Surface decoration of carbon nanotubes and mechanica nanotube composites

Advances in Cement Research 20, 65-73

DOI: 10.1680/adcr.2008.20.2.65

Citation Report

#	Article	IF	CITATIONS
1	Growth of Cement Hydration Products on Singleâ€Walled Carbon Nanotubes. Journal of the American Ceramic Society, 2009, 92, 1303-1310.	1.9	296
2	Properties of high yield synthesised carbon nano fibres/Portland cement composite. Advances in Cement Research, 2009, 21, 141-146.	0.7	22
3	Performance of Carbon Nanofiber–Cement Composites with a High-Range Water Reducer. Transportation Research Record, 2010, 2142, 109-113.	1.0	68
4	Distribution of Carbon Nanofibers and Nanotubes in Cementitious Composites. Transportation Research Record, 2010, 2142, 89-95.	1.0	118
5	Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cement and Concrete Composites, 2010, 32, 110-115.	4.6	513
6	Highly dispersed carbon nanotube reinforced cement based materials. Cement and Concrete Research, 2010, 40, 1052-1059.	4.6	785
7	Nanotechnology in concrete – A review. Construction and Building Materials, 2010, 24, 2060-2071.	3.2	1,378
8	Controlling Physical Properties of Cementitious Matrixes by Nanomaterials. Advanced Materials Research, 0, 123-125, 639-642.	0.3	17
9	Cement and Concrete Nanoscience and Nanotechnology. Materials, 2010, 3, 918-942.	1.3	374
10	Carbon Nanotubes and Carbon Nanofibers for Enhancing the Mechanical Properties of Nanocomposite Cementitious Materials. Journal of Materials in Civil Engineering, 2011, 23, 1028-1035.	1.3	266
11	Carbon nanotube–cement composites: A retrospect. IES Journal Part A: Civil and Structural Engineering, 2011, 4, 254-265.	0.4	96
12	Dispersion quantification of inclusions in composites. Composites Part A: Applied Science and Manufacturing, 2011, 42, 75-83.	3.8	56
13	A quantitative method for analyzing the dispersion and agglomeration of nano-particles in composite materials. Composites Part B: Engineering, 2011, 42, 1395-1403.	5.9	75
14	Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials. Applied Surface Science, 2011, 257, 1941-1945.	3.1	284
15	Simultaneous Analysis of Multiple Enzymes Increases Accuracy of Pulsed-Field Gel Electrophoresis in Assigning Genetic Relationships among Homogeneous Salmonella Strains. Journal of Clinical Microbiology, 2011, 49, 85-94.	1.8	35
16	Surface Functionalization of Carbon Nanotubes and Compressive Strength of MWCNTs-OPC. Advanced Materials Research, 0, 511, 171-174.	0.3	1
17	Challenges and Benefits of Utilizing Carbon Nanofilaments in Cementitious Materials. Journal of Nanomaterials, 2012, 2012, 1-8.	1.5	42
18	Nanoscience of cementitious materials. Emerging Materials Research, 2012, 1, 221-234.	0.4	4

#	ARTICLE	IF	CITATIONS
19	Mechanical Properties of Nanocomposite Cement Incorporating Surface-Treated and Untreated Carbon Nanotubes and Carbon Nanofibers. Journal of Nanomechanics & Micromechanics, 2012, 2, 1-6.	1.4	121
20	Effect of Carbon Nanotube Aqueous Dispersion Quality on Mechanical Properties of Cement Composite. Journal of Nanomaterials, 2012, 2012, 1-6.	1.5	75
21	The influences of admixtures on the dispersion, workability, and strength of carbon nanotube–OPC paste mixtures. Cement and Concrete Composites, 2012, 34, 201-207.	4.6	358
22	The theoretical maximum achievable dispersion of nanoinclusions in cement paste. Cement and Concrete Research, 2012, 42, 798-804.	4.6	52
23	On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites. Construction and Building Materials, 2012, 35, 647-655.	3.2	294
24	Mechanical and morphological properties of highly dispersed carbon nanotubes reinforced cement based materials. Journal Wuhan University of Technology, Materials Science Edition, 2013, 28, 82-87.	0.4	24
25	Surface-modified graphite nanomaterials for improved reinforcement efficiency in cementitious paste. Carbon, 2013, 63, 175-186.	5.4	138
26	The influence of multi-walled carbon nanotubes additive on properties of non-autoclaved and autoclaved aerated concretes. Construction and Building Materials, 2013, 49, 527-535.	3.2	53
27	Beneficial role of nanosilica in cement based materials $\hat{a} \in A$ review. Construction and Building Materials, 2013, 47, 1069-1077.	3.2	537
28	Controlling the optimum surfactants concentrations for dispersing carbon nanofibers in aqueous solution. Russian Journal of Physical Chemistry A, 2013, 87, 2253-2259.	0.1	6
29	Transport Properties of Carbon-Nanotube/Cement Composites. Journal of Materials Engineering and Performance, 2013, 22, 184-189.	1.2	120
30	Carbon nanotubes in new materials. Russian Chemical Reviews, 2013, 82, 27-47.	2.5	44
31	Microscopic reinforcement for cement based composite materials. Construction and Building Materials, 2013, 40, 14-25.	3.2	96
32	Nanotechnology innovations for the construction industry. Progress in Materials Science, 2013, 58, 1056-1102.	16.0	269
33	Effect of highly dispersed carbon nanotubes on the flexural toughness of cement-based composites. Construction and Building Materials, 2013, 46, 8-12.	3.2	172
34	Nanotechnology for eco-efficient concrete. , 2013, , 544-564.		0
35	Nanoscience and nanoengineering of cement-based materials., 2013,, 9-37a.		4
36	A Review on Nanomaterial Dispersion, Microstructure, and Mechanical Properties of Carbon Nanotube and Nanofiber Reinforced Cementitious Composites. Journal of Nanomaterials, 2013, 2013, 1-19.	1.5	283

#	Article	IF	CITATIONS
37	Carbon nanotubes: an overview. Emerging Materials Research, 2013, 2, 299-337.	0.4	2
38	The Effect of Carbon Nano- and Microfibers on Strength and Residual Cumulative Strain of Mortars Subjected to Freeze-Thaw Cycles. Journal of Advanced Concrete Technology, 2013, 11, 80-88.	0.8	35
39	Enhancement of Ultrahigh Performance Concrete Material Properties with Carbon Nanofiber. Advances in Civil Engineering, 2014, 2014, 1-10.	0.4	28
40	Compressive Strength, Chloride Permeability, and Freeze-Thaw Resistance of MWNT Concretes under Different Chemical Treatments. Scientific World Journal, The, 2014, 2014, 1-8.	0.8	15
41	Effect of Carbon Nanotube Size on Compressive Strengths of Nanotube Reinforced Cementitious Composites. Journal of Materials, 2014, 2014, 1-8.	0.1	31
42	Preparation and Mechanical Properties of Graphene Oxide: Cement Nanocomposites. Scientific World Journal, The, 2014, 2014, 1-10.	0.8	177
43	Research Progress on Carbon Nanotubes Reinforced Cement-Based Materials. Key Engineering Materials, 0, 629-630, 487-493.	0.4	0
44	Multifunctionalities of Nanocarbon Materials Filled Cement-Based Composites. Materials Science Forum, 0, 809-810, 144-154.	0.3	0
45	Reinforcement Efficiency of Modified Carbon Nanofiber in High-Performance Concrete Nanocomposite. Advances in Civil Engineering Materials, 2014, 3, 20140019.	0.2	2
46	Nanotechnology: The Emerging Field of Civil Engineering Particularly in Developing Countries. Advanced Materials Research, 0, 974, 329-334.	0.3	0
47	STUDYING THE STABILITY OF AQUEOUS SUSPENSIONS OF MULTIWALLED CARBON NANOTUBES USED FOR THE MODIFICATION OF COMPOSITE MATERIALS. Engineering Structures and Technologies, 2014, 6, 62-68.	0.2	0
48	Preparation and application of carbon nanotube nanofluid as a reinforcement of cement slurry. Advances in Cement Research, 2014, 26, 177-184.	0.7	9
49	Reinforcement of surface-modified multi-walled carbon nanotubes on cement-based composites. Advances in Cement Research, 2014, 26, 77-84.	0.7	11
50	Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume. Composite Structures, 2014, 107, 60-69.	3.1	280
51	Surface properties of CNTs and their interaction with silica. Journal of Colloid and Interface Science, 2014, 413, 43-53.	5.0	40
52	Microstructure and mechanical performance of modified mortar using hemp fibres and carbon nanotubes. Materials & Design, 2014, 56, 60-68.	5.1	72
53	Carbon-Nanotube-Based Self-Sensing Concrete. , 2014, , 315-359.		1
54	An XFEM multiscale approach for fracture analysis of carbon nanotube reinforced concrete. Theoretical and Applied Fracture Mechanics, 2014, 72, 64-75.	2.1	70

#	Article	IF	Citations
55	Nano reinforced cement and concrete composites and new perspective from graphene oxide. Construction and Building Materials, 2014, 73, 113-124.	3.2	548
56	Porosity and pore size distribution measurement of cement/carbon nanofiber composites by 1H low field nuclear magnetic resonance. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 82-88.	0.4	16
57	Effects of carbon nanotubes on mechanical and 2D-3D microstructure properties of cement mortar. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 513-517.	0.4	28
58	Fracture toughness enhancement of cement paste with multi-walled carbon nanotubes. Construction and Building Materials, 2014, 70, 332-338.	3.2	156
59	Finite element simulation of single carbon nanotube pull-outs from a cementitious nanocomposite material using an elastic-plastic-damage and cohesive surface models. International Journal of Theoretical and Applied Multiscale Mechanics, 2014, 3, 31.	0.5	2
60	Synergistic effect of zero-dimensional spherical carbon nanoparticles and one-dimensional carbon nanotubes on properties of cement-based ceramic matrix: microstructural perspectives and crystallization investigations. Composite Interfaces, 2015, 22, 899-921.	1.3	28
62	Dispersion of Multi-Walled Carbon Nanotubes in Portland Cement Concrete Using Ultra-Sonication and Polycarboxylic Based Superplasticizer. Applied Mechanics and Materials, 0, 802, 112-117.	0.2	4
63	Progress in Research on Carbon Nanotubes Reinforced Cementitious Composites. Advances in Materials Science and Engineering, 2015, 2015, 1-16.	1.0	30
64	Effect of Some Parameters on the Compressive Strength of MWCNT-Cement Composites. Advances in Materials Science and Engineering, 2015, 2015, 1-8.	1.0	14
65	Review of nanocarbon-engineered multifunctional cementitious composites. Composites Part A: Applied Science and Manufacturing, 2015, 70, 69-81.	3.8	294
66	Evaluation of modified-graphite nanomaterials in concrete nanocomposite based on packing density principles. Construction and Building Materials, 2015, 76, 413-422.	3.2	54
67	Nanocomposite of cement/graphene oxide – Impact on hydration kinetics and Young's modulus. Construction and Building Materials, 2015, 78, 234-242.	3.2	168
68	Preparation and microstructural properties study on cement composites reinforced with multi-walled carbon nanotubes. Journal of Composite Materials, 2015, 49, 85-98.	1.2	35
69	Optimum mix ratio for carbon nanotubes in cement mortar. KSCE Journal of Civil Engineering, 2015, 19, 1405-1412.	0.9	55
70	Surfactants for dispersion of carbon nanotubes applied in soil stabilization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 480, 405-412.	2.3	31
71	Smart cements and cement additives for oil and gas operations. Journal of Petroleum Science and Engineering, 2015, 129, 63-76.	2.1	84
72	Applying Multiwall Carbon Nanotubes for Soil Stabilization. Procedia Engineering, 2015, 102, 1766-1775.	1.2	26
73	Microstructure and mechanical properties of carbon nanotube reinforced cementitious composites developed using a novel dispersion technique. Cement and Concrete Research, 2015, 73, 215-227.	4.6	231

#	Article	IF	CITATIONS
74	Characterization of Cement-Based Materials Modified with Graphene-Oxide. , 2015, , 259-264.		5
75	Self Sensing Capability of Multifunctional Cementitious Nanocomposites. , 2015, , 363-369.		3
76	Nanotechnology in Construction. , 2015, , .		27
77	WS2 nanotube – Reinforced cement: Dispersion matters. Construction and Building Materials, 2015, 98, 112-118.	3.2	19
78	Fire resistance and mechanical properties of carbon nanotubes – clay bricks wastes (Homra) composites cement. Construction and Building Materials, 2015, 98, 237-249.	3.2	101
79	Mechanism of cement paste reinforced by graphene oxide/carbon nanotubes composites with enhanced mechanical properties. RSC Advances, 2015, 5, 100598-100605.	1.7	206
80	Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste. Construction and Building Materials, 2015, 76, 16-23.	3.2	292
81	Structural performance of dry-cast concrete nanocomposite pipes. Materials and Structures/Materiaux Et Constructions, 2015, 48, 461-470.	1.3	19
82	Reinforcing Effects of Graphene Oxide on Portland Cement Paste. Journal of Materials in Civil Engineering, 2015, 27, .	1.3	323
83	Effects of silica additives on fracture properties of carbon nanotube and carbon fiber reinforced Portland cement mortar. Cement and Concrete Composites, 2015, 55, 232-240.	4.6	141
84	Potential of Carbon Nanotube Reinforced Cement Composites as Concrete Repair Material. Journal of Nanomaterials, 2016, 2016, 1-10.	1.5	66
85	Cement Pastes and Mortars Containing Nitrogen-Doped and Oxygen-Functionalized Multiwalled Carbon Nanotubes. Journal of Materials, 2016, 2016, 1-16.	0.1	1
86	Bonding Characteristics of Macrosynthetic Fiber in Latex-Modified Fiber-Reinforced Cement Composites as a Function of Carbon Nanotube Content. International Journal of Polymer Science, 2016, 2016, 1-8.	1.2	5
87	Recent Trends of Reinforcement of Cement with Carbon Nanotubes and Fibers., 0,,.		6
88	Effect of Different Parameters on Properties of Multiwalled Carbon Nanotube-Reinforced Cement Composites. Arabian Journal for Science and Engineering, 2016, 41, 4835-4845.	1.1	14
89	Effect of graphene oxide nanosheets on the geotechnical properties of cemented silty soil. Archives of Civil and Mechanical Engineering, 2016, 16, 695-701.	1.9	41
90	Acoustic emission investigation of the mechanical performance of carbon nanotube-modified cement-based mortars. Construction and Building Materials, 2016, 122, 518-524.	3.2	42
91	Influence of nano-dispersive modified additive on cement activity. AIP Conference Proceedings, 2016, , .	0.3	1

#	Article	IF	Citations
92	Experimental Research on Mechanicals Performance of Carbon Nanotubes Reinforced Concrete. Applied Mechanics and Materials, 0, 858, 173-178.	0.2	4
93	Portland cement mortar nanocomposites at low carbon nanotube and carbon nanofiber content: A fracture mechanics experimental study. Cement and Concrete Composites, 2016, 70, 110-118.	4.6	111
94	Contribution of CNTs/CNFs morphology to reduction of autogenous shrinkage of Portland cement paste. Frontiers of Structural and Civil Engineering, 2016, 10, 224-235.	1.2	25
95	The critical role of nanotube shape in cement composites. Cement and Concrete Composites, 2016, 71, 166-174.	4.6	60
96	Inhibited grain growth in hydroxyapatite–graphene nanocomposites during high temperature treatment and their enhanced mechanical properties. Ceramics International, 2016, 42, 11248-11255.	2.3	35
97	A Review on Polymer/Cement Composite with Carbon Nanofiller and Inorganic Filler. Polymer-Plastics Technology and Engineering, 2016, 55, 1299-1323.	1.9	16
98	Acid-treated carbon nanotubes and their effects on mortar strength. Frontiers of Structural and Civil Engineering, 2016, 10, 180-188.	1.2	30
99	Investigation of the effectiveness of PC@GO on the reinforcement for cement composites. Construction and Building Materials, 2016, 113, 470-478.	3.2	116
100	Quantification of the re-agglomeration of carbon nanofiber aqueous dispersion in cement pastes and effect on the early age flexural response. Carbon, 2016, 107, 482-500.	5.4	82
101	Ultra high performance cement-based composites incorporating low dosage of plasma synthesized carbon nanotubes. Materials and Design, 2016, 108, 479-487.	3.3	63
102	Hybrid cementitious materials., 2016,, 79-96.		6
103	Mechanism of cement/carbon nanotube composites with enhanced mechanical properties achieved by interfacial strengthening. Construction and Building Materials, 2016, 115, 87-92.	3.2	64
104	Strength optimisation of mortar with CNTs and nanoclays. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2016, 169, 340-356.	0.4	14
105	Carbon nanotube reinforced cementitious composites: An overview. Composites Part A: Applied Science and Manufacturing, 2016, 91, 301-323.	3.8	214
106	MWCNT for Enhancing Mechanical Properties of Oil Well Cement for HPHT Applications. , 2016, , .		5
107	Strength, energy absorption capability and self-sensing properties of multifunctional carbon nanotube reinforced mortars. Construction and Building Materials, 2016, 120, 265-274.	3.2	112
108	MWCNT for Enhancing Mechanical and Thixotropic Properties of Cement for HPHT Applications. , 2016, , .		14
109	Effect of graphene on mechanical properties of cement mortars. Journal of Central South University, 2016, 23, 919-925.	1.2	73

#	Article	IF	CITATIONS
110	Review on concrete nanotechnology. European Journal of Environmental and Civil Engineering, 2016, 20, 455-485.	1.0	146
111	Molecular dynamics simulation of the nonlinear behavior of the CNT-reinforced calcium silicate hydrate (C–S–H) composite. Composites Part A: Applied Science and Manufacturing, 2016, 82, 78-87.	3.8	66
112	Nano carbon material–filled cementitious composites. , 2016, , 153-181.		4
113	Nano-modification of cementitious material: toward a stronger and durable concrete. Journal of Sustainable Cement-Based Materials, 2016, 5, 1-22.	1.7	72
114	A novel approach of developing micro crystalline cellulose reinforcedÂcementitious composites with enhanced microstructureÂand mechanical performance. Cement and Concrete Composites, 2017, 78, 146-161.	4.6	44
115	Improving mechanical properties of C-S-H from inserted carbon nanotubes. Journal of Physics and Chemistry of Solids, 2017, 105, 72-80.	1.9	28
116	Crystallization of calcium silicate hydrates on the surface of nanomaterials. Journal of the American Ceramic Society, 2017, 100, 3227-3238.	1.9	43
117	Mechanical properties of early-age concrete reinforced with multi-walled carbon nanotubes. Magazine of Concrete Research, 2017, 69, 683-693.	0.9	16
118	Performance of carbon nanotubes in mortar using different surfactants. Canadian Journal of Civil Engineering, 2017, 44, 619-625.	0.7	10
119	Analysis of Cementitious Composites Prepared with Carbon Nanotubes and Nanofibers Synthesized Directly on Clinker and Silica Fume. Journal of Materials in Civil Engineering, 2017, 29, .	1.3	9
120	Moisture-dependent piezoresistive responses of CNT-embedded cementitious composites. Composite Structures, 2017, 170, 103-110.	3.1	32
121	Multi-walled carbon nanotube reinforced mortar-aggregate interfacial properties. Construction and Building Materials, 2017, 133, 57-64.	3.2	26
122	Properties of carbon nanotube reinforced cement composite synthesized using different types of surfactants. Construction and Building Materials, 2017, 155, 389-399.	3.2	73
123	Mechanical properties and reinforcing mechanisms of cementitious composites with different types of multiwalled carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 2017, 103, 131-147.	3.8	120
124	Reception carbon nanomodifiers in arc discharge plasma and their application for modifying of building materials. IOP Conference Series: Materials Science and Engineering, 2017, 168, 012059.	0.3	7
125	New composite of natural hydraulic lime mortar with graphene oxide. Construction and Building Materials, 2017, 156, 1150-1157.	3.2	46
126	Ceramic waste as an efficient material for enhancing the fire resistance and mechanical properties of hardened Portland cement pastes. Construction and Building Materials, 2017, 154, 1062-1078.	3.2	73
127	Effect of carbon nanotubes (CNTs) on the properties of traditional cementitious materials. Construction and Building Materials, 2017, 153, 81-101.	3.2	103

#	Article	IF	Citations
128	A critical review on research progress of graphene/cement based composites. Composites Part A: Applied Science and Manufacturing, 2017, 102, 273-296.	3.8	254
129	A review of dispersion of nanoparticles in cementitious matrices: Nanoparticle geometry perspective. Construction and Building Materials, 2017, 153, 346-357.	3.2	133
130	A review on the chemical, mechanical and microstructural characterization of carbon nanotubes-cement based composites. Construction and Building Materials, 2017, 154, 697-710.	3.2	145
131	The Use of Low-Cost Graphite Nanomaterials to Enhance Zonal Isolation in Oil and Gas Wells., 2017,,.		14
132	Mechanical performance of novel cement-based composites prepared with nano-fibres, and hybrid nano- and micro-fibres. Composite Structures, 2017, 178, 145-156.	3.1	51
133	Electrical properties of alkali-activated slag composite with combined graphite/CNT filler. IOP Conference Series: Materials Science and Engineering, 2017, 251, 012082.	0.3	5
134	The influence of carbon nanotubes on the properties of water solutions and fresh cement pastes. IOP Conference Series: Materials Science and Engineering, 2017, 251, 012023.	0.3	3
135	Mechano-Physical Properties and Microstructure of Carbon Nanotube Reinforced Cement Paste after Thermal Load. Nanomaterials, 2017, 7, 267.	1.9	51
136	Nano-Silica Sol-Gel and Carbon Nanotube Coupling Effect on the Performance of Cement-Based Materials. Nanomaterials, 2017, 7, 185.	1.9	32
137	Heating Experiment of CNT Cementitious Composites with Single-Walled and Multiwalled Carbon Nanotubes. Journal of Nanomaterials, 2017, 2017, 1-12.	1.5	18
138	PHYSICAL DISPERSION OF NANOCARBONS IN COMPOSITES–A REVIEW. Jurnal Teknologi (Sciences and) Tj ETC	2q8 <u>.</u> g 0 rg	BT ₁ /Overlock
139	Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective. Journal of Cleaner Production, 2018, 186, 262-281.	4.6	623
140	Evaluation of the Reinforcement Efficiency of Low-Cost Graphite Nanomaterials in High-Performance Concrete. KSCE Journal of Civil Engineering, 2018, 22, 3875-3882.	0.9	16
141	On the mechanical and shrinkage behavior of cement mortars reinforced with carbon nanotubes. Construction and Building Materials, 2018, 168, 459-470.	3.2	109
142	A comprehensive study on thermal conductivities of wavy carbon nanotube-reinforced cementitious nanocomposites. Cement and Concrete Composites, 2018, 90, 108-118.	4.6	22
143	Durability of multi-walled carbon nanotube reinforced concrete. Construction and Building Materials, 2018, 164, 121-133.	3.2	172
144	Effect of silicon carbide nanowhiskers on hydration and mechanical properties of a Portland cement paste. Construction and Building Materials, 2018, 169, 388-395.	3.2	30
145	Comparison of compressive strength and electrical resistivity of cementitious composites with different nano- and micro-fillers. Archives of Civil and Mechanical Engineering, 2018, 18, 60-68.	1.9	89

#	Article	IF	CITATIONS
146	Application of Nanomaterials in Civil Engineering. Advanced Structured Materials, 2018, , 169-189.	0.3	21
147	Pore structure of cementitious material enhanced by graphitic nanomaterial: a critical review. Frontiers of Structural and Civil Engineering, 2018, 12, 137-147.	1.2	17
148	Exfoliation and dispersion of boron nitride nanosheets to enhance ordinary Portland cement paste. Nanoscale, 2018, 10, 1004-1014.	2.8	55
149	Nanomaterials in Structural Engineering. , 0, , .		4
150	Influence of dispersion of catalytic carrier for growth mechanism of carbon nanotubes. Materials Today: Proceedings, 2018, 5, 17447-17452.	0.9	2
151	Influence of carbon nanotubes on steel–concrete bond strength. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	1.3	34
152	Mechanical and Sorptivity Characteristics of Edge-Oxidized Graphene Oxide (EOGO)-Cement Composites: Dry- and Wet-Mix Design Methods. Nanomaterials, 2018, 8, 718.	1.9	15
153	Proppants Development and the Shale Oil and Gas Market Perspective. Materials Science Forum, 2018, 930, 37-42.	0.3	1
154	Properties of cement-based composites using nanoparticles: A comprehensive review. Construction and Building Materials, 2018, 189, 1019-1034.	3.2	133
155	The effect of multi-walled carbon nanotubes on the rheological properties and hydration process of cement pastes. Construction and Building Materials, 2018, 189, 947-954.	3.2	29
156	Effect of Elevated Temperatures on Mechanical Performance of Normal and Lightweight Concretes Reinforced with Carbon Nanotubes. Fire Technology, 2018, 54, 1331-1367.	1.5	37
157	Influence of multi-walled carbon nanotubes on the residual performance of concrete exposed to high temperatures. Construction and Building Materials, 2018, 185, 44-56.	3.2	88
158	Mechanical Behavior and Transport Properties of Cementitious Composites Reinforced with Carbon Nanotubes. Journal of Materials in Civil Engineering, 2018, 30, .	1.3	45
159	Thermal response characterization and comparison of carbon nanotube-enhanced cementitious composites. Composite Structures, 2018, 202, 1042-1050.	3.1	29
160	Autogenous shrinkage and electrical characteristics of cement pastes and mortars with carbon nanotube and carbon fiber. Construction and Building Materials, 2018, 177, 428-435.	3.2	46
161	Construction of gradient structure in polyetherimide/carbon nanotube nanocomposite foam and its thermal/mechanical property. Composites Part A: Applied Science and Manufacturing, 2019, 126, 105579.	3.8	17
162	Carbon nanotube (CNT) incorporated cementitious composites for functional construction materials: The state of the art. Composite Structures, 2019, 227, 111244.	3.1	95
163	Mechanical properties of highly dispersed carbon nanotubes reinforced cement-based materials. IOP Conference Series: Materials Science and Engineering, 2019, 569, 022025.	0.3	3

#	Article	IF	CITATIONS
164	State of the Art on Sensing Capability of Poorly or Nonconductive Matrixes with a Special Focus on Portland Cement–Based Materials. Journal of Materials in Civil Engineering, 2019, 31, .	1.3	5
165	Biopolymers and Nanocomposites in Civil Engineering Applications. Materials Horizons, 2019, , 343-378.	0.3	2
166	ElectronDiffraction tools, a DigitalMicrograph package for electron diffraction analysis. Computer Physics Communications, 2019, 243, 166-173.	3.0	10
167	Green Biopolymers and their Nanocomposites. Materials Horizons, 2019, , .	0.3	11
168	Mechanical Properties and Microstructure of CaSO4 Whisker Reinforced Cement Mortar. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 1170-1176.	0.4	13
169	Properties of Cracking Patterns of Multi-Walled Carbon Nanotube-Reinforced Cement Matrix. Materials, 2019, 12, 2942.	1.3	21
170	The effect of graphene oxide grafted carbon fiber on mechanical properties of class G Portland cement. Journal of Adhesion Science and Technology, 2019, 33, 2494-2516.	1.4	12
171	Mechanical Characterization of Concrete Reinforced with Different Types of Carbon Nanotubes. Arabian Journal for Science and Engineering, 2019, 44, 8361-8376.	1.7	36
172	The mechanical properties, microstructures and mechanism of carbon nanotube-reinforced oil well cement-based nanocomposites. RSC Advances, 2019, 9, 26691-26702.	1.7	33
173	Impact of pyrolytic carbonaceous nano inerts addition on fracture and electromagnetic interference shielding characteristics of cementitious composites. Theoretical and Applied Fracture Mechanics, 2019, 103, 102320.	2.1	20
174	Effect of Multi-Walled Carbon Nanotubes on Improving the Toughness of Reactive Powder Concrete. Materials, 2019, 12, 2625.	1.3	9
175	Novel engineered high performance sugar beetroot 2D nanoplatelet-cementitious composites. Construction and Building Materials, 2019, 202, 546-562.	3.2	7
176	Modeling the mechanical properties of cementitious materials containing CNTs. Cement and Concrete Composites, 2019, 104, 103347.	4.6	67
177	Additive manufacturing of cementitious composites: Materials, methods, potentials, and challenges. Construction and Building Materials, 2019, 218, 582-609.	3.2	107
178	Enhanced mechanical and heating performance of multi-walled carbon nanotube-cement composites fabricated using different mixing methods. Composite Structures, 2019, 225, 111072.	3.1	27
179	Microcellular polyetherimide/carbon nanotube composite foam: Structure, property and highly reinforcing mechanism. European Polymer Journal, 2019, 116, 488-496.	2.6	8
180	Nanocarbon material-filled cementitious composites for construction applications., 2019,, 781-803.		5
181	The influence of carbon nanotubes on the fracture energy, flexural and tensile behavior of cement based composites. Construction and Building Materials, 2019, 209, 1-8.	3.2	54

#	Article	IF	CITATIONS
182	Current Progress of Nano-Engineered Cementitious Composites. , 2019, , 97-398.		1
183	Carbon Nanotubes-Engineered Cementitious Composites. , 2019, , 399-458.		1
184	Piezoresistive Load Sensing and Percolation Phenomena in Portland Cement Composite Modified with In-Situ Synthesized Carbon Nanofibers. Nanomaterials, 2019, 9, 594.	1.9	19
185	Influence of functionalized MWCNT on microstructure and mechanical properties of cement paste. Sadhana - Academy Proceedings in Engineering Sciences, 2019, 44, 1.	0.8	11
186	The role of carbon nanotube on hydration kinetics and shrinkage of cement composite. Composites Part B: Engineering, 2019, 169, 55-64.	5.9	63
187	Influence of nanoparticles on the strength of ultra-high performance concrete. , 2019, , 13-42.		4
188	Selection of dispersants for stabilization of unfunctionalized carbon nanotubes in high pH aqueous suspensions: Application to cementitious matrices. Applied Surface Science, 2019, 463, 169-181.	3.1	19
189	Mechanical properties and microstructure of graphene oxide cement-based composites. Construction and Building Materials, 2019, 194, 102-109.	3.2	140
190	Enhancing the initial cracking fracture toughness of steel-polyvinyl alcohol hybrid fibers ultra high toughness cementitious composites by incorporating multi-walled carbon nanotubes. Construction and Building Materials, 2019, 195, 269-282.	3.2	45
191	Relationship between the carbon nanotube dispersion state, electrochemical impedance and capacitance and mechanical properties of percolative nanoreinforced OPC mortars. Carbon, 2019, 145, 218-228.	5.4	52
192	Experimental study on the effect of different dispersed degrees carbon nanotubes on the modification of magnesium phosphate cement. Construction and Building Materials, 2019, 200, 240-247.	3.2	25
193	Effect of multi-walled carbon nanotubes (MWCNTs) on the strength development of cementitious materials. Journal of Materials Research and Technology, 2019, 8, 1203-1211.	2.6	92
194	Study on dispersion, mechanical and microstructure properties of cement paste incorporating graphene sheets. Construction and Building Materials, 2019, 199, 1-11.	3.2	114
195	Creep, shrinkage and mechanical properties of concrete reinforced with different types of carbon nanotubes. Construction and Building Materials, 2019, 198, 70-81.	3.2	113
196	Effects of Graphite Nanoplatelets on the Structure of Cementitious Materials. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 2019, 43, 403-411.	1.0	3
197	Dispersion and reinforcement efficiency of carbon nanotubes in cementitious composites. Magazine of Concrete Research, 2019, 71, 408-423.	0.9	39
198	Mechanical properties of carbon-nanotube-reinforced cementitious materials: database and statistical analysis. Magazine of Concrete Research, 2020, 72, 1047-1071.	0.9	59
199	Preparation and evaluation of surfactant-stabilized graphene sheets and piezoresistivity of GPs/cement composite. Carbon Letters, 2020, 30, 93-98.	3.3	3

#	Article	IF	CITATIONS
200	Experimental Study on Mix Proportion Parameter Optimization of Cement Anchoring Material. Materials, 2020, 13, 137.	1.3	5
201	Strain-sensing characteristics of self-consolidating concrete with micro-carbon fibre. Australian Journal of Civil Engineering, 2020, 18, 46-55.	0.6	5
202	Dynamic mechanical properties of cementitious composites with carbon nanotubes. Materials Today Communications, 2020, 22, 100722.	0.9	5
203	Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cementitious composites under the early-age freezing conditions. Construction and Building Materials, 2020, 233, 117317.	3.2	24
204	Pyrolytic carbonaceous reinforcements for enhanced electromagnetic and fracture response of cementitious composites. Journal of Cleaner Production, 2020, 248, 119288.	4.6	11
205	Role of Carbon Nanofiber on the Electrical Resistivity of Mortar under Compressive Load. Transportation Research Record, 2021, 2675, 32-37.	1.0	4
206	Surface Treatment of Carbon Nanotubes Using Modified Tapioca Starch for Improved Force Detection Consistency in Smart Cementitious Materials. Sensors, 2020, 20, 3985.	2.1	4
207	Influence of Powder and Liquid Multi-Wall Carbon Nanotubes on Hydration and Dispersion of the Cementitious Composites. Applied Sciences (Switzerland), 2020, 10, 7948.	1.3	11
208	Reinforcing cement with pristine and functionalized carbon nanotubes: experimental and simulation studies. International Journal of Smart and Nano Materials, 2020, 11, 370-386.	2.0	12
209	Application of Nanomaterials for Sustainable Concrete. Key Engineering Materials, 0, 838, 88-93.	0.4	1
210	Magnetic enhancement of carbon nanotube concrete compressive behavior. Construction and Building Materials, 2020, 262, 120772.	3.2	17
211	An experimental study of self-sensing concrete enhanced with multi-wall carbon nanotubes in wedge splitting test and DIC. Construction and Building Materials, 2020, 262, 120871.	3.2	48
212	Carbon nanotubes: functionalisation and their application in chemical sensors. RSC Advances, 2020, 10, 43704-43732.	1.7	249
213	Oxidized thermally expanded graphite as a raw material for the production of cement composites. IOP Conference Series: Materials Science and Engineering, 2020, 880, 012019.	0.3	2
214	Molecular Dynamics Simulation of Calcium-Silicate-Hydrate for Nano-Engineered Cement Composites—A Review. Nanomaterials, 2020, 10, 2158.	1.9	46
215	The Effect of Carbon Nanotubes on the Flowability, Mechanical, Microstructural and Durability Properties of Cementitious Composite: An Overview. Sustainability, 2020, 12, 8362.	1.6	32
216	Molecular dynamics simulations for evaluation of surfactant compatibility and mechanical characteristics of carbon nanotubes incorporated cementitious composite. Construction and Building Materials, 2020, 253, 119190.	3.2	22
217	Enhanced bonding behavior of multi-walled carbon nanotube cement composites and reinforcing bars. Composite Structures, 2020, 243, 112201.	3.1	19

#	Article	IF	CITATIONS
218	Effect of Single-Walled Carbon Nanotubes on Strength Properties of Cement Composites. Materials, 2020, 13, 1305.	1.3	28
219	Development of nano cement concrete by top-down and bottom-up nanotechnology concept. , 2020, , 183-213.		6
220	Modification Effects of Carbon Nanotube Dispersion on the Mechanical Properties, Pore Structure, and Microstructure of Cement Mortar. Materials, 2020, 13, 1101.	1.3	21
221	Mechanical and durability characteristics of multiwalled carbon nano tube in concrete. IOP Conference Series: Materials Science and Engineering, 2020, 872, 012110.	0.3	3
222	Enhanced Detection Systems of Filling Rates Using Carbon Nanotube Cement Grout. Nanomaterials, 2020, 10, 10.	1.9	12
223	Correlation analysis of heating performance and electrical energy of multi-walled carbon nanotubes cementitious composites at sub-zero temperatures. Composite Structures, 2020, 238, 111977.	3.1	11
224	Experimental Investigation of Hybrid Carbon Nanotubes and Graphite Nanoplatelets on Rheology, Shrinkage, Mechanical, and Microstructure of SCCM. Materials, 2020, 13, 230.	1.3	57
225	Selection of superplasticisers for improving the rheological and mechanical properties of cement paste with CNTs. Construction and Building Materials, 2020, 253, 119182.	3.2	13
226	Rheological Behaviors of Edge-Oxidized Graphene Oxide Cement Composites. Journal of Materials in Civil Engineering, 2020, 32, .	1.3	11
227	Recent advances in carbon nanotube-geopolymer composite. Construction and Building Materials, 2020, 252, 118940.	3.2	38
228	Interfacial mechanical properties of recycled aggregate concrete reinforced by nano-materials. Construction and Building Materials, 2021, 270, 121446.	3.2	36
229	Roles of carbon nanotubes in reinforcing the interfacial transition zone and impermeability of concrete under different water-to-cement ratios. Construction and Building Materials, 2021, 272, 121664.	3.2	43
230	Carbon nanotubes and carbon nanofibers in concrete manufacturing processes., 2021,, 147-169.		1
231	Performance of nano materials for the strength development in concrete cube used as Partial replacement for cement at different temperatures. Materials Today: Proceedings, 2021, 45, 7253-7258.	0.9	5
232	The Durability of Concrete with the Participation of Hydrophilic and Hydrophobic Nanosilica Without and Within the Presence of Silica Fume and New Generation Superplasticizer. Lecture Notes in Civil Engineering, 2021, , 117-128.	0.3	0
233	Effects of carbon nanotubes and carbon nanofibers on properties of alkali-activated concretes., 2021, , 313-333.		0
234	Introduction to concrete and nanomaterials in concrete applications., 2021,, 1-58.		1
235	Axial Compressive Behavior of Reinforced Concrete (RC) Columns Incorporating Multi-Walled Carbon Nanotubes and Marble Powder. Crystals, 2021, 11, 247.	1.0	5

#	Article	IF	Citations
236	Effect of multiwalled carbon nanotube incorporation in modulus elasticity of concrete with partial replacement of cement with flyash. IOP Conference Series: Materials Science and Engineering, 2021, 1070, 012037.	0.3	1
237	Monitoring the Hydration Process in Carbon Nanotube Reinforced Cement-Based Composites Using Nonlinear Elastic Waves. Applied Sciences (Switzerland), 2021, 11, 1720.	1.3	7
238	Sulfuric Acid Resistance of CNT-Cementitious Composites. Applied Sciences (Switzerland), 2021, 11, 2226.	1.3	3
239	Novel properties of nano-engineered cementitious materials with fullerene buckyballs. Cement and Concrete Composites, 2021, 118, 103960.	4.6	4
240	Novel humidity sensors based on nanomodified Portland cement. Scientific Reports, 2021, 11, 8189.	1.6	8
241	Ultra-high-performance cementitious composites with enhanced mechanical and durability characteristics. SN Applied Sciences, 2021, 3, 1.	1.5	5
242	Structural Performance of CNT-Reinforced Cementitious Materials Considering the Effect of Chirality of Nanotubes. Journal of Testing and Evaluation, 2022, 50, 689-714.	0.4	1
243	Influence of MWCNTs on portlandite Ca(OH)2 hydrates in MWCNT – reinforced concrete. World Journal of Engineering, 2021, 18, 920-929.	1.0	2
244	Enhanced erosion resistance of cement-treated bricks using multiple biological surface treatments. Advances in Cement Research, 0, , 1-10.	0.7	1
245	Impact of carbon Nano tubes on fresh and hardned properties of conventional concrete. Materials Today: Proceedings, 2023, 80, 1920-1925.	0.9	5
246	Effect of functionalized multi-walled carbon nanotubes on mechanical properties and durability of cement mortars. Journal of Building Engineering, 2021, 41, 102407.	1.6	31
247	Dispersion of Carbon Nanotubes with Different Types of Superplasticizer as a Dispersing Agent for Self-Sensing Cementitious Materials. Applied Sciences (Switzerland), 2021, 11, 8452.	1.3	11
248	Strength optimization of cementitious composites reinforced by carbon nanotubes and Titania nanoparticles. Construction and Building Materials, 2021, 303, 124510.	3.2	51
249	Multiwall carbon nanotubes (MWCNTs) dispersion & mechanical effects in OPC mortar & amp; paste: A review. Journal of Building Engineering, 2021, 43, 102512.	1.6	22
250	Effects of carbon nanotubes and carbon nanofibers on concrete properties., 2021,, 171-245.		0
251	The effect of water cement ratio on the characteristics of multi-walled carbon nanotube reinforced concrete. Materials Today: Proceedings, 2021, 43, 3852-3855.	0.9	10
252	Effect of Carbon Nanotubes (CNTs) aspect ratio on the rheology, thermal conductivity and mechanical performance of Portland cement paste. Revista IBRACON De Estruturas E Materiais, 2021, 14, .	0.3	6
253	Nanoscale Modification of Cementitious Materials. , 2009, , 125-130.		86

#	Article	IF	CITATIONS
254	CHH Cement Composite. , 2009, , 181-185.		10
255	Multifunctional and Smart Carbon Nanotube Reinforced Cement-Based Materials., 2011, , 1-47.		70
256	The Effect of SWCNT and Other Nanomaterials on Cement Hydration and Reinforcement. , 2011 , , $103\text{-}130$.		26
257	Nanomaterials in Civil Engineering. , 2013, , 1039-1062.		2
258	Microstructural behavior and mechanics of nano-modified cementitious materials. Advances in Concrete Construction, 2015, 3, 15-37.	0.4	5
259	Micromechanical Analysis of Cement Paste with Carbon Nanotubes. Acta Polytechnica, 2012, 52, .	0.3	21
260	Safety Risks Associated with Carbon Nanotube-Reinforced Mortar. ACI Materials Journal, 2017, 114, .	0.3	2
261	Effect of carbon nanotubes sonication on mechanical properties of cement pastes. Revista IBRACON De Estruturas E Materiais, 2020, 13, 455-463.	0.3	11
263	Carbon nano-tubes in improving the mechanical property of cement-based composite materials. Frattura Ed Integrita Strutturale, 2017, 11, 388-395.	0.5	7
264	Graphene Oxide on the Microstructure and Mechanical Properties of Cement Based Composite Material. Frattura Ed Integrita Strutturale, 2018, 12, 156-163.	0.5	9
265	From Bio to Nano: A Review of Sustainable Methods of Synthesis of Carbon Nanotubes. Sustainability, 2020, 12, 4115.	1.6	28
266	Nano-Scale Behavior and Nano-Modification of Cement and Concrete Materials. Advances in Civil and Industrial Engineering Book Series, 2016, , 28-79.	0.2	14
267	Experimental Study on Improving Compressive Strength of MWCNT Reinforced Cementitious Composites. Journal of the Korea Concrete Institute, 2014, 26, 63-70.	0.1	10
268	Can Carbon Nanotubes Make Wonders in Civil/Structural Engineering?. Progress in Nanotechnology and Nanomaterials, 2013, 2, 117-129.	1.3	15
270	Retardation of Portland Cement Hydration with Photosynthetic Algal Biomass. ACS Sustainable Chemistry and Engineering, 2021, 9, 13726-13734.	3.2	9
271	Tailoring Anti-Impact Properties of Ultra-High Performance Concrete by Incorporating Functionalized Carbon Nanotubes. Engineering, 2022, 18, 232-245.	3.2	20
272	The Effect of Carbon Nanotubes on the Strength of Sand Seeped by Colloidal Silica in Triaxial Testing. Materials, 2021, 14, 6119.	1.3	6
273	Quasi-in vivo corrosion behavior of AZ31B Mg alloy with hybrid MWCNTs-PEO/PCL based coatings. Journal of Magnesium and Alloys, 2022, 10, 3217-3233.	5.5	19

#	Article	IF	CITATIONS
274	Surface-treated carbon nanotubes in cement composites: Dispersion, mechanical properties and microstructure. Construction and Building Materials, 2021, 310, 125262.	3.2	19
275	A Fundamental Assessment of Graphite Nanoplatelet Effects on Progress of Alkali-Silica Reactions. ACI Materials Journal, 2015, 112, .	0.3	0
276	Effects of Carbon Nanotube Addition on the Mechanical Properties of Dental Glassionomer Cement. Korean Journal of Dental Materials, 2016, 43, 43-50.	0.2	2
277	THE INFLUENCE OF CARBON NANOTUBES ON THE FRACTURE ENERGY, FLEXURAL AND TENSILE BEHAVIOUR OF CEMENT BASED COMPOSITES., 0, , .		O
278	An Investigation on the Effect of High Temperatures on the Mechanical Properties and Microstructure of Concrete Containing Multiwalled Carbon Nanotubes. Materials Performance and Characterization, 2019, 8, 20180061.	0.2	1
279	Structure formation of construction materials modified with natural and man-made nanoadditives. , 0, , .		0
280	Experimental study of the behaviour of cement pastes in the presence of carbon nanotubes. , 0, , .		0
281	Rheological Properties of Water- and Ethylene-Glycol-Based Nanofluids with Single-Walled Carbon Nanotubes. Journal of Engineering Physics and Thermophysics, 2021, 94, 1208-1216.	0.2	4
282	Comprehensive multiscale techniques to estimate the compressive strength of concrete incorporated with carbon nanotubes at various curing times and mix proportions. Journal of Materials Research and Technology, 2021, 15, 6506-6527.	2.6	22
283	Recent Insights and Multifactorial Applications of Carbon Nanotubes. Micromachines, 2021, 12, 1502.	1.4	10
284	Electrically Conductive Silicone-Based Nanocomposites Incorporated with Carbon Nanotubes and Silver Nanowires for Stretchable Electrodes. ACS Omega, 2021, 6, 31876-31890.	1.6	4
285	Carbon nanotube reinforced cementitious composites: A comprehensive review. Construction and Building Materials, 2022, 315, 125100.	3.2	67
286	Performance Evaluation of MWCNTs Reinforced Cement Mortar Composites using Natural and Commercial Surfactants. Journal Wuhan University of Technology, Materials Science Edition, 2022, 37, 47-57.	0.4	2
287	Effect of Carbon Nanofiber Clustering on the Micromechanical Properties of a Cement Paste. Nanomaterials, 2022, 12, 223.	1.9	6
288	Carbon-based nanomaterials engineered cement composites: a review. Journal of Infrastructure Preservation and Resilience, 2022, 3, .	1.5	36
289	Durability characteristics and mechanical properties of multi-walled carbon nanotubes reinforced concrete, a case study: Caspian seawater curing condition. European Journal of Environmental and Civil Engineering, 2023, 27, 140-158.	1.0	3
290	Overview of tailoring cementitious composites with various nanomaterials., 2022,, 1-65.		2
291	Improvement of the mechanical properties of cementitious composites by the novel synthesized borophene nanosheets. Journal of Composite Materials, 2022, 56, 1615-1630.	1.2	2

#	Article	IF	CITATIONS
292	Advances in multifunctional cementitious composites with conductive carbon nanomaterials for smart infrastructure. Cement and Concrete Composites, 2022, 128, 104454.	4.6	44
293	Effect of CNT-COOH Addition on the Compressive Strength, Chloride Resistance, and Microstructure of Cement Mortar. Advances in Materials Science and Engineering, 2022, 2022, 1-9.	1.0	0
295	Experimental Study on the Salt Freezing Durability of Multi-Walled Carbon Nanotube Ultra-High-Performance Concrete. Materials, 2022, 15, 3188.	1.3	6
296	Oxidation of Carbon Nanotubes for Improving the Mechanical and Electrical Properties of Oil-Well Cement-Based Composites. ACS Applied Nano Materials, 2022, 5, 6671-6678.	2.4	16
297	Static and dynamic moduli of elasticity and drying shrinkage behavior of concrete containing multi-walled carbon nanotubes. European Journal of Environmental and Civil Engineering, 0, , 1-15.	1.0	0
298	Experimental study on physical and mechanical properties and micro mechanism of carbon nanotubes cement-based composites. Fullerenes Nanotubes and Carbon Nanostructures, 2022, 30, 1252-1263.	1.0	8
299	Pyrolysis as an alternate to open burning of crop residue and scrap tires: Greenhouse emissions assessment and mechanical performance investigation in concrete. Journal of Cleaner Production, 2022, 365, 132688.	4.6	7
300	Cement Matrix Modified by Mesoporous Silica of the MCM-41 Structure Type: Early-Age Properties and Microstructure Evolution. Journal of Materials in Civil Engineering, 2022, 34, .	1.3	1
301	The Study of Effect of Carbon Nanotubes on the Compressive Strength of Cement-Based Materials Based on Machine Learning. SSRN Electronic Journal, 0, , .	0.4	0
302	Influence of nanomaterials on the workability and compressive strength of cement-based concrete. Materials Today: Proceedings, 2022, 65, 2073-2076.	0.9	16
303	Mechanical properties of engineered geopolymer composite with graphene nanoplatelet. Ceramics International, 2022, 48, 34915-34930.	2.3	8
304	Piezoresistivity and mechanical properties of self-sensing CNT cementitious nanocomposites: Optimizing the effects of CNT dispersion and surfactants. Construction and Building Materials, 2022, 349, 128127.	3.2	10
305	Influence of multi-walled carbon nanotubes on the multi-scale performance of internally cured concrete containing pre-wetted lightweight aggregate. Journal of Building Engineering, 2022, 58, 104986.	1.6	6
306	Comparison of compressive fatigue performance of cementitious composites with different types of carbon nanotube. International Journal of Fatigue, 2022, 165, 107178.	2.8	5
307	Comprehensive multiscale techniques to estimate the compressive strength of concrete incorporated with carbon nanotubes at various curing times and mix proportions. , 2022, , 497-537.		0
308	Tuning Optical and Electrical Properties of Ultra-Fast Prepared Nanoflower Mg:ZnO Films by MWCNTs Coating. Bilge International Journal of Science and Technology Research, 2022, 6, 83-90.	0.6	0
309	MODIFICATION OF CEMENT-CONCRETE MIXTURES WITH POLYMER ADDITIVES, STRUCTURED CARBON NANOTUBES. Polymer Journal, 2022, 44, 101-110.	0.3	0
310	Cement-Based Materials Modified by Colloidal Nano-Silica: Impermeability Characteristic and Microstructure. Nanomaterials, 2022, 12, 3176.	1.9	5

#	Article	IF	CITATIONS
311	Viscoelastic Properties of Nanofluids with Carbon Tubes. Technical Physics Letters, 0, , .	0.2	1
312	The use of nanomaterials in concrete: A review. Materials Today: Proceedings, 2022, 69, 365-371.	0.9	9
313	Piezoresistive Properties of Natural Hydraulic Lime Binary Pastes with Incorporated Carbon-Based Nanomaterials under Cyclic Compressive Loadings. Nanomaterials, 2022, 12, 3695.	1.9	4
314	Mechanical Properties of Cement Reinforced with Pristine and Functionalized Carbon Nanotubes: Simulation Studies. Materials, 2022, 15, 7734.	1.3	3
315	The study of effect of carbon nanotubes on the compressive strength of cement-based materials based on machine learning. Construction and Building Materials, 2022, 358, 129435.	3.2	23
316	Technological aspects of the preparation of polymer composites of building materials and coatings. Polymers and Polymer Composites, 2022, 30, 096739112211356.	1.0	0
318	Advances in Civil Engineering Materials. Lecture Notes in Civil Engineering, 2023, , .	0.3	1
319	Design, mechanism, and performance of cement-based materials with 1D nanomaterials., 2023,, 93-126.		0
320	Design, performance, and mechanism of cement-based materials with 2D nanomaterials., 2023, , 127-159.		2
321	Carbon nanotube (CNT) reinforced cementitious composites using carboxymethyl cellulose (CMC) treatment for enhanced dispersion, mechanical, and piezoresistive properties. Construction and Building Materials, 2023, 377, 131104.	3.2	6
322	Fire endurance and corrosion resistance of nano-modified cement mortars exposed to elevated temperatures. Ceramics International, 2023, 49, 19182-19193.	2.3	2
323	Research on the utilization of ultra-long carbon nanotubes in lithium-ion batteries based on an environment-friendly society. Environmental Science and Pollution Research, 2023, 30, 56003-56015.	2.7	4
324	Effect of adding highly reduced graphene oxide (rGO) nanosheets based nanomaterial on cement composites. Materials Today: Proceedings, 2023, , .	0.9	3
325	Development and Investigation of Repair Self-Sensing Composites Using S-CNT. Buildings, 2023, 13, 1015.	1.4	1
338	Effect of nano materials on concrete composites: A critical review. AIP Conference Proceedings, 2023,	0.3	0
339	A comprehensive review on the progress of cement composites modified by nanomaterials. AIP Conference Proceedings, 2023, , .	0.3	0
342	Nanocarriers for gene delivery to the cardiovascular system. Biomaterials Science, 0, , .	2.6	O