiology and Pharmacology, 2016, 94, 72-80. Mitochondrial Dynamics Is Linked to Longevity and Protects from End-Organ Injury: The Emerging Role of Sirtuin 3. Antioxidants and Redox Signaling, 2016, 25, 185-199. Manganese Superoxide Dismutase Acetylation and Dysregulation, Due to Loss of SIRT3 Activity, Promote a Luminal B-Like Breast Carcinogenic-Permissive Phenotype. Antioxidants and Redox Signaling, 2016, 25, 326-336. Using mitochondrial sirtuins as drug targets: disease implications and available compounds. Cellular and Molecular Life Sciences, 2016, 73, 2871-2896.	1.1 1.6 0.7 2.5 2.5 2.4	0 150 63 43 46 36
 457 458 459 460 461 462 463 464 	The Hypoxic Response and Aging. , 2016, , 133-159. SIRT3 Blocks Aging-Associated Tissue Fibrosis in Mice by Deacetylating and Activating Glycogen Synthase Kinase 3P. Molecular and Cellular Biology, 2016, 36, 678-692. SIRT3 Deacetylates Ceramide Synthases. Journal of Biological Chemistry, 2016, 291, 1957-1973. Preserved recovery of cardiac function following ischemia–reperfusion in mice lacking SIRT3. Canadian Journal of Physiology and Pharmacology, 2016, 94, 72-80. Mitochondrial Dynamics Is Linked to Longevity and Protects from End-Organ Injury: The Emerging Role of Sirtuin 3. Antioxidants and Redox Signaling, 2016, 25, 185-199. Manganese Superoxide Dismutase Acetylation and Dysregulation, Due to Loss of SIRT3 Activity, Promote a Luminal B-Like Breast Carcinogenic-Permissive Phenotype. Antioxidants and Redox Signaling, 2016, 25, 326-336. Using mitochondrial sirtuins as drug targets: disease implications and available compounds. Cellular and Molecular Life Sciences, 2016, 73, 2871-2896. Mechanisms and Dynamics of Protein Acetylation in Mitochondria. Trends in Biochemical Sciences, 2016, 41, 231-244.	1.1 1.6 0.7 2.5 2.5 2.4 3.7	0 150 63 43 43 46 36 36 236

#	Article	IF	CITATIONS
466	Sirtuin 3 (SIRT3) Regulates α-Smooth Muscle Actin (α-SMA) Production through the Succinate Dehydrogenase-G Protein-coupled Receptor 91 (GPR91) Pathway in Hepatic Stellate Cells. Journal of Biological Chemistry, 2016, 291, 10277-10292.	1.6	49
467	Cardiac mitochondrial energy metabolism in heart failure: Role of cardiolipin and sirtuins. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1544-1554.	1.2	62
468	Sirtuins—mediators of maternal obesityâ€induced complications in offspring?. FASEB Journal, 2016, 30, 1383-1390.	0.2	15
469	Involvement of ROS-mediated mitochondrial dysfunction and SIRT3 down-regulation in tris(2-chloroethyl)phosphate-induced cell cycle arrest. Toxicology Research, 2016, 5, 461-470.	0.9	18
470	Regulators of mitochondrial complex I activity: A review of literature and evaluation in postmortem prefrontal cortex from patients with bipolar disorder. Psychiatry Research, 2016, 236, 148-157.	1.7	8
471	Mitochondrial SIRT3 Mediates Adaptive Responses of Neurons to Exercise and Metabolic and Excitatory Challenges. Cell Metabolism, 2016, 23, 128-142.	7.2	286
472	β-Hydroxy-β-methylbutyrate, mitochondrial biogenesis, and skeletal muscle health. Amino Acids, 2016, 48, 653-664.	1.2	50
473	Effect of regional muscle location but not adiposity on mitochondrial biogenesis-regulating proteins. European Journal of Applied Physiology, 2016, 116, 11-18.	1.2	4
474	PGC-1α/ERRα-Sirt3 Pathway Regulates DAergic Neuronal Death by Directly Deacetylating SOD2 and ATP Synthase β. Antioxidants and Redox Signaling, 2016, 24, 312-328.	2.5	103
475	Protein acetylation in metabolism — metabolites and cofactors. Nature Reviews Endocrinology, 2016, 12, 43-60.	4.3	236
476	Protective Effects of PGC-1α Against Lead-Induced Oxidative Stress and Energy Metabolism Dysfunction in Testis Sertoli Cells. Biological Trace Element Research, 2017, 175, 440-448.	1.9	23
477	Melatonin and sirtuins: A "notâ€so unexpected―relationship. Journal of Pineal Research, 2017, 62, e12391.	3.4	149
478	SIRT3 mediates decrease of oxidative damage and prevention of ageing in porcine fetal fibroblasts. Life Sciences, 2017, 177, 41-48.	2.0	30
479	SIRT3 blocks myofibroblast differentiation and pulmonary fibrosis by preventing mitochondrial DNA damage. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L68-L78.	1.3	70
480	SIRT3 is correlated with the malignancy of non-small cell lung cancer. International Journal of Oncology, 2017, 50, 903-910.	1.4	31
481	Spatio-Temporal Control of Cellular and Organismal Physiology by Sirtuins. Journal of the Indian Institute of Science, 2017, 97, 147-159.	0.9	0
482	Role of NAD+ and mitochondrial sirtuins in cardiac and renal diseases. Nature Reviews Nephrology, 2017, 13, 213-225.	4.1	158
483	Butyrate induces apoptosis by activating PDC and inhibiting complex I through SIRT3 inactivation. Signal Transduction and Targeted Therapy, 2017, 2, 16035.	7.1	41

#	Article	IF	Citations
484	The role of sirtuins in mitochondrial function and doxorubicin-induced cardiac dysfunction.	1.2	36
485	Sirtuins, a promising target in slowing down the ageing process. Biogerontology, 2017, 18, 447-476.	2.0	325
486	Curcumin Upregulates Antioxidant Defense, Lon Protease, and Heat-Shock Protein 70 Under Hyperglycemic Conditions in Human Hepatoma Cells. Journal of Medicinal Food, 2017, 20, 465-473.	0.8	14
487	Slow-Myofiber Commitment by Semaphorin 3A Secreted from Myogenic Stem Cells. Stem Cells, 2017, 35, 1815-1834.	1.4	22
488	SIRT3 and mitochondrial metabolism in neurodegenerative diseases. Neurochemistry International, 2017, 109, 184-192.	1.9	89
489	Characteristics of expression and regulation of sirtuins in chicken (<i>Gallus gallus</i>). Genome, 2017, 60, 431-440.	0.9	12
490	Longevity and healthy ageing genes FOXO3A and SIRT3: Serum protein marker and new road map to burst oxidative stress by Withania somnifera. Experimental Gerontology, 2017, 95, 9-15.	1.2	10
491	Identification of the missing mitochondrial methyltransferase of citrate synthase. FEBS Letters, 2017, 591, 1653-1656.	1.3	1
493	Mitochondrial Dysfunction in Cardiovascular Aging. Advances in Experimental Medicine and Biology, 2017, 982, 451-464.	0.8	32
494	Sirt3 protects dopaminergic neurons from mitochondrial oxidative stress. Human Molecular Genetics, 2017, 26, 1915-1926.	1.4	76
495	Sirt3 Deficiency Increased the Vulnerability of Pancreatic Beta Cells to Oxidative Stress-Induced Dysfunction. Antioxidants and Redox Signaling, 2017, 27, 962-976.	2.5	47
496	Metabolic Syndrome and the Cellular Phase of Alzheimer's Disease. Progress in Molecular Biology and Translational Science, 2017, 146, 243-258.	0.9	56
497	Mitochondrial Sirtuins and Molecular Mechanisms of Aging. Trends in Molecular Medicine, 2017, 23, 320-331.	3.5	242
498	Effects and mechanisms of compound Chinese medicine and major ingredients on microcirculatory dysfunction and organ injury induced by ischemia/reperfusion. , 2017, 177, 146-173.		143
499	Metabolic Dysfunction in Parkinson's Disease: Bioenergetics, Redox Homeostasis and Central Carbon Metabolism. Brain Research Bulletin, 2017, 133, 12-30.	1.4	115
500	Using comparative biology to understand how aging affects mitochondrial metabolism. Molecular and Cellular Endocrinology, 2017, 455, 54-61.	1.6	12
501	The role of caloric load and mitochondrial homeostasis in the regulation of the NLRP3 inflammasome. Cellular and Molecular Life Sciences, 2017, 74, 1777-1791.	2.4	28
502	Resveratrol attenuates mitochondrial dysfunction in the liver of intrauterine growth retarded suckling piglets by improving mitochondrial biogenesis and redox status. Molecular Nutrition and Food Research, 2017, 61, 1600653.	1.5	57

#	Article	IF	CITATIONS
503	Nutrient deprivation induces apoptosis of nucleus pulposus cells via activation of the BNIP3/AIF signalling pathway. Molecular Medicine Reports, 2017, 16, 7253-7260.	1.1	17
504	Human mesenchymal stromal cells transplanted into mice stimulate renal tubular cells and enhance mitochondrial function. Nature Communications, 2017, 8, 983.	5.8	124
505	The sirtuin family members SIRT1, SIRT3 and SIRT6: Their role in vascular biology and atherogenesis. Atherosclerosis, 2017, 265, 275-282.	0.4	144
506	Mitochondrial Sirtuins in cardiometabolic diseases. Clinical Science, 2017, 131, 2063-2078.	1.8	67
507	Berberine-induced cardioprotection and Sirt3 modulation in doxorubicin-treated H9c2 cardiomyoblasts. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2904-2923.	1.8	57
508	Differential impact of amino acids on OXPHOS system activity following carbohydrate starvation in Arabidopsis cell suspensions. Physiologia Plantarum, 2017, 161, 451-467.	2.6	16
509	Age and ischemia differentially impact mitochondrial ultrastructure and function in a novel model of age-associated estrogen deficiency in the female rat heart. Pflugers Archiv European Journal of Physiology, 2017, 469, 1591-1602.	1.3	12
510	Sirtuin-3 Promotes Adipogenesis, Osteoclastogenesis, and Bone Loss in Aging Male Mice. Endocrinology, 2017, 158, 2741-2753.	1.4	37
511	Mitochondrial energetics in the kidney. Nature Reviews Nephrology, 2017, 13, 629-646.	4.1	758
512	Sirtuin 1-dependent resveratrol cytotoxicity and pro-differentiation activity on breast cancer cells. Archives of Toxicology, 2017, 91, 1261-1278.	1.9	38
513	Curcumin prevents cisplatin-induced renal alterations in mitochondrial bioenergetics and dynamic. Food and Chemical Toxicology, 2017, 107, 373-385.	1.8	90
514	Circulating miR-323-3p is a biomarker for cardiomyopathy and an indicator of phenotypic variability in Friedreich's ataxia patients. Scientific Reports, 2017, 7, 5237.	1.6	19
515	Sirtuin 3 rescues neurons through the stabilisation of mitochondrial biogenetics in the virally-expressing mutant α-synuclein rat model of parkinsonism. Neurobiology of Disease, 2017, 106, 133-146.	2.1	48
516	Potential mechanisms linking SIRT activity and hypoxic 2-hydroxyglutarate generation: no role for direct enzyme (de)acetylation. Biochemical Journal, 2017, 474, 2829-2839.	1.7	17
517	Melatonin protects against maternal obesityâ€associated oxidativeÂstress and meiotic defects in oocytes via the <scp>SIRT</scp> 3â€ <scp>SOD</scp> 2â€dependent pathway. Journal of Pineal Research, 2017, 63, e12431.	3.4	134
518	Sirt3 deficiency exacerbates diabetic cardiac dysfunction: Role of Foxo3A-Parkin-mediated mitophagy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1973-1983.	1.8	219
519	NAD and the aging process: Role in life, death and everything in between. Molecular and Cellular Endocrinology, 2017, 455, 62-74.	1.6	152
520	Berberine attenuates oxidative stress and hepatocytes apoptosis via protecting mitochondria in blunt snout bream Megalobrama amblycephala fed high-fat diets. Fish Physiology and Biochemistry, 2017, 43, 65-76.	0.9	108

	CHATON	LPORT	
#	Article	IF	CITATIONS
521	Lysine acetylation in mitochondria: From inventory to function. Mitochondrion, 2017, 33, 58-71.	1.6	71
522	Regulation of mitochondrial metabolism during hibernation by reversible suppression of electron transport system enzymes. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2017, 187, 227-234.	0.7	36
523	Receptorâ€interacting Protein 140 represses Sirtuin 3 to facilitate hypertrophy, mitochondrial dysfunction and energy metabolic dysfunction in cardiomyocytes. Acta Physiologica, 2017, 220, 58-71.	1.8	20
524	Polydatin protects cardiomyocytes against myocardial infarction injury by activating Sirt3. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1962-1972.	1.8	56
525	Sirtuins in metabolism, stemness and differentiation. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3444-3455.	1.1	32
526	HELLP Syndrome. Reproductive Sciences, 2017, 24, 568-574.	1.1	11
527	Mitochondria-Associated Membranes Response to Nutrient Availability and Role in Metabolic Diseases. Trends in Endocrinology and Metabolism, 2017, 28, 32-45.	3.1	117
528	Deficiency of Parkinson's disease-related gene Fbxo7 is associated with impaired mitochondrial metabolism by PARP activation. Cell Death and Differentiation, 2017, 24, 120-131.	5.0	44
529	Function of the <scp>SIRT</scp> 3 mitochondrial deacetylase in cellular physiology, cancer, and neurodegenerative disease. Aging Cell, 2017, 16, 4-16.	3.0	227
530	Fastâ€toâ€slow shift of muscle fiberâ€type composition by dietary apple polyphenols in rats: Impact of the lowâ€dose supplementation. Animal Science Journal, 2017, 88, 489-499.	0.6	19
531	Sirtuins and Their Roles in Brain Aging and Neurodegenerative Disorders. Neurochemical Research, 2017, 42, 876-890.	1.6	190
532	Nicotinamide mononucleotide requires SIRT3 to improve cardiac function and bioenergetics in a Friedreich's ataxia cardiomyopathy model. JCI Insight, 2017, 2, .	2.3	96
533	Activation of Sirtuin 3 by Silybin Attenuates Mitochondrial Dysfunction in Cisplatin-induced Acute Kidney Injury. Frontiers in Pharmacology, 2017, 8, 178.	1.6	57
534	High Sensitivity of SIRT3 Deficient Hearts to Ischemia-Reperfusion Is Associated with Mitochondrial Abnormalities. Frontiers in Pharmacology, 2017, 8, 275.	1.6	56
536	SIRT3: Oncogene and Tumor Suppressor in Cancer. Cancers, 2017, 9, 90.	1.7	98
537	Sirtuins Expression and Their Role in Retinal Diseases. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-11.	1.9	39
538	Regulation of Sirtuin-Mediated Protein Deacetylation by Cardioprotective Phytochemicals. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-16.	1.9	47
539	Sirtuin 3 is required for osteogenic differentiation through maintenance of PGC-1É'-SOD2-mediated regulation of mitochondrial function. International Journal of Biological Sciences, 2017, 13, 254-264.	2.6	55

	CITATION	Report	
# 540	ARTICLE Sirt3 deficiency does not affect venous thrombosis or NETosis despite mild elevation of intracellular ROS in platelets and neutrophils in mice. PLoS ONE, 2017, 12, e0188341.	IF 1.1	CITATIONS
541	Honokiol, an activator of Sirtuin-3 (SIRT3) preserves mitochondria and protects the heart from doxorubicin-induced cardiomyopathy in mice. Oncotarget, 2017, 8, 34082-34098.	0.8	137
542	Pharmacological Induction of Kidney Regeneration. , 2017, , 1025-1037.		4
543	Sirtuins in the Cardiovascular System: Potential Targets in Pediatric Cardiology. Pediatric Cardiology, 2018, 39, 983-992.	0.6	17
544	Therapeutic Potential of NAD-Boosting Molecules: The InÂVivo Evidence. Cell Metabolism, 2018, 27, 529-547.	7.2	565
545	Effects of nutrient restriction and arginine treatment on oxidative stress in the ovarian tissue of ewes during the luteal phase. Theriogenology, 2018, 113, 127-136.	0.9	14
546	NAD(H) in mitochondrial energy transduction: implications for health and disease. Current Opinion in Physiology, 2018, 3, 101-109.	0.9	20
547	Transitional correlation between inner-membrane potential and ATP levels of neuronal mitochondria. Scientific Reports, 2018, 8, 2993.	1.6	25
548	Obesity and steatosis promotes mitochondrial remodeling that enhances respiratory capacity in the liver of ob/ob mice. FEBS Letters, 2018, 592, 916-927.	1.3	9
549	Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Chemical Reviews, 2018, 118, 1216-1252.	23.0	236
550	Sirtuin 1 regulates pulmonary artery smooth muscle cell proliferation. Journal of Hypertension, 2018, 36, 1164-1177.	0.3	48
551	Palmitic acid induces ceramide accumulation, mitochondrial protein hyperacetylation, and mitochondrial dysfunction in porcine oocytesâ€. Biology of Reproduction, 2018, 98, 644-653.	1.2	39
552	Cardiac and placental mitochondrial characterization in a rabbit model of intrauterine growth restriction. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1157-1167.	1.1	14
553	Exogenous H2S switches cardiac energy substrate metabolism by regulating SIRT3 expression in db/db mice. Journal of Molecular Medicine, 2018, 96, 281-299.	1.7	44
554	Sirtuin 3-induced macrophage autophagy in regulating NLRP3 inflammasome activation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 764-777.	1.8	99
555	Salidroside attenuates endothelial cellular senescence via decreasing the expression of inflammatory cytokines and increasing the expression of SIRT3. Mechanisms of Ageing and Development, 2018, 175, 1-6.	2.2	45
556	Mitochondria, the NLRP3 Inflammasome, and Sirtuins in Type 2 Diabetes: New Therapeutic TargetsReviewing Editors: <i>Markus Bachschmid, Dylan Burger, Vittorio Calabrese, Amadou Camara, Lukas Kubala, Giuseppe Poli, and Chandan K. Sen</i> . Antioxidants and Redox Signaling, 2018, 29, 749-791.	2.5	74
557	SIRT3/SOD2 maintains osteoblast differentiation and bone formation by regulating mitochondrial stress. Cell Death and Differentiation, 2018, 25, 229-240.	5.0	180

#	Article	IF	CITATIONS
558	Eight Kinetically Stable but Thermodynamically Activated Molecules that Power Cell Metabolism. Chemical Reviews, 2018, 118, 1460-1494.	23.0	194
559	Effect of caloric restriction and subsequent re-alimentation on oxidative stress in the liver of Hu sheep ram lambs. Animal Feed Science and Technology, 2018, 237, 68-77.	1.1	7
560	MicroRNA-195 Regulates Metabolism in Failing Myocardium Via Alterations in Sirtuin 3 Expression and Mitochondrial Protein Acetylation. Circulation, 2018, 137, 2052-2067.	1.6	124
561	Roles for Sirtuins in Cardiovascular Biology. , 2018, , 155-173.		3
562	The postpartum effect of maternal diabetes on the circulating levels of sirtuins and superoxide dismutase. FEBS Open Bio, 2018, 8, 256-263.	1.0	9
563	Sirtuins in Renal Health and Disease. Journal of the American Society of Nephrology: JASN, 2018, 29, 1799-1809.	3.0	233
564	SIRT3 aggravates metformin-induced energy stress and apoptosis in ovarian cancer cells. Experimental Cell Research, 2018, 367, 137-149.	1.2	38
565	Impact of atypical mitochondrial cyclic-AMP level in nephropathic cystinosis. Cellular and Molecular Life Sciences, 2018, 75, 3411-3422.	2.4	25
566	The Current State of NAD ⁺ â€Dependent Histone Deacetylases (Sirtuins) as Novel Therapeutic Targets. Medicinal Research Reviews, 2018, 38, 147-200.	5.0	88
567	SIRT3 prevents angiotensin II-induced renal tubular epithelial-mesenchymal transition by ameliorating oxidative stress and mitochondrial dysfunction. Molecular and Cellular Endocrinology, 2018, 460, 1-13.	1.6	32
568	Nicotinamide Adenine Dinucleotide Metabolism and Neurodegeneration. Antioxidants and Redox Signaling, 2018, 28, 1652-1668.	2.5	55
569	NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism. Antioxidants and Redox Signaling, 2018, 28, 251-272.	2.5	512
570	Flipping the Metabolic Switch: Understanding and Applying the Health Benefits of Fasting. Obesity, 2018, 26, 254-268.	1.5	402
571	Sirt1-Sirt3 axis regulates human blood-brain barrier permeability in response to ischemia. Redox Biology, 2018, 14, 229-236.	3.9	106
572	Deficiency of the Mitochondrial NAD Kinase Causes Stress-Induced Hepatic Steatosis in Mice. Gastroenterology, 2018, 154, 224-237.	0.6	35
573	HDAC1 localizes to the mitochondria of cardiac myocytes and contributes to early cardiac reperfusion injury. Journal of Molecular and Cellular Cardiology, 2018, 114, 309-319.	0.9	48
574	Aerobic training but no resistance training increases SIRT3Âin skeletal muscle of sedentary obese male adolescents. European Journal of Sport Science, 2018, 18, 226-234.	1.4	15
575	Dysregulation of mitochondrial function and biogenesis modulators in adipose tissue of obese children. International Journal of Obesity, 2018, 42, 618-624.	1.6	45

#	Article	IF	CITATIONS
576	SIRT3 deficiency exacerbates p53/Parkin‑mediated mitophagy inhibition and promotes mitochondrial dysfunction: Implication for aged hearts. International Journal of Molecular Medicine, 2018, 41, 3517-3526.	1.8	57
577	SIRT3 Regulation Under Cellular Stress: Making Sense of the Ups and Downs. Frontiers in Neuroscience, 2018, 12, 799.	1.4	61
578	Silent Information Regulator 2 from Trypanosoma cruzi Is a Potential Target to Infection Control. , 2018, , .		0
579	Changes in the Expression and the Role of Sirtuin 3 in Cancer Cells and in Cardiovascular Health and Disease. , 0, , .		1
580	Aging-Related Overactivity of the Angiotensin/AT1 Axis Decreases Sirtuin 3 Levels in the Substantia Nigra, Which Induces Vulnerability to Oxidative Stress and Neurodegeneration. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 416-424.	1.7	14
581	Functional and therapeutic potential of mitochondrial SIRT3 deacetylase in disease conditions. Expert Review of Clinical Pharmacology, 2018, 11, 1151-1155.	1.3	15
582	Chemical and Physiological Features of Mitochondrial Acylation. Molecular Cell, 2018, 72, 610-624.	4.5	34
583	Sirtuins and Insulin Resistance. Frontiers in Endocrinology, 2018, 9, 748.	1.5	81
584	SIRT-3 Modulation by Resveratrol Improves Mitochondrial Oxidative Phosphorylation in Diabetic Heart through Deacetylation of TFAM. Cells, 2018, 7, 235.	1.8	90
585	Mitochondrial Deacetylase SIRT3 Plays an Important Role in Donor T Cell Responses after Experimental Allogeneic Hematopoietic Transplantation. Journal of Immunology, 2018, 201, 3443-3455.	0.4	22
586	Mechanisms of Age-Dependent Loss of Dietary Restriction Protective Effects in Acute Kidney Injury. Cells, 2018, 7, 178.	1.8	20
587	DNA-Encoded Dynamic Chemical Library and Its Applications in Ligand Discovery. Journal of the American Chemical Society, 2018, 140, 15859-15867.	6.6	83
588	SIRT3-mediated cardiac remodeling/repair following myocardial infarction. Biomedicine and Pharmacotherapy, 2018, 108, 367-373.	2.5	12
590	Absence of Sirt3 aggravates cisplatin nephrotoxicity via enhanced renal tubular apoptosis and inflammation. Molecular Medicine Reports, 2018, 18, 3665-3672.	1.1	19
591	Evidence supporting a mechanistic role of sirtuins in mood and metabolic disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 86, 95-101.	2.5	34
592	Altered mitochondrial acetylation profiles in a kainic acid model of temporal lobe epilepsy. Free Radical Biology and Medicine, 2018, 123, 116-124.	1.3	37
593	The effect of oxygen in Sirt3-mediated myocardial protection: a proof-of-concept study in cultured cardiomyoblasts. Journal of Thrombosis and Thrombolysis, 2018, 46, 102-112.	1.0	0
594	Training state and fasting-induced PDH regulation in human skeletal muscle. Pflugers Archiv European Journal of Physiology, 2018, 470, 1633-1645.	1.3	5

#	Article	IF	CITATIONS
595	SIRT3 Protects Rotenone-induced Injury in SH-SY5Y Cells by Promoting Autophagy through the LKB1-AMPK-mTOR Pathway. , 2018, 9, 273.		85
596	Remodeling of the Acetylproteome by SIRT3 Manipulation Fails to Affect Insulin Secretion or β Cell Metabolism in the Absence of Overnutrition. Cell Reports, 2018, 24, 209-223.e6.	2.9	26
597	SIRT3: A New Regulator of Cardiovascular Diseases. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-11.	1.9	114
598	The Enzymatic Activities of Sirtuins. , 2018, , 45-62.		2
599	Mitochondrial dynamics in cancer-induced cachexia. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1870, 137-150.	3.3	49
600	Gastrodin attenuates microglia activation through renin-angiotensin system and Sirtuin3 pathway. Neurochemistry International, 2018, 120, 49-63.	1.9	28
601	The role of melatonin, a multitasking molecule, in retarding the processes of ageing. Ageing Research Reviews, 2018, 47, 198-213.	5.0	84
602	Prognostic and clinicopathological value of SIRT3 expression in various cancers: a systematic review and meta-analysis. OncoTargets and Therapy, 2018, Volume 11, 2157-2167.	1.0	23
603	Perturbations of NAD ⁺ salvage systems impact mitochondrial function and energy homeostasis in mouse myoblasts and intact skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2018, 314, E377-E395.	1.8	36
604	Honokiol protects hepatocytes from oxidative injury through mitochondrial deacetylase SIRT3. European Journal of Pharmacology, 2018, 834, 176-187.	1.7	33
605	Cloning of Livestock by Somatic Cell Nuclear Transfer. , 2018, , 1-20.		3
606	The Regulation of Insulin-Stimulated Cardiac Glucose Transport via Protein Acetylation. Frontiers in Cardiovascular Medicine, 2018, 5, 70.	1.1	17
607	Sirt3 Ameliorates Oxidative Stress and Mitochondrial Dysfunction After Intracerebral Hemorrhage in Diabetic Rats. Frontiers in Neuroscience, 2018, 12, 414.	1.4	135
608	Effects of Moringa oleifera Leaves Extract on High Glucose-Induced Metabolic Changes in HepG2 Cells. Biology, 2018, 7, 37.	1.3	13
609	Mammalian Sirtuins, Cellular Energy Regulation, and Metabolism, and Carcinogenesis. , 2018, , 141-154.		0
610	Berberine promotes glucose uptake and inhibits gluconeogenesis by inhibiting deacetylase SIRT3. Endocrine, 2018, 62, 576-587.	1.1	35
611	The Role of SIRT3 in the Brain Under Physiological and Pathological Conditions. Frontiers in Cellular Neuroscience, 2018, 12, 196.	1.8	45
612	Epigenetics: An emerging field in the pathogenesis of nonalcoholic fatty liver disease. Mutation Research - Reviews in Mutation Research, 2018, 778, 1-12.	2.4	11

\sim		<u> </u>	
			ЪΤ
	ITAL	KLPU	IN I

#	Article	IF	CITATIONS
613	Metabolites as regulators of insulin sensitivity and metabolism. Nature Reviews Molecular Cell Biology, 2018, 19, 654-672.	16.1	369
614	Acetylation of Mitochondrial Proteins in the Heart: The Role of SIRT3. Frontiers in Physiology, 2018, 9, 1094.	1.3	118
615	Impact of curcumin on sirtuins: A review. Journal of Cellular Biochemistry, 2018, 119, 10291-10300.	1.2	43
616	OsNDUFA9 encoding a mitochondrial complex I subunit is essential for embryo development and starch synthesis in rice. Plant Cell Reports, 2018, 37, 1667-1679.	2.8	27
617	Mechanisms Orchestrating Mitochondrial Dynamics for Energy Homeostasis. Journal of Molecular Biology, 2018, 430, 3922-3941.	2.0	143
618	Mitochondrial Sirtuins. , 2018, , 95-115.		1
619	Decreased expression of sirtuin 3 protein correlates with early stage chronic renal allograft dysfunction in a rat kidney model. Experimental and Therapeutic Medicine, 2018, 15, 3725-3732.	0.8	6
620	SIRT3 activator Honokiol attenuates β-Amyloid by modulating amyloidogenic pathway. PLoS ONE, 2018, 13, e0190350.	1.1	65
621	Emerging role of SIRT3 in endothelial metabolism, angiogenesis, and cardiovascular disease. Journal of Cellular Physiology, 2019, 234, 2252-2265.	2.0	80
622	Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Comprehensive Review. Diagnostics, 2019, 9, 91.	1.3	140
623	The nuclear and mitochondrial sirtuins, Sirt6 and Sirt3, regulate each other's activity and protect the heart from developing obesityâ€mediated diabetic cardiomyopathy. FASEB Journal, 2019, 33, 10872-10888.	0.2	62
624	PGRN acts as a novel regulator of mitochondrial homeostasis by facilitating mitophagy and mitochondrial biogenesis to prevent podocyte injury in diabetic nephropathy. Cell Death and Disease, 2019, 10, 524.	2.7	104
625	Metformin in contrast to berberine reversed arsenicâ€induced oxidative stress in mitochondria from rat pancreas probably via Sirt3â€dependent pathway. Journal of Biochemical and Molecular Toxicology, 2019, 33, e22368.	1.4	19
626	Augmentation of cellular NAD ⁺ by NQO1 enzymatic action improves ageâ€related hearing impairment. Aging Cell, 2019, 18, e13016.	3.0	20
627	Current role of mammalian sirtuins in DNA repair. DNA Repair, 2019, 80, 85-92.	1.3	54
628	<i>Sirt3</i> Deficiency Shortens Life Span and Impairs Cardiac Mitochondrial Function Rescued by <i>Opa1</i> Gene Transfer. Antioxidants and Redox Signaling, 2019, 31, 1255-1271.	2.5	70
629	Update on the role of Sirtuin 3 in cell differentiation: A major metabolic target that can be pharmacologically controlled. Biochemical Pharmacology, 2019, 169, 113621.	2.0	4
630	Adaptive effects of gestational caloric restriction in the mitochondria of Wistar rats' brain: A DOHaD approach. International Journal of Developmental Neuroscience, 2019, 79, 1-10.	0.7	3

#	Article	IF	CITATIONS
631	Sirtuin Family Members Selectively Regulate Autophagy in Osteosarcoma and Mesothelioma Cells in Response to Cellular Stress. Frontiers in Oncology, 2019, 9, 949.	1.3	14
632	Sirt3â€dependent deacetylation of COXâ€1 counteracts oxidative stressâ€induced cell apoptosis. FASEB Journal, 2019, 33, 14118-14128.	0.2	18
633	SIRT4 and Its Roles in Energy and Redox Metabolism in Health, Disease and During Exercise. Frontiers in Physiology, 2019, 10, 1006.	1.3	39
634	Microbiota-Nourishing Immunity: A Guide to Understanding Our Microbial Self. Immunity, 2019, 51, 214-224.	6.6	24
635	Mitochondria in Health and in Sickness. Advances in Experimental Medicine and Biology, 2019, , .	0.8	6
636	Ginsenoside Rb3 regulates energy metabolism and apoptosis in cardiomyocytes via activating PPARα pathway. Biomedicine and Pharmacotherapy, 2019, 120, 109487.	2.5	54
637	Human Ovarian Cancer Tissue Exhibits Increase of Mitochondrial Biogenesis and Cristae Remodeling. Cancers, 2019, 11, 1350.	1.7	40
638	Proposed Tandem Effect of Physical Activity and Sirtuin 1 and 3 Activation in Regulating Glucose Homeostasis. International Journal of Molecular Sciences, 2019, 20, 4748.	1.8	26
639	Diverse therapeutic efficacies and more diverse mechanisms of nicotinamide. Metabolomics, 2019, 15, 137.	1.4	44
640	Interplay between TRAP1 and Sirtuin-3 Modulates Mitochondrial Respiration and Oxidative Stress to Maintain Stemness of Glioma Stem Cells. Cancer Research, 2019, 79, 1369-1382.	0.4	80
641	Mitochondrial Adaptations in Elderly and Young Men Skeletal Muscle Following 2 Weeks of Bed Rest and Rehabilitation. Frontiers in Physiology, 2019, 10, 474.	1.3	35
642	Impaired SIRT3 activity mediates cardiac dysfunction in endotoxemia by calpain-dependent disruption of ATP synthesis. Journal of Molecular and Cellular Cardiology, 2019, 133, 138-147.	0.9	33
643	Aerobic and resistance exercise training reverses ageâ€dependent decline in NAD ⁺ salvage capacity in human skeletal muscle. Physiological Reports, 2019, 7, e14139.	0.7	59
644	Protective effects of Î ² - nicotinamide adenine dinucleotide against motor deficits and dopaminergic neuronal damage in a mouse model of Parkinson's disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 94, 109670.	2.5	10
645	Pharmacological Nicotinamide: Mechanisms Centered Around SIRT1 Activity. , 2019, , 781-799.		0
646	Sirtuins in Multiple Sclerosis: The crossroad of neurodegeneration, autoimmunity and metabolism. Multiple Sclerosis and Related Disorders, 2019, 34, 47-58.	0.9	22
647	The regulation of mitochondrial substrate utilization during acute exercise. Current Opinion in Physiology, 2019, 10, 75-80.	0.9	4
648	Mitochondriaâ€Mediated Pathogenesis and Therapeutics for Nonâ€Alcoholic Fatty Liver Disease. Molecular Nutrition and Food Research, 2019, 63, e1900043.	1.5	37

#	Article	IF	CITATIONS
649	SIRT3 controls brown fat thermogenesis by deacetylation regulation of pathways upstream of UCP1. Molecular Metabolism, 2019, 25, 35-49.	3.0	30
650	Regulation of Dietary Lipid Sources on Tissue Lipid Classes and Mitochondrial Energy Metabolism of Juvenile Swimming Crab, Portunus trituberculatus. Frontiers in Physiology, 2019, 10, 454.	1.3	17
651	Mitochondria in Sepsis-Induced AKI. Journal of the American Society of Nephrology: JASN, 2019, 30, 1151-1161.	3.0	148
652	MicroRNA miR-31 targets SIRT3 to disrupt mitochondrial activity and increase oxidative stress in oral carcinoma. Cancer Letters, 2019, 456, 40-48.	3.2	65
653	Role of Mitochondria in Cardiovascular Comorbidities Associated with Obesity and Type 2 Diabetes. , 2019, , 263-286.		0
654	Protective effects of higenamine combined with [6]-gingerol against doxorubicin-induced mitochondrial dysfunction and toxicity in H9c2 cells and potential mechanisms. Biomedicine and Pharmacotherapy, 2019, 115, 108881.	2.5	22
655	Evaluation of Sirtuin-3 probe quality and co-expressed genes using literature cohesion. BMC Bioinformatics, 2019, 20, 104.	1.2	0
656	Dietary Polyphenols Protect Against Oleic Acid-Induced Steatosis in an in Vitro Model of NAFLD by Modulating Lipid Metabolism and Improving Mitochondrial Function. Nutrients, 2019, 11, 541.	1.7	71
657	Micromanaging aerobic respiration and glycolysis in cancer cells. Molecular Metabolism, 2019, 23, 98-126.	3.0	73
658	Cytoplasmic and Mitochondrial NADPH-Coupled Redox Systems in the Regulation of Aging. Nutrients, 2019, 11, 504.	1.7	106
659	Mitochondrial complex I deficiency and cardiovascular diseases: current evidence and future directions. Journal of Molecular Medicine, 2019, 97, 579-591.	1.7	26
660	Impaired hepatic mitochondrial function during early lactation in dairy cows: Association with protein lysine acetylation. PLoS ONE, 2019, 14, e0213780.	1.1	19
661	Mitochondrial implications in human pregnancies with intrauterine growth restriction and associated cardiac remodelling. Journal of Cellular and Molecular Medicine, 2019, 23, 3962-3973.	1.6	19
662	Downregulation of sirtuin 3 by palmitic acid increases the oxidative stress, impairment of mitochondrial function, and apoptosis in liver cells. Journal of Biochemical and Molecular Toxicology, 2019, 33, e22337.	1.4	9
663	Subcellular compartmentalization of NAD+ and its role in cancer: A sereNADe of metabolic melodies. , 2019, 200, 27-41.		53
664	The Role of Mitochondrial and Endoplasmic Reticulum Reactive Oxygen Species Production in Models of Perinatal Brain Injury. Antioxidants and Redox Signaling, 2019, 31, 643-663.	2.5	26
665	Constitutive Activation of NAD-Dependent Sirtuin 3 Plays an Important Role in Tumorigenesis of Chromium(VI)-Transformed Cells. Toxicological Sciences, 2019, 169, 224-234.	1.4	16
666	Repeated cold exposures protect a mouse model of Alzheimer's disease against cold-induced tau phosphorylation. Molecular Metabolism, 2019, 22, 110-120.	3.0	24

#	Article	IF	CITATIONS
667	Impact of dietary lipoic acid supplementation on liver mitochondrial bioenergetics and oxidative status on normally fed Wistar rats. International Journal of Food Sciences and Nutrition, 2019, 70, 834-844.	1.3	8
668	Nicotinamide mononucleotide alters mitochondrial dynamics by SIRT3â€dependent mechanism in male mice. Journal of Neuroscience Research, 2019, 97, 975-990.	1.3	51
669	SIRT3 promotes antimycobacterial defenses by coordinating mitochondrial and autophagic functions. Autophagy, 2019, 15, 1356-1375.	4.3	96
670	Loss of Hepatic Oscillatory Fed microRNAs Abrogates Refed Transition and Causes Liver Dysfunctions. Cell Reports, 2019, 26, 2212-2226.e7.	2.9	26
671	Myalgic encephalomyelitis or chronic fatigue syndrome: how could the illness develop?. Metabolic Brain Disease, 2019, 34, 385-415.	1.4	50
673	Dual Deletion of the Sirtuins SIRT2 and SIRT3 Impacts on Metabolism and Inflammatory Responses of Macrophages and Protects From Endotoxemia. Frontiers in Immunology, 2019, 10, 2713.	2.2	17
674	SIRT3 Regulation of Mitochondrial Quality Control in Neurodegenerative Diseases. Frontiers in Aging Neuroscience, 2019, 11, 313.	1.7	73
675	Sirtuin 3 deficiency does not impede digit regeneration in mice. Scientific Reports, 2019, 9, 16491.	1.6	13
676	Sirtuin 3, Endothelial Metabolic Reprogramming, and Heart Failure With Preserved Ejection Fraction. Journal of Cardiovascular Pharmacology, 2019, 74, 315-323.	0.8	31
677	Deep sequencing discovery of causal mtDNA mutations in a patient with unspecific neurological disease. Mitochondrion, 2019, 46, 337-344.	1.6	6
678	Mitochondrial regulation of cardiac aging. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1853-1864.	1.8	25
679	Mitochondrial lysine deacetylation promotes energy metabolism and calcium signaling in insulinâ€secreting cells. FASEB Journal, 2019, 33, 4660-4674.	0.2	23
680	The apelin/APJ system as a therapeutic target in metabolic diseases. Expert Opinion on Therapeutic Targets, 2019, 23, 215-225.	1.5	39
681	Macrophage de novo NAD+ synthesis specifies immune function in aging and inflammation. Nature Immunology, 2019, 20, 50-63.	7.0	304
682	6-gingerol ameliorates age-related hepatic steatosis: Association with regulating lipogenesis, fatty acid oxidation, oxidative stress and mitochondrial dysfunction. Toxicology and Applied Pharmacology, 2019, 362, 125-135.	1.3	35
683	Puerarin attenuates neurological deficits via Bcl-2/Bax/cleaved caspase-3 and Sirt3/SOD2 apoptotic pathways in subarachnoid hemorrhage mice. Biomedicine and Pharmacotherapy, 2019, 109, 726-733.	2.5	179
684	The roles of sirtuins family in cell metabolism during tumor development. Seminars in Cancer Biology, 2019, 57, 59-71.	4.3	108
685	Altered levels of sirtuin genes (SIRT1, SIRT2, SIRT3 and SIRT6) and their target genes in adipose tissue from individual with obesity. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2019, 13, 582-589.	1.8	26

#	Article	IF	CITATIONS
686	Sirtuin3 Protected Against Neuronal Damage and Cycled into Nucleus in Status Epilepticus Model. Molecular Neurobiology, 2019, 56, 4894-4903.	1.9	17
687	Emerging role of SIRT3 in mitochondrial dysfunction and cardiovascular diseases. Free Radical Research, 2019, 53, 139-149.	1.5	61
688	Tobacco smoking induces cardiovascular mitochondrial oxidative stress, promotes endothelial dysfunction, and enhances hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H639-H646.	1.5	116
689	Celastrol protects human retinal pigment epithelial cells against hydrogen peroxide mediated oxidative stress, autophagy, and apoptosis through sirtuin 3 signal pathway. Journal of Cellular Biochemistry, 2019, 120, 10413-10420.	1.2	18
690	Crosstalk Between Mitochondrial Hyperacetylation and Oxidative Stress in Vascular Dysfunction and Hypertension. Antioxidants and Redox Signaling, 2019, 31, 710-721.	2.5	48
691	Molecular Mechanism of the Protective Effect of Zerumbone on Lipopolysaccharide-Induced Inflammation of THP-1 Cell-Derived Macrophages. Journal of Medicinal Food, 2019, 22, 62-73.	0.8	25
692	SirT3 regulates diabetogenic effects caused by arsenic: An implication for mitochondrial complex II modification. Toxicology Letters, 2019, 301, 24-33.	0.4	20
693	P300/CBPâ€essociated factor regulates transcription and function of isocitrate dehydrogenase 2 during muscle differentiation. FASEB Journal, 2019, 33, 4107-4123.	0.2	11
694	<i>Enterococcus faecalis</i> sir2-like gene enhances aerobic metabolism of themselves and mitochondrial respiration of mammal cells to bring about improving metabolic syndrome through the PGC-11± pathway. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 143-155.	1.3	3
695	Mitochondrial NAD ⁺ /NADH Redox State and Diabetic Cardiomyopathy. Antioxidants and Redox Signaling, 2019, 30, 375-398.	2.5	108
696	Mitochondrial SIRT3 and neurodegenerative brain disorders. Journal of Chemical Neuroanatomy, 2019, 95, 43-53.	1.0	54
697	Dihydromyricetin Ameliorates Nonalcoholic Fatty Liver Disease by Improving Mitochondrial Respiratory Capacity and Redox Homeostasis Through Modulation of SIRT3 Signaling. Antioxidants and Redox Signaling, 2019, 30, 163-183.	2.5	107
698	SIRT3 promotes lipophagy and chaperon-mediated autophagy to protect hepatocytes against lipotoxicity. Cell Death and Differentiation, 2020, 27, 329-344.	5.0	91
699	Polydatin protects against lipopolysaccharide-induced endothelial barrier disruption via SIRT3 activation. Laboratory Investigation, 2020, 100, 643-656.	1.7	33
700	Protein Lysine Acetylation: Grease or Sand in the Gears of β-Cell Mitochondria?. Journal of Molecular Biology, 2020, 432, 1446-1460.	2.0	6
701	SIRT6, a Mammalian Deacylase with Multitasking Abilities. Physiological Reviews, 2020, 100, 145-169.	13.1	130
702	The Mitochondrion as an Emerging Therapeutic Target in Cancer. Trends in Molecular Medicine, 2020, 26, 119-134.	3.5	121
703	Oxidative stress contributes differentially to the pathophysiology of Charcot-Marie-Tooth disease type 2K. Experimental Neurology, 2020, 323, 113069.	2.0	22

#	Article	IF	CITATIONS
704	Granulosa-Lutein Cell Sirtuin Gene Expression Profiles Differ between Normal Donors and Infertile Women. International Journal of Molecular Sciences, 2020, 21, 295.	1.8	16
705	Sirtuin3 gene tissue expression profiling, SNP detection and its association with body conformation traits in goats. Small Ruminant Research, 2020, 184, 106017.	0.6	3
706	Mitochondrial Deacetylase Sirt3 Reduces Vascular Dysfunction and Hypertension While Sirt3 Depletion in Essential Hypertension Is Linked to Vascular Inflammation and Oxidative Stress. Circulation Research, 2020, 126, 439-452.	2.0	195
707	NAD+ precursor modulates post-ischemic mitochondrial fragmentation and reactive oxygen species generation via SIRT3 dependent mechanisms. Experimental Neurology, 2020, 325, 113144.	2.0	58
708	NAD+ metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduction and Targeted Therapy, 2020, 5, 227.	7.1	386
709	The Roles of Histone Deacetylases and Their Inhibitors in Cancer Therapy. Frontiers in Cell and Developmental Biology, 2020, 8, 576946.	1.8	142
710	Impaired flickering of the permeability transition pore causes SPG7 spastic paraplegia. EBioMedicine, 2020, 61, 103050.	2.7	28
711	Advances in characterization of SIRT3 deacetylation targets in mitochondrial function. Biochimie, 2020, 179, 1-13.	1.3	31
712	High-Fat Diet and Antibiotics Cooperatively Impair Mitochondrial Bioenergetics to Trigger Dysbiosis that Exacerbates Pre-inflammatory Bowel Disease. Cell Host and Microbe, 2020, 28, 273-284.e6.	5.1	88
713	Role of NAD+—Modulated Mitochondrial Free Radical Generation in Mechanisms of Acute Brain Injury. Brain Sciences, 2020, 10, 449.	1.1	9
714	TGR5 deficiency aggravates hepatic ischemic/reperfusion injury via inhibiting SIRT3/FOXO3/HIF-1É' pathway. Cell Death Discovery, 2020, 6, 116.	2.0	14
715	Sinapic Acid Inhibits Cardiac Hypertrophy via Activation of Mitochondrial Sirt3/SOD2 Signaling in Neonatal Rat Cardiomyocytes. Antioxidants, 2020, 9, 1163.	2.2	17
716	Sirt3 regulates adipogenesis and adipokine secretion via its enzymatic activity. Pharmacology Research and Perspectives, 2020, 8, e00670.	1.1	5
717	Sirtuins and Their Implications in Neurodegenerative Diseases from a Drug Discovery Perspective. ACS Chemical Neuroscience, 2020, 11, 4073-4091.	1.7	21
718	Tackling Chronic Inflammation with Withanolide Phytochemicals—A Withaferin A Perspective. Antioxidants, 2020, 9, 1107.	2.2	31
719	Mitochondrial calcium drives clock gene-dependent activation of pyruvate dehydrogenase and of oxidative phosphorylation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118815.	1.9	15
720	Sirtuins as endogenous regulators of lung fibrosis: A current perspective. Life Sciences, 2020, 258, 118201.	2.0	37
721	Roles of Mitochondrial Sirtuins in Mitochondrial Function, Redox Homeostasis, Insulin Resistance and Type 2 Diabetes. International Journal of Molecular Sciences, 2020, 21, 5266.	1.8	42

#	Article	IF	CITATIONS
722	Mitochondrial Sirtuin 3: New emerging biological function and therapeutic target. Theranostics, 2020, 10, 8315-8342.	4.6	213
723	Analysis of Human Natural Killer Cell Metabolism. Journal of Visualized Experiments, 2020, , .	0.2	4
724	SUMOylation-Mediated Response to Mitochondrial Stress. International Journal of Molecular Sciences, 2020, 21, 5657.	1.8	25
725	Mechanism of Action of Ketogenic Diet Treatment: Impact of Decanoic Acid and Beta—Hydroxybutyrate on Sirtuins and Energy Metabolism in Hippocampal Murine Neurons. Nutrients, 2020, 12, 2379.	1.7	27
726	Regulation of SIRT3 on mitochondrial functions and oxidative stress in Parkinson's disease. Biomedicine and Pharmacotherapy, 2020, 132, 110928.	2.5	62
727	Histone Acetyltransferase p300 Inhibitor Improves Coronary Flow Reserve in SIRT3 (Sirtuin 3) Knockout Mice. Journal of the American Heart Association, 2020, 9, e017176.	1.6	25
728	Mitochondrial transformations in the aging human placenta. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E981-E994.	1.8	14
729	Mitochondria Are Fundamental for the Emergence of Metazoans: On Metabolism, Genomic Regulation, and the Birth of Complex Organisms. Annual Review of Genetics, 2020, 54, 151-166.	3.2	12
730	Antioxidant Modulation of mTOR and Sirtuin Pathways in Age-Related Neurodegenerative Diseases. Molecular Neurobiology, 2020, 57, 5193-5207.	1.9	16
731	SIRT1/SIRT3 Modulates Redox Homeostasis during Ischemia/Reperfusion in the Aging Heart. Antioxidants, 2020, 9, 858.	2.2	33
732	Mitochondrial Respiratory Chain and Its Regulatory Elements SIRT1 and SIRT3 Play Important Role in the Initial Process of Energy Conversion after Moxibustion at Local Skin. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-10.	0.5	3
733	SIRT3 deficiency exacerbates fatty liver by attenuating the HIF1α-LIPIN 1 pathway and increasing CD36 through Nrf2. Cell Communication and Signaling, 2020, 18, 147.	2.7	25
734	Impact of Short-Term Hypoxia on Sirtuins as Regulatory Elements in HUVECs. Journal of Clinical Medicine, 2020, 9, 2604.	1.0	12
735	Sirtuin 3 is essential for host defense against <i>Mycobacterium abscessus</i> infection through regulation of mitochondrial homeostasis. Virulence, 2020, 11, 1225-1239.	1.8	14
736	Diabetic Nephropathy: Novel Molecular Mechanisms and Therapeutic Targets. Frontiers in Pharmacology, 2020, 11, 586892.	1.6	47
737	ER–Mitochondria Contacts and Insulin Resistance Modulation through Exercise Intervention. International Journal of Molecular Sciences, 2020, 21, 9587.	1.8	10
738	Loss of Mitochondrial Control Impacts Renal Health. Frontiers in Pharmacology, 2020, 11, 543973.	1.6	25
739	Combination of sirtuin 3 and hyperoxia diminishes tumorigenic properties of MDA-MB-231 cells. Life Sciences, 2020, 254, 117812.	2.0	5

#	Article	IF	CITATIONS
740	Endothelial Sirtuin 3 Dictates Glucose Transport to Cardiomyocyte and Sensitizes Pressure Overloadâ€Induced Heart Failure. Journal of the American Heart Association, 2020, 9, e015895.	1.6	21
741	20,000 picometers under the <scp>OMM</scp> : diving into the vastness of mitochondrial metabolite transport. EMBO Reports, 2020, 21, e50071.	2.0	29
742	Sirtuin 3 is essential for hypertensionâ€induced cardiac fibrosis via mediating pericyte transition. Journal of Cellular and Molecular Medicine, 2020, 24, 8057-8068.	1.6	35
743	The dominant model analysis of Sirt3 genetic variants is associated with susceptibility to tuberculosis in a Chinese Han population. Molecular Genetics and Genomics, 2020, 295, 1155-1162.	1.0	3
744	Cerebellar Predominant Increase in mRNA Expression Levels of Sirt1 and Sirt3 Isoforms in a Transgenic Mouse Model of Huntington's Disease. Neurochemical Research, 2020, 45, 2072-2081.	1.6	4
745	SIRT3 and GCN5L regulation of NADP+- and NADPH-driven reactions of mitochondrial isocitrate dehydrogenase IDH2. Scientific Reports, 2020, 10, 8677.	1.6	8
746	The interplay between oxidative stress and bioenergetic failure in neuropsychiatric illnesses: can we explain it and can we treat it?. Molecular Biology Reports, 2020, 47, 5587-5620.	1.0	29
747	Mitochondrial Bioenergetics and Dynamics in Secretion Processes. Frontiers in Endocrinology, 2020, 11, 319.	1.5	19
748	Tissue-Specific Metabolic Regulation of FOXO-Binding Protein: FOXO Does Not Act Alone. Cells, 2020, 9, 702.	1.8	33
749	The impact of mitochondrial quality control by Sirtuins on the treatment of type 2 diabetes and diabetic kidney disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165756.	1.8	15
750	Sirt3 is dispensable for oocyte quality and female fertility in lean and obese mice. FASEB Journal, 2020, 34, 6641-6653.	0.2	19
751	Exendin-4 Protects Against Myocardial Ischemia-Reperfusion Injury by Upregulation of SIRT1 and SIRT3 and Activation of AMPK. Journal of Cardiovascular Translational Research, 2021, 14, 619-635.	1.1	44
752	Response by Dikalova and Dikalov to Letter Regarding Article, "Mitochondrial Deacetylase Sirt3 Reduces Vascular Dysfunction and Hypertension While Sirt3 Depletion in Essential Hypertension Is Linked to Vascular Inflammation and Oxidative Stress― Circulation Research, 2020, 126, e33-e34.	2.0	1
753	NAD+ Metabolism and Regulation: Lessons From Yeast. Biomolecules, 2020, 10, 330.	1.8	25
754	Cardiomyocyte-specific deletion of GCN5L1 in mice restricts mitochondrial protein hyperacetylation in response to a high fat diet. Scientific Reports, 2020, 10, 10665.	1.6	17
755	Induced Ketosis as a Treatment for Neuroprogressive Disorders: Food for Thought?. International Journal of Neuropsychopharmacology, 2020, 23, 366-384.	1.0	28
756	SIRT3-mediated inhibition of FOS through histone H3 deacetylation prevents cardiac fibrosis and inflammation. Signal Transduction and Targeted Therapy, 2020, 5, 14.	7.1	87
757	Two genomes, one cell: Mitochondrial-nuclear coordination via epigenetic pathways. Molecular Metabolism, 2020, 38, 100942.	3.0	55

#	Article	IF	CITATIONS
758	Nitrite attenuates mitochondrial impairment and vascular permeability induced by ischemia-reperfusion injury in the lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L580-L591.	1.3	4
759	A Newly Synthesized Rhamnoside Derivative Alleviates Alzheimer's Amyloid-β-Induced Oxidative Stress, Mitochondrial Dysfunction, and Cell Senescence through Upregulating SIRT3. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-16.	1.9	18
761	Mitochondrial Quality Control in Age-Related Pulmonary Fibrosis. International Journal of Molecular Sciences, 2020, 21, 643.	1.8	27
762	Sirtuin 3 Activation by Honokiol Decreases Unilateral Ureteral Obstruction-Induced Renal Inflammation and Fibrosis via Regulation of Mitochondrial Dynamics and the Renal NF-κB-TGF-β1/Smad Signaling Pathway. International Journal of Molecular Sciences, 2020, 21, 402.	1.8	47
763	Antioxidant enzymes change in different non-metastatic stages in tumoral and peritumoral tissues of colorectal cancer. International Journal of Biochemistry and Cell Biology, 2020, 120, 105698.	1.2	16
764	Subpopulation-specific differences in skeletal muscle mitochondria in humans with obesity: insights from studies employing acute nutritional and exercise stimuli. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E538-E553.	1.8	6
765	Context-Dependent Roles for SIRT2 and SIRT3 in Tumor Development Upon Calorie Restriction or High Fat Diet. Frontiers in Oncology, 2020, 9, 1462.	1.3	11
766	EX-527 Prevents the Progression of High-Fat Diet-Induced Hepatic Steatosis and Fibrosis by Upregulating SIRT4 in Zucker Rats. Cells, 2020, 9, 1101.	1.8	26
767	Interplay of mitochondrial fission-fusion with cell cycle regulation: Possible impacts on stem cell and organismal aging. Experimental Gerontology, 2020, 135, 110919.	1.2	35
768	Activation of AMPâ€activated protein kinase during sepsis/inflammation improves survival by preserving cellular metabolic fitness. FASEB Journal, 2020, 34, 7036-7057.	0.2	42
769	Targeting Inflammatory-Mitochondrial Response in Major Depression: Current Evidence and Further Challenges. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-20.	1.9	32
770	Interplay between NADH oxidation by complex I, glutathione redox state and sirtuin-3, and its role in the development of insulin resistance. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165801.	1.8	36
771	Impact of Nutrition on Short-Term Exercise-Induced Sirtuin Regulation: Vegans Differ from Omnivores and Lacto-Ovo Vegetarians. Nutrients, 2020, 12, 1004.	1.7	19
772	The effect of high-intensity interval training on the expression levels of PGC-1α and SIRT3 proteins and aging index of slow-twitch and fast-twitch of healthy male rats. Science and Sports, 2021, 36, 170-175.	0.2	4
773	Glutaredoxin-2 and Sirtuin-3 deficiencies impair cardiac mitochondrial energetics but their effects are not additive. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 165982.	1.8	11
774	ALS motor neurons exhibit hallmark metabolic defects that are rescued by SIRT3 activation. Cell Death and Differentiation, 2021, 28, 1379-1397.	5.0	43
775	Targeting energy pathways in kidney disease: the roles of sirtuins, AMPK, and PGC1α. Kidney International, 2021, 99, 828-840.	2.6	35
776	STAT3 Promotes Schistosome-Induced Liver Injury by Inflammation, Oxidative Stress, Proliferation, and Apoptosis Signal Pathway. Infection and Immunity, 2021, 89, .	1.0	12

#		IF	CITATIONS
777	A systematic review of post-translational modifications in the mitochondrial permeability transition pore complex associated with cardiac diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 165992.	1.8	14
778	Nicotinamide adenine dinucleotide: Biosynthesis, consumption and therapeutic role in cardiac diseases. Acta Physiologica, 2021, 231, e13551.	1.8	34
779	Short-term effects induced by nicotinamide in ovariectomized females. Canadian Journal of Physiology and Pharmacology, 2021, 99, 439-447.	0.7	3
780	MnSOD Lysine 68 acetylation leads to cisplatin and doxorubicin resistance due to aberrant mitochondrial metabolism. International Journal of Biological Sciences, 2021, 17, 1203-1216.	2.6	7
781	Targeting sirtuins to modulate energy metabolism in heart disease. , 2021, , 285-293.		1
782	The mitochondrial basis of aging and related diseases. E3S Web of Conferences, 2021, 271, 03033.	0.2	0
783	Mitochondria-targeted inhibitors of the human SIRT3 lysine deacetylase. RSC Chemical Biology, 2021, 2, 627-635.	2.0	11
784	Sirtuins and aging. , 2021, , 49-77.		0
785	Mitochondrial Sirtuins and Doxorubicin-induced Cardiotoxicity. Cardiovascular Toxicology, 2021, 21, 179-191.	1.1	34
786	SIRT 3 was involved in <i>Lycium barbarum</i> seed oil protection testis from oxidative stress: <i>inÂvitro</i> and <i>inÂvivo</i> analyses. Pharmaceutical Biology, 2021, 59, 1312-1323.	1.3	5
787	Sirtuins, mitochondria, and exercise in health and disease. , 2021, , 225-237.		2
788	Aging of the sensory systems: hearing and vision disorders. , 2021, , 297-321.		2
789	Targeting the Mitochondrial Permeability Transition Pore to Prevent Age-Associated Cell Damage and Neurodegeneration. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-15.	1.9	40
790	Sirtuins and cellular metabolism in cancers. , 2021, , 195-217.		1
791	Dual role of sirtuins in cancer. , 2021, , 219-231.		1
792	Sirtuinâ€3 activation by honokiol restores mitochondrial dysfunction in the hippocampus of the hepatic encephalopathy rat model of ammonia neurotoxicity. Journal of Biochemical and Molecular Toxicology, 2021, 35, e22735.	1.4	10
793	Soluble Epoxide Hydrolase in Aged Female Mice and Human Explanted Hearts Following Ischemic Injury. International Journal of Molecular Sciences, 2021, 22, 1691.	1.8	12
794	Intracerebral Hemorrhage and Diabetes Mellitus: Blood-Brain Barrier Disruption, Pathophysiology and Cognitive Impairments. CNS and Neurological Disorders - Drug Targets, 2021, 20, 312-326.	0.8	11

#	Article	IF	CITATIONS
795	Mitochondrial Homeostasis Mediates Lipotoxicity in the Failing Myocardium. International Journal of Molecular Sciences, 2021, 22, 1498.	1.8	7
796	Sirtuin 3 Downregulation in <i>Mycobacterium tuberculosis</i> -Infected Macrophages Reprograms Mitochondrial Metabolism and Promotes Cell Death. MBio, 2021, 12, .	1.8	21
797	Metabolic Changes in Peripheral Blood Mononuclear Cells Isolated From Patients With End Stage Renal Disease. Frontiers in Endocrinology, 2021, 12, 629239.	1.5	19
798	Deletion of SIRT3 inhibits osteoclastogenesis and alleviates aging or estrogen deficiency-induced bone loss in female mice. Bone, 2021, 144, 115827.	1.4	20
799	The possible role of sirtuins in male reproduction. Molecular and Cellular Biochemistry, 2021, 476, 2857-2867.	1.4	3
800	Mitochondrial dynamics and reactive oxygen species initiate thrombopoiesis from mature megakaryocytes. Blood Advances, 2021, 5, 1706-1718.	2.5	16
801	Mitochondrial Dysfunction and Sirtuins: Important Targets in Hearing Loss. Neural Plasticity, 2021, 2021, 1-10.	1.0	1
802	Aconitine attenuates mitochondrial dysfunction of cardiomyocytes via promoting deacetylation of cyclophilin-D mediated by sirtuin-3. Journal of Ethnopharmacology, 2021, 270, 113765.	2.0	13
803	Mitochondrial integration and ovarian cancer chemotherapy resistance. Experimental Cell Research, 2021, 401, 112549.	1.2	16
805	The Habitat Filters of Microbiota-Nourishing Immunity. Annual Review of Immunology, 2021, 39, 1-18.	9.5	21
806	Re-Evaluating the Oxidative Phenotype: Can Endurance Exercise Save the Western World?. Antioxidants, 2021, 10, 609.	2.2	9
807	Mitochondrial sirtuins in stem cells and cancer. FEBS Journal, 2022, 289, 3393-3415.	2.2	20
808	Mitochondrial STAT3 regulates antioxidant gene expression through complex lâ€derived NAD in triple negative breast cancer. Molecular Oncology, 2021, 15, 1432-1449.	2.1	16
809	Moderate offspring exercise offsets the harmful effects of maternal protein deprivation on mitochondrial function and oxidative balance by modulating sirtuins. Nutrition, Metabolism and Cardiovascular Diseases, 2021, 31, 1622-1634.	1.1	6
810	Mitochondrial Sirt3 contributes to the bone loss caused by aging or estrogen deficiency. JCI Insight, 2021, 6, .	2.3	54
811	Sirtuins: Potential Therapeutic Targets for Defense against Oxidative Stress in Spinal Cord Injury. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-14.	1.9	19
812	Mitochondrial Sirtuins in Reproduction. Antioxidants, 2021, 10, 1047.	2.2	32
813	Influence of dietary phosphorus on growth performance, phosphorus accumulation in tissue and energy metabolism of juvenile swimming crab (Portunus trituberculatus). Aquaculture Reports, 2021, 20, 100654.	0.7	6

ARTICLE IF CITATIONS The epigenetic and morphogenetic effects of molecular oxygen and its derived reactive species in 814 1.3 10 development. Free Radical Biology and Medicine, 2021, 170, 70-84. Bioactive peptide apelin rescues acute kidney injury by protecting the function of renal tubular 1.2 mitochondria. Amino Acids, 2021, 53, 1229-1240. Metabolic Flexibility and Mitochondrial Bioenergetics in the Failing Heart. Therapeutic Approaches. 816 0.0 1 Revista Romana De Cardiologie, 2021, 31, 269-282. Glucose limitation activates AMPK coupled SENP1-Sirt3 signalling in mitochondria for T cell memory 5.8 development. Nature Communications, 2021, 12, 4371. Histone Deacetylases in the Pathogenesis of Diabetic Cardiomyopathy. Frontiers in Endocrinology, 818 1.5 13 2021, 12, 679655. SIRT2 and SIRT3 expression correlates with redox imbalance and advanced clinical stage in patients 819 0.8 with multiple myeloma. Clinical Biochemistry, 2021, 93, 42-49. SIRT3 acts as a novel biomarker for the diagnosis of lung cancer. Medicine (United States), 2021, 100, 820 0.4 6 e26580. Melatonin inhibits lung cancer development by reversing the Warburg effect via stimulating the 821 3.4 48 SIRT3/PDH axis. Journal of Pineal Research, 2021, 71, e12755. Sirtuin3 rs28365927 functional variant confers to the high risk of non-alcoholic fatty liver disease in 822 1.2 1 Chinese Han population. Lipids in Health and Disease, 2021, 20, 92. Circadian regulation of cardiac metabolism. Journal of Clinical Investigation, 2021, 131, . Intratubular, Intracellular, and Mitochondrial Angiotensin II/AT1 (AT1a) Receptor/NHE3 Signaling Plays a Critical Role in Angiotensin II-Induced Hypertension and Kidney Injury. Frontiers in Physiology, 2021, 824 1.3 10 12,702797. Post-translational Acetylation Control of Cardiac Energy Metabolism. Frontiers in Cardiovascular 1.1 Medicine, 2021, 8, 723996. Treprostinil reduces mitochondrial injury during rat renal ischemia-reperfusion injury. Biomedicine 826 2.5 8 and Pharmacotherapy, 2021, 141, 111912. Dihydromyricetin attenuates palmitic acid-induced oxidative stress by promoting autophagy via 1.3 SIRT3-ATG4B signaling in hepatocytes. Nutrition and Metabolism, 2021, 18, 83. Sulfide metabolism and the mechanism of torpor. Journal of Experimental Biology, 2021, 224, . 828 0.8 3 Nicotinamide N-Methyltransferase: An Emerging Protagonist in Cancer Macro(r)evolution. Biomolecules, 2021, 11, 1418. 1.8 Exogenous Nicotinamide Adenine Dinucleotide Attenuates Postresuscitation Myocardial and 831 Neurologic Dysfunction in a Rat Model of Cardiac Arrest. Critical Care Medicine, 2021, Publish Ahead 0.4 4 of Print, Dietary Cocoa Flavanols Enhance Mitochondrial Function in Skeletal Muscle and Modify Whole-Body Metabolism in Healthy Mice. Nutrients, 2021, 13, 3466.

	Сітатіо	CITATION REPORT	
#	Article	IF	CITATIONS
833	Perturbed Brain Glucose Metabolism Caused by Absent SIRT3 Activity. Cells, 2021, 10, 2348.	1.8	4
834	Sirtuin 3 deficiency exacerbates ageâ€related periodontal disease. Journal of Periodontal Research, 2021, 56, 1163-1173.	1.4	16
836	SIRT3 protects kidneys from ischemia-reperfusion injury by modulating the DRP1 pathway to induce mitochondrial autophagy. Life Sciences, 2021, 286, 120005.	2.0	19
837	Mitochondrial proteins in heart failure: The role of deacetylation by SIRT3. Pharmacological Research, 2021, 172, 105802.	3.1	22
838	Inhibition of miR-134-5p protects against kainic acid-induced excitotoxicity through Sirt3-mediated preservation of mitochondrial function. Epilepsy Research, 2021, 176, 106722.	0.8	4
839	Protective effects of sirtuin 3 on titanium particle-induced osteogenic inhibition by regulating the NLRP3 inflammasome via the GSK-3Ĵ²/Ĵ²-catenin signalling pathway. Bioactive Materials, 2021, 6, 3343-3357	. 8.6	23
840	Effect of extracts and isolated compounds derived from Retama monosperma (L.) Boiss. on anti-aging gene expression in human keratinocytes and antioxidant activity. Journal of Ethnopharmacology, 2021, 280, 114451.	2.0	19
841	Sirtuins and mitochondrial dysfunction. , 2021, , 79-89.		0
842	Mitochondrial dysfunction in kidney diseases. , 2021, , 119-154.		0
843	Sirtuins and next generation hallmarks of cancer: cellular energetics and tumor promoting inflammation. , 2021, , 179-194.		0
844	Sirtuins and the hallmarks of cancer. , 2021, , 129-152.		0
845	Mitochondrial sirtuins at the crossroads of energy metabolism and oncogenic transformation. , 2021, , 103-126.		2
846	Sirtuins as key players in aging and kidney dysfunction. , 2021, , 309-328.		0
848	Stress Response Pathways. Methods in Pharmacology and Toxicology, 2014, , 433-458.	0.1	1
849	In Vivo Measurement of the Acetylation State of Sirtuin Substrates as a Proxy for Sirtuin Activity. Methods in Molecular Biology, 2013, 1077, 217-237.	0.4	2
850	Mass Spectrometry-Based Detection of Protein Acetylation. Methods in Molecular Biology, 2013, 1077, 81-104.	0.4	13
851	Protein Lysine Acylation: Abundance, Dynamics and Function. , 2016, , 41-69.		1
852	Deacetylation by SIRT3 Relieves Inhibition of Mitochondrial Protein Function. , 2016, , 105-138.		3

#	Article	IF	CITATIONS
853	Mitochondria Lysine Acetylation and Phenotypic Control. Advances in Experimental Medicine and Biology, 2019, 1158, 59-70.	0.8	6
854	Manipulating Sirtuin 3 pathway ameliorates renal damage in experimental diabetes. Scientific Reports, 2020, 10, 8418.	1.6	51
857	Mitochondrial function in skeletal myofibers is controlled by a TRF2â€ S IRT3 axis over lifetime. Aging Cell, 2020, 19, e13097.	3.0	31
858	COVID-19: Proposing a Ketone-Based Metabolic Therapy as a Treatment to Blunt the Cytokine Storm. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-34.	1.9	43
859	Mitochondrial protein hyperacetylation in the failing heart. JCI Insight, 2016, 1, .	2.3	133
860	Nutrient sensing by the mitochondrial transcription machinery dictates oxidative phosphorylation. Journal of Clinical Investigation, 2014, 124, 768-784.	3.9	36
861	Melatonin Treatment Regulates SIRT3 Expression in Early Brain Injury (EBI) Due to Reactive Oxygen Species (ROS) in a Mouse Model of Subarachnoid Hemorrhage (SAH). Medical Science Monitor, 2018, 24, 3804-3814.	0.5	30
862	Ginsenoside Rg1 Performs Anti-Aging Functions by Suppressing Mitochondrial Pathway-Mediated Apoptosis and Activating Sirtuin 3 (SIRT3)/Superoxide Dismutase 2 (SOD2) Pathway in Sca-1⺠HSC/HPC Cells of an Aging Rat Model. Medical Science Monitor, 2020, 26, e920666.	0.5	7
863	Sirtuin 3 mRNA Expression is Downregulated in the Brain Tissues of Alzheimer's Disease Patients: A Bioinformatic and Data Mining Approach. Medical Science Monitor, 2020, 26, e923547.	0.5	8
864	Sirtuin 3, a New Target of PGC-1α, Plays an Important Role in the Suppression of ROS and Mitochondrial Biogenesis. PLoS ONE, 2010, 5, e11707.	1.1	615
865	Succinate Dehydrogenase Is a Direct Target of Sirtuin 3 Deacetylase Activity. PLoS ONE, 2011, 6, e23295.	1.1	310
866	Involvement of FOXO Transcription Factors, TRAIL-FasL/Fas, and Sirtuin Proteins Family in Canine Coronavirus Type II-Induced Apoptosis. PLoS ONE, 2011, 6, e27313.	1.1	41
867	High Passage MIN6 Cells Have Impaired Insulin Secretion with Impaired Glucose and Lipid Oxidation. PLoS ONE, 2012, 7, e40868.	1.1	54
868	CNS SIRT3 Expression Is Altered by Reactive Oxygen Species and in Alzheimer's Disease. PLoS ONE, 2012, 7, e48225.	1.1	103
869	Metformin Reduces Hepatic Expression of SIRT3, the Mitochondrial Deacetylase Controlling Energy Metabolism. PLoS ONE, 2012, 7, e49863.	1.1	45
870	Proteomic Investigations of Lysine Acetylation Identify Diverse Substrates of Mitochondrial Deacetylase Sirt3. PLoS ONE, 2012, 7, e50545.	1.1	128
871	The Cardiac Acetyl-Lysine Proteome. PLoS ONE, 2013, 8, e67513.	1.1	86
872	Primary Respiratory Chain Disease Causes Tissue-Specific Dysregulation of the Global Transcriptome and Nutrient-Sensing Signaling Network. PLoS ONE, 2013, 8, e69282.	1.1	44

	CITATION	CITATION REPORT	
#	Article	IF	Citations
873	Regulation of Skeletal Muscle Oxidative Capacity and Muscle Mass by SIRT3. PLoS ONE, 2014, 9, e85636.	1.1	58
874	Genetic Control of Differential Acetylation in Diabetic Rats. PLoS ONE, 2014, 9, e94555.	1.1	7
875	SIRT3, a Mitochondrial NAD+-Dependent Deacetylase, Is Involved in the Regulation of Myoblast Differentiation. PLoS ONE, 2014, 9, e114388.	1.1	29
876	Mouse SIRT3 Attenuates Hypertrophy-Related Lipid Accumulation in the Heart through the Deacetylation of LCAD. PLoS ONE, 2015, 10, e0118909.	1.1	87
877	Impacts on Sirtuin Function and Bioavailability of the Dietary Bioactive Compound Dihydrocoumarin. PLoS ONE, 2016, 11, e0149207.	1.1	6
878	Minnelide/Triptolide Impairs Mitochondrial Function by Regulating SIRT3 in P53-Dependent Manner in Non-Small Cell Lung Cancer. PLoS ONE, 2016, 11, e0160783.	1.1	34
879	Progressive mitochondrial protein lysine acetylation and heart failure in a model of Friedreich's ataxia cardiomyopathy. PLoS ONE, 2017, 12, e0178354.	1.1	22
880	Alterations of sirtuins in mitochondrial cytochrome c-oxidase deficiency. PLoS ONE, 2017, 12, e0186517.	1.1	17
881	Sirtuins in Cancer: a Balancing Act between Genome Stability and Metabolism. Molecules and Cells, 2015, 38, 750-758.	1.0	56
882	High-Dose Nicotinamide Suppresses ROS Generation and Augments Population Expansion during CD8+ T Cell Activation. Molecules and Cells, 2015, 38, 918-924.	1.0	28
883	Microglia mediated neuroinflammation - signaling regulation and therapeutic considerations with special reference to some natural compounds. Histology and Histopathology, 2020, 35, 1229-1250.	0.5	7
884	Polyphenols-rich extract from Araucaria angustifolia: differential mechanisms on cancer and normal cells. Cancer Cell & Microenvironment, 0, , .	0.8	3
885	Dealing with Stress: Defective Metabolic Adaptation in Chronic Obstructive Pulmonary Disease Pathogenesis. Annals of the American Thoracic Society, 2017, 14, S374-S382.	1.5	14
886	SIRT3 as a Regulator of Non-alcoholic Fatty Liver Disease. Journal of Lifestyle Medicine, 2014, 4, 80-85.	0.3	24
887	Molecular pathways disrupted by gestational diabetes mellitus. Journal of Molecular Endocrinology, 2019, 63, R51-R72.	1.1	74
888	Histone Deacetylases and Cancer-Associated Angiogenesis: Current Understanding of the Biology and Clinical Perspectives. Critical Reviews in Oncogenesis, 2015, 20, 119-137.	0.2	18
889	Apelin Gene Therapy Increases Autophagy via Activation of Sirtuin 3 in Diabetic Heart. Sports and Exercise Medicine - Open Journal, 2015, 1, 84-91.	0.3	9
890	Metabolic drift in the aging brain. Aging, 2016, 8, 1000-1020.	1.4	89

#	Article	IF	CITATIONS
891	Tubastatin A inhibits HDAC and Sirtuin activity rather than being a HDAC6-specific inhibitor in mouse oocytes. Aging, 2019, 11, 1759-1777.	1.4	8
892	Sex differences in the aging human heart: decreased sirtuins, pro-inflammatory shift and reduced anti-oxidative defense. Aging, 2019, 11, 1918-1933.	1.4	58
893	Resemblance and differences in dietary restriction nephroprotective mechanisms in young and old rats. Aging, 2020, 12, 18693-18715.	1.4	12
894	Mouse Sirt3 promotes autophagy in Angll-induced myocardial hypertrophy through the deacetylation of FoxO1. Oncotarget, 2016, 7, 86648-86659.	0.8	54
895	<i>Toxoplasma gondii</i> GRA8-derived peptide immunotherapy improves tumor targeting of colorectal cancer. Oncotarget, 2020, 11, 62-73.	0.8	12
896	SIRT3 inhibits prostate cancer by destabilizing oncoprotein c-MYC through regulation of the PI3K/Akt pathway. Oncotarget, 2015, 6, 26494-26507.	0.8	56
897	Metabolic Reprogramming of Human Cells in Response to Oxidative Stress: Implications in the Pathophysiology and Therapy of Mitochondrial Diseases. Current Pharmaceutical Design, 2014, 20, 5510-5526.	0.9	46
898	Circadian-Hypoxia Link and its Potential for Treatment of Cardiovascular Disease. Current Pharmaceutical Design, 2019, 25, 1075-1090.	0.9	20
899	Energizing Genetics and Epi-genetics: Role in the Regulation of Mitochondrial Function. Current Genomics, 2015, 15, 436-456.	0.7	10
900	The Effect of Melatonin on Mitochondrial Function and Autophagy in In Vitro Matured Oocytes of Aged Mice. Cell Journal, 2020, 22, 9-16.	0.2	17
901	Protein acetylation and deacetylation: An important regulatory modification in gene transcription (Review). Experimental and Therapeutic Medicine, 2020, 20, 2923-2940.	0.8	46
902	Adjudin delays cellular senescence through Sirt3‑mediated attenuation of ROS production. International Journal of Molecular Medicine, 2018, 42, 3522-3529.	1.8	13
903	Effects of Sirt3‑autophagy and resveratrol activation on myocardial hypertrophy and energy metabolism. Molecular Medicine Reports, 2020, 22, 1342-1350.	1.1	17
904	Sirtuins Function as the Modulators in Aging-related Diseases in Common or Respectively. Chinese Medical Journal, 2015, 128, 1671-1678.	0.9	5
905	Cellular NAD+Level: A Key Determinant of Mitochondrial Quality and Health. Annals of Geriatric Medicine and Research, 2017, 21, 149-157.	0.7	5
906	Emerging role of sirtuins on tumorigenesis: possible link between aging and cancer. BMB Reports, 2013, 46, 429-438.	1.1	37
907	Sirtuins and their role as physiological modulators of metabolism. Postepy Higieny I Medycyny Doswiadczalnej, 2020, 74, 489-497.	0.1	2
908	Hydrogen sulfide plays a potential alternative for the treatment of metabolic disorders of diabetic cardiomyopathy. Molecular and Cellular Biochemistry, 2022, 477, 255-265.	1.4	5

#	Article	IF	Citations
909	Role of SIRT3 and in Neurodegeneration. Neuromethods, 2022, , 99-120.	0.2	0
910	SIRT3 Regulates Neuronal Excitability of Alzheimer's Disease Models in an Oxidative Stress-Dependent Manner. NeuroMolecular Medicine, 2021, , 1.	1.8	6
911	A Comprehensive Proteome and Acetyl-Proteome Atlas Reveals Molecular Mechanisms Adapting to the Physiological Changes From Pre-laying to Peak-Laying Stage in Liver of Hens (Gallus gallus). Frontiers in Veterinary Science, 2021, 8, 700669.	0.9	4
912	Mitochondria, a Platform for Diverse Signaling Pathways. , 2010, , 199-217.		0
913	Sirtuins and Mammalian Aging. , 2010, , 91-117.		1
914	Mitochondrial Respiratory Function Decline in Aging and Life-Span Extension by Caloric Restriction. , 2010, , 129-148.		0
915	Posttranslational Modification of Proteins. , 2010, , 528-559.		0
916	New Vistas on Oxidative Damage and Aging. The Open Biology Journal, 2010, 3, 39-52.	0.5	9
917	Role of Sirtuins in Regulation of Cardiac Adaptation Associated with Hypertrophy. , 2013, , 361-374.		0
918	The Role of Sirtuins in Arthritis. , 2013, , 333-348.		0
919	Aged rat heart: Modulation of age-related respiratory defects decreases ischemic-reflow injury. Health, 2013, 05, 1-7.	0.1	0
920	The Sirtuins in Aging and Metabolic Regulation. Food and Nutrition Sciences (Print), 2013, 04, 668-677.	0.2	0
922	Reciprocal Crosstalk Between Angiogenesis and Metabolism. , 2014, , 219-233.		0
924	The role of sirtuins in regulation of the ovarian function (a review). Russian Journal of Human Reproduction, 2018, 24, 7.	0.1	1
925	SIRT1 AS A KEY CELL REGULATOR OF METABOLISM AND OXIDATIVE STRESS. Bulletin of Problems Biology and Medicine, 2018, 1.1, 20.	0.0	2
927	Role of acetylation in nonalcoholic fatty liver disease: a focus on SIRT1 and SIRT3. Exploration of Medicine, 2020, 1, 248-258.	1.5	4
928	PERIPHERAL BLOOD LYMPHOCYTES ADENOSINE TRIPHOSPHATE AVAILABILITY AMONG THE RESIDENTS OF THE NORTHERN EUROPEAN RUSSIA. Ekologiya Cheloveka (Human Ecology), 2020, , 20-25.	0.2	1
929	Influence of psychostimulants and opioids on epigenetic modification of class III histone deacetylase (HDAC)-sirtuins in glial cells. Scientific Reports, 2021, 11, 21335.	1.6	9

ARTICLE IF CITATIONS # Sirtuin 3 (SIRT3) Pathways in Age-Related Cardiovascular and Neurodegenerative Diseases. 930 13 1.4 Biomedicines, 2021, 9, 1574. Genetic and Molecular Aspects of the Aging Auditory System. Springer Handbook of Auditory 0.3 Research, 2020, , 9-34. 932 Mitochondrial Dysfunction in Huntington Disease., 2020, , 151-174. 0 The modulation of SIRT1 and SIRT3 by natural compounds as a therapeutic target in doxorubicinâ€induced cardiotoxicity. A review. Journal of Biochemical and Molecular Toxicology, 2022, 36, e22946. Post-translational Modifications: The Signals at the Intersection of Exercise, Glucose Uptake, and 937 8.9 9 Insulin Sensitivity. Endocrine Reviews, 2022, 43, 654-677. Acetylation in Mitochondria Dynamics and Neurodegeneration. Cells, 2021, 10, 3031. 1.8 Divergent serum metabolomic, skeletal muscle signaling, transcriptomic, and performance 939 adaptations to fasted versus whey protein-fed sprint interval training. American Journal of 1.8 6 Physiology - Endocrinology and Metabolism, 2021, 321, E802-E820. The effect of 12-week aerobic trainings on mitochondrial biogenesis indicators in skeletal muscle among male rats. Medical Journal of Tabriz University of Medical Sciences & Health Services, 2020, 42, 940 0.1 348-355. The intersection between DNA damage response and cell death pathways. Experimental Oncology, 2012, 943 0.4 158 34, 243-54. Homeostasis of redox status derived from glucose metabolic pathway could be the key to 945 1.4 understanding the Warburg effect. American Journal of Cancer Research, 2015, 5, 928-44. Homeostasis of redox status derived from glucose metabolic pathway could be the key to 946 1.4 9 understanding the Warburg effect. American Journal of Cancer Research, 2015, 5, 1265-80. SIRT3 attenuates AnglI-induced cardiac fibrosis by inhibiting myofibroblasts transdifferentiation via 948 0.0 STAT3-NFATc2 pathway. American Journal of Trańslational Řeséarch (discontinued), 2017, 9, 3258-3269. Eating behavior disinhibition predicts insulin resistance in the Old Order Amish. Journal of Human 949 0.0 0 Nutrition and Food Science, 2017, 5, . Proteomic Profiling of Lysine Acetylation Indicates Mitochondrial Dysfunction in the Hippocampus of 1.4 Gut Microbiota-Absent Mice. Frontiers in Molecular Neuroscience, 2021, 14, 594332. Proteomic Profiling of Lysine Acetylation Indicates Mitochondrial Dysfunction in the Hippocampus of 951 1.4 13 Gut Microbiota-Absent Mice. Frontiers in Molecular Neuroscience, 2021, 14, 594332. Sirtuins at the Service of Healthy Longevity. Frontiers in Physiology, 2021, 12, 724506. 28 Mitochondrial Sirtuin TcSir2rp3 Affects TcSODA Activity and Oxidative Stress Response in 953 1.8 3 Trypanosoma cruzi. Frontiers in Cellular and Infection Microbiology, 2021, 11, 773410. 954 Mitochondrial sirtuins, metabolism, and aging. Journal of Genetics and Genomics, 2022, 49, 287-298.

#	Article	IF	CITATIONS
955	Sirt3-mediated mitochondrial dysfunction is involved in fluoride-induced cognitive deficits. Food and Chemical Toxicology, 2021, 158, 112665.	1.8	16
956	Mitochondrial Redox Metabolism: The Epicenter of Metabolism during Cancer Progression. Antioxidants, 2021, 10, 1838.	2.2	16
957	The Effect of Six-Week HIIT Swimming Exercise and Resveratrol Supplementation on the Level of SIRT3 in Frontal Lobe of Aged Rats. The Neuroscience Journal of Shefaye Khatam, 2021, 9, 48-59.	0.4	2
958	Obesity and Male Reproduction: Do Sirtuins Play a Role?. International Journal of Molecular Sciences, 2022, 23, 973.	1.8	11
959	The Protective Effects of Mogroside V Against Neuronal Damages by Attenuating Mitochondrial Dysfunction via Upregulating Sirtuin3. Molecular Neurobiology, 2022, 59, 2068-2084.	1.9	14
960	Modulatory Effects of Alpha-Mangostin Mediated by SIRT1/3-FOXO3a Pathway in Oxidative Stress-Induced Neuronal Cells. Frontiers in Nutrition, 2021, 8, 714463.	1.6	9
961	ROS-Induced Oxidative Damage and Mitochondrial Dysfunction Mediated by Inhibition of SIRT3 in Cultured Cochlear Cells. Neural Plasticity, 2022, 2022, 1-12.	1.0	9
962	Reduced nicotinamide adenine dinucleotide phosphate in redox balance and diseases: a friend or foe?. Acta Pharmacologica Sinica, 2022, 43, 1889-1904.	2.8	23
963	The mTOR/PGC-1α/SIRT3 Pathway Drives Reductive Glutamine Metabolism to Reduce Oxidative Stress Caused by ISKNV in CPB Cells. Microbiology Spectrum, 2022, 10, e0231021.	1.2	13
964	Focus on Molecular Functions of Anti-Aging Deacetylase SIRT3. Biochemistry (Moscow), 2022, 87, 21-34.	0.7	7
965	Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nature Reviews Endocrinology, 2022, 18, 243-258.	4.3	225
966	Dietary zinc deficiency disrupts skeletal muscle proteostasis and mitochondrial biology in rats. Nutrition, 2022, 98, 111625.	1.1	6
967	Long-chain fatty acids regulate SIRT3 expression by affecting intracellular NAD+ levels in large yellow croaker (Larimichthys crocea). Aquaculture, 2022, 553, 738015.	1.7	2
968	A Dynamic Substrate Pool Revealed by cryo-EM of a Lipid-Preserved Respiratory Supercomplex. Antioxidants and Redox Signaling, 2022, 36, 1101-1118.	2.5	3
969	Đ' Ñ"Đ¾ĐºÑƒÑе Đ¼Đ¾Đ»ĐµĐºÑƒĐ»ÑÑ€Đ½Ñ‹Đµ Ñ"ÑƒĐ½ĐºÑ†Đ,Đ,Đ°Đ½Ñ,Đ,Đ²Đ¾Đ·Ñ€ĐºÑÑ,Đ½Đ¾Đ	¹ĐớĐquаÑ	†ĐµÑ,Đ,ла
970	Honokiol Inhibits Atrial Metabolic Remodeling in Atrial Fibrillation Through Sirt3 Pathway. Frontiers in Pharmacology, 2022, 13, 813272.	1.6	2
971	Versatile role of sirtuins in metabolic disorders: From modulation of mitochondrial function to therapeutic interventions. Journal of Biochemical and Molecular Toxicology, 2022, 36, e23047.	1.4	17
972	Manganese Superoxide Dismutase Acetylation and Regulation of Protein Structure in Breast Cancer Biology and Therapy. Antioxidants, 2022, 11, 635.	2.2	1

#	Article	IF	CITATIONS
973	Changes in Specific Biomarkers Indicate Cardiac Adaptive and Anti-inflammatory Response of Repeated Recreational SCUBA Diving. Frontiers in Cardiovascular Medicine, 2022, 9, 855682.	1.1	3
974	Emerging Roles of SIRT3 in Cardiac Metabolism. Frontiers in Cardiovascular Medicine, 2022, 9, 850340.	1.1	15
975	Distinct and diverse chromatin proteomes of ageing mouse organs reveal protein signatures that correlate with physiological functions. ELife, 2022, 11, .	2.8	10
976	A reversible metabolic stress-sensitive regulation of CRMP2A orchestrates EMT/stemness and increases metastatic potential in cancer. Cell Reports, 2022, 38, 110511.	2.9	6
977	Honokiol ameliorates cisplatinâ€induced acute kidney injury via inhibition of mitochondrial fission. British Journal of Pharmacology, 2022, 179, 3886-3904.	2.7	35
978	Sirt3 ameliorates mitochondrial dysfunction and oxidative stress through regulating mitochondrial biogenesis and dynamics in cardiomyoblast Cellular Signalling, 2022, 94, 110309.	1.7	29
979	Sirtuin 3 Dependent and Independent Effects of NAD+ to Suppress Vascular Inflammation and Improve Endothelial Function in Mice. Antioxidants, 2022, 11, 706.	2.2	4
980	Sirt3 Regulates Response to Oxidative Stress by Interacting with BER Proteins in Colorectal Cancer. Genetical Research, 2022, 2022, 1-10.	0.3	2
981	Sirtuin 3 and mitochondrial permeability transition pore (mPTP): A systematic review. Mitochondrion, 2022, 64, 103-111.	1.6	13
982	Liver-specific overexpression of SIRT3 enhances oxidative metabolism, but does not impact metabolic defects induced by high fat feeding in mice. Biochemical and Biophysical Research Communications, 2022, 607, 131-137.	1.0	4
983	Emerging roles of Sirtuins in alleviating alcoholic liver Disease: A comprehensive review. International Immunopharmacology, 2022, 108, 108712.	1.7	9
984	Bicalutamide Exhibits Potential to Damage Kidney via Destroying Complex I and Affecting Mitochondrial Dynamics. Journal of Clinical Medicine, 2022, 11, 135.	1.0	2
985	Unveiling Metabolic Vulnerability and Plasticity of Human Osteosarcoma Stem and Differentiated Cells to Improve Cancer Therapy. Biomedicines, 2022, 10, 28.	1.4	7
986	Sirtuins and Sepsis: Cross Talk between Redox and Epigenetic Pathways. Antioxidants, 2022, 11, 3.	2.2	7
987	Unbiased proteomics, histochemistry, and mitochondrial DNA copy number reveal better mitochondrial health in muscle of high-functioning octogenarians. ELife, 2022, 11, .	2.8	7
1008	The Double-Edged Sword of SIRT3 in Cancer and Its Therapeutic Applications. Frontiers in Pharmacology, 2022, 13, 871560.	1.6	6
1009	Sirtuins—Novel Regulators of Epigenetic Alterations in Airway Inflammation. Frontiers in Genetics, 2022, 13, .	1.1	1
1010	Regulation of Mitophagy by Sirtuin Family Proteins: A Vital Role in Aging and Age-Related Diseases. Frontiers in Aging Neuroscience, 2022, 14, .	1.7	20

#	Article	IF	CITATIONS
1011	Sirtuin inhibition and neurite outgrowth effect as new biological activities for Areca catechu nut alkaloids. Phytomedicine Plus, 2022, 2, 100294.	0.9	2
1012	<i>Sirtuins</i> , a key regulator of ageing and age-related neurodegenerative diseases. International Journal of Neuroscience, 2023, 133, 1167-1192.	0.8	8
1013	Mitochondrial and glucose metabolic dysfunctions in granulosa cells induce impaired oocytes of polycystic ovary syndrome through Sirtuin 3. Free Radical Biology and Medicine, 2022, 187, 1-16.	1.3	36
1014	Nicotinamide Mononucleotide Administration Amends Protein Acetylome of Aged Mouse Liver. Cells, 2022, 11, 1654.	1.8	8
1015	The Role of SIRT3 in the Osteoporosis. Frontiers in Endocrinology, 2022, 13, .	1.5	8
1017	Insight of Melatonin: The Potential of Melatonin to Treat Bacteria-Induced Mastitis. Antioxidants, 2022, 11, 1107.	2.2	4
1018	The mitochondrial adenine nucleotide transporters in myogenesis. Free Radical Biology and Medicine, 2022, 188, 312-327.	1.3	5
1019	NAFLD: Mechanisms, Treatments, and Biomarkers. Biomolecules, 2022, 12, 824.	1.8	86
1020	Mitigation of honokiol on fluoride-induced mitochondrial oxidative stress, mitochondrial dysfunction, and cognitive deficits through activating AMPK/PGC-1α/Sirt3. Journal of Hazardous Materials, 2022, 437, 129381.	6.5	25
1021	Mitochondrial Dysfunction Plays Central Role in Nonalcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 2022, 23, 7280.	1.8	38
1022	The Role and Therapeutic Perspectives of Sirtuin 3 in Cancer Metabolism Reprogramming, Metastasis, and Chemoresistance. Frontiers in Oncology, 0, 12, .	1.3	8
1023	New Insight Into the Molting and Growth in Crustaceans: Regulation of Energy Homeostasis Through the Lipid Nutrition. Frontiers in Marine Science, 0, 9, .	1.2	7
1024	Mitochondrial Biogenesis in Continuous vs. High-Intensity Interval Swimming. Annals of Military and Health Sciences Research, 2022, 20, .	0.1	0
1025	Renoprotective potentials of small molecule natural products targeting mitochondrial dysfunction. Frontiers in Pharmacology, 0, 13, .	1.6	8
1026	Mechanisms of mitochondrial respiratory adaptation. Nature Reviews Molecular Cell Biology, 2022, 23, 817-835.	16.1	61
1027	Multinational Genome-Wide Association Study and Functional Genomics Analysis Implicates Decreased SIRT3 Expression Underlying Intracranial Aneurysm Risk. Neurosurgery, 2022, 91, 625-632.	0.6	1
1028	Thermoneutrality induces vascular dysfunction and impaired metabolic function in male Wistar rats: a new model of vascular disease. Journal of Hypertension, O, Publish Ahead of Print, .	0.3	0
1029	Macrophage Polarization and Reprogramming in Acute Inflammation: A Redox Perspective. Antioxidants, 2022, 11, 1394.	2.2	52

ARTICLE IF CITATIONS Mitochondrial sirtuin 3 and various cell death modalities. Frontiers in Cell and Developmental 1030 1.8 5 Biology, 0, 10, . Keeping the beat against time: Mitochondrial fitness in the aging heart. Frontiers in Aging, 0, 3, . 1.2 Nitric oxide-based regulation of metabolism: Hints from TRAP1 and SIRT3 crosstalk. Frontiers in 1032 2 1.6 Molecular Biosciences, 0, 9, . An Epigenetic Role of Mitochondria in Cancer. Cells, 2022, 11, 2518. 1033 1.8 RIPK3 dampens mitochondrial bioenergetics and lipid droplet dynamics in metabolic liver disease. 1034 3.6 9 Hepatology, 2023, 77, 1319-1334. Progress in Nonalcoholic Fatty Liver Disease: SIRT Family Regulates Mitochondrial Biogenesis. 1.8 Biomolecules, 2022, 12, 1079 The Role of SIRT3 in Exercise and Aging. Cells, 2022, 11, 2596. 1036 1.8 29 The mitochondrial NAD+ transporter SLC25A51 is a fasting-induced gene affecting SIRT3 functions. 1.5 Metabolism: Clinical and Experimental, 2022, 135, 155275. 1038 Virtual Screening in the Identification of Sirtuins' Activity Modulators. Molecules, 2022, 27, 5641. 9 1.7 Dexmedetomidine Confers Protection Against Neuronal Oxygen Glucose Deprivation-Reperfusion by 1.6 Regulating SIRT3 Mediated Autophagy. Neurochemical Research, 2022, 47, 3490-3505. Glial cell derived neurotrophic factor prevents western diet and palmitate-induced hepatocyte 1040 1 1.6 oxidative damage and death through SIRT3. Scientific Reports, 2022, 12, . Metabolic reprogramming: A novel therapeutic target in diabetic kidney disease. Frontiers in 1.6 Pharmacology, 0, 13, . Quantitative acetylated proteomics on left atrial appendage tissues revealed atrial energy metabolism 1042 and contraction status in patients with valvular heart disease with atrial fibrillation. Frontiers in 1.1 3 Cardiovascular Medicine, Ò, 9, . Plasma SIRT3 as a Biomarker of Severity and Prognosis After Acute Intracerebral Hemorrhage: A 1043 1.0 Prospective Cohort Study. Neuropsychiatric Disease and Treatment, 0, Volume 18, 2199-2210. Activating SIRT3 in peritoneal mesothelial cells alleviates postsurgical peritoneal adhesion formation by decreasing oxidative stress and inhibiting the NLRP3 inflammasome. Experimental and Molecular 1044 3.27 Medicine, 2022, 54, 1486-1501. The multiple facets of mitochondrial regulations controlling cellular thermogenesis. Cellular and 1045 2.4 Molecular Life Sciences, 2022, 79, . <scp>SIRT3</scp> deficiency decreases oxidative metabolism capacity but increases lifespan in male 1046 3.08 mice under caloric restriction. Aging Cell, 2022, 21, . Metabolic Regulation of Lysine Acetylation: Implications in Cancer. Sub-Cellular Biochemistry, 2022, 1048 393-426.

#	Article	IF	CITATIONS
1049	Exploring the Multi-Faceted Role of Sirtuins in Glioblastoma Pathogenesis and Targeting Options. International Journal of Molecular Sciences, 2022, 23, 12889.	1.8	6
1050	Multidrug resistance transporter-1 dysfunction perturbs meiosis and Ca2+ homeostasis in oocytes. Reproduction, 2022, , .	1.1	0
1051	Molecular mechanism and therapeutic significance of dihydromyricetin in nonalcoholic fatty liver disease. European Journal of Pharmacology, 2022, 935, 175325.	1.7	2
1052	Diet restriction-induced mitochondrial signaling and healthy aging. , 2023, , 587-632.		0
1053	Role of SIRT3 in neurological diseases and rehabilitation training. Metabolic Brain Disease, 2023, 38, 69-89.	1.4	3
1054	Structure, Function, and Inhibitors of the Mitochondrial Chaperone TRAP1. Journal of Medicinal Chemistry, 2022, 65, 16155-16172.	2.9	6
1056	Calorie Restriction Provides Kidney Ischemic Tolerance in Senescence-Accelerated OXYS Rats. International Journal of Molecular Sciences, 2022, 23, 15224.	1.8	1
1057	The loss of cardiac SIRT3 decreases metabolic flexibility and proteostasis in an age-dependent manner. GeroScience, 2023, 45, 983-999.	2.1	5
1058	Fasted Sprint Interval Training Results in Some Beneficial Skeletal Muscle Metabolic, but Similar Metabolomic and Performance Adaptations Compared With Carbohydrate-Fed Training in Recreationally Active Male. International Journal of Sport Nutrition and Exercise Metabolism, 2023, 33, 73-83.	1.0	0
1059	A Promising Strategy to Treat Neurodegenerative Diseases by SIRT3 Activation. International Journal of Molecular Sciences, 2023, 24, 1615.	1.8	6
1061	Dihydromyricetin Protects Intestinal Barrier Integrity by Promoting IL-22 Expression in ILC3s through the AMPK/SIRT3/STAT3 Signaling Pathway. Nutrients, 2023, 15, 355.	1.7	4
1062	Oxidative Stress and Mitochondrial Dysfunction in Chronic Kidney Disease. Cells, 2023, 12, 88.	1.8	26
1063	Changes of energy metabolism in failing heart and its regulation by SIRT3. Heart Failure Reviews, 2023, 28, 977-992.	1.7	3
1064	Reprogramming of Mitochondrial Respiratory Chain Complex by Targeting SIRT3 OX4I2 Axis Attenuates Osteoarthritis Progression. Advanced Science, 2023, 10, .	5.6	10
1065	A Review of Fibraurea tinctoria and Its Component, Berberine, as an Antidiabetic and Antioxidant. Molecules, 2023, 28, 1294.	1.7	11
1066	Mitochondria in health, disease, and aging. Physiological Reviews, 2023, 103, 2349-2422.	13.1	56
1067	Mitochondria as biological targets for stem cell and organismal senescence. European Journal of Cell Biology, 2023, 102, 151289.	1.6	1
1068	SIRT3 improved peroxisomes-mitochondria interplay and prevented cardiac hypertrophy via preserving PEX5 expression. Redox Biology, 2023, 62, 102652.	3.9	5

#	Article	IF	CITATIONS
1069	Sex-divergent effects on the NAD+-dependent deacetylase sirtuin signaling across the olfactory–entorhinal–amygdaloid axis in Alzheimer's and Parkinson's diseases. Biology of Sex Differences, 2023, 14, .	1.8	6
1070	Neuronal SIRT3 Deletion Predisposes to Female-Specific Alterations in Cellular Metabolism, Memory, and Network Excitability. Journal of Neuroscience, 2023, 43, 1845-1857.	1.7	2
1071	Fumonisin B1 disrupts mitochondrial function in oxidatively poised HepG2 liver cells by disrupting oxidative phosphorylation complexes and potential participation of lincRNA-p21. Toxicon, 2023, 225, 107057.	0.8	1
1072	Sirtuins and Aging. Neuroscience and Behavioral Physiology, 0, , .	0.2	0
1073	Sirtuin3 confers protection against acute pulmonary embolism through anti-inflammation, and anti-oxidative stress, and anti-apoptosis properties: participation of the AMP-activated protein kinase/mammalian target of rapamycin pathway. Experimental Animals, 2023, 72, 346-355.	0.7	1
1074	Modulations of SIRTUINs and Management of Brain Disorders. , 2023, , 47-81.		0
1075	<scp>SIRT3</scp> â€dependent delactylation of cyclin <scp>E2</scp> prevents hepatocellular carcinoma growth. EMBO Reports, 2023, 24, .	2.0	18
1076	Metabolic sensing and control in mitochondria. Molecular Cell, 2023, 83, 877-889.	4.5	8
1077	Exogenous L-lactate administration in rat hippocampus increases expression of key regulators of mitochondrial biogenesis and antioxidant defense. Frontiers in Molecular Neuroscience, 0, 16, .	1.4	8
1078	Sirtuin-3: A potential target for treating several types of brain injury. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	2
1079	Neuroprotection of NAD+ and NBP against ischemia/reperfusion brain injury is associated with restoration of sirtuin-regulated metabolic homeostasis. Frontiers in Pharmacology, 0, 14, .	1.6	1
1080	Advances in natural small molecules on pretranslational regulation of gluconeogenesis. Drug Development Research, 0, , .	1.4	0
1081	Role of SIRT3 in mitochondrial biology and its therapeutic implications in neurodegenerative disorders. Drug Discovery Today, 2023, 28, 103583.	3.2	9
1082	Metabolic Syndrome and Cardiac Remodeling Due to Mitochondrial Oxidative Stress Involving Gliflozins and Sirtuins. Current Hypertension Reports, 2023, 25, 91-106.	1.5	2
1083	Cardioprotective effect of ultrasoundâ€ŧargeted destruction of Sirt3â€loaded cationic microbubbles in a large animal model of pathological cardiac hypertrophy. Acta Biomaterialia, 2023, 164, 604-625.	4.1	2
1084	New insights into the pathophysiology of methylmalonic acidemia. Journal of Inherited Metabolic Disease, 2023, 46, 436-449.	1.7	2
1090	Klonen von Nutztieren durch somatischen Zellkerntransfer. , 2023, , 1-22.		0
1091	Mitochondrial Damage and Hypertension: Another Dark Side of Sodium Excess. Current Nutrition Reports, 2023, 12, 495-507.	2.1	1

#	Article	IF	CITATIONS
1107	Acetyl-CoA and acetylation in biology and disease. , 2023, , 483-506.		0
1120	Pathways in Human Arrhythmias: Impact of Post-translational Modifications. , 2023, , 459-474.		0
1131	Sirtuins in kidney health and disease. Nature Reviews Nephrology, 0, , .	4.1	0