An analysis of the success rate of 908 trace DNA sample Database Unit in New Zealand

Australian Journal of Forensic Sciences

40, 49-53

DOI: 10.1080/00450610802050774

Citation Report

#	Article	IF	CITATIONS
1	Trace DNA success rates relating to volume crime offences. Forensic Science International: Genetics Supplement Series, 2009, 2, 136-137.	0.1	38
2	Finding the balance: forensic DNA profiling in New Zealand. , 0, , 288-308.		1
3	The Effect of Cleaning Agents on the Ability to Obtain DNA Profiles Using the Identifilerâ,,¢ and PowerPlex® Y Multiplex Kits. Journal of Forensic Sciences, 2011, 56, 181-185.	0.9	7
4	Assessing DNA Profiling Success Rates: Need for More and Better Collection of Relevant Data. Forensic Science Policy and Management, 2012, 3, 37-41.	0.5	4
5	Cell free DNA as a component of forensic evidence recovered from touched surfaces. Forensic Science International: Genetics, 2012, 6, 26-30.	1.6	140
6	DNA profiles from fingermarks. BioTechniques, 2014, 57, 259-266.	0.8	50
7	Evaluation of tapelifting as a collection method for touch DNA. Forensic Science International: Genetics, 2014, 8, 179-186.	1.6	80
8	Persistence of DNA deposited by the original user on objects after subsequent use by a second person. Forensic Science International: Genetics, 2014, 8, 219-225.	1.6	70
9	DNA profiles from fingermarks: A mock case study. Forensic Science International: Genetics Supplement Series, 2015, 5, e154-e155.	0.1	11
10	Preliminary investigation of differential tapelifting for sampling forensically relevant layered deposits. Legal Medicine, 2015, 17, 553-559.	0.6	13
11	Knowledge on <scp>DNA</scp> Success Rates to Optimize the DNA Analysis Process: From Crime Scene to Laboratory. Journal of Forensic Sciences, 2016, 61, 1055-1061.	0.9	50
12	Typing DNA profiles from previously enhanced fingerprints using direct PCR. Forensic Science International: Genetics, 2017, 29, 276-282.	1.6	18
13	The Effectiveness of Trace <scp>DNA</scp> Profiling—A Comparison Between a U.S. and a U.K. Law Enforcement Jurisdiction. Journal of Forensic Sciences, 2017, 62, 753-760.	0.9	3
14	Direct PCR amplification of forensic touch and other challenging DNA samples: A review. Forensic Science International: Genetics, 2018, 32, 40-49.	1.6	120
15	Trace <scp>DNA</scp> Sampling Success from Evidence Items Commonly Encountered in Forensic Casework. Journal of Forensic Sciences, 2018, 63, 835-841.	0.9	26
16	Assessment of the transfer, persistence, prevalence and recovery of DNA traces from clothing: An inter-laboratory study on worn upper garments. Forensic Science International: Genetics, 2019, 42, 56-68.	1.6	43
17	A review of direct polymerase chain reaction of DNA and RNA for forensic purposes. Wiley Interdisciplinary Reviews Forensic Science, 2019, 1, .	1.2	7
18	Detection of forensic identification and intelligence SNP data from latent DNA using three commercial MPS papels. Forensic Science International: Cenetics Supplement Series, 2019, 7, 864-865	0.1	3

#	Article	IF	CITATIONS
# 19	Prediction of DNA concentration in fingermarks using autofluorescence properties. Forensic Science International, 2019, 295, 128-136.	1.3	10
20	DNA transfer in forensic science: A review. Forensic Science International: Genetics, 2019, 38, 140-166.	1.6	184
21	Variation in forensic DNA profiling success among sampled items and collection methods: a Queensland perspective. Australian Journal of Forensic Sciences, 2021, 53, 612-625.	0.7	13
22	Use of a Spray Device to Locate Touch DNA on Casework Samples. Journal of Forensic Sciences, 2020, 65, 1280-1288.	0.9	11
23	The double-swab technique versus single swabs for human DNA recovery from various surfaces. Forensic Science International: Genetics, 2020, 46, 102253.	1.6	25
24	PIDS: A User-Friendly Plant DNA Fingerprint Database Management System. Genes, 2020, 11, 373.	1.0	3
25	Direct PCR: A review of use and limitations. Science and Justice - Journal of the Forensic Science Society, 2020, 60, 303-310.	1.3	14
26	How many cells are required for successful DNA profiling?. Forensic Science International: Genetics, 2021, 51, 102453.	1.6	31
27	DNA on drugs! A preliminary investigation of DNA deposition during the handling of illicit drug capsules. Forensic Science International: Genetics, 2021, 54, 102559.	1.6	9
28	Assessment of Diamondâ,,¢ Nucleic Acid Dye for the identification and targeted sampling of latent DNA in operational casework. Forensic Science International: Genetics, 2021, 55, 102579.	1.6	11
29	A High-Performance Database Management System for Managing and Analyzing Large-Scale SNP Data in Plant Genotyping and Breeding Applications. Agriculture (Switzerland), 2021, 11, 1027.	1.4	2
30	Trace DNA Profiling in Missing Persons Investigations. , 2016, , 353-363.		0
31	DNA Transfer in Forensic Science: Recent Progress towards Meeting Challenges. Genes, 2021, 12, 1766.	1.0	24
32	Casework comparison of DNA sampling success from steering wheels and car seats in tropical Australia. Australian Journal of Forensic Sciences, 2023, 55, 319-330.	0.7	3
33	Exploring tapelifts as a method for dual workflow STR amplification. Forensic Science International: Genetics, 2022, 57, 102653.	1.6	1
34	Analysis of rapid HIT application to touch DNA samples. Journal of Forensic Sciences, 2022, , .	0.9	4
35	A Survey of the Effects of Common Illicit Drugs on Forensic DNA Analysis. SSRN Electronic Journal, 0,	0.4	1
36	Individual Identification with Short Tandem Repeat Analysis and Collection of Secondary Information Using Microbiome Analysis. Genes, 2022, 13, 85.	1.0	1

CITATION REPORT

#	Article	IF	CITATIONS
37	A survey of the effects of common illicit drugs on forensic DNA analysis. Forensic Science International, 2022, 336, 111314.	1.3	4
38	Investigation of Linear Amplification Using Abasic Site-Containing Primers Coupled to Routine STR Typing for LT-DNA Analysis. Genes, 2022, 13, 1386.	1.0	0
39	Monitoring cell loss through repetitive deposition. Journal of Forensic Sciences, 0, , .	0.9	0