CITATION REPORT List of articles citing

Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury

DOI: 10.1152/physrev.00024.2007 Physiological Reviews, 2008, 88, 581-609.

Source: https://exaly.com/paper-pdf/44231016/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
1144	Innervation of spinal dura mater and dura mater of the posterior cranial fossa. 1961 , 11, 800-9		92
1143	Embryonic endothelial progenitor cell-mediated cardioprotection requires Thymosin beta4. 2008 , 18, 205-10		23
1142	Sphingosine kinase regulation and cardioprotection. 2009 , 82, 184-92		27
1141	Nuclear and mitochondrial signalling Akts in cardiomyocytes. 2009 , 82, 272-85		56
1140	Adenine nucleotide translocator, a mitochondrial carrier protein, and fate of cardiomyocytes after ischaemia/reperfusion. 2008 , 80, 1-2		2
1139	Signalosomes: delivering cardioprotective signals from GPCRs to mitochondria. 2008 , 295, H920-H922		10
1138	Cardioprotection: nitric oxide, protein kinases, and mitochondria. 2008 , 118, 1915-9		359
1137	Prevention of ventricular arrhythmias with sarcoplasmic reticulum Ca2+ ATPase pump overexpression in a porcine model of ischemia reperfusion. 2008 , 118, 614-24		92
1136	Na+/H+ exchanger-1 inhibitors decrease myocardial superoxide production via direct mitochondrial action. 2008 , 105, 1706-13		70
1135	Superoxide flashes: illuminating new insights into cardiac ischemia/reperfusion injury. 2008, 4, 551-554		20
1134	Erythropoietin protects from reperfusion-induced myocardial injury by enhancing coronary endothelial nitric oxide production. 2009 , 35, 839-46; discussion 846		24
1133	Intermittent hypoxia degrades HIF-2alpha via calpains resulting in oxidative stress: implications for recurrent apnea-induced morbidities. 2009 , 106, 1199-204		128
1132	Metabolic function in Drosophila melanogaster in response to hypoxia and pure oxygen. 2009 , 212, 313	2-41	54
1131	Carbon monoxide rescues mice from lethal sepsis by supporting mitochondrial energetic metabolism and activating mitochondrial biogenesis. 2009 , 329, 641-8		155
1130	The emerging characterization of lysine residue deacetylation on the modulation of mitochondrial function and cardiovascular biology. 2009 , 105, 830-41		46
1129	Loss of cardioprotection with ageing. 2009 , 83, 247-61		250
1128	Lethal reperfusion injury in acute myocardial infarction: facts and unresolved issues. 2009 , 83, 165-8		55

(2009-2009)

1127	Effect of hypercholesterolemia on myocardial necrosis and apoptosis in the setting of ischemia-reperfusion. 2009 , 120, S22-30	69
1126	Hypercholesterolemia is associated with hyperactive cardiac mTORC1 and mTORC2 signaling. 2009 , 8, 1738-46	52
1125	Inhibition of mitochondrial membrane permeability as a putative pharmacological target for cardioprotection. 2009 , 16, 4382-98	49
1124	Taurine supplementation increases skeletal muscle force production and protects muscle function during and after high-frequency in vitro stimulation. 2009 , 107, 144-54	58
1123	Sphingosine 1-phosphate is an important endogenous cardioprotectant released by ischemic preand postconditioning. 2009 , 297, H1429-35	68
1122	Protection of hippocampal slices against hypoxia/hypoglycemia injury by a Gynostemma pentaphyllum extract. 2009 , 16, 734-43	13
1121	Novel channels of the inner mitochondrial membrane. 2009 , 1787, 351-63	53
1120	The role of the mitochondrial permeability transition pore in heart disease. 2009 , 1787, 1402-15	281
1119	Cardioprotection: a radical view Free radicals in pre and postconditioning. 2009 , 1787, 781-93	156
1118	Quercetin can act either as an inhibitor or an inducer of the mitochondrial permeability transition pore: A demonstration of the ambivalent redox character of polyphenols. 2009 , 1787, 1425-32	81
1117	Regulation of mitochondrial respiratory chain biogenesis by estrogens/estrogen receptors and physiological, pathological and pharmacological implications. 2009 , 1793, 1540-70	187
1116	Reversible oxidation of mitochondrial peroxiredoxin 3 in mouse heart subjected to ischemia and reperfusion. 2009 , 583, 997-1000	42
1115	Delayed-onset muscle soreness induced by low-load blood flow-restricted exercise. 2009 , 107, 687-95	62
1114	The mitochondrial permeability transition pore and ischemia-reperfusion injury. 2009, 104, 181-8	202
1113	The regulation and control of mitochondrial homeostasis in changing cardiac tolerance to ischemia-reperfusion injury: a focused issue. 2009 , 104, 111-2	2
1112	Mitochondrial pathways for ROS formation and myocardial injury: the relevance of p66(Shc) and monoamine oxidase. 2009 , 104, 131-9	132
1111	Cardiac dysfunction in an animal model of neonatal asphyxia is associated with increased degradation of MLC1 by MMP-2. 2009 , 104, 669-79	28
1110	Mitochondria and reperfusion injury of the hearta holey death but not beyond salvation. 2009 , 41, 113-21	91

1109 Mitochondrial and cell-surface F0F1ATPsynthase in innate and acquired cardioprotection. 2009 , 41, 7	151-7 9
1108 Mitochondrial hexokinase and cardioprotection of the intact heart. 2009 , 41, 181-5	36
1107 Redox signaling and protein phosphorylation in mitochondria: progress and prospects. 2009 , 41, 159	9-68 48
1106 Post-translational modifications of ATP synthase in the heart: biology and function. 2009 , 41, 145-50	36
1105 Anti-ischemic activities of aralia cordata and its active component, oleanolic acid. 2009 , 32, 923-32	18
1104 The exercising heart at altitude. 2009 , 66, 3601-13	20
Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. 2009 , 8, 139-52	269
Prevention of ischemia/reperfusion-induced cardiac apoptosis and injury by melatonin is independent of glutathione peroxdiase 1. 2009 , 46, 235-41	37
1101 Cardioprotective effect of L-glutamate in obese type 2 diabetic Zucker fatty rats. 2009 , 36, 892-8	18
1100 Targeting calcium transport in ischaemic heart disease. 2009 , 84, 345-52	68
1099 Effects of nitrite on modulating ROS generation following ischemia and reperfusion. 2009 , 61, 339-5	50 52
Pharmacological postconditioning effect of muramyl dipeptide is mediated through RIP2 and TAK1. 2009 , 83, 277-84	16
Blockade of Hsp20 phosphorylation exacerbates cardiac ischemia/reperfusion injury by suppressed autophagy and increased cell death. 2009 , 105, 1223-31	92
1096 SURA2 targeting for cardioprotection?. 2009 , 9, 189-93	16
Palmatine from Coptidis rhizoma reduces ischemia-reperfusion-mediated acute myocardial injury in the rat. 2009 , 47, 2097-102	60
1094 Mechanisms of flavonoid protection against myocardial ischemia-reperfusion injury. 2009 , 46, 309-1	7 131
1093 "Change can happen" by PKA: proteasomes in in vivo hearts. 2009 , 46, 445-7	2
1092 In vivo cardioprotection by S-nitroso-2-mercaptopropionyl glycine. 2009 , 46, 960-8	63

(2010-2009)

1091	The molecular composition of the mitochondrial permeability transition pore. 2009 , 46, 850-7	135
1090	A CaPful of mechanisms regulating the mitochondrial permeability transition. 2009 , 46, 775-80	100
1089	Degenerative diseases, oxidative stress and cytochrome c oxidase function. 2009 , 15, 139-47	63
1088	Ischemic pre-conditioning enhances the mobilization and recruitment of bone marrow stem cells to protect against ischemia/reperfusion injury in the late phase. 2009 , 53, 1814-22	86
1087	Reversible blockade of electron transport with amobarbital at the onset of reperfusion attenuates cardiac injury. 2009 , 153, 224-31	49
1086	Oxysterols in heart failure. 2009 , 5, 343-54	6
1085	The past, the present and the future of experimental research on myocardial ischemia and protection. 2009 , 61, 3-12	30
1084	Getting to the heart of proteomics. 2009 , 360, 532-4	22
1083	Thrombin in myocardial ischemia-reperfusion during cardiac surgery. 2009 , 88, 318-25	22
1082	Cross-talk between mitochondria and NADPH oxidase: effects of mild mitochondrial dysfunction on angiotensin II-mediated increase in Nox isoform expression and activity in vascular smooth muscle cells. 2009 , 11, 1265-78	112
1081	Akt mediated mitochondrial protection in the heart: metabolic and survival pathways to the rescue. 2009 , 41, 169-80	85
1080	Therapeutic hypothermia for acute myocardial infarction: past, present, and future. 2009 , 37, S234-7	15
1079	CARDIAC role of the mitochondrial Ca2+ transporters in the high-[K+](o) cardioprotection of rat hearts under ischemia and reperfusion: a mechano-energetic study. 2009 , 54, 213-22	15
1078	New aspects for the treatment of cardiac diseases based on the diversity of functional controls on cardiac muscles: acute effects of female hormones on cardiac ion channels and cardiac repolarization. 2009 , 109, 334-40	22
1077	Cytoprotection by natural and synthetic polyphenols in the heart: novel mechanisms and perspectives. 2010 , 16, 4103-12	16
1076	Mechanisms of the beneficial actions of ischemic preconditioning on subcellular remodeling in ischemic-reperfused heart. 2010 , 6, 255-64	19
1075	Late cardiac preconditioning by exercise in dogs is mediated by mitochondrial potassium channels. 2010 , 56, 268-74	19
1074	Attenuation of the hypoxia-induced protein kinase Cdelta interaction with the MMubunit of F1Fo-ATP synthase in neonatal cardiac myocytes: implications for energy preservation and survival. 2010 , 429, 335-45	9

1073	A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. 2010 , 38, 841-60	244
1072	A cell-microelectronic sensing technique for the screening of cytoprotective compounds. 2010 , 25, 525-30	30
1071	Isoflurane preconditioning elicits competent endogenous mechanisms of protection from oxidative stress in cardiomyocytes derived from human embryonic stem cells. 2010 , 113, 906-16	36
1070	Mitochondrial Dysfunction in Cell Injury and Cardiotoxicity. 2010 , 1-23	2
1069	Green tea extract given before regional myocardial ischemia-reperfusion in rats improves myocardial contractility by attenuating calcium overload. 2010 , 460, 1003-14	14
1068	Revisited and revised: is RhoA always a villain in cardiac pathophysiology?. 2010 , 3, 330-43	42
1067	betaARKct: a therapeutic approach for improved adrenergic signaling and function in heart disease. 2010 , 3, 499-506	22
1066	Dietary broccoli sprouts protect against myocardial oxidative damage and cell death during ischemia-reperfusion. 2010 , 65, 193-9	35
1065	Is hyperglycemia bad for the heart during acute ischemia?. 2010 , 140, 1345-52	18
1064	Reversible oxidative modification: implications for cardiovascular physiology and pathophysiology. 2010 , 20, 85-90	39
1063	Preconditioning with Maillard reaction products improves antioxidant defence leading to increased stress tolerance in cardiac cells. 2010 , 45, 752-62	16
1062	Cardioprotective activity of a novel and potent competitive inhibitor of lactate dehydrogenase. 2010 , 584, 159-65	9
1061	Mitochondrial potassium channels and reactive oxygen species. 2010 , 584, 2043-8	65
1060	Pharmacology of mitochondrial potassium channels: dark side of the field. 2010 , 584, 2063-9	59
1059	Disruption of Rac1 signaling reduces ischemia-reperfusion injury in the diabetic heart by inhibiting calpain. 2010 , 49, 1804-14	37
1058	Hypocalcemia following resuscitation from cardiac arrest revisited. 2010 , 81, 117-22	14
1057	Physiological roles of taurine in heart and muscle. 2010 , 17 Suppl 1, S2	211
1056	High sugar intake exacerbates cardiac reperfusion injury in perinatal taurine depleted adult rats. 2010 , 17 Suppl 1, S22	12

(2010-2010)

1055	action at reperfusion. 2010 , 160, 220-32	38
1054	Pharmacological preconditioning by diazoxide downregulates cardiac L-type Ca(2+) channels. 2010 , 161, 1172-85	18
1053	Amino acid transamination is crucial for ischaemic cardioprotection in normal and preconditioned isolated rat heartsfocus on L-glutamate. 2010 , 95, 140-52	30
1052	Effects of substitution of Cx43 by Cx32 on myocardial energy metabolism, tolerance to ischaemia and preconditioning protection. 2010 , 588, 1139-51	42
1051	Negative regulation of diacylglycerol kinase theta mediates adenosine-dependent hepatocyte preconditioning. 2010 , 17, 1059-68	24
1050	Reactive oxygen species and insulin-resistant cardiomyopathy. 2010 , 37, 222-8	36
1049	The Regulation of Cell Energetics and Mitochondrial Signaling by Nitric Oxide. 2010 , 441-482	9
1048	Control of intracellular calcium signaling as a neuroprotective strategy. 2010 , 15, 1168-95	41
1047	Aldehyde dehydrogenase activation prevents reperfusion arrhythmias by inhibiting local renin release from cardiac mast cells. 2010 , 122, 771-81	77
1046	Conditional overexpression of neuronal nitric oxide synthase is cardioprotective in ischemia/reperfusion. 2010 , 122, 1588-603	46
1045	Level of G protein-coupled receptor kinase-2 determines myocardial ischemia/reperfusion injury via pro- and anti-apoptotic mechanisms. 2010 , 107, 1140-9	107
1044	The cytoprotective action of the potassium channel opener BMS-191095 in C2C12 myoblasts is related to the modulation of calcium homeostasis. 2010 , 26, 235-46	12
1043	Protein S-nitrosylation and cardioprotection. 2010 , 106, 285-96	159
1042	Pannexin-I/P2X 7 purinergic receptor channels mediate the release of cardioprotectants induced by ischemic pre- and postconditioning. 2010 , 15, 190-5	39
1041	Glycogen synthase kinase-3beta regulates post-myocardial infarction remodeling and stress-induced cardiomyocyte proliferation in vivo. 2010 , 106, 1635-45	88
1040	Cardioprotection by GSK-3 inhibition: role of enhanced glycogen synthesis and attenuation of calcium overload. 2010 , 86, 478-86	35
1039	Cardiomyocyte sulfonylurea receptor 2-KATP channel mediates cardioprotection and ST segment elevation. 2010 , 299, H1100-8	16
1038	Acetylcholine Exerts Cardioprotection by Reducing Reactive Oxygen Species. 2010 ,	

1037	Myocardial ischemia/reperfusion injury is mediated by leukocytic toll-like receptor-2 and reduced by systemic administration of a novel anti-toll-like receptor-2 antibody. 2010 , 121, 80-90	267
1036	Modulation of the protein kinase Cdelta interaction with the "d" subunit of F1F0-ATP synthase in neonatal cardiac myocytes: development of cell-permeable, mitochondrially targeted inhibitor and facilitator peptides. 2010 , 285, 22164-73	10
1035	Angiotensin II type 1 receptor-mediated upregulation of calcineurin activity underlies impairment of cardioprotective signaling in diabetic hearts. 2010 , 106, 129-32	53
1034	Activation of PKN mediates survival of cardiac myocytes in the heart during ischemia/reperfusion. 2010 , 107, 642-9	38
1033	Inhibition of glycogen synthase kinase-3 prevents activation of focal adhesion kinase after ischemia/reperfusion of the rat lung. 2010 , 46, 169-81	3
1032	Endogenous generation and protective effects of nitro-fatty acids in a murine model of focal cardiac ischaemia and reperfusion. 2010 , 85, 155-66	150
1031	Minding the store of Ca2+ during ischaemia/reperfusion. 2010 , 85, 641-2	1
1030	Blockade of self-reactive IgM significantly reduces injury in a murine model of acute myocardial infarction. 2010 , 87, 618-27	58
1029	Mitochondrial reprogramming through cardiac oxygen sensors in ischaemic heart disease. 2010 , 88, 219-28	68
1028	Heterogeneity in MT1-MMP activity with ischemia-reperfusion and previous myocardial infarction: relation to regional myocardial function. 2010 , 299, H1947-58	11
1027	The ubiquitin-proteasome system in myocardial ischaemia and preconditioning. 2010 , 85, 303-11	35
1026	What can we learn about cardioprotection from the cardiac mitochondrial proteome?. 2010 , 88, 211-8	24
1025	Effect of hypernatremia on injury caused by energy deficiency: role of T-type Ca2+ channel. 2010 , 299, C289-97	11
1024	Moderate exercise prevents impaired Ca2+ handling in heart of CO-exposed rat: implication for sensitivity to ischemia-reperfusion. 2010 , 299, H2076-81	12
1023	Simulated urban carbon monoxide air pollution exacerbates rat heart ischemia-reperfusion injury. 2010 , 298, H1445-53	18
1022	Obestatin affords cardioprotection to the ischemic-reperfused isolated rat heart and inhibits apoptosis in cultures of similarly stressed cardiomyocytes. 2010 , 299, H470-81	55
1021	Inhibition of O-GlcNAcase in perfused rat hearts by NAG-thiazolines at the time of reperfusion is cardioprotective in an O-GlcNAc-dependent manner. 2010 , 299, H1715-27	66
1020	TLR2 and TLR4 in ischemia reperfusion injury. 2010 , 2010, 704202	123

(2010-2010)

1019	Ischemic preconditioning and heat shock activate Akt via a focal adhesion kinase-mediated pathway in Langendorff-perfused adult rat hearts. 2010 , 298, H152-7	19
1018	Cardiac mitochondria and arrhythmias. 2010 , 88, 241-9	148
1017	Effect of thrombin fragment (TP508) on myocardial ischemia reperfusion injury in a model of type 1 diabetes mellitus. 2010 , 122, S162-9	12
1016	Testosterone administration induces protection against global myocardial ischemia. 2010 , 42, 122-9	17
1015	Glucagon-like peptide-1 increases myocardial glucose uptake via p38alpha MAP kinase-mediated, nitric oxide-dependent mechanisms in conscious dogs with dilated cardiomyopathy. 2010 , 3, 512-21	81
1014	PHLPP-1 negatively regulates Akt activity and survival in the heart. 2010 , 107, 476-84	85
1013	The cardiac mitochondrion: nexus of stress. 2010 , 72, 61-80	124
1012	Cell death in the pathogenesis of heart disease: mechanisms and significance. 2010 , 72, 19-44	566
1011	Sulforaphane protects ischemic injury of hearts through antioxidant pathway and mitochondrial K(ATP) channels. 2010 , 61, 342-8	92
1010	S-nitrosylation in cardiovascular signaling. 2010 , 106, 633-46	401
1009	Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase. 2010 , 285, 33154-33164	281
1008	Mitochondrial depolarization underlies delay in permeability transition by preconditioning with isoflurane: roles of ROS and Ca2+. 2010 , 299, C506-15	60
1007	Protective role of air potato (Dioscorea bulbifera) of yam family in myocardial ischemic reperfusion injury. 2010 , 1, 278-83	15
1006	Distinctions and similarities of cell bioenergetics and the role of mitochondria in hypoxia, cancer, and embryonic development. 2010 , 42, 604-22	73
1005	RNAi targeting ryanodine receptor 2 protects rat cardiomyocytes from injury caused by simulated ischemia-reperfusion. 2010 , 64, 184-90	8
1004	Calpains and proteasomes mediate degradation of ryanodine receptors in a model of cardiac ischemic reperfusion. 2010 , 1802, 356-62	58
1003	Isolating the segment of the mitochondrial electron transport chain responsible for mitochondrial damage during cardiac ischemia. 2010 , 397, 656-60	27
1002	Dietary green tea extract increases phase 2 enzyme activities in protecting against myocardial ischemia-reperfusion. 2010 , 30, 32-9	19

1001	Protective effect of dietary n-3 polyunsaturated fatty acids on myocardial resistance to ischemia-reperfusion injury in rats. 2010 , 30, 849-57	43
1000	Transient upregulation of PGC-1alpha diminishes cardiac ischemia tolerance via upregulation of ANT1. 2010 , 49, 693-8	29
999	Optical imaging of mitochondrial function uncovers actively propagating waves of mitochondrial membrane potential collapse across intact heart. 2010 , 49, 565-75	47
998	Cardiac proteomic responses to ischemia-reperfusion injury and ischemic preconditioning. 2011 , 8, 241-61	21
997	Notice of Retraction: Cardio-Protective Effects of Total Flavonoids from Dracocephalum moldavica L. on Acute Myocardial Ischemia/Reperfusion Injury in Rats. 2011 ,	
996	Sustained ligand-activated preconditioning via Eppioid receptors. 2011 , 336, 274-81	30
995	Nitric oxide scavenging modulates mitochondrial dysfunction induced by hypoxia/reoxygenation. 2011 , 63, 1189-94	8
994	A role for GRK2 in myocardial ischemic injury: indicators of a potential future therapy and diagnostic. 2011 , 7, 547-56	10
993	Mitochondria in postconditioning. 2011 , 14, 863-80	50
992	Cardioprotective pathways during reperfusion: focus on redox signaling and other modalities of cell signaling. 2011 , 14, 833-50	100
991	Therapeutic potential of ginseng in the management of cardiovascular disorders. 2011 , 71, 1989-2008	73
990	Effect of ischemic preconditioning in skeletal muscle measured by functional magnetic resonance imaging and spectroscopy: a randomized crossover trial. 2011 , 13, 32	53
989	Signalling of DNA damage and cytokines across cell barriers exposed to nanoparticles depends on barrier thickness. 2011 , 6, 824-33	101
988	Efficacy of cardioprotective MonditioningMstrategies in aging and diabetic cohorts: the co-morbidity conundrum. 2011 , 28, 331-43	69
987	Nitrite and Nitrate in Human Health and Disease. 2011 ,	32
986	The effect of altitude-induced hypoxia on heart disease: do acute, intermittent, and chronic exposures provide cardioprotection?. 2011 , 12, 45-55	27
985	New frontiers in myocardial protection: a systems biology approach. 2011 , 16, 285-9	6
984	Cytoprotective action of the potassium channel opener NS1619 under conditions of disrupted calcium homeostasis. 2011 , 63, 176-83	7

(2011-2011)

983	Structure of the NH2-terminal variable region of cardiac troponin T determines its sensitivity to restrictive cleavage in pathophysiological adaptation. 2011 , 515, 37-45	9
982	Ventricular septal defect complicating acute myocardial infarction-still an unsolved problem in the invasive treatment era. 2011 , 20, 93-8	4
981	Preconditioning tachycardia decreases the activity of the mitochondrial permeability transition pore in the dog heart. 2011 , 410, 916-21	12
980	Pores for thought: new strategies to re-energize stressed mitochondria in acute kidney injury. 2011 , 22, 986-9	6
979	The role of mitochondrial membrane potential in ischemic heart failure. 2011 , 11, 700-6	73
978	Ischemic preconditioning decreases mitochondrial proton leak and reactive oxygen species production in the postischemic heart. 2011 , 165, 5-14	28
977	The ethanolic extract of Kaempferia parviflora reduces ischaemic injury in rat isolated hearts. 2011 , 137, 184-91	29
976	Targeting GSK-3 family members in the heart: a very sharp double-edged sword. 2011 , 51, 607-13	54
975	Myristoylated methionine sulfoxide reductase A protects the heart from ischemia-reperfusion injury. 2011 , 301, H1513-8	33
974	Role of reactive oxygen species in the regulation of cardiac contractility. 2011 , 50, 884-93	27
973	Postreperfusion myocardial technetium-99m-sestamibi defect corresponds to area at risk: experimental results from an ischemia-reperfusion porcine model. 2011 , 38, 819-25	8
972	Targeting the F1Fo ATP Synthase: modulation of the bodyMpowerhouse and its implications for human disease. 2011 , 18, 4684-714	30
971	Novel adenosine 5Mtriphosphate-sensitive potassium channel ligands: a patent overview (2005-2010). 2011 , 21, 355-79	4
970	Carbon Monoxide Urban Air Pollution: Cardiac Effects. 2011 ,	1
969	Hepcidin is involved in iron regulation in the ischemic brain. 2011 , 6, e25324	86
968	Endothelial damage after resuscitation: reactive oxygen species as possible therapeutic targets?. 2011 , 39, 1837-9	4
967	Cell Death in the Cardiovascular System. 295-312	
966	Cardiac ischaemic stress: cardiomyocyte Ca[+, sex and sex steroids. 2011 , 38, 717-23	19

965	Proteomic analysis of cPKCII-interacting proteins involved in HPC-induced neuroprotection against cerebral ischemia of mice. 2011 , 117, 346-56	46
964	Critical role of the STAT3 pathway in the cardioprotective efficacy of zoniporide in a model of myocardial preservation - the rat isolated working heart. 2011 , 162, 633-47	19
963	Melatonin preserves the transient mitochondrial permeability transition for protection during mitochondrial Ca(2+) stress in astrocyte. 2011 , 50, 427-35	42
962	Altered fusion dynamics underlie unique morphological changes in mitochondria during hypoxia-reoxygenation stress. 2011 , 18, 1561-72	151
961	Role of nNOS in cardiac ischemia-reperfusion injury. 2011 , 21, 58-63	10
960	Mediterranean diet and cardioprotection: the role of nitrite, polyunsaturated fatty acids, and polyphenols. 2011 , 27, 733-44	84
959	Low-power light and isolated rat hearts after ischemia of myocardium. 2011 , 105, 21-4	10
958	Mitochondria are sources of metabolic sink and arrhythmias. 2011 , 131, 287-94	50
957	Tourniquet-induced acute ischemia-reperfusion injury in mouse skeletal muscles: Involvement of superoxide. 2011 , 650, 328-34	57
956	Blockade of electron transport during ischemia preserves bcl-2 and inhibits opening of the mitochondrial permeability transition pore. 2011 , 585, 921-6	45
955	In vivo hyperoxic preconditioning protects against rat-heart ischemia/reperfusion injury by inhibiting mitochondrial permeability transition pore opening and cytochrome c release. 2011 , 50, 477-83	29
954	What makes the mitochondria a killer? Can we condition them to be less destructive?. 2011 , 1813, 1302-8	44
953	The mitochondrial permeability transition pore and cyclophilin D in cardioprotection. 2011 , 1813, 1316-22	88
952	The emerging role of HSP20 as a multifunctional protective agent. 2011 , 23, 1447-54	61
951	C/EBP homologous protein deficiency attenuates myocardial reperfusion injury by inhibiting myocardial apoptosis and inflammation. 2011 , 31, 1124-32	122
950	Ischemic preconditioning requires opening of pannexin-1/P2X(7) channels not only during preconditioning but again after index ischemia at full reperfusion. 2011 , 351, 77-84	23
949	Mitochondrial complex I and NAD(P)H oxidase are major sources of exacerbated oxidative stress in pressure-overloaded ischemic-reperfused hearts. 2011 , 106, 287-97	26
948	The alpha1 isoform of soluble guanylate cyclase regulates cardiac contractility but is not required for ischemic preconditioning. 2011 , 106, 635-43	12

947	[Cardioprotection]. 2011 , 60, 1065-80; quiz 1081-2	1
946	Mitochondrial KATP channels participate in the limitation of infarct size by cariporide. 2011 , 383, 563-71	6
945	Ischfhie-reperfusion myocardique [Aspects physiopathologiques. 2011 , 20, 267-273	1
944	Lysine deacetylation in ischaemic preconditioning: the role of SIRT1. 2011 , 89, 643-9	107
943	Immunophilins and cardiovascular complications. 2011 , 18, 5408-13	7
942	Cardioprotective effects of low-dose cyclosporin A added to histidine-tryptophan-ketoglutarate cardioplegia solution prior to total myocardial ischemia: an in vitro rabbit heart study. 2011 , 88, 167-73	10
941	Macrophage migration inhibitory factor provides cardioprotection during ischemia/reperfusion by reducing oxidative stress. 2011 , 14, 1191-202	616
940	Mitochondrial injury and protection in ischemic pre- and postconditioning. 2011 , 14, 881-91	77
939	Disruption of hexokinase II-mitochondrial binding blocks ischemic preconditioning and causes rapid cardiac necrosis. 2011 , 108, 1165-9	61
938	Ischemia/reperfusion injury and cardioprotective mechanisms: Role of mitochondria and reactive oxygen species. 2011 , 3, 186-200	218
937	Activation of peroxisome-proliferator-activated receptors and Imediates remote ischemic preconditioning against myocardial infarction in vivo. 2011 , 236, 113-22	29
936	Metabolic fingerprint of ischaemic cardioprotection: importance of the malate-aspartate shuttle. 2011 , 91, 382-91	33
935	N-n-butyl haloperidol iodide preserves cardiomyocyte calcium homeostasis during hypoxia/ischemia. 2011 , 27, 433-42	9
934	Myocardial reperfusion injury: reactive oxygen species vs. NHE-1 reactivation. 2011 , 27, 13-22	21
933	The cardioprotective effect of brief acidic reperfusion after ischemia in perfused rat hearts is not mimicked by inhibition of the Na(+)/H(+) exchanger NHE1. 2011 , 28, 13-24	6
932	. 2011,	1
931	c-Jun N-terminal kinase (JNK-1) confers protection against brief but not extended ischemia during acute myocardial infarction. 2011 , 286, 13995-4006	30
930	FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress. 2011 , 286, 7468-78	242

929	Cardiovascular actions of the ghrelin gene-derived peptides and growth hormone-releasing hormone. 2011 , 236, 505-14	45
928	Stabilizing microtubules decreases myocardial ischaemia-reperfusion injury. 2011 , 39, 1713-9	4
927	Chymase inhibition reduces infarction and matrix metalloproteinase-9 activation and attenuates inflammation and fibrosis after acute myocardial ischemia/reperfusion. 2011 , 339, 143-51	64
926	Mitochondrial peroxiredoxin III is a potential target for cancer therapy. 2011 , 12, 7163-85	47
925	P2X7 receptor agonists pre- and postcondition the heart against ischemia-reperfusion injury by opening pannexin-1/P2XIthannels. 2011 , 301, H881-7	31
924	Soluble guanylate cyclase-# is required for the cardioprotective effects of inhaled nitric oxide. 2011 , 300, H1477-83	23
923	The Protective Effect of Epigallocatechin-3 Gallate on Ischemia/Reperfusion Injury in Isolated Rat Hearts: An ex vivo Approach. 2011 , 15, 259-66	19
922	Exercise-induced cardiac preconditioning: how exercise protects your achy-breaky heart. 2011 , 111, 905-15	79
921	Essential role of EGFR in cardioprotection and signaling responses to A1 adenosine receptors and ischemic preconditioning. 2011 , 300, H2161-8	38
920	Cardioprotective effect of a hemoglobin-based oxygen carrier on cold ischemia/reperfusion injury. 2011 , 120, 73-83	8
919	Type 10 adenylyl cyclase mediates mitochondrial Bax translocation and apoptosis of adult rat cardiomyocytes under simulated ischaemia/reperfusion. 2012 , 93, 340-9	54
918	The role of PPARIn metformin-induced attenuation of mitochondrial dysfunction in acute cardiac ischemia/reperfusion in rats. 2012 , 13, 7694-709	43
917	Inhibition of Mas G-protein signaling improves coronary blood flow, reduces myocardial infarct size, and provides long-term cardioprotection. 2012 , 302, H299-311	29
916	MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca[+ overload and cell death. 2012 , 122, 1222-32	294
915	Reduction of ischemia/reperfusion injury with bendavia, a mitochondria-targeting cytoprotective Peptide. 2012 , 1, e001644	107
914	Mitochondria in control of cell fate. 2012 , 110, 526-9	68
913	Growth hormone secretagogues preserve the electrophysiological properties of mouse cardiomyocytes isolated from in vitro ischemia/reperfusion heart. 2012 , 153, 5480-90	20
912	NecroX-5 prevents hypoxia/reoxygenation injury by inhibiting the mitochondrial calcium uniporter. 2012 , 94, 342-50	51

(2012-2012)

911	A novel WD-repeat protein, WDR26, inhibits apoptosis of cardiomyocytes induced by oxidative stress. 2012 , 46, 777-84	16
910	A novel strategy for global analysis of the dynamic thiol redox proteome. 2012 , 11, 800-13	55
909	Blockade of electron transport at the onset of reperfusion decreases cardiac injury in aged hearts by protecting the inner mitochondrial membrane. 2012 , 2012, 753949	30
908	A lipophilic nitric oxide donor and a lipophilic antioxidant compound protect rat heart against ischemia-reperfusion injury if given as hybrid molecule but not as a mixture. 2012 , 59, 241-8	8
907	Hypercholesterolemia abrogates sevoflurane-induced delayed preconditioning against myocardial infarct in rats by alteration of nitric oxide synthase signaling. 2012 , 37, 485-91	21
906	Reactive oxygen species in myocardial reperfusion injury: from physiopathology to therapeutic approaches. 2012 , 13, 97-114	125
905	Intralipid, a clinically safe compound, protects the heart against ischemia-reperfusion injury more efficiently than cyclosporine-A. 2012 , 117, 836-46	60
904	Postconditioning modulates ischemia-damaged mitochondria during reperfusion. 2012 , 59, 101-8	34
903	PKA phosphorylation of the small heat-shock protein Hsp20 enhances its cardioprotective effects. 2012 , 40, 210-4	48
902	Effects of Leonurine on L-type calcium channel in rat ventricular myocytes. 2012 , 35, 1249-56	5
901	The mitochondrial K(ATP) channelfact or fiction?. 2012 , 52, 578-83	59
900	Ischemic preconditioning preserves mitochondrial membrane potential and limits reactive oxygen species production. 2012 , 178, 8-17	15
899	Voluntary running in mice beneficially modulates myocardial ischemic tolerance, signaling kinases, and gene expression patterns. 2012 , 302, R1091-100	19
898	Nuclear miRNA regulates the mitochondrial genome in the heart. 2012 , 110, 1596-603	243
897	Taxol, a microtubule stabilizer, improves cardiac functional recovery during postischemic reperfusion in rat in vitro. 2012 , 30, 12-30	11
896	Oxidative regulation of the Na(+)-K(+) pump in the cardiovascular system. 2012 , 53, 2263-8	36
895	Quantitative T 2* assessment of acute and chronic myocardial ischemia/reperfusion injury in mice. 2012 , 25, 369-79	17
895 894		17 74

893	S-nitrosylation: a radical way to protect the heart. 2012 , 52, 568-77	79
892	Mitochondrial adenine nucleotide transport and cardioprotection. 2012 , 52, 448-53	14
891	Ischemia induces P-selectin-mediated selective progenitor cell engraftment in the isolated-perfused heart. 2012 , 52, 105-12	2
890	The role of SIRT3 in mitochondrial homeostasis and cardiac adaptation to hypertrophy and aging. 2012 , 52, 520-5	50
889	Superoxide flashes: elemental events of mitochondrial ROS signaling in the heart. 2012 , 52, 940-8	46
888	Mitochondrial permeability transition in the diabetic heart: contributions of thiol redox state and mitochondrial calcium to augmented reperfusion injury. 2012 , 52, 1009-18	85
887	Adenosine-mediated inhibition of 5MAMP-activated protein kinase and p38 mitogen-activated protein kinase during reperfusion enhances recovery of left ventricular mechanical function. 2012 , 52, 1308-18	11
886	Desflurane-induced post-conditioning against myocardial infarction is mediated by calcium-activated potassium channels: role of the mitochondrial permeability transition pore. 2012 , 108, 594-601	18
885	2-methoxycinnamaldehyde from Cinnamomum cassia reduces rat myocardial ischemia and reperfusion injury in vivo due to HO-1 induction. 2012 , 139, 605-15	77
884	Nitroalkylationa redox sensitive signaling pathway. 2012 , 1820, 777-84	31
884	Nitroalkylationa redox sensitive signaling pathway. 2012, 1820, 777-84 The role of VDAC in cell death: friend or foe?. 2012, 1818, 1444-50	106
883	The role of VDAC in cell death: friend or foe?. 2012 , 1818, 1444-50 Does the voltage dependent anion channel modulate cardiac ischemia-reperfusion injury?. 2012 ,	106
883	The role of VDAC in cell death: friend or foe?. 2012 , 1818, 1444-50 Does the voltage dependent anion channel modulate cardiac ischemia-reperfusion injury?. 2012 , 1818, 1451-6	106
883 882 881	The role of VDAC in cell death: friend or foe?. 2012, 1818, 1444-50 Does the voltage dependent anion channel modulate cardiac ischemia-reperfusion injury?. 2012, 1818, 1451-6 Carbon monoxide exposure in the urban environment: an insidious foe for the heart?. 2012, 184, 204-12 The cardioprotective effect of danshen and gegen decoction on rat hearts and cardiomyocytes with	106 22 27
883 882 881	The role of VDAC in cell death: friend or foe?. 2012, 1818, 1444-50 Does the voltage dependent anion channel modulate cardiac ischemia-reperfusion injury?. 2012, 1818, 1451-6 Carbon monoxide exposure in the urban environment: an insidious foe for the heart?. 2012, 184, 204-12 The cardioprotective effect of danshen and gegen decoction on rat hearts and cardiomyocytes with post-ischemia reperfusion injury. 2012, 12, 249 Obestatin induced recovery of myocardial dysfunction in type 1 diabetic rats: underlying	106 22 27 17
883 882 881 880	The role of VDAC in cell death: friend or foe?. 2012, 1818, 1444-50 Does the voltage dependent anion channel modulate cardiac ischemia-reperfusion injury?. 2012, 1818, 1451-6 Carbon monoxide exposure in the urban environment: an insidious foe for the heart?. 2012, 184, 204-12 The cardioprotective effect of danshen and gegen decoction on rat hearts and cardiomyocytes with post-ischemia reperfusion injury. 2012, 12, 249 Obestatin induced recovery of myocardial dysfunction in type 1 diabetic rats: underlying mechanisms. 2012, 11, 129 Ratiometric imaging of calcium during ischemia-reperfusion injury in isolated mouse hearts using	106 22 27 17 41

(2012-2012)

875	Methanol extract of Desmodium gangeticum DC root mimetic post-conditioning effect in isolated perfused rat heart by stimulating muscarinic receptors. 2012 , 5, 448-54		6	
874	Urotensin II protects ischemic reperfusion injury of hearts through ROS and antioxidant pathway. 2012 , 36, 199-205		14	
873	Mitochondrial permeability transition pore and calcium handling. <i>Methods in Molecular Biology</i> , 2012 , 810, 235-42	1.4	61	
872	Identification of potential target genes of cardioprotection against ischemia-reperfusion injury by express sequence tags analysis in rat hearts. 2012 , 60, 98-110		19	
871	Akt/GSK-3I/eNOS phosphorylation arbitrates safranal-induced myocardial protection against ischemia-reperfusion injury in rats. 2012 , 51, 719-27		65	
870	Mitochondria and heart disease. 2012 , 942, 249-67		60	
869	Protein Kinase Signaling at the Crossroads of Myocyte Life and Death in Ischemic Heart Disease. 2012 , 9, e173-e182		4	
868	Advances in Mitochondrial Medicine. 2012 ,		10	
867	Relationship Between Myocardial Ischemia/Reperfusion and Time of Day. 2012, 1-38		0	
866	Programmed Cardiomyocyte Death in Heart Disease. 2012 , 423-446		Ο	
865	Ischemic Heart Disease. 2012 , 495-521		11	
864	Mitochondrial Bioenergetics. Methods in Molecular Biology, 2012,	1.4	13	
863	Deletion of the innate immune NLRP3 receptor abolishes cardiac ischemic preconditioning and is associated with decreased Il-6/STAT3 signaling. 2012 , 7, e40643		62	
862	Mitochondria-derived superoxide links to tourniquet-induced apoptosis in mouse skeletal muscle. 2012 , 7, e43410		31	
861	Preconditioning and acute effects of flavonoids in protecting cardiomyocytes from oxidative cell death. 2012 , 2012, 782321		19	
860	Glucocorticoid-Induced Cardioprotection: A Novel Role for Autophagy. 2012 ,			
859	Mechanisms for progenitor cell-mediated repair for ischemic heart injury. 2012 , 7, 2-14		10	
858	Multiple phosphorylations of cytochrome c oxidase and their functions. 2012 , 12, 950-9		52	

857	SIRT1 modulates MAPK pathways in ischemic-reperfused cardiomyocytes. 2012 , 69, 2245-60	106
856	BGP-15, a PARP-inhibitor, prevents imatinib-induced cardiotoxicity by activating Akt and suppressing JNK and p38 MAP kinases. 2012 , 365, 129-37	38
855	The protective effect of rutin against ischemia/reperfusion-associated hemodynamic alteration through antioxidant activity. 2012 , 35, 1091-7	28
854	Protective effect of ligustrazine against myocardial ischaemia reperfusion in rats: the role of endothelial nitric oxide synthase. 2012 , 39, 20-7	47
853	Ischemic preconditioning: the role of mitochondria and aging. 2012 , 47, 1-7	62
852	Oxidative stress, mitochondrial permeability transition pore opening and cell death during hypoxia-reoxygenation in adult cardiomyocytes. 2012 , 675, 6-14	56
851	Enhanced charge-independent mitochondrial free Ca(2+) and attenuated ADP-induced NADH oxidation by isoflurane: Implications for cardioprotection. 2012 , 1817, 453-65	14
850	ZnT-1 protects HL-1 cells from simulated ischemia-reperfusion through activation of Ras-ERK signaling. 2012 , 90, 127-38	31
849	The effects of quercetin protect cardiomyocytes from A/R injury is related to its capability to increasing expression and activity of PKC[protein. 2013 , 382, 145-52	25
848	Mechanisms underlying the modulation of L-type Ca2+ channel by hydrogen peroxide in guinea pig ventricular myocytes. 2013 , 63, 419-26	20
847	Redox proteomics of thiol proteins in mouse heart during ischemia/reperfusion using ICAT reagents and mass spectrometry. 2013 , 58, 109-17	50
846	Milrinone and levosimendan during porcine myocardial ischemia no effects on calcium overload and metabolism. 2013 , 57, 719-28	3
845	Physiological consequences of complex II inhibition for aging, disease, and the mKATP channel. 2013 , 1827, 598-611	54
844	Studies on Womenাপ্রHealth. 2013,	5
843	Ischemia/Reperfusion injury protection by mesenchymal stem cell derived antioxidant capacity. 2013 , 22, 2497-507	30
842	Apelin protects sarcoplasmic reticulum function and cardiac performance in ischaemia-reperfusion by attenuating oxidation of sarcoplasmic reticulum Ca2+-ATPase and ryanodine receptor. 2013 , 100, 114-24	34
841	Myocardial remote ischemic preconditioning: From pathophysiology to clinical application. 2013 , 32, 893-904	11
840	Novel role of HAX-1 in ischemic injury protection involvement of heat shock protein 90. 2013 , 112, 79-89	53

839	HS-1793, a recently developed resveratrol analogue protects rat heart against hypoxia/reoxygenation injury via attenuating mitochondrial damage. 2013 , 23, 4225-9	9
838	Historical perspective on the pathology of myocardial ischemia/reperfusion injury. 2013, 113, 428-38	162
837	Site-specific quantitative analysis of cardiac mitochondrial protein phosphorylation. 2013, 81, 15-23	21
836	PLCIPKD1, and SSH1L transduce RhoA signaling to protect mitochondria from oxidative stress in the heart. 2013 , 6, ra108	48
835	Nitrite: A Physiological Store of Nitric Oxide and Modulator of Mitochondrial Function. <i>Redox Biology</i> , 2013 , 1, 40-44	129
834	Postnatal shifts in ischemic tolerance and cell survival signaling in murine myocardium. 2013 , 305, R1171-81	12
833	Redox control of cardiac excitability. 2013 , 18, 432-68	46
832	Remote ischemic postconditioning enhances cell retention in the myocardium after intravenous administration of bone marrow mesenchymal stromal cells. 2013 , 56, 1-7	34
831	Ca2+/Calmodulin-dependent protein kinase II Imediates myocardial ischemia/reperfusion injury through nuclear factor- B . 2013 , 112, 935-44	120
830	The impact of therapeutic hypothermia as adjunctive therapy in a regional primary PCI program. 2013 , 84, 460-4	19
829	Regulation of cellular gas exchange, oxygen sensing, and metabolic control. 2013 , 3, 1135-90	49
828	The role of mitochondrial function and cellular bioenergetics in ageing and disease. 2013 , 169 Suppl 2, 1-8	69
827	Salivary antigen-5/CAP family members are Cu2+-dependent antioxidant enzymes that scavenge OL and inhibit collagen-induced platelet aggregation and neutrophil oxidative burst. 2013 , 288, 14341-14361	50
826	Is oxytocin a therapeutic factor for ischemic heart disease?. 2013 , 45, 66-72	20
825	A cardioprotective preservation strategy employing ex vivo heart perfusion facilitates successful transplant of donor hearts after cardiocirculatory death. 2013 , 32, 734-43	62
824	Cardiomyocyte-specific overexpression of human stem cell factor protects against myocardial ischemia and reperfusion injury. 2013 , 168, 3486-94	9
823	Role of superoxide production in post-ischemic cardiac dysfunction and norepinephrine overflow in rat hearts. 2013 , 711, 36-41	3
822	Effects of ischemic preconditioning in the late phase on homing of endothelial progenitor cells in renal ischemia/reperfusion injury. 2013 , 45, 511-6	20

821	Myocardial remote ischemic preconditioning: from pathophysiology to clinical application. 2013 , 32, 893-904	13
820	Mitochondrial inner membrane lipids and proteins as targets for decreasing cardiac ischemia/reperfusion injury. 2013 , 140, 258-66	40
819	Magnesium orotate elicits acute cardioprotection at reperfusion in isolated and in vivo rat hearts. 2013 , 91, 108-15	8
818	Mechanisms and Models for Elucidating the Cardiac Effects of Sphingosine 1-Phosphate (S1P). 2013 , 373-397	
817	Reperfusion-induced myocardial dysfunction is prevented by endogenous annexin-A1 and its N-terminal-derived peptide Ac-ANX-A1(2-26). 2013 , 168, 238-52	41
816	Oxygen glucose deprivation causes mitochondrial dysfunction in cultivated rat hippocampal slices: protective effects of CsA, its immunosuppressive congener [D-Ser](8)CsA, the novel non-to-monosuppressive cyclosporin derivative Cs9, and the NMDA receptor antagonist MK 801.	8
815	Role of the Wnt-Frizzled system in cardiac pathophysiology: a rapidly developing, poorly understood area with enormous potential. 2013 , 591, 1409-32	88
814	Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. 2013 , 10, 301-12	748
813	Activation of RISK and SAFE pathways is not involved in the effects of Cx43 deficiency on tolerance to ischemia-reperfusion injury and preconditioning protection. 2013 , 108, 351	36
812	Targeting cell death in the reperfused heart: pharmacological approaches for cardioprotection. 2013 , 165, 410-22	98
811	Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. 2013, 19, 753-9	437
810	Hexokinase cellular trafficking in ischemia-reperfusion and ischemic preconditioning is altered in type I diabetic heart. 2013 , 40, 4153-60	19
809	Redox signaling in cardiovascular health and disease. 2013 , 61, 473-501	144
808	Gap Junction-Mediated Neuroprotection. 2013 , 231-246	1
807	High efficiency versus maximal performancethe cause of oxidative stress in eukaryotes: a hypothesis. 2013 , 13, 1-6	35
806	Quantitative and qualitative analysis of heart mitochondria for evaluating the degree of myocardial injury utilizing atomic force microscopy. 2013 , 44, 167-73	9
805	Cyclophilin D and acetylation: a new link in cardiac signaling. 2013 , 113, 1268-9	4
804	Time course analysis of cardiac pacing-induced gene expression changes in the canine heart. 2013 , 372, 257-66	6

(2013-2013)

803	Mitochondrial pathways, permeability transition pore, and redox signaling in cardioprotection: therapeutic implications. 2013 , 18, 556-99	127
802	Volatile anaesthetics and cardioprotection: lessons from animal studies. 2013 , 27, 21-34	15
801	Delayed preconditioning prevents ischemia/reperfusion-induced endothelial injury in rats: role of ROS and eNOS. 2013 , 93, 168-80	31
800	Adenosine diphosphate reduces infarct size and improves porcine heart function after myocardial infarct. 2013 , 1, e00003	4
799	Cell Survival Programs and Ischemia/Reperfusion: Hormesis, Preconditioning, and Cardioprotection. 2013 , 5, 1-122	3
798	Anoxia-reoxygenation regulates mitochondrial dynamics through the hypoxia response pathway, SKN-1/Nrf, and stomatin-like protein STL-1/SLP-2. 2013 , 9, e1004063	33
797	Mitochondrial NHE1: a newly identified target to prevent heart disease. 2013 , 4, 152	17
796	Myocardial protection during elective coronary artery bypasses grafting by pretreatment with omega-3 polyunsaturated fatty acids. 2013 , 70, 484-92	10
795	BNC Protects H9c2 Cardiomyoblasts from H 2 O 2 -Induced Oxidative Injury through ERK1/2 Signaling Pathway. 2013 , 2013, 802784	35
794	Impaired mitochondrial function in chronically ischemic human heart. 2013 , 304, H1407-14	20
793	Effects and mechanisms of chinese herbal medicine in ameliorating myocardial ischemia-reperfusion injury. 2013 , 2013, 925625	26
792	Uncoupling the mitochondria facilitates alternans formation in the isolated rabbit heart. 2013 , 305, H9-18	15
791	STIM1/Orai1-mediated SOCE: current perspectives and potential roles in cardiac function and pathology. 2013 , 305, H446-58	88
790	Inhibition of the cardiomyocyte-specific kinase TNNI3K limits oxidative stress, injury, and adverse remodeling in the ischemic heart. 2013 , 5, 207ra141	45
789	Reduction of myocardial infarct size with ischemic "conditioning": physiologic and technical considerations. 2013 , 117, 891-901	56
788	Blood-brain barrier transport pathways for cytoprotective thiols. 2013 , 20, 469-79	7
787	Did a classic preconditioning study provide a clue to the identity of the mitochondrial permeability transition pore?. 2013 , 113, 852-5	5
786	Conditional knockout of myocyte focal adhesion kinase abrogates ischemic preconditioning in adult murine hearts. 2013 , 2, e000457	11

785	Redox-dependent increases in glutathione reductase and exercise preconditioning: role of NADPH oxidase and mitochondria. 2013 , 98, 47-55	56
7 ⁸ 4	Angiogenesis in Adipose Tissue. 2013 ,	2
783	Quercetin postconditioning attenuates myocardial ischemia/reperfusion injury in rats through the PI3K/Akt pathway. 2013 , 46, 861-7	54
782	Akt phosphorylates HK-II at Thr-473 and increases mitochondrial HK-II association to protect cardiomyocytes. 2013 , 288, 23798-806	129
781	Non-Coding RNAs as Potential Neuroprotectants against Ischemic Brain Injury. 2013 , 3, 360-95	31
78o	Korean Red Ginseng Induced Cardioprotection against Myocardial Ischemia in Guinea Pig. 2013 , 17, 283-9	11
779	Intracellular regulation of matrix metalloproteinase-2 activity: new strategies in treatment and protection of heart subjected to oxidative stress. 2013 , 2013, 130451	20
778	Acetylcholine attenuates hypoxia/ reoxygenation-induced mitochondrial and cytosolic ROS formation in H9c2 cells via M2 acetylcholine receptor. 2013 , 31, 189-98	41
777	Reactive oxygen species as therapeutic targets in pulmonary hypertension. 2013, 7, 175-200	40
776	Q50, an iron-chelating and zinc-complexing agent, improves cardiac function in rat models of ischemia/reperfusion-induced myocardial injury. 2013 , 77, 1817-26	6
775	Non-genomic action of sex steroid hormones and cardiac repolarization. 2013 , 36, 8-12	27
774	Acute lethal crush-injured rats can be successfully rescued by a single injection of high-dose dexamethasone through a pathway involving PI3K-Akt-eNOS signaling. 2013 , 75, 241-9	16
773	Role of sirtuins in ischemia-reperfusion injury. 2013 , 19, 7594-602	40
772	Mitochondrial dynamics in the heart as a novel therapeutic target for cardioprotection. 2013 , 49, 101-7	15
771	Impact of Ischemia on Cellular Metabolism. 2013,	5
770	TanshinoneIIA and cryptotanshinone protect against hypoxia-induced mitochondrial apoptosis in H9c2 cells. 2013 , 8, e51720	45
769	Disruption of calcium homeostasis in cardiomyocytes underlies cardiac structural and functional changes in severe sepsis. 2013 , 8, e68809	36
768	mtDNA T8993G mutation-induced F1F0-ATP synthase defect augments mitochondrial dysfunction associated with hypoxia/reoxygenation: the protective role of melatonin. 2013, 8, e81546	9

(2014-2013)

767	Regulation of gap junctions by nitric oxide influences the generation of arrhythmias resulting from acute ischemia and reperfusion in vivo. 2013 , 4, 76	7
766	Protective effects of low-frequency magnetic fields on cardiomyocytes from ischemia reperfusion injury via ROS and NO/ONOO 2013 , 2013, 529173	14
765	Examination of physiological function and biochemical disorders in a rat model of prolonged asphyxia-induced cardiac arrest followed by cardio pulmonary bypass resuscitation. 2014 , 9, e112012	15
764	Protein redox modification as a cellular defense mechanism against tissue ischemic injury. 2014 , 2014, 343154	32
763	Cardioprotection against ischemia/reperfusion by licochalcone B in isolated rat hearts. 2014 , 2014, 134862	44
762	Effect of pinacidil on rat ventricular myocytes during transient hypoxia and reperfusion. 2014 , 13, 8197-208	1
761	Agonist of inward rectifier K+ channels enhances the protection of ischemic postconditioning in isolated rat hearts. 2014 , 29, 321-326	4
760	Sparstolonin B attenuates hypoxia-induced apoptosis, necrosis and inflammation in cultured rat left ventricular tissue slices. 2014 , 28, 433-9	12
759	Acute hemodynamic effects of angiotensin- converting enzyme inhibition after prolonged cardiac arrest with BretschneiderMsolution. 2014 , 387, 1221-9	5
758	Inhibition of mitochondrial permeability transition pore restores the cardioprotection by postconditioning in diabetic hearts. 2014 , 13, 106	23
757	Fluid Mechanical Forces and Endothelial Mitochondria: A Bioengineering Perspective. 2014 , 7, 483-496	23
756	SIRT3 deficiency exacerbates ischemia-reperfusion injury: implication for aged hearts. 2014 , 306, H1602-9	146
755	The Comparative Study on Expression of SIRT1 Signal Transduction by Xuefuzhuyu Capsule. 2014 , 2014, 537014	11
754	Protective Effects ofElaeagnus angustifoliaLeaf Extract against Myocardial Ischemia/Reperfusion Injury in Isolated Rat Heart. 2014 , 2014, 1-6	3
753	A deficiency of apoptosis inducing factor (AIF) in Harlequin mouse heart mitochondria paradoxically reduces ROS generation during ischemia-reperfusion. 2014 , 5, 271	11
752	Transient complex I inhibition at the onset of reperfusion by extracellular acidification decreases cardiac injury. 2014 , 306, C1142-53	34
751	Potential effects of selenium on liver functions after ischemia reperfusion in old female rats. 2014 , 6, 199-210	
750	CaMKII-dependent responses to ischemia and reperfusion challenges in the heart. 2014 , 5, 96	30

749	Calcium-activated potassium channels in ischemia reperfusion: a brief update. 2014 , 5, 381	16
748	Mitochondrial targets for volatile anesthetics against cardiac ischemia-reperfusion injury. 2014 , 5, 341	25
747	miR-29a and miR-30c negatively regulate DNMT 3a in cardiac ischemic tissues: implications for cardiac remodelling. 2014 , 1,	5
746	The TRPM4 channel inhibitor 9-phenanthrol. 2014 , 171, 1600-13	55
745	Cardioprotection for percutaneous coronary interventionreperfusion quality as well as quantity. 2014 , 177, 786-93	11
744	Engineered Cell Manipulation for Biomedical Application. 2014,	2
743	A functional interaction between Hippo-YAP signalling and FoxO1 mediates the oxidative stress response. 2014 , 5, 3315	153
742	Molecular identification for epigallocatechin-3-gallate-mediated antioxidant intervention on the H2O2-induced oxidative stress in H9c2 rat cardiomyoblasts. 2014 , 21, 56	23
741	Elimination of NADPH oxidase activity promotes reductive stress and sensitizes the heart to ischemic injury. 2014 , 3, e000555	43
740	Ventricular hypertrophy abrogates intralipid-induced cardioprotection by alteration of reperfusion injury salvage kinase/glycogen synthase kinase 3\(\text{S}\) signal. 2014 , 41, 435-42	8
739	Pulmonary instillation of multi-walled carbon nanotubes promotes coronary vasoconstriction and exacerbates injury in isolated hearts. 2014 , 8, 38-49	30
738	Ang-(1-7) offers cytoprotection against ischemia-reperfusion injury by restoring intracellular calcium homeostasis. 2014 , 63, 259-64	10
737	High-risk donors: extending our criteria in times of organ shortage. 2014 , 19, 494-9	21
736	Mitochondrial redox signaling: Interaction of mitochondrial reactive oxygen species with other sources of oxidative stress. 2014 , 20, 308-24	170
735	Isoflurane modulates cardiac mitochondrial bioenergetics by selectively attenuating respiratory complexes. 2014 , 1837, 354-65	27
734	Dobutamine-mediated heme oxygenase-1 induction via P13K and p38 MAPK inhibits high mobility group box 1 protein release and attenuates rat myocardial ischemia/reperfusion injury in vivo. 2014 , 186, 81-2	2
733	Permeability transition pore-mediated mitochondrial superoxide flashes mediate an early inhibitory effect of amyloid beta1-42 on neural progenitor cell proliferation. 2014 , 35, 975-89	49
732	Effect of taurine on ischemia-reperfusion injury. 2014 , 46, 21-30	71

731	Reduction of early reperfusion injury with the mitochondria-targeting peptide bendavia. 2014 , 19, 121-32	74
730	Mitochondria from anoxia-tolerant animals reveal common strategies to survive without oxygen. 2014 , 184, 285-302	29
729	Antioxidative and cardioprotective effects of total flavonoids extracted from Dracocephalum moldavica L. against acute ischemia/reperfusion-induced myocardial injury in isolated rat heart. 2014 , 14, 74-82	54
728	Cordycepin, 3Mdeoxyadenosine, prevents rat hearts from ischemia/reperfusion injury via activation of Akt/GSK-3[/p70S6K signaling pathway and HO-1 expression. 2014 , 14, 1-9	43
727	Dynamics of interstitial calcium in rat myocardial ischemia reperfusion injury in vivo. 2014 , 34, 37-41	
726	Transferring protection: adenosine as the Lone Ranger?: editorial to: "Remote cardioprotection by transfer of coronary effluent from ischemic preconditioned rabbit heart preserves mitochondrial integrity and function via adenosine receptor activation" by C.H. Leung et al. 2014 , 28, 1-3	2
725	Spliced X-box binding protein 1 couples the unfolded protein response to hexosamine biosynthetic pathway. 2014 , 156, 1179-1192	246
724	Apelin-12 and its structural analog enhance antioxidant defense in experimental myocardial ischemia and reperfusion. 2014 , 391, 241-50	38
723	Mitochondrial channels: ion fluxes and more. <i>Physiological Reviews</i> , 2014 , 94, 519-608 47.9	216
722	Mitochondrially targeted nitro-linoleate: a new tool for the study of cardioprotection. 2014 , 171, 2091-8	10
721		
	The effects of nitroglycerin during cardiopulmonary resuscitation. 2014 , 734, 42-9	2
720	Histamine H4-receptors inhibit mast cell renin release in ischemia/reperfusion via protein kinase C Edependent aldehyde dehydrogenase type-2 activation. 2014 , 349, 508-17	24
720 719	Histamine H4-receptors inhibit mast cell renin release in ischemia/reperfusion via protein kinase C	
,	Histamine H4-receptors inhibit mast cell renin release in ischemia/reperfusion via protein kinase C Edependent aldehyde dehydrogenase type-2 activation. 2014 , 349, 508-17	24
719	Histamine H4-receptors inhibit mast cell renin release in ischemia/reperfusion via protein kinase C Edependent aldehyde dehydrogenase type-2 activation. 2014 , 349, 508-17 Novel therapeutic strategies for cardioprotection. 2014 , 144, 60-70	24 57
719 718	Histamine H4-receptors inhibit mast cell renin release in ischemia/reperfusion via protein kinase C Edependent aldehyde dehydrogenase type-2 activation. 2014, 349, 508-17 Novel therapeutic strategies for cardioprotection. 2014, 144, 60-70 Purinergic signaling and blood vessels in health and disease. 2014, 66, 102-92 Stretchable, multiplexed pH sensors with demonstrations on rabbit and human hearts undergoing	24 57 217
719 718 717	Histamine H4-receptors inhibit mast cell renin release in ischemia/reperfusion via protein kinase C Edependent aldehyde dehydrogenase type-2 activation. 2014, 349, 508-17 Novel therapeutic strategies for cardioprotection. 2014, 144, 60-70 Purinergic signaling and blood vessels in health and disease. 2014, 66, 102-92 Stretchable, multiplexed pH sensors with demonstrations on rabbit and human hearts undergoing ischemia. 2014, 3, 59-68 Targeting hexokinase II to mitochondria to modulate energy metabolism and reduce	24 57 217 87

713	Uncoupling of increased cellular oxidative stress and myocardial ischemia reperfusion injury by directed sarcolemma stabilization. 2014 , 67, 26-37	48
712	Ca(2+) /calmodulin dependent kinase II: a critical mediator in determining reperfusion outcomes in the heart?. 2014 , 41, 940-6	7
711	Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. 2014 , 515, 431-435	1360
710	Mitochondria selective S-nitrosation by mitochondria-targeted S-nitrosothiol protects against post-infarct heart failure in mouse hearts. 2014 , 16, 712-7	31
709	The protective effects of puerarin in cardiomyocytes from anoxia/reoxygenation injury are mediated by PKCII 2014 , 32, 378-86	29
708	Positive feedback in cardioprotection: can more mechanism lead to translation?. 2014 , 114, 1225-7	
707	Calpain-dependent cleavage of N-cadherin is involved in the progression of post-myocardial infarction remodeling. 2014 , 289, 19408-19	32
706	Degradation of cardiac myosin light chain kinase by matrix metalloproteinase-2 contributes to myocardial contractile dysfunction during ischemia/reperfusion. 2014 , 77, 102-12	13
705	Radiation-induced alterations in mitochondria of the rat heart. 2014 , 181, 324-34	34
704	Protective effects of crocetin pretreatment on myocardial injury in an ischemia/reperfusion rat model. 2014 , 741, 290-6	46
703	Novel therapeutic strategies for ischemic heart disease. 2014 , 89, 36-45	42
702	Ischemic preconditioning inhibits mitochondrial permeability transition pore opening through the PTEN/PDE4 signaling pathway. 2014 , 129, 163-73	9
701	The role of post-translational modifications in acute and chronic cardiovascular disease. 2014 , 8, 506-21	24
700	Anti-arrhythmic effect of diosgenin in reperfusion-induced myocardial injury in a rat model: activation of nitric oxide system and mitochondrial KATP channel. 2014 , 64, 393-400	24
699	Discussion. 2014 , 148, 1130	
698	Induction of the matricellular protein CCN1 through RhoA and MRTF-A contributes to ischemic cardioprotection. 2014 , 75, 152-61	26
697	Functional evaluation of human donation after cardiac death donor hearts using a continuous isolated myocardial perfusion technique: Potential for expansion of the cardiac donor population. 2014 , 148, 1123-30; discussion 1130	18
696	Obestatin improves ischemia/reperfusion-induced renal injury in rats via its antioxidant and anti-apoptotic effects: role of the nitric oxide. 2014 , 60, 23-31	26

(2015-2014)

695	ischemia-reperfusion. 2014 , 307, H996-H1004	14
694	GLP-1 (7-36) amide restores myocardial insulin sensitivity and prevents the progression of heart failure in senescent beagles. 2014 , 13, 115	6
693	Grb2-associated binder 1 is essential for cardioprotection against ischemia/reperfusion injury. 2014 , 109, 420	15
692	Pivotal role of mTORC2 and involvement of ribosomal protein S6 in cardioprotective signaling. 2014 , 114, 1268-80	44
691	Acidification asymmetrically affects voltage-dependent anion channel implicating the involvement of salt bridges. 2014 , 289, 23670-82	36
690	The protective effect of hispidin against hydrogen peroxide-induced apoptosis in H9c2 cardiomyoblast cells through Akt/GSK-3 and ERK1/2 signaling pathway. 2014 , 327, 264-75	47
689	Antiarrhythmic efficacy of CPUY102122, a multiple ion channel blocker, on rabbits with ischemia/reperfusion injury. 2014 , 66, 1022-30	3
688	HASF, a PKC-Dactivator with novel features for cardiomyocyte protection. 2014, 69, 1-3	5
687	Ablation of cereblon attenuates myocardial ischemia-reperfusion injury. 2014 , 447, 649-54	12
686	The cardioprotective effect of sodium tanshinone IIA sulfonate and the optimizing of therapeutic time window in myocardial ischemia/reperfusion injury in rats. 2014 , 235, 318-27	73
685	Cardioprotective efficacy against reperfusion injury of EMD-87580: Comparison to ischemic postconditioning. 2014 , 737, 125-32	3
684	Concentration-dependent wrestling between detrimental and protective effects of H2O2 during myocardial ischemia/reperfusion. 2014 , 5, e1297	35
683	Mitochondria: The Anti- cancer Target for the Third Millennium. 2014,	2
682	Superoxide production by cytochrome bc1 complex: a mathematical model. 2014 , 1837, 1643-52	23
681	Molecular targets for anti-oxidative protection of green tea polyphenols against myocardial ischemic injury. 2014 , 4, 23	41
680	Selective superoxide generation within mitochondria by the targeted redox cycler MitoParaquat. 2015 , 89, 883-94	85
679	Cardioprotection in ischaemia-reperfusion injury: novel mechanisms and clinical translation. 2015 , 593, 3773-88	28
678	Effect of astragaloside IV against rat myocardial cell apoptosis induced by oxidative stress via mitochondrial ATP-sensitive potassium channels. 2015 , 12, 371-6	23

677	The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. 2016 , 15, 71		792
676	Ca(2+)-activated K(+) channels as therapeutic targets for myocardial and vascular protection. 2015 , 79, 455-62		16
675	Effect of N-n-butyl haloperidol iodide on ROS/JNK/Egr-1 signaling in H9c2 cells after hypoxia/reoxygenation. <i>Scientific Reports</i> , 2015 , 5, 11809	4.9	23
674	Aromatase knockout mice reveal an impact of estrogen on drug-induced alternation of murine electrocardiography parameters. 2015 , 40, 339-48		9
673	FOXO1 silence aggravates oxidative stress-promoted apoptosis in cardiomyocytes by reducing autophagy. 2015 , 40, 637-45		34
672	Cardioprotective effects of luteolin on ischemia/reperfusion injury in diabetic rats are modulated by eNOS and the mitochondrial permeability transition pathway. 2015 , 65, 349-56		40
671	Role of the Innate Immune System in 1schemic Heart Failure. 2015 , 19-38		4
670	Acute administration of n-3 rich triglyceride emulsions provides cardioprotection in murine models after ischemia-reperfusion. 2015 , 10, e0116274		13
669	Inhibition of Bcl-2 sensitizes mitochondrial permeability transition pore (MPTP) opening in ischemia-damaged mitochondria. 2015 , 10, e0118834		36
668	Effect of sodium nitrite on ischaemia and reperfusion-induced arrhythmias in anaesthetized dogs: is protein S-nitrosylation involved?. 2015 , 10, e0122243		16
667	Cardioprotective Effect of Licochalcone D against Myocardial Ischemia/Reperfusion Injury in Langendorff-Perfused Rat Hearts. 2015 , 10, e0128375		25
666	References. 240-320		
665	The OPA1-dependent mitochondrial cristae remodeling pathway controls atrophic, apoptotic, and ischemic tissue damage. 2015 , 21, 834-44		260
664	Cardiac arrest: resuscitation and reperfusion. 2015 , 116, 2041-9		76
663	Diosgenin-induced protection against myocardial ischaemia-reperfusion injury is mediated by mitochondrial KATP channels in a rat model. 2015 , 30, 565-71		20
662	Mitochondrial reactive oxygen species at the heart of the matter: new therapeutic approaches for cardiovascular diseases. 2015 , 116, 1783-99		125
661	Treatment with either obestatin or ghrelin attenuates mesenteric ischemia-reperfusion-induced oxidative injury of the ileum and the remote organ lung. 2015 , 71, 8-19		22
660	Crosstalk Between MAPK/ERK and PI3K/AKT Signal Pathways During Brain Ischemia/Reperfusion. 2015 , 7,		102

(2015-2015)

659	rats via inhibiting apoptosis: role of MAPKs and HSPs. 2015 , 20, 455-65	14
658	Luteolin inhibits ROS-activated MAPK pathway in myocardial ischemia/reperfusion injury. 2015 , 122, 15-25	76
657	Mitsugumin-53: potential biomarker and therapeutic for myocardial ischemic injury?. 2015 , 81, 46-8	4
656	The muscle-specific chaperone protein melusin is a potent cardioprotective agent. 2015 , 110, 10	8
655	Physiological and pathological roles of the mitochondrial permeability transition pore in the heart. 2015 , 21, 206-214	256
654	Protein quality control and metabolism: bidirectional control in the heart. 2015 , 21, 215-226	43
653	Fibroblast growth factor 2 is an essential cardioprotective factor in a closed-chest model of cardiac ischemia-reperfusion injury. 2015 , 3, e12278	25
652	Mechanisms of myocardial ischemia-reperfusion injury and the cytoprotective role of minocycline: scope and limitations. 2015 , 11, 61-76	39
651	A new low molecular weight, MnII-containing scavenger of superoxide anion protects cardiac muscle cells from hypoxia/reoxygenation injury. 2015 , 49, 67-77	14
650	Ischaemic conditioning: pitfalls on the path to clinical translation. 2015 , 172, 1961-73	27
649	Impaired oxidative metabolism and calcium mishandling underlie cardiac dysfunction in a rat model of post-acute isoproterenol-induced cardiomyopathy. 2015 , 308, H467-77	46
648	Echinochrome A regulates phosphorylation of phospholamban Ser16 and Thr17 suppressing cardiac SERCA2A Ca[]+ reuptake. 2015 , 467, 2151-63	18
647	Cardiac purinergic signalling in health and disease. 2015 , 11, 1-46	85
646	Contribution of apoptosis in myocardial reperfusion injury and loss of cardioprotection in diabetes mellitus. 2015 , 65, 201-15	46
645	Novel perspectives on the PHD-HIF oxygen sensing pathway in cardioprotection mediated by IPC and RIPC. 2015 , 6, 137	17
644	Interferon regulatory factor signalings in cardiometabolic diseases. 2015 , 66, 222-47	33
643	Lanthanide Nanoparticles: From Design toward Bioimaging and Therapy. 2015 , 115, 10725-815	746
642	Nitrite Confers Preconditioning and Cytoprotection After Ischemia/Reperfusion Injury Through the Modulation of Mitochondrial Function. 2015 , 23, 307-27	17

641	Apigenin attenuates heart injury in lipopolysaccharide-induced endotoxemic model by suppressing sphingosine kinase 1/sphingosine 1-phosphate signaling pathway. 2015 , 233, 46-55	41
640	Targeted disruption of PDE3B, but not PDE3A, protects murine heart from ischemia/reperfusion injury. 2015 , 112, E2253-62	51
639	Functional brown adipose tissue limits cardiomyocyte injury and adverse remodeling in catecholamine-induced cardiomyopathy. 2015 , 84, 202-11	41
638	Mitochondrial miRNA (MitomiR): a new player in cardiovascular health. 2015 , 93, 855-61	47
637	Myocardial and cardiomyocyte stress resilience is enhanced in aromatase-deficient female mouse hearts through CaMKIIIactivation. 2015 , 156, 1429-40	11
636	A tocotrienol-enriched formulation protects against radiation-induced changes in cardiac mitochondria without modifying late cardiac function or structure. 2015 , 183, 357-66	24
635	Isoflurane protects the myocardium against ischemic injury via the preservation of mitochondrial respiration and its supramolecular organization. 2015 , 120, 265-74	19
634	Sulfonylureas and meglitinides: insights into physiology and translational clinical utility. 2015 , 615-640	2
633	Naringin protects against anoxia/reoxygenation-induced apoptosis in H9c2 cells via the Nrf2 signaling pathway. 2015 , 6, 1331-44	32
632	The hippo pathway in heart development, regeneration, and diseases. 2015 , 116, 1431-47	138
632	The hippo pathway in heart development, regeneration, and diseases. 2015 , 116, 1431-47 Intracellular ATP Decrease Mediates NLRP3 Inflammasome Activation upon Nigericin and Crystal Stimulation. 2015 , 195, 5718-24	138
	Intracellular ATP Decrease Mediates NLRP3 Inflammasome Activation upon Nigericin and Crystal	
631	Intracellular ATP Decrease Mediates NLRP3 Inflammasome Activation upon Nigericin and Crystal Stimulation. 2015 , 195, 5718-24	48
631	Intracellular ATP Decrease Mediates NLRP3 Inflammasome Activation upon Nigericin and Crystal Stimulation. 2015, 195, 5718-24 Heart mitochondria and calpain 1: Location, function, and targets. 2015, 1852, 2372-8	48
631 630 629	Intracellular ATP Decrease Mediates NLRP3 Inflammasome Activation upon Nigericin and Crystal Stimulation. 2015, 195, 5718-24 Heart mitochondria and calpain 1: Location, function, and targets. 2015, 1852, 2372-8 Life, death and immortality. 2015, 213, 1-2	48 28
631 630 629	Intracellular ATP Decrease Mediates NLRP3 Inflammasome Activation upon Nigericin and Crystal Stimulation. 2015, 195, 5718-24 Heart mitochondria and calpain 1: Location, function, and targets. 2015, 1852, 2372-8 Life, death and immortality. 2015, 213, 1-2 The role of hexokinase in cardioprotection - mechanism and potential for translation. 2015, 172, 2085-100 Cardiolipin alterations and mitochondrial dysfunction in heart ischemia/reperfusion injury. 2015,	48 28 39
631 630 629 628	Intracellular ATP Decrease Mediates NLRP3 Inflammasome Activation upon Nigericin and Crystal Stimulation. 2015, 195, 5718-24 Heart mitochondria and calpain 1: Location, function, and targets. 2015, 1852, 2372-8 Life, death and immortality. 2015, 213, 1-2 The role of hexokinase in cardioprotection - mechanism and potential for translation. 2015, 172, 2085-100 Cardiolipin alterations and mitochondrial dysfunction in heart ischemia/reperfusion injury. 2015, 10, 415-429 Uncoupling protein 3 mediates HDIpreconditioning-afforded cardioprotection through the	48 28 39

(2016-2015)

623	Membrane Repair: Mechanisms and Pathophysiology. <i>Physiological Reviews</i> , 2015 , 95, 1205-40	47.9	177
622	Direct peritoneal resuscitation improves survival and decreases inflammation after intestinal ischemia and reperfusion injury. 2015 , 199, 428-34		9
621	B KC interaction with the d subunit of F1Fo ATP synthase impairs energetics and exacerbates ischemia/reperfusion injury in isolated rat hearts. 2015 , 89, 232-40		1
620	HAX-1 regulates cyclophilin-D levels and mitochondria permeability transition pore in the heart. 2015 , 112, E6466-75		46
619	Mitochondrial DNA damage and repair during ischemia-reperfusion injury of the heart. 2015 , 78, 9-22		25
618	Cardioprotective potential of annexin-A1 mimetics in myocardial infarction. 2015 , 148, 47-65		48
617	T-type Calcium Channels in Basic and Clinical Science. 2015 ,		O
616	Redox signalling and cardioprotection: translatability and mechanism. 2015 , 172, 1974-95		56
615	The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. 2015 , 78, 100-6		303
614	Evaluation of cardio-protective effect of soybean oligosaccharides. 2015 , 555, 329-34		11
613	Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. 2015 , 22, 248-57		199
612	The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. 2015 , 78, 129-41		299
611	NecroX-5 protects mitochondrial oxidative phosphorylation capacity and preserves PGC1∃ expression levels during hypoxia/reoxygenation injury. 2016 , 20, 201-11		12
610	Mammalian Metallothionein-2A and Oxidative Stress. 2016 , 17,		54
609	The Neuroprotective Properties of Hericium erinaceus in Glutamate-Damaged Differentiated PC12 Cells and an AlzheimerMDisease Mouse Model. 2016 , 17,		53
608	RECOMBINANT ERYTHROPOIETIN MITIGATES REPERFUSION INJURY IN NEONATAL RAT CARDIOMYOCYTES BY NOVEL MULTIPLE SIGNALLING PATHWAYS. 2016 , 8, 34		8
607	The Role of Mitochondrial Reactive Oxygen Species in Cardiovascular Injury and Protective Strategies. 2016 , 2016, 8254942		72
606	The Role of Mitochondrial Functional Proteins in ROS Production in Ischemic Heart Diseases. 2016 , 2016, 5470457		37

605	Protective Effect of Peroxisome Proliferator-Activated Receptor Activation against Cardiac Ischemia-Reperfusion Injury Is Related to Upregulation of Uncoupling Protein-3. 2016 , 2016, 3539649	7
604	Molecular Mechanisms of Cardioprotective Actions of Tanshinones. 2016 , 2016, 1-14	3
603	Soy Isoflavone Protects Myocardial Ischemia/Reperfusion Injury through Increasing Endothelial Nitric Oxide Synthase and Decreasing Oxidative Stress in Ovariectomized Rats. 2016 , 2016, 5057405	15
602	Distinct Cell Stress Responses Induced by ATP Restriction in Quiescent Human Fibroblasts. 2016 , 7, 171	9
601	Seabuckthorn Pulp Oil Protects against Myocardial Ischemia-Reperfusion Injury in Rats through Activation of Akt/eNOS. 2016 , 7, 155	13
600	Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents. 2016 , 7, 71	9
599	Asiatic Acid Attenuates Myocardial Ischemia/Reperfusion Injury via Akt/GSK-3I/HIF-1Bignaling in Rat H9c2 Cardiomyocytes. 2016 , 21,	40
598	Coupling of myocardial stress resistance and signalling to voluntary activity and inactivity. 2016 , 218, 112-22	6
597	Ischemia and Reperfusion. 2016 , 223-245	
596	INVESTIGATING EXPRESSION OF AUTOPHAGY-ASSOCIATED PROTEINS LEVEL IN RATS WITH ACUTE LUNG INJURY INDUCED BY REMOTE LIMB ISCHEMIA-REPERFUSION. 2016 , 16, 1650019	
595	Avoidance of Profound Hypothermia During Initial Reperfusion Improves the Functional Recovery	
	of Hearts Donated After Circulatory Death. 2016 , 16, 773-82	25
594		126
	of Hearts Donated After Circulatory Death. 2016 , 16, 773-82	
594	of Hearts Donated After Circulatory Death. 2016 , 16, 773-82 Comparative review of dipeptidyl peptidase-4 inhibitors and sulphonylureas. 2016 , 18, 333-47 Prolonged Mouse Cardiac Graft Cold Storage via Attenuating Ischemia-Reperfusion Injury Using a	126
594 593	of Hearts Donated After Circulatory Death. 2016, 16, 773-82 Comparative review of dipeptidyl peptidase-4 inhibitors and sulphonylureas. 2016, 18, 333-47 Prolonged Mouse Cardiac Graft Cold Storage via Attenuating Ischemia-Reperfusion Injury Using a New Antioxidant-Based Preservation Solution. 2016, 100, 1032-40	126 9
594 593 592	Of Hearts Donated After Circulatory Death. 2016, 16, 773-82 Comparative review of dipeptidyl peptidase-4 inhibitors and sulphonylureas. 2016, 18, 333-47 Prolonged Mouse Cardiac Graft Cold Storage via Attenuating Ischemia-Reperfusion Injury Using a New Antioxidant-Based Preservation Solution. 2016, 100, 1032-40 Cardiomyocytes [Active Players in Cardiac Disease. 2016, Ischemic Postconditioning-Regulated miR-499 Protects the Rat Heart Against	126 9 2
594 593 592 591	Of Hearts Donated After Circulatory Death. 2016, 16, 773-82 Comparative review of dipeptidyl peptidase-4 inhibitors and sulphonylureas. 2016, 18, 333-47 Prolonged Mouse Cardiac Graft Cold Storage via Attenuating Ischemia-Reperfusion Injury Using a New Antioxidant-Based Preservation Solution. 2016, 100, 1032-40 Cardiomyocytes [Active Players in Cardiac Disease. 2016, Ischemic Postconditioning-Regulated miR-499 Protects the Rat Heart Against Ischemia/Reperfusion Injury by Inhibiting Apoptosis through PDCD4. 2016, 39, 2364-2380	126 9 2 48

(2016-2016)

587	Role of JAK-STAT pathway in reducing cardiomyocytes hypoxia/reoxygenation injury induced by S1P postconditioning. 2016 , 784, 129-36	14
586	Investigations on the role of leukotrienes in remote hind limb preconditioning-induced cardioprotection in rats. 2016 , 152, 238-43	11
585	Succinate metabolism: a new therapeutic target for myocardial reperfusion injury. 2016, 111, 134-41	77
584	The Antioxidant, Anti-Inflammatory and Anti-Apoptotic Activities of the Bauhinia Championii Flavone are Connected with Protection Against Myocardial Ischemia/Reperfusion Injury. 2016 , 38, 1365-75	29
583	Heat shock protein 70 inhibits cardiomyocyte necroptosis through repressing autophagy in myocardial ischemia/reperfusion injury. 2016 , 52, 690-8	31
582	Current state of theoretical and experimental studies of the voltage-dependent anion channel (VDAC). 2016 , 1858, 1778-90	49
581	Sex hormonal regulation of cardiac ion channels in drug-induced QT syndromes. 2016 , 168, 23-28	43
580	The novel heart-specific RING finger protein 207 is involved in energy metabolism in cardiomyocytes. 2016 , 100, 43-53	12
579	Radioprotective 105 kDa protein attenuates ischemia/reperfusion-induced myocardial apoptosis and autophagy by inhibiting the activation of the TLR4/NF- B signaling pathway in rats. 2016 , 38, 885-93	37
578	Reactive oxygen species-mediated cardiac-reperfusion injury: Mechanisms and therapies. 2016 , 165, 43-55	69
577	Novel Insights into the PKCI-dependent Regulation of the Oxidoreductase p66Shc. 2016 , 291, 23557-23568	17
576	Roles of SIRT3 in heart failure: from bench to bedside. 2016 , 17, 821-830	19
575	Guide to the Pharmacology of Mitochondrial Potassium Channels. 2017, 240, 103-127	16
574	KLF5 overexpression attenuates cardiomyocyte inflammation induced by oxygen-glucose deprivation/reperfusion through the PPARIPGC-1#TNF-强ignaling pathway. 2016 , 84, 940-946	15
573	Safety and feasibility of local myocardial hypothermia. 2016 , 87, 877-83	9
572	The transplantation of Akt-overexpressing amniotic fluid-derived mesenchymal stem cells protects the heart against ischemia-reperfusion injury in rabbits. 2016 , 14, 234-42	20
571	Mitochondrial Flash: Integrative Reactive Oxygen Species and pH Signals in Cell and Organelle Biology. 2016 , 25, 534-49	43
570	Ischemic A/D transition of mitochondrial complex I and its role in ROS generation. 2016 , 1857, 946-57	84

569	Mitochondrial sirtuins in the heart. 2016 , 21, 519-28		29
568	Influence of Ischemia-Reperfusion Injury on Cardiac Metabolism. 2016 , 155-167		3
567	A Unifying Mechanism for Mitochondrial Superoxide Production during Ischemia-Reperfusion Injury. 2016 , 23, 254-63		369
566	SIRT6 protects cardiomyocytes against ischemia/reperfusion injury by augmenting FoxO3Edependent antioxidant defense mechanisms. 2016 , 111, 13		75
565	Effect of an Ilex paraguariensis (yerba mate) extract on infarct size in isolated rat hearts: the mechanisms involved. 2016 , 7, 816-24		10
564	KATP Channels in the Cardiovascular System. <i>Physiological Reviews</i> , 2016 , 96, 177-252	7.9	130
563	Preserved recovery of cardiac function following ischemia-reperfusion in mice lacking SIRT3. 2016 , 94, 72-80		35
562	High Glucose Attenuates Anesthetic Cardioprotection in Stem-Cell-Derived Cardiomyocytes: The Role of Reactive Oxygen Species and Mitochondrial Fission. 2016 , 122, 1269-79		15
561	Bakuchiol attenuates myocardial ischemia reperfusion injury by maintaining mitochondrial function: the role of silent information regulator 1. 2016 , 21, 532-45		22
560	Novel targets for mitochondrial medicine. 2016 , 8, 326rv3		80
559	What do we not know about mitochondrial potassium channels?. 2016 , 1857, 1247-1257		79
558	Pyrazolo[3,4-d]pyrimidine based scaffold derivatives targeting kinases as anticancer agents. 2016 , 2, 20-30		28
557	Mg(++) requirement for MtHK binding, and Mg(++) stabilization of mitochondrial membranes via activation of MtHK & MtCK and promotion of mitochondrial permeability transition pore closure: A hypothesis on mechanisms underlying Mg(++)াgantioxidant and cytoprotective effects. 2016 , 581, 1-13		16
556	Cardiomyocyte Ca2+ dynamics: clinical perspectives. 2016 , 50, 65-77		11
555	Succinate dehydrogenase inhibition with malonate during reperfusion reduces infarct size by preventing mitochondrial permeability transition. 2016 , 109, 374-84		80
554	The RSK Inhibitor BIX02565 Limits Cardiac Ischemia/Reperfusion Injury. 2016 , 21, 177-86		5
553	Prospects for Creation of Cardioprotective Drugs Based on Cannabinoid Receptor Agonists. 2016 , 21, 262-72		16
552	Saffron extracts alleviate cardiomyocytes injury induced by doxorubicin and ischemia-reperfusion in vitro. 2016 , 39, 87-96		21

551	Mitochondrial function in hypoxic ischemic injury and influence of aging. 2017 , 157, 92-116	162
550	Endogenous nitric oxide formation in cardiac myocytes does not control respiration during Badrenergic stimulation. 2017 , 595, 3781-3798	10
549	Modulation of the conformational state of mitochondrial complex I as a target for therapeutic intervention. 2017 , 7, 20160104	19
548	Interaction between nitric oxide signaling and gap junctions during ischemic preconditioning: Importance of S-nitrosylation vs. protein kinase G activation. 2017 , 65, 37-42	2
547	Divergent Effects of miR-181 Family Members on Myocardial Function Through Protective Cytosolic and Detrimental Mitochondrial microRNA Targets. 2017 , 6,	52
546	Virus-Mimetic Fusogenic Exosomes for Direct Delivery of Integral Membrane Proteins to Target Cell Membranes. 2017 , 29, 1605604	65
545	Construction of ATP-Switched Allosteric Antioxidant Selenoenzyme. 2017 , 7, 1875-1879	16
544	Nitrite and Nitrate in Ischemia R eperfusion Injury. 2017 , 217-234	
543	The Mitochondrion: A Physiological Target of Nitrite. 2017 , 53-68	1
542	Four Main Active Ingredients Derived from a Traditional Chinese Medicine Guanxin Shutong Capsule Cause Cardioprotection during Myocardial Ischemia Injury Calcium Overload Suppression. 6.7 Phytotherapy Research, 2017 , 31, 507-515	12
541	Exosomal MicroRNA-15a Transfer from the Pancreas Augments Diabetic Complications by Inducing Oxidative Stress. 2017 , 27, 913-930	80
54 ¹ 54 ⁰		80
	Oxidative Stress. 2017 , 27, 913-930 Parathyroid Hormone-Related Peptide: A Novel Endocrine Cardioprotective "Conditioning	1
540	Oxidative Stress. 2017, 27, 913-930 Parathyroid Hormone-Related Peptide: A Novel Endocrine Cardioprotective "Conditioning Mimetic". 2017, 22, 529-537 [Coronary artery disease: Interventional and operative therapeutic options after cardiac arrest].	1
540	Oxidative Stress. 2017, 27, 913-930 Parathyroid Hormone-Related Peptide: A Novel Endocrine Cardioprotective "Conditioning Mimetic". 2017, 22, 529-537 [Coronary artery disease: Interventional and operative therapeutic options after cardiac arrest]. 2017, 42, 138-150	1
540539538	Oxidative Stress. 2017, 27, 913-930 Parathyroid Hormone-Related Peptide: A Novel Endocrine Cardioprotective "Conditioning Mimetic". 2017, 22, 529-537 [Coronary artery disease: Interventional and operative therapeutic options after cardiac arrest]. 2017, 42, 138-150 Development or disease: duality of the mitochondrial permeability transition pore. 2017, 426, 1-7 Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of	1 1 73
540539538537	Oxidative Stress. 2017, 27, 913-930 Parathyroid Hormone-Related Peptide: A Novel Endocrine Cardioprotective "Conditioning Mimetic". 2017, 22, 529-537 [Coronary artery disease: Interventional and operative therapeutic options after cardiac arrest]. 2017, 42, 138-150 Development or disease: duality of the mitochondrial permeability transition pore. 2017, 426, 1-7 Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex III. 2017, 292, 9882-9895	1 73 21

533	Sphingosine 1-Phosphate Postconditioning Protects Against Myocardial Ischemia/reperfusion Injury in Rats via Mitochondrial Signaling and Akt-Gsk3 Phosphorylation. 2017 , 48, 147-155		16
532	Hypercholesterolemia Abrogates Remote Ischemic Preconditioning-Induced Cardioprotection: Role of Reperfusion Injury Salvage Kinase Signals. 2017 , 47, 363-369		24
531	Trimetazidine Protects Cardiomyocytes Against Hypoxia/Reoxygenation Injury by Promoting AMP-activated Protein Kinase-dependent Autophagic Flux. 2017 , 69, 389-397		21
530	Knock-down of farnesyl pyrophosphate synthase protects heart-derived H9c2 cells against hypoxia/reoxygenation-induced injury. 2017 , 41, 982-990		5
529	Mitochondria in Structural and Functional Cardiac Remodeling. 2017, 982, 277-306		36
528	Mitochondrial Proton Leak Plays a Critical Role in Pathogenesis of Cardiovascular Diseases. 2017 , 982, 359-370		68
527	Effects of simulated ischemia on the transmural differences in the Frank-Starling relationship in isolated mouse ventricular cardiomyocytes. 2017 , 130, 323-332		2
526	Exercise: Teaching myocytes new tricks. 2017 , 123, 460-472		13
525	Inhibition of long noncoding RNA BDNF-AS rescues cell death and apoptosis in hypoxia/reoxygenation damaged murine cardiomyocyte. 2017 , 138, 43-49		12
524	Cardioprotective effect of KR-33889, a novel PARP inhibitor, against oxidative stress-induced apoptosis in H9c2 cells and isolated rat hearts. 2017 , 40, 640-654		11
523	Mitochondrial permeability transition in cardiac ischemia-reperfusion: whether cyclophilin D is a viable target for cardioprotection?. 2017 , 74, 2795-2813		56
522	PTPIP51 regulates mouse cardiac ischemia/reperfusion through mediating the mitochondria-SR junction. <i>Scientific Reports</i> , 2017 , 7, 45379	4.9	25
521	Effects and mechanisms of compound Chinese medicine and major ingredients on microcirculatory dysfunction and organ injury induced by ischemia/reperfusion. 2017 , 177, 146-173		77
520	Expert consensus document: Mitochondrial function as a therapeutic target in heart failure. 2017 , 14, 238-250		322
519	The mitochondrial calcium uniporter in the heart: energetics and beyond. 2017, 595, 3743-3751		21
518	Transactivation of the epidermal growth factor receptor in responses to myocardial stress and cardioprotection. 2017 , 83, 97-110		14
517	Suppression of Stim1 reduced intracellular calcium concentration and attenuated hypoxia/reoxygenation induced apoptosis in H9C2 cells. 2017 , 37,		22
516	Phase 2a Clinical Trial of Mitochondrial Protection (Elamipretide) During Stent Revascularization in Patients With Atherosclerotic Renal Artery Stenosis. 2017 , 10,		54

(2017-2017)

515	Pharmacologic Protection of Mitochondrial DNA Integrity May Afford a New Strategy for Suppressing Lung Ischemia-Reperfusion Injury. 2017 , 14, S210-S215	8
514	Multidrug prevention or therapy of ischemia-reperfusion injury of the heart-Mini-review. 2017 , 55, 55-59	14
513	Dual inhibition of cathepsin G and chymase reduces myocyte death and improves cardiac remodeling after myocardial ischemia reperfusion injury. 2017 , 112, 62	36
512	Cardioprotection of stevioside on stunned rat hearts: A mechano-energetical study. 2017 , 35, 18-26	7
511	Angiotensin II-preconditioning is associated with increased PKCIPKCIratio and prosurvival kinases in mitochondria. 2017 , 44, 1201-1212	9
510	BDNF - A key player in cardiovascular system. 2017 , 110, 54-60	60
509	Mitochondrial Sirtuins in cardiometabolic diseases. 2017 , 131, 2063-2078	48
508	Modeling oxygen requirements in ischemic cardiomyocytes. 2017 , 292, 11760-11776	13
507	New and revisited approaches to preserving the reperfused myocardium. 2017 , 14, 679-693	39
506	Analysis of ischemic muscle in patients with peripheral artery disease using X-ray spectroscopy. 2017 , 220, 79-87	7
505	Continuous donor perfusion for heart preservation. 2017 , 46, 15-18	2
504	Cardioprotective effects of 5-hydroxymethylfurfural mediated by inhibition of L-type Ca currents. 2017 , 174, 3640-3653	20
503	Cellular redox dysfunction in the development of cardiovascular diseases. 2017, 1861, 2822-2829	58
502	Investigation of the neuroprotective effects of a novel synthetic compound via the mitochondrial pathway. 2017 , 16, 1133-1138	2
501	The Formin, DIAPH1, is a Key Modulator of Myocardial Ischemia/Reperfusion Injury. 2017, 26, 165-174	16
500	Ginsenoside Rg1 Protects Cardiomyocytes Against Hypoxia/Reoxygenation Injury via Activation of Nrf2/HO-1 Signaling and Inhibition of JNK. 2017 , 44, 21-37	59
499	MICU1 protects against myocardial ischemia/reperfusion injury and its control by the importer receptor Tom70. 2017 , 8, e2923	30
498	Changes in mitochondrial properties may contribute to enhanced resistance to ischemia-reperfusion injury in the diabetic rat heart. 2017 , 95, 969-976	5

497	XuefuZhuyu decoction protected cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy. 2017 , 17, 325	18
496	The modified Yi qi decoction protects cardiac ischemia-reperfusion induced injury in rats. 2017 , 17, 330	4
495	Adenosine receptors: regulatory players in the preservation of mitochondrial function induced by ischemic preconditioning of rat liver. 2017 , 13, 179-190	9
494	Mitochondrial Dysfunction and Myocardial Ischemia-Reperfusion: Implications for Novel Therapies. 2017 , 57, 535-565	188
493	Chronic type-I diabetes could not impede the anti-inflammatory and anti-apoptotic effects of combined postconditioning with ischemia and cyclosporine A in myocardial reperfusion injury. 2017 , 73, 111-120	17
492	Elucidating Mitochondrial Electron Transport Chain Supercomplexes in the Heart During Ischemia-Reperfusion. 2017 , 27, 57-69	53
491	Mechanisms underpinning protection against eccentric exercise-induced muscle damage by ischemic preconditioning. 2017 , 98, 21-27	12
490	Protective effect of N-acetylcysteine activated carbon release microcapsule on myocardial ischemia-reperfusion injury in rats. 2018 , 15, 1809-1818	2
489	Assessment of hypoxia and TNF-alpha´response by a vector with HRE and NF-kappaB response elements. 2017 , 9, 46-54	1
488	-n-butyl Haloperidol Iodide Protects against Hypoxia/Reoxygenation Injury in Cardiac Microvascular Endothelial Cells by Regulating the ROS/MAPK/Egr-1 Pathway. 2016 , 7, 520	15
487	Mitochondrial Bioenergetics in the Metabolic Myopathy Accompanying Peripheral Artery Disease. 2017 , 8, 141	20
486	Puerarin attenuates myocardial hypoxia/reoxygenation injury by inhibiting autophagy via the Akt signaling pathway. 2017 , 15, 3747-3754	23
485	Resveratrol Ameliorates Mitochondrial Elongation via Drp1/Parkin/PINK1 Signaling in Senescent-Like Cardiomyocytes. 2017 , 2017, 4175353	52
484	The Growth Hormone Secretagogue Hexarelin Protects Rat Cardiomyocytes From in vivo Ischemia/Reperfusion Injury Through Interleukin-1 Signaling Pathway. 2017 , 58, 257-263	14
483	Capsaicin Protects Cardiomyocytes against Anoxia/Reoxygenation Injury via Preventing Mitochondrial Dysfunction Mediated by SIRT1. 2017 , 2017, 1035702	21
482	Cardioprotective effects of PKG activation by soluble GC activator, BAY 60-2770, in ischemia-reperfusion-injured rat hearts. 2017 , 12, e0180207	10
481	Metformin attenuates myocardial ischemia-reperfusion injury via up-regulation of antioxidant enzymes. 2017 , 12, e0182777	33
480	Aldose reductase modulates acute activation of mesenchymal markers via the I-catenin pathway during cardiac ischemia-reperfusion. 2017 , 12, e0188981	3

479 Signaling Pathway of □-Adrenergic Receptor in Astrocytes and its Relevance to Brain Edema. **2017**, 257-271

478	2-aminoethoxydiphenyl borate provides an anti-oxidative effect and mediates cardioprotection during ischemia reperfusion in mice. 2017 , 12, e0189948	11
477	Investigation of the neuroprotective effects of Lycium barbarum water extract in apoptotic cells and Alzheimer Midisease mice. 2018 , 17, 3599-3606	14
476	Tilianin Post-Conditioning Attenuates Myocardial Ischemia/Reperfusion Injury via Mitochondrial Protection and Inhibition of Apoptosis. 2017 , 23, 4490-4499	13
475	Effects of diazoxide in experimental acute necrotizing pancreatitis. 2017 , 72, 125-129	2
474	Chinese herbal medicine Xinji pill protects the heart from ischemia/reperfusion injury through the Akt/Nrf2 pathway. 2017 , 16, 1551-1558	5
473	Role of superoxide ion formation in hypothermia/rewarming induced contractile dysfunction in cardiomyocytes. 2018 , 81, 57-64	8
472	Suppression of reactive oxygen species generation in heart mitochondria from anoxic turtles: the role of complex I -nitrosation. 2018 , 221,	27
471	Luteoloside attenuates anoxia/reoxygenation-induced cardiomyocytes injury via mitochondrial pathway mediated by 14-3-3[protein. <i>Phytotherapy Research</i> , 2018 , 32, 1126-1134	15
470	Noncoding RNAs in ischemic stroke: time to translate. 2018 , 1421, 19-36	33
469	Endoplasmic Reticulum Chaperone GRP78 Protects Heart From Ischemia/Reperfusion Injury Through Akt Activation. 2018 , 122, 1545-1554	77
468	Modelling ischemia-reperfusion injury (IRI) using metabolically matured induced pluripotent stem cell-derived cardiomyocytes. 2018 , 2, 026102	23
467	Free Fatty Acid Receptor G-protein-coupled Receptor 40 Mediates Lipid Emulsion-induced Cardioprotection. 2018 , 129, 154-162	10
466	Signaling mediators modulated by cardioprotective interventions in healthy and diabetic myocardium with ischaemia-reperfusion injury. 2018 , 25, 1463-1481	13
465	Expression and significance of Sirt1 in renal allografts at the early stage of chronic renal allograft dysfunction. <i>Transplant Immunology</i> , 2018 , 48, 18-25	6
464	Sodium thiosulfate mediated cardioprotection against myocardial ischemia-reperfusion injury is defunct in rat heart with co-morbidity of vascular calcification. 2018 , 147, 80-88	3
463	ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. 2018 , 117, 76-89	323
462	Enhanced Cardiac S100A1 Expression Improves Recovery from Global Ischemia-Reperfusion Injury. 2018 , 11, 236-245	7

461	Pharmacologic inhibition of the mitochondrial Na/Ca exchanger protects against ventricular arrhythmias in a porcine model of ischemia-reperfusion. 2018 , 59, 217-222	6
460	The effect of reactive oxygen species on cardiomyocyte differentiation of pluripotent stem cells. 2018 , 52, 150-158	12
459	Phosphorylation of protein kinase A (PKA) regulatory subunit RIĐy protein kinase G (PKG) primes PKA for catalytic activity in cells. 2018 , 293, 4411-4421	15
458	Hypothermia augments stress response in mammalian cells. 2018 , 121, 157-168	9
457	The effect of rutin on ovarian ischemia-reperfusion injury in a rat model. 2018 , 34, 809-814	20
456	Mitochondrial Disruption in Cardiovascular Diseases. 2018 , 241-267	
455	Inhibition of Na/H Exchanger With EMD 87580 does not Confer Greater Cardioprotection Beyond Preconditioning on Ischemia-Reperfusion Injury in Normal Dogs. 2018 , 23, 254-269	7
454	Myrtenol protects against myocardial ischemia-reperfusion injury through antioxidant and anti-apoptotic dependent mechanisms. 2018 , 111, 557-566	24
453	Asiatic acid ameliorates hepatic ischemia/reperfusion injury in rats via mitochondria-targeted protective mechanism. 2018 , 338, 214-223	16
452	HAX-1 regulates SERCA2a oxidation and degradation. 2018 , 114, 220-233	14
451	TDCPP protects cardiomyocytes from hypoxia-reoxygenation injury induced apoptosis through mitigating calcium overload and promotion GSK-3 phosphorylation. 2018 , 92, 39-45	10
450	Molecular mechanisms of autophagy in cardiac ischemia/reperfusion injury (Review). 2018 , 18, 675-683	20
449	Clinical manifestations and basic mechanisms of myocardial ischemia/reperfusion injury. 2018, 30, 209-215	38
448	Exercise-Induced Cardioprotection via eNOS: A Putative Role of Red Blood Cell Signaling. 2018, 25, 4457-447	4 12
447	OBSOLETE: Mitochondria Bioenergetics in the Heart. 2018,	
446	Asiatic acid protests against myocardial ischemia/reperfusion injury via modulation of glycometabolism in rat cardiomyocyte. 2018 , 12, 3573-3582	10
445	Mitochondrial Bioenergetics in the Heart. 2018 , 365-380	
444	A modified method for isolation of human cardiomyocytes to model cardiac diseases. 2018 , 16, 288	28

(2018-2018)

443	Inhibition of TRAF3 expression alleviates cardiac ischemia reperfusion (IR) injury: A mechanism involving in apoptosis, inflammation and oxidative stress. 2018 , 506, 298-305		15	
442	Resistance exercise mediates remote ischemic preconditioning by limiting cardiac eNOS uncoupling. 2018 , 125, 61-72		15	
441	Treatment with placental growth factor attenuates myocardial ischemia/reperfusion injury. 2018 , 13, e0202772		6	
440	Integrative analysis of differentially expressed genes and miRNAs predicts complex T3-mediated protective circuits in a rat model of cardiac ischemia reperfusion. <i>Scientific Reports</i> , 2018 , 8, 13870	4.9	15	
439	Hydrogen Sulfide Alleviates Acute Myocardial Ischemia Injury by Modulating Autophagy and Inflammation Response under Oxidative Stress. 2018 , 2018, 3402809		23	
438	Structure of voltage-dependent anion channel-tethered bilayer lipid membranes determined using neutron reflectivity. 2018 , 74, 1219-1232		5	
437	Shengmai injection reduces apoptosis and enhances angiogenesis after myocardial ischaemia and reperfusion injury in rats. 2018 , 104, 629-636		17	
436	Effect of Geranylgeranyl Pyrophosphate Synthase on Hypoxia/Reoxygenation-Induced Injury in Heart-Derived H9c2 Cells. 2018 , 59, 821-828		3	
435	Mitochondrial Permeability Transition Pore and Calcium Handling. <i>Methods in Molecular Biology</i> , 2018 , 1782, 187-196	1.4	15	
434	PEDF improves cardiac function in rats subjected to myocardial ischemia/reperfusion injury by inhibiting ROS generation via PEDF-R. 2018 , 41, 3243-3252		23	
433	Characters of Ischemic Stroke and Recanalization Arteries. 2018, 15-34			
432	Protective Effects of Shenfu Injection against Myocardial Ischemia-Reperfusion Injury via Activation of eNOS in Rats. 2018 , 41, 1406-1413		16	
431	Cucurbitacin I Protects H9c2 Cardiomyoblasts against HO-Induced Oxidative Stress via Protection of Mitochondrial Dysfunction. 2018 , 2018, 3016382		12	
430	Mitochondrial inner membrane protein (mitofilin) knockdown induces cell death by apoptosis via an AIF-PARP-dependent mechanism and cell cycle arrest. 2018 , 315, C28-C43		32	
429	Role of the TRPM4 Channel in Cardiovascular Physiology and Pathophysiology. Cells, 2018, 7,	7.9	20	
428	Mitochondria "THE" target of myocardial conditioning. 2018 , 315, H1215-H1231		45	
427	Intermediary metabolism and fatty acid oxidation: novel targets of electron transport chain-driven injury during ischemia and reperfusion. 2018 , 314, H787-H795		16	
426	Benzolamide perpetuates acidic conditions during reperfusion and reduces myocardial ischemia-reperfusion injury. 2018 , 125, 340-352		9	

425	-n-Butyl Haloperidol Iodide, a Derivative of the Anti-psychotic Haloperidol, Antagonizes Hypoxia/Reoxygenation Injury by Inhibiting an Egr-1/ROS Positive Feedback Loop in H9c2 Cells. 2018 , 9, 19	9
424	The Natural Flavone Acacetin Confers Cardiomyocyte Protection Against Hypoxia/Reoxygenation Injury via AMPK-Mediated Activation of Nrf2 Signaling Pathway. 2018 , 9, 497	40
423	Icariin protects cardiomyocytes against ischaemia/reperfusion injury by attenuating sirtuin 1-dependent mitochondrial oxidative damage. 2018 , 175, 4137-4153	40
422	Rac1 promotes the survival of H9c2 cells during serum deficiency targeting JNK/c-JUN/Cyclin-D1 and AKT2/MCL1 pathways. 2018 , 15, 1062-1071	9
421	Mitophagy in Cardiomyocytes and in Platelets: A Major Mechanism of Cardioprotection Against Ischemia/Reperfusion Injury. <i>Physiology</i> , 2018 , 33, 86-98	28
420	Transplantation of Hearts Donated after Circulatory Death. 2018 , 5, 8	43
419	ItMAll about Timing: The Involvement of Kir4.1 Channel Regulation in Acute Ischemic Stroke Pathology. 2018 , 12, 36	12
418	Cyclosporine-insensitive mode of cell death after prolonged myocardial ischemia: Evidence for sarcolemmal permeabilization as the pivotal step. 2018 , 13, e0200301	2
417	Mitochondrial bioenergetics and cardiolipin alterations in myocardial ischemia-reperfusion injury: implications for pharmacological cardioprotection. 2018 , 315, H1341-H1352	46
416	Inhibition of Postinfarction Ventricular Remodeling by High Molecular Weight Polyethylene Glycol. 2018 , 232, 171-178	1
415	Heart specific knockout of Ndufs4 ameliorates ischemia reperfusion injury. 2018 , 123, 38-45	21
414	The Hippo pathway in the heart: pivotal roles in development, disease, and regeneration. 2018, 15, 672-684	144
413	Overexpression of farnesyl pyrophosphate synthase increases myocardial ischemia/reperfusion injury in mice. 2018 , 672, 72-78	2
412	Programmed necrosis in cardiomyocytes: mitochondria, death receptors and beyond. 2019 , 176, 4319-4339	28
411	TRPV4 increases cardiomyocyte calcium cycling and contractility yet contributes to damage in the aged heart following hypoosmotic stress. 2019 , 115, 46-56	29
410	The protective role of curcumin in myocardial ischemia-reperfusion injury. 2018 , 234, 214-222	65
409	Guidelines for evaluating myocardial cell death. 2019 , 317, H891-H922	63
408	Fundamental Mechanisms of Regulated Cell Death and Implications for Heart Disease. <i>Physiological Reviews</i> , 2019 , 99, 1765-1817	221

407	BOARD INVITED REVIEW: Oxidative stress and efficiency: the tightrope act of mitochondria in health and disease1,2. 2019 , 97, 3169-3179		8
406	Role of Cardiolipin in Mitochondrial Function and Dynamics in Health and Disease: Molecular and Pharmacological Aspects. <i>Cells</i> , 2019 , 8,	7.9	108
405	Roles and mechanisms of SUMOylation on key proteins in myocardial ischemia/reperfusion injury. 2019 , 134, 154-164		17
404	NDUFAB1 confers cardio-protection by enhancing mitochondrial bioenergetics through coordination of respiratory complex and supercomplex assembly. 2019 , 29, 754-766		33
403	Systems Network Genomic Analysis Reveals Cardioprotective Effect of MURC/Cavin-4 Deletion Against Ischemia/Reperfusion Injury. 2019 , 8, e012047		6
402	Myocardial death and dysfunction after ischemia-reperfusion injury require CaMKIID xidation. <i>Scientific Reports</i> , 2019 , 9, 9291	4.9	14
401	MicroRNA-374a protects against myocardial ischemia-reperfusion injury in mice by targeting the MAPK6 pathway. 2019 , 232, 116619		38
400	Chemical fingerprint of Bacopa monnieri L. and Rosmarinus officinalis L. and their neuroprotective activity against Alzheimers disease in rat models putative modulation via cholinergic and monoaminergic pathways. 2019 , 13, 252-268		3
399	Tiotropium bromide, a long acting muscarinic receptor antagonist triggers intracellular calcium signalling in the heart. 2019 , 384, 114778		4
398	Ischemia/Reperfusion Injury Revisited: An Overview of the Latest Pharmacological Strategies. 2019 , 20,		88
397	Cilostazol Promotes Angiogenesis and Increases Cell Proliferation After Myocardial Ischemia-Reperfusion Injury Through a cAMP-Dependent Mechanism. 2019 , 10, 638-647		8
396	Ferroptosis in Health and Disease. 2019 ,		1
395	Involvement of EGlutamyl Transpeptidase in Ischemia/Reperfusion-Induced Cardiac Dysfunction in Isolated Rat Hearts. 2019 , 42, 1947-1952		3
394	The TRPA1 Channel in the Cardiovascular System: Promising Features and Challenges. 2019 , 10, 1253		15
393	Ginkgolide B for Myocardial Ischemia/Reperfusion Injury: A Preclinical Systematic Review and Meta-Analysis. 2019 , 10, 1292		4
392	Interventional Therapies for Post-Cardiac Arrest Patients Suffering from Coronary Artery Disease. 2019 ,		
391	Cardioprotective effects of idebenone do not involve ROS scavenging: Evidence for mitochondrial complex I bypass in ischemia/reperfusion injury. 2019 , 135, 160-171		8
390	Mitochondrial morphology regulates organellar Ca uptake and changes cellular Ca homeostasis. 2019 , 33, 13176-13188		42

389	CaMKII Activity in the Inflammatory Response of Cardiac Diseases. 2019, 20,		30
388	Growth Hormone Secretagogues and the Regulation of Calcium Signaling in Muscle. 2019 , 20,		3
387	Cardioprotective effects of galectin-3 inhibition against ischemia/reperfusion injury. 2019 , 863, 172701		8
386	Phospholipase D and the Mitogen Phosphatidic Acid in Human Disease: Inhibitors of PLD at the Crossroads of Phospholipid Biology and Cancer. 2020 , 259, 89-113		3
385	In vivo gum arabic-coated tetrahydrobiopterin protects against myocardial ischemia reperfusion injury by preserving eNOS coupling. 2019 , 219, 294-302		3
384	Working with Hypoxia. <i>Methods in Molecular Biology</i> , 2019 , 1990, 109-133	1.4	1
383	CARD9 inhibits mitochondria-dependent apoptosis of cardiomyocytes under oxidative stress via interacting with Apaf-1. 2019 , 141, 172-181		16
382	Progress in the emerging role of selenoproteins in cardiovascular disease: focus on endoplasmic reticulum-resident selenoproteins. 2019 , 76, 3969-3985		35
381	Curcumin for the prevention of myocardial injury following elective percutaneous coronary intervention; a pilot randomized clinical trial. 2019 , 858, 172471		9
380	Developmental plasticity of cardiac anoxia-tolerance in juvenile common snapping turtles (Chelydra serpentina). 2019 , 286, 20191072		8
379	Redox-Mediated Signal Transduction. Methods in Molecular Biology, 2019,	1.4	1
378	A review for the neuroprotective effects of andrographolide in the central nervous system. 2019 , 117, 109078		45
377	P66shc and its role in ischemic cardiovascular diseases. 2019 , 114, 29		23
376	Intermittent Hypoxia Prevents Myocardial Mitochondrial Ca Overload and Cell Death during Ischemia/Reperfusion: The Role of Reactive Oxygen Species. <i>Cells</i> , 2019 , 8,	7.9	34
375	Primary mechanical unloading in high-risk myocardial infarction: Perspectives in view of a paradigm shift. 2019 , 293, 32-38		1
374	Proteostasis and Beyond: ATF6 in Ischemic Disease. 2019 , 25, 538-550		33
373	MiR-423-5p inhibition alleviates cardiomyocyte apoptosis and mitochondrial dysfunction caused by hypoxia/reoxygenation through activation of the wnt/I-catenin signaling pathway via targeting MYBL2. 2019 , 234, 22034-22043		25
372	The greater effect of high-intensity interval training versus moderate-intensity continuous training on cardioprotection against ischemia-reperfusion injury through Klotho levels and attenuate of myocardial TRPC6 expression. 2019 , 19, 118		10

(2019-2019)

371	ischemia reperfusion injury through inhibiting ERS-mediated neurons apoptosis in the hippocampus. 2019 , 370, 111952	11
370	Cardiovascular Manifestations of Mitochondrial Disease. 2019 , 8,	7
369	Pre-treatment with a combination of Shenmai and Danshen injection protects cardiomyocytes against hypoxia/reoxygenation- and HO-induced injury by inhibiting mitochondrial permeability transition pore opening. 2019 , 17, 4643-4652	6
368	Mitophagy and mitochondrial integrity in cardiac ischemia-reperfusion injury. 2019 , 1865, 2293-2302	89
367	Modulating autophagy in mesenchymal stem cells effectively protects against hypoxia- or ischemia-induced injury. 2019 , 10, 120	35
366	The Cardioprotective Signaling Activity of Activated Protein C in Heart Failure and Ischemic Heart Diseases. 2019 , 20,	10
365	The Ishemia Reperfusion Injury Challenge. 2019 , 87-103	
364	Cell Death: Many Causes and Many Effects. 2019 , 105-149	
363	HDAC inhibition induces autophagy and mitochondrial biogenesis to maintain mitochondrial homeostasis during cardiac ischemia/reperfusion injury. 2019 , 130, 36-48	33
362	Propofol Alleviates DNA Damage Induced by Oxygen Glucose Deprivation and Reperfusion FoxO1 Nuclear Translocation in H9c2 Cells. 2019 , 10, 223	7
361	In vitro cardiotoxicity evaluation of graphene oxide. 2019 , 841, 8-13	17
360	Slow Ca Efflux by Ca/H Exchange in Cardiac Mitochondria Is Modulated by Ca Re-uptake via MCU, Extra-Mitochondrial pH, and H Pumping by FF-ATPase. 2018 , 9, 1914	9
359	Resveratrol alleviates hypoxia/reoxygenation injury-induced mitochondrial oxidative stress in cardiomyocytes. 2019 , 19, 2774-2780	15
358	Nicotinamide adenine dinucleotide emerges as a therapeutic target in aging and ischemic conditions. 2019 , 20, 381-395	12
357	Cardiomyocyte-GSK-3\promotes mPTP opening and heart failure in mice with chronic pressure overload. 2019 , 130, 65-75	13
356	Nanoparticle incorporating Toll-like receptor 4 inhibitor attenuates myocardial ischaemia-reperfusion injury by inhibiting monocyte-mediated inflammation in mice. 2019 , 115, 1244-1255	30
355	Things get broken: the hypoxia-inducible factor prolyl hydroxylases in ischemic heart disease. 2019 , 114, 16	28
354	Chronology of critical events in neonatal rat ventricular myocytes occurring during reperfusion after simulated ischemia. 2019 , 14, e0212076	

353	Mitochondrial dynamics modulation as a critical contribution for Shenmai injection in attenuating hypoxia/reoxygenation injury. 2019 , 237, 9-19	25
352	Sumatriptan protects against myocardial ischaemia-reperfusion injury by inhibition of inflammation in rat model. 2019 , 27, 1071-1080	14
351	Trans sodium crocetinate alleviates ischemia/reperfusion-induced myocardial oxidative stress and apoptosis via the SIRT3/FOXO3a/SOD2 signaling pathway. 2019 , 71, 361-371	25
350	Cardioprotective Effects of Beta3-Adrenergic Receptor (IB-AR) Pre-, Per-, and Post-treatment in Ischemia-Reperfusion. 2019 , 33, 163-177	7
349	Melatonin has profound effects on mitochondrial dynamics in myocardial ischaemia/reperfusion. 2019 , 5, e02659	13
348	Mitochondrial dysfunction and oxidative stress in heart disease. 2019 , 51, 1-13	168
347	Astaxanthin Inhibits Mitochondrial Permeability Transition Pore Opening in Rat Heart Mitochondria. <i>Antioxidants</i> , 2019 , 8,	15
346	lncRNA AK054386 Functions as a ceRNA to Sequester miR-199 and Induce Sustained Endoplasmic Reticulum Stress in Hepatic Reperfusion Injury. 2019 , 2019, 8189079	7
345	Optical Imaging Approaches to Investigating Radiation Resistance. 2019 , 9, 1152	4
344	miR-181c Activates Mitochondrial Calcium Uptake by Regulating MICU1 in the Heart. 2019 , 8, e012919	15
343	Mitochondrial Dysfunction and Apoptosis Are Attenuated on Expioid Receptor Activation Through AMPK/GSK-3 Pathway After Myocardial Ischemia and Reperfusion. 2019 , 73, 70-81	6
342	The regulation and function of the Hippo pathway in heart regeneration. 2019 , 8, e335	17
341	TDCPP protects cardiomyocytes from HO-induced injuries via activating PI3K/Akt/GSK3[]signaling pathway. 2019 , 453, 53-64	4
340	Oxidative metabolism and efficiency: the delicate balancing act of mitochondria. 2019 , 98, 4223-4230	19
339	Regional Ischemic Preconditioning Has Clinical Value in Cirrhotic HCC Through MAPK Pathways. 2019 , 23, 1767-1777	4
338	Mitochondrial quality control as a key determinant of cell survival. 2019 , 1866, 575-587	47
337	Involvement of sphingosine-1-phosphate receptors 2/3 in IR-induced sudden cardiac death. 2019 , 34, 1052-1063	3
336	Sappanone A prevents hypoxia-induced injury in PC-12 cells by down-regulation of miR-15a. 2019 , 123, 35-41	5

(2020-2019)

335	Heme oxygenase-1 ameliorates hypoxia/reoxygenation via suppressing apoptosis and enhancing autophagy and cell proliferation though Sirt3 signaling pathway in H9c2 cells. 2019 , 392, 189-198	6
334	Involvement of Nrf2 in myocardial ischemia and reperfusion injury. 2019 , 125, 496-502	85
333	Effect of olprinone on ischemia-reperfusion induced myocardial injury in rats. 2019, 111, 1005-1012	4
332	Pharmacologic ATF6 activation confers global protection in widespread disease models by reprograming cellular proteostasis. 2019 , 10, 187	83
331	Peroxynitrite nitrates adenine nucleotide translocase and voltage-dependent anion channel 1 and alters their interactions and association with hexokinase II in mitochondria. 2019 , 46, 380-392	19
330	Cyclophilin D phosphorylation is critical for mitochondrial calcium uniporter regulated permeability transition pore sensitivity. 2019 , 115, 261-263	6
329	The dual role of KCNQ/M channels upon OGD or OGD/R insults in cultured cortical neurons of mice: Timing is crucial in targeting M-channels against ischemic injur ies. 2019 , 234, 12714-12726	2
328	Stomatin-like protein-2 relieve myocardial ischemia/reperfusion injury by adenosine 5Mmonophosphate-activated protein kinase signal pathway. 2018 , 120, 2323	2
327	Hypoxia-inducible factor 1 signalling, metabolism and its therapeutic potential in cardiovascular disease. 2019 , 1865, 831-843	37
326	STIM2 knockdown protects against ischemia/reperfusion injury through reducing mitochondrial calcium overload and preserving mitochondrial function. 2020 , 247, 116560	7
325	MicroRNA-19a attenuates hypoxia-induced cardiomyocyte apoptosis by downregulating NHE-1 expression and decreasing calcium overload. 2020 , 121, 1747-1758	4
324	Mitochondrial ROS production during ischemia-reperfusion injury. 2020 , 513-538	2
323	The critical roles of protein quality control systems in the pathogenesis of heart failure. 2020 , 75, 219-227	3
322	Interleukin 35 ameliorates myocardial ischemia-reperfusion injury by activating the gp130-STAT3 axis. 2020 , 34, 3224-3238	7
321	Xuefu Zhuyu Oral Liquid () Prevents Apoptosis of Ischemic Myocardium Cells in Rats by Regulating SIRT1 and Its Pathway-Related Genes. 2020 , 26, 442-447	4
320	A frog antioxidant peptide protects against myocardial ischemia reperfusion injury in rats. 2020 , 13, 45-53	O
319	Itaconate modulates tricarboxylic acid and redox metabolism to mitigate reperfusion injury. 2020 , 32, 122-135	49
318	Therapeutic Strategies for Regulating Mitochondrial Oxidative Stress. 2020 , 10,	16

317	MiR-137-3p exacerbates the ischemia-reperfusion injured cardiomyocyte apoptosis by targeting KLF15. 2020 , 393, 1013-1024	7
316	ROS and diseases: role in metabolism and energy supply. 2020 , 467, 1-12	91
315	Brusatol Protects HepG2 Cells against Oxygen-Glucose Deprivation-Induced Injury via Inhibiting Mitochondrial Reactive Oxygen Species-Induced Oxidative Stress. 2020 , 105, 416-423	2
314	Comparative pharmacokinetics of quercitrin, astragalin, afzelin and taxifolin in plasma after oral administration of inflorescence in sham-operated and myocardial ischemia-reperfusion injury rats. 2020 , 50, 822-830	1
313	Di-(2-ethyl hexyl) phthalate induces necroptosis in chicken cardiomyocytes by triggering calcium overload. 2020 , 387, 121696	27
312	Regulated rutin co-administration reverses mitochondrial-mediated apoptosis in Plasmodium berghei-infected mice. 2020 , 522, 328-334	9
311	Isoespintanol, a monoterpene isolated from oxandra cf xylopioides, ameliorates the myocardial ischemia-reperfusion injury by AKT/PKC/LeNOS-dependent pathways. 2020 , 393, 629-638	3
310	Ginsenoside Rg3-loaded, reactive oxygen species-responsive polymeric nanoparticles for alleviating myocardial ischemia-reperfusion injury. 2020 , 317, 259-272	43
309	Low density lipoprotein receptor related protein 6 (LRP6) protects heart against oxidative stress by the crosstalk of HSF1 and GSK3 Redox Biology, 2020 , 37, 101699	5
308	Dissecting Cellular Mechanisms of Long-Chain Acylcarnitines-Driven Cardiotoxicity: Disturbance of Calcium Homeostasis, Activation of Ca-Dependent Phospholipases, and Mitochondrial Energetics Collapse. 2020 , 21,	5
307	Therapeutic Hypothermia in STEMI. 2021 , 29, 77-84	1
306	MiR-219a-2 relieves myocardial ischemia-reperfusion injury by reducing calcium overload and cell apoptosis through HIF1∄NMDAR pathway. 2020 , 395, 112172	6
305	The cardiolipin-binding peptide elamipretide mitigates fragmentation of cristae networks following cardiac ischemia reperfusion in rats. 2020 , 3, 389	16
304	Ester Prodrugs of Malonate with Enhanced Intracellular Delivery Protect Against Cardiac Ischemia-Reperfusion Injury In Vivo. 2020 , 1	10
303	Long Noncoding RNA/Circular RNA-miRNA-mRNA Axes in Ischemia-Reperfusion Injury. 2020 , 2020, 8838524	11
302	Protective Effects of Polyphenols against Ischemia/Reperfusion Injury. 2020 , 25,	12
301	p53 isoform 🛮 13p53 promotes zebrafish heart regeneration by maintaining redox homeostasis. 2020 , 11, 568	6
300	Curculigoside attenuates myocardial ischemia-reperfusion injury by inhibiting the opening of the mitochondrial permeability transition pore. 2020 , 45, 1514-1524	8

299	Monocyte recruitment and fate specification after myocardial infarction. 2020, 319, C797-C806		4
298	Exosomes secreted by hiPSC-derived cardiac cells improve recovery from myocardial infarction in swine. 2020 , 12,		43
297	Calenduloside E suppresses calcium overload by promoting the interaction between L-type calcium channels and Bcl2-associated athanogene 3 to alleviate myocardial ischemia/reperfusion injury 2021 , 34, 173-186		1
296	Diazoxide blocks or reduces microgliosis when applied prior or subsequent to motor neuron injury in mice. 2020 , 1741, 146875		2
295	Is MCU dispensable for normal heart function?. 2020 , 143, 175-183		5
294	Small Molecule from Natural Phytochemical Mimics Dietary Restriction by Modulating FoxO3a and Metabolic Reprogramming. 2020 , 4, e1900248		2
293	Targeting Calcium Homeostasis in Myocardial Ischemia/Reperfusion Injury: An Overview of Regulatory Mechanisms and Therapeutic Reagents. 2020 , 11, 872		15
292	Knockdown of miR-665 Protects Against Cardiomyocyte Ischemia/Reperfusion Injury-Induced ROS Accumulation and Apoptosis Through the Activation of Pak1/Akt Signaling in Myocardial Infarction. 2020 , 61, 347-354		10
291	Action of iron chelator on intramyocardial hemorrhage and cardiac remodeling following acute myocardial infarction. 2020 , 115, 24		12
290	Designing Novel Therapies to Mend Broken Hearts: ATF6 and Cardiac Proteostasis. <i>Cells</i> , 2020 , 9,	7.9	2
290 289	Designing Novel Therapies to Mend Broken Hearts: ATF6 and Cardiac Proteostasis. <i>Cells</i> , 2020 , 9, Sphingosine 1-phosphate signaling in ischemia and reperfusion injury. 2020 , 149, 106436	7.9	14
		7.9	
289	Sphingosine 1-phosphate signaling in ischemia and reperfusion injury. 2020 , 149, 106436	7.9	14
289	Sphingosine 1-phosphate signaling in ischemia and reperfusion injury. 2020, 149, 106436 Nesfatin-1 in cardiovascular orchestration: From bench to bedside. 2020, 156, 104766 CARD9 promotes autophagy in cardiomyocytes in myocardial ischemia/reperfusion injury via	7.9	14 9
289 288 287	Sphingosine 1-phosphate signaling in ischemia and reperfusion injury. 2020, 149, 106436 Nesfatin-1 in cardiovascular orchestration: From bench to bedside. 2020, 156, 104766 CARD9 promotes autophagy in cardiomyocytes in myocardial ischemia/reperfusion injury via interacting with Rubicon directly. 2020, 115, 29	7.9	14 9 27
289 288 287 286	Sphingosine 1-phosphate signaling in ischemia and reperfusion injury. 2020, 149, 106436 Nesfatin-1 in cardiovascular orchestration: From bench to bedside. 2020, 156, 104766 CARD9 promotes autophagy in cardiomyocytes in myocardial ischemia/reperfusion injury via interacting with Rubicon directly. 2020, 115, 29 Extracellular vesicles for treatment of solid organ ischemia-reperfusion injury. 2020, 20, 3294-3307 The Commonalities and Differences in Mitochondrial Dysfunction Between and Myocardial Global	7.9	14 9 27
289 288 287 286 285	Sphingosine 1-phosphate signaling in ischemia and reperfusion injury. 2020, 149, 106436 Nesfatin-1 in cardiovascular orchestration: From bench to bedside. 2020, 156, 104766 CARD9 promotes autophagy in cardiomyocytes in myocardial ischemia/reperfusion injury via interacting with Rubicon directly. 2020, 115, 29 Extracellular vesicles for treatment of solid organ ischemia-reperfusion injury. 2020, 20, 3294-3307 The Commonalities and Differences in Mitochondrial Dysfunction Between and Myocardial Global Ischemia Rat Heart Models: Implications for Donation After Circulatory Death Research. 2020, 11, 681 Surviving anoxia: the maintenance of energy production and tissue integrity during anoxia and	7.9	14 9 27 14 6

281	Cardiac complex II activity is enhanced by fat and mediates greater mitochondrial oxygen consumption following hypoxic re-oxygenation. 2020 , 472, 367-374	4
2 80	High-intensity interval training increases myocardial levels of Klotho and protects the heart against ischaemia-reperfusion injury. 2020 , 105, 652-665	5
279	Disturbance of bioenergetics and calcium homeostasis provoked by metabolites accumulating in propionic acidemia in heart mitochondria of developing rats. 2020 , 1866, 165682	5
278	Pharmacological Preconditioning Using Diazoxide Regulates Store-Operated Ca Channels in Adult Rat Cardiomyocytes. 2019 , 10, 1589	4
277	Role of Mitochondrial Calcium and the Permeability Transition Pore in Regulating Cell Death. 2020 , 126, 280-293	83
276	Cardioprotection in right heart failure. 2020 , 177, 5413-5431	4
275	Mitochondrial Quality Control: Role in Cardiac Models of Lethal Ischemia-Reperfusion Injury. <i>Cells</i> , 2020 , 9,	28
274	Astaxanthin Protects PC12 Cells against Homocysteine- and Glutamate-Induced Neurotoxicity. 2020 , 25,	7
273	25-Hydroxycholesterol protects against myocardial ischemia-reperfusion injury via inhibiting PARP activity. 2020 , 16, 298-308	8
272	Dexmedetomidine alleviates HO-induced oxidative stress and cell necroptosis through activating of \$\frac{1}{2}\$-adrenoceptor in H9C2 cells. 2020 , 47, 3629-3639	7
271	Low abundance of NDUFV2 and NDUFS4 subunits of the hydrophilic complex I domain and VDAC1 predicts mammalian longevity. <i>Redox Biology</i> , 2020 , 34, 101539	11
270	New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury. 2020 , 23, 299-314	110
269	Protecting Mechanisms of Saffron Extract Against Doxorubicin Toxicity in Ischemic Heart. 2020 , 141-154	1
268	Mitochondrial ROS in myocardial ischemia reperfusion and remodeling. 2020 , 1866, 165768	75
267	Exercise training protects the heart against ischemia-reperfusion injury: A central role for mitochondria?. 2020 , 152, 395-410	9
266	Mitochondrial quality control in cardiac microvascular ischemia-reperfusion injury: New insights into the mechanisms and therapeutic potentials. 2020 , 156, 104771	74
265	Aldehyde Dehydrogenase 2 Protects Against Post-Cardiac Arrest Myocardial Dysfunction Through a Novel Mechanism of Suppressing Mitochondrial Reactive Oxygen Species Production. 2020 , 11, 373	13
264	Ezetimibe Prevents Ischemia/Reperfusion-Induced Oxidative Stress and Up-Regulates Nrf2/ARE and UPR Signaling Pathways. <i>Antioxidants</i> , 2020 , 9, 7.1	3

(2021-2020)

263	Slit2 Protects Hearts Against Ischemia-Reperfusion Injury by Inhibiting Inflammatory Responses and Maintaining Myofilament Contractile Properties. 2020 , 11, 228		7
262	Discovery of novel TNNI3K inhibitor suppresses pyroptosis and apoptosis in murine myocardial infarction injury. 2020 , 197, 112314		7
261	GRP78 effectively protect hypoxia/reperfusion-induced myocardial apoptosis via promotion of the Nrf2/HO-1 signaling pathway. 2021 , 236, 1228-1236		11
260	Anti-inflammatory effects of cordycepin: A review. <i>Phytotherapy Research</i> , 2020 , 35, 1284 6.	7	10
259	Activated PKB/GSK-3 synergizes with PKC- signaling in attenuating myocardial ischemia/reperfusion injury potentiation of NRF2 activity: Therapeutic efficacy of dihydrotanshinone-I. 2021 , 11, 71-88		11
258	CXCL6 regulates cell permeability, proliferation, and apoptosis after ischemia-reperfusion injury by modulating Sirt3 expression via AKT/FOXO3a activation. 2021 , 22, 30-39		3
257	LncRNA TUG1 competitively binds to miR-340 to accelerate myocardial ischemia-reperfusion injury. 2021 , 35, e21163		6
256	Downregulation of the zinc transporter SLC39A13 (ZIP13) is responsible for the activation of CaMKII at reperfusion and leads to myocardial ischemia/reperfusion injury in mouse hearts. 2021 , 152, 69-79		4
255	Comparative pharmacokinetics of seven bioactive components in normal, sham-operated, and myocardial ischemia-reperfusion injury rats after oral administration of the Salvia Miltiorrhiza-Moutan Cortex herb pair. 2021 , 35, e5016		3
254	Protective effects of natural compounds against oxidative stress in ischemic diseases and cancers via activating the Nrf2 signaling pathway: A mini review. 2021 , 35, e22658		6
253	Phosphoglycerate mutase 5 exacerbates cardiac ischemia-reperfusion injury through disrupting mitochondrial quality control. <i>Redox Biology</i> , 2021 , 38, 101777	3	32
252	miR-98-5p protects against cerebral ischemia/reperfusion injury through anti-apoptosis and anti-oxidative stress in mice. 2021 , 169, 195-206		7
251	Hemorrhage promotes chronic adverse remodeling in acute myocardial infarction: a T , T and BOLD study. 2021 , 34, e4404		2
250	Considerations for the Bioengineering of Advanced Cardiac In Vitro Models of Myocardial Infarction. <i>Small</i> , 2021 , 17, e2003765		7
249	Proteomic analysis reveals ginsenoside Rb1 attenuates myocardial ischemia/reperfusion injury through inhibiting ROS production from mitochondrial complex I. 2021 , 11, 1703-1720		28
248	Role of Apoptotic Cell Clearance in Pneumonia and Inflammatory Lung Disease. 2021 , 10,		8
247	Role of FoxO transcription factors in aging-associated cardiovascular diseases. 2021 , 115, 449-475		2
246	High-fat diet activates liver iPLAlbenerating eicosanoids that mediate metabolic stress. 2021 , 62, 100052		2

245	Reactive oxygen species (ROS): utilizing injectable antioxidative hydrogels and ROS-producing therapies to manage the double-edged sword. 2021 , 9, 6326-6346	6
244	Characterization of novel lncRNAs in upper thoracic spinal cords of rats with myocardial ischemia-reperfusion injuries. 2021 , 21, 352	1
243	Key Enzymes for the Mevalonate Pathway in the Cardiovascular System. 2021 , 77, 142-152	1
242	Liraglutide preconditioning attenuates myocardial ischemia/ reperfusion injury via homer1 activation. 2021 , 13, 6625-6633	1
241	The Potential of Hydrogen Sulfide Donors in Treating Cardiovascular Diseases. 2021 , 22,	6
240	Fabrication and characterization of a thick, viable bi-layered stem cell-derived surrogate for future myocardial tissue regeneration. 2020 ,	3
239	Discovery of new therapeutic redox targets for cardioprotection against ischemia/reperfusion injury and heart failure. 2021 , 163, 325-343	15
238	Cardiometabolism as an Interlocking Puzzle between the Healthy and Diseased Heart: New Frontiers in Therapeutic Applications. 2021 , 10,	5
237	The growing landscape of succinylation links metabolism and heart disease. 2021 , 13, 319-333	3
236	Cardioprotection by remote ischemic conditioning is transferable by plasma and mediated by extracellular vesicles. 2021 , 116, 16	9
235	Inhibiting Cardiac Mitochondrial Fatty Acid Oxidation Attenuates Myocardial Injury in a Rat Model of Cardiac Arrest. 2021 , 2021, 6622232	О
234	Kaempferol Alleviates Oxidative Stress and Apoptosis Through Mitochondria-dependent Pathway During Lung Ischemia-Reperfusion Injury. 2021 , 12, 624402	6
233	Quality Matters? The Involvement of Mitochondrial Quality Control in Cardiovascular Disease. 2021 , 9, 636295	5
232	Rostro-caudal different energy metabolism leading to differences in degeneration in spinal cord injury. 2021 , 3, fcab058	3
231	Daphnetin Preconditioning Decreases Cardiac Injury and Susceptibility to Ventricular Arrhythmia following Ischaemia-Reperfusion through the TLR4/MyD88/NF-B Signalling Pathway. 2021 , 106, 369-383	3
230	⊞⊞N ⊞⊞- ⊞n vitro ⊞n viv⊞ 2021 , 86, 584-594	
229	miR-194-5p protects against myocardial ischemia/reperfusion injury via MAPK1/PTEN/AKT pathway. 2021 , 9, 654	5
228	Antioxidant Properties of Galanin and Its N-Terminal Fragments in in vitro and in vivo Oxidative Stress Modeling. 2021 , 86, 496-505	4

227	Layer-By-Layer Fabrication of Large and Thick Human Cardiac Muscle Patch Constructs With Superior Electrophysiological Properties. 2021 , 9, 670504	4
226	The electrogenic sodium bicarbonate cotransporter and its roles in the myocardial ischemia-reperfusion induced cardiac diseases. 2021 , 270, 119153	O
225	Mitochondrial redox and TCA cycle metabolite signaling in the heart. 2021 , 166, 287-296	4
224	Non-invasive in vivo human model of post-ischaemic skin preconditioning by measurement of flow-mediated 460-nm autofluorescence. 2021 , 87, 4283-4292	2
223	Arrhythmogenesis in the aged heart following ischaemia-reperfusion: Role of Transient Receptor Potential Vanilloid 4. 2021 ,	4
222	Novel perspectives on redox signaling in red blood cells and platelets in cardiovascular disease. 2021 , 168, 95-109	7
221	Galanin Peptides Alleviate Myocardial Ischemia/Reperfusion Injury by Reducing Reactive Oxygen Species Formation. 2021 , 27, 2039-2048	3
220	Role of Oxidative Stress in Reperfusion following Myocardial Ischemia and Its Treatments. 2021 , 2021, 6614009	10
219	Effects of functional electro-stimulation combined with blood flow restriction in affected muscles by spinal cord injury. 2021 , 1	1
218	Effect of l-carnitine on cardiotoxicity and apoptosis induced by imatinib through PDGF/ PPAR // /MAPK pathways. 2021 , 704, 108866	4
217	Alda-1 treatment promotes the therapeutic effect of mitochondrial transplantation for myocardial ischemia-reperfusion injury. 2021 , 6, 2058-2069	8
216	Polypeptide Globular Adiponectin Ameliorates Hypoxia/Reoxygenation-Induced Cardiomyocyte Injury by Inhibiting Both Apoptosis and Necroptosis. 2021 , 2021, 1815098	O
215	Aging as a risk factor for cardiac surgery: Blunted ischemic-reperfusion stress response?. 2021 , 36, 3641-3642	Ο
214	Volatile Versus Intravenous Anesthetics in Cardiac Anesthesia: a Narrative Review. 2021 , 11, 1-9	О
213	Role of the TRPM4 channel in mitochondrial function, calcium release, and ROS generation in oxidative stress. 2021 , 566, 190-196	4
212	The Role of Mitochondrial Function in Peripheral Arterial Disease: Insights from Translational Studies. 2021 , 22,	O
211	Cerebral and myocardial mitochondrial injury differ in a rat model of cardiac arrest and cardiopulmonary resuscitation. 2021 , 140, 111743	2
210	Metallothionein-2A protect Cardiomyocytes from Ischemia/Reperfusion through inhibiting p38.	

209	Controlling Reperfusion Injury With Controlled Reperfusion: Historical Perspectives and New Paradigms. 2021 , 26, 504-523	4
208	The interplay between mitochondria and store-operated Ca entry: Emerging insights into cardiac diseases. 2021 , 25, 9496-9512	5
207	Leucine induces cardioprotection in vitro by promoting mitochondrial function via mTOR and Opa-1 signaling. 2021 , 31, 2979-2986	O
206	Plasma Macrophage Migration Inhibitory Factor Predicts Graft Function Following Kidney Transplantation: A Prospective Cohort Study. 2021 , 8, 708316	О
205	LncRNA KCNQ1OT1 as a miR-26a-5p sponge regulates ATG12-mediated cardiomyocyte autophagy and aggravates myocardial infarction. 2021 , 338, 14-23	5
204	Protective Effects and Mechanisms of Recombinant Human Glutathione Peroxidase 4 on Isoproterenol-Induced Myocardial Ischemia Injury. 2021 , 2021, 6632813	1
203	Mitochondrial transplantation in cardiomyocytes: foundation, methods, and outcomes. 2021 , 321, C489-C503	4
202	Dynamic Regulation of Cysteine Oxidation and Phosphorylation in Myocardial Ischemia-Reperfusion Injury. <i>Cells</i> , 2021 , 10,	2
201	Hypothermia promotes mitochondrial elongation In cardiac cells via inhibition of Drp1. 2021 , 102, 42-55	О
200	Ischemic Conditioning-Mediated Myocardial Protection in Relation to Duration of Coronary Occlusion. 2021 , 11, 210-222	О
199	DROSOPHILA MTOR COMPLEX 2 PRESERVES MITOCHONDRIAL AND CARDIAC FUNCTION UNDER HIGH FAT DIET TREATMENT.	
198	Connection of reactive oxygen species as an essential actor for the mechanism of phenomena; ischemic preconditioning and postconditioning: Come to age or ripening?. 2021 , 8, 644-649	O
197	Cardiac hypoxic resistance and decreasing lactate during maximum apnea in elite breath hold divers. <i>Scientific Reports</i> , 2021 , 11, 2545	2
196	The Role of Reactive Oxygen and Nitrogen Species in Ischemia/Reperfusion Injury. 63-77	1
195	Nitrite and Nitrate in Ischemia-Reperfusion Injury. 2011 , 225-246	1
194	Role of ROS Production and Turnover in the Antioxidant Activity of Taurine. 2015, 803, 581-96	52
193	Function and Regulation of Mitochondrial Voltage-Dependent Anion Channel. 2015, 3-31	9
192	Nitrite-Nitric Oxide Signaling and Cardioprotection. 2017 , 982, 335-346	37

191	MitomiRs Keep the Heart Beating. 2017, 982, 431-450	6
190	Mitochondrial Bioenergetics During Ischemia and Reperfusion. 2017 , 982, 141-167	30
189	Reactive Oxygen Species (ROS) and Cardiac Ischemia and Reperfusion Injury. 2014 , 889-949	1
188	Methylene Blue Protects the Isolated Rat Lungs from Ischemia-Reperfusion Injury by Attenuating Mitochondrial Oxidative Damage. 2018 , 196, 73-82	9
187	Branched-chain amino acids-induced cardiac protection against ischemia/reperfusion injury. 2020 , 245, 117368	10
186	Sestrin2 modulates cardiac inflammatory response through maintaining redox homeostasis during ischemia and reperfusion. <i>Redox Biology</i> , 2020 , 34, 101556	13
185	Molecular nature and regulation of the mitochondrial permeability transition pore(s), drug target(s) in cardioprotection. 2020 , 144, 76-86	34
184	Mechanisms linking adipose tissue inflammation to cardiac hypertrophy and fibrosis. 2019 , 133, 2329-2344	16
183	Marked hyperglycemia attenuates anesthetic preconditioning in human-induced pluripotent stem cell-derived cardiomyocytes. 2012 , 117, 735-44	29
182	EMRE is essential for mitochondrial calcium uniporter activity in a mouse model. 2020 , 5,	17
181	Mediated protective effect of electroacupuncture pretreatment by miR-214 on myocardial ischemia/reperfusion injury. 2014 , 11, 303-10	24
180	Hypoxic Preconditioning Enhances Biological Function of Endothelial Progenitor Cells via Notch-Jagged1 Signaling Pathway. 2017 , 23, 4665-4667	3
179	Growth hormone secretagogues protect mouse cardiomyocytes from in vitro ischemia/reperfusion injury through regulation of intracellular calcium. 2012 , 7, e35265	28
178	Ultrastructural modifications in the mitochondria of hypoxia-adapted Drosophila melanogaster. 2012 , 7, e45344	18
177	IL-33 attenuates anoxia/reoxygenation-induced cardiomyocyte apoptosis by inhibition of PKC[]/JNK pathway. 2013 , 8, e56089	18
176	Dynasore protects mitochondria and improves cardiac lusitropy in Langendorff perfused mouse heart. 2013 , 8, e60967	61
175	Anandamide reduces intracellular Ca2+ concentration through suppression of Na+/Ca2+ exchanger current in rat cardiac myocytes. 2013 , 8, e63386	15
174	An inhibitor of the P KC interaction with the d subunit of F1Fo ATP synthase reduces cardiac troponin I release from ischemic rat hearts: utility of a novel ammonium sulfate precipitation technique. 2013 , 8, e70580	4

173	Erythropoietin protects cardiomyocytes from cell death during hypoxia/reperfusion injury through activation of survival signaling pathways. 2014 , 9, e107453	25
172	The Mitochondrial Unfolded Protein Response Protects against Anoxia in Caenorhabditis elegans. 2016 , 11, e0159989	19
171	EphrinA1-Fc attenuates myocardial ischemia/reperfusion injury in mice. 2017 , 12, e0189307	13
170	ATP-sensitive K(+)-channels in muscle cells: features and physiological role. 2014 , 86, 5-22	2
169	Myocardial reperfusion syndrome. Pathogenesis, clinic, diagnosis. 2020 , 22, 196-200	2
168	Syringaresinol protects against hypoxia/reoxygenation-induced cardiomyocytes injury and death by destabilization of HIF-1\(\text{H}\)n a FOXO3-dependent mechanism. 2015 , 6, 43-55	28
167	N-n-butyl haloperidol iodide ameliorates hypoxia/reoxygenation injury through modulating the LKB1/AMPK/ROS pathway in cardiac microvascular endothelial cells. 2016 , 7, 34800-10	10
166	From rapid to delayed and remote postconditioning: the evolving concept of ischemic postconditioning in brain ischemia. 2012 , 13, 173-87	86
165	Vitamin D Attenuates Myocardial Injury by Reduces ERK Phosphorylation Induced by I/R in Mice Model. 2018 , 12, 27-38	2
164	Protective effects of tanshinone IIA sodium sulfonate on ischemia-reperfusion-induced myocardial injury in rats. 2017 , 20, 308-315	19
163	Restoring Mitochondrial Function While Avoiding Redox Stress: The Key to Preventing Ischemia/Reperfusion Injury in Machine Perfused Liver Grafts?. 2020 , 21,	16
162	Homocysteine induces mitochondrial dysfunction and oxidative stress in myocardial ischemia/reperfusion injury through stimulating ROS production and the ERK1/2 signaling pathway. 2020 , 20, 938-944	8
161	Effect and mechanism of asiatic acid on autophagy in myocardial ischemia-reperfusion injury and. 2020 , 20, 54	6
160	Endoplasmic reticulum stress serves an important role in cardiac ischemia/reperfusion injury (Review). 2020 , 20, 268	7
159	Genistein improves viability, proliferation and mitochondrial function of cardiomyoblasts cultured in physiologic and peroxidative conditions. 2019 , 44, 2298-2310	10
158	Long non-coding RNA GAS5 regulates myocardial ischemia-reperfusion injury through the PI3K/AKT apoptosis pathway by sponging miR-532-5p. 2020 , 45, 858-872	21
157	Curcumin attenuates hypoxia/reoxygenation-induced myocardial injury. 2019 , 20, 4821-4830	11
156	Crocetin alleviates myocardial ischemia/reperfusion injury by regulating inflammation and the unfolded protein response. 2020 , 21, 641-648	12

(2021-2016)

155	Nootkatone from the Rhizomes of Cyperus rotundus Protects Against Ischemia-reperfusion Mediated Acute Myocardial Injury in the Rat. 2016 , 12, 845-850	4
154	Ischemic conditioning: the challenge of protecting the diabetic heart. 2014 , 4, 383-96	28
153	Cardioprotection by kappa-opioid receptor agonist U50488H is mediated by opioidergic regulation but not by calcium current modulation. 2010 , 58, 162-8	3
152	The key target of neuroprotection after the onset of ischemic stroke: secretory pathway Ca(2+)-ATPase 1. 2015 , 10, 1271-8	11
151	Cardioprotective Role of Caveolae in Ischemia-Reperfusion Injury. 2013, 3,	6
150	Protective Effects of Polyphenol Extracts from Sea Buckthorn (<i>Hippophaë rhamnoides</i> L.) on Rat Hearts. 2016 , 06, 10-18	2
149	Conditioning Strategies Limit Cellular Injury?. 2014 , 04, 539-547	5
148	Myocardial Infarction: Perspectives on Cardiac Regeneration and Cardiac Remote Conditioning Interventions to Limit Cellular Injury. 2020 , 10, 188-207	1
147	Impact of conditioning hyperglycemic on myocardial infarction rats: Cardiac cell survival factors. 2014 , 6, 449-54	6
146	Concepts of hypoxic NO signaling in remote ischemic preconditioning. 2015 , 7, 645-51	15
146	Concepts of hypoxic NO signaling in remote ischemic preconditioning. 2015 , 7, 645-51 Ginsenoside-Re ameliorates ischemia and reperfusion injury in the heart: a hemodynamics approach. 2013 , 37, 283-92	15 42
	Ginsenoside-Re ameliorates ischemia and reperfusion injury in the heart: a hemodynamics	
145	Ginsenoside-Re ameliorates ischemia and reperfusion injury in the heart: a hemodynamics approach. 2013 , 37, 283-92	42
145	Ginsenoside-Re ameliorates ischemia and reperfusion injury in the heart: a hemodynamics approach. 2013 , 37, 283-92 The functions of mTOR in ischemic diseases. 2011 , 44, 506-11	4 ² 4 ¹
145 144 143	Ginsenoside-Re ameliorates ischemia and reperfusion injury in the heart: a hemodynamics approach. 2013, 37, 283-92 The functions of mTOR in ischemic diseases. 2011, 44, 506-11 An experimental approach to study the function of mitochondria in cardiomyopathy. 2015, 48, 541-8 Protective Effect of an Ethanol Extract Mixture of Curcuma longae Radix, Phellinus linteus, and	42 41 3
145 144 143	Ginsenoside-Re ameliorates ischemia and reperfusion injury in the heart: a hemodynamics approach. 2013, 37, 283-92 The functions of mTOR in ischemic diseases. 2011, 44, 506-11 An experimental approach to study the function of mitochondria in cardiomyopathy. 2015, 48, 541-8 Protective Effect of an Ethanol Extract Mixture of Curcuma longae Radix, Phellinus linteus, and Scutellariae Radix on Oxidative Neuronal Damage. 2011, 19, 31-37 Cardioprotective effects of GLP-1(9-36) against oxidative injury in H9c2 cardiomyoblasts: Potential	4 ² 41 3
145 144 143 142 141	Ginsenoside-Re ameliorates ischemia and reperfusion injury in the heart: a hemodynamics approach. 2013, 37, 283-92 The functions of mTOR in ischemic diseases. 2011, 44, 506-11 An experimental approach to study the function of mitochondria in cardiomyopathy. 2015, 48, 541-8 Protective Effect of an Ethanol Extract Mixture of Curcuma longae Radix, Phellinus linteus, and Scutellariae Radix on Oxidative Neuronal Damage. 2011, 19, 31-37 Cardioprotective effects of GLP-1(9-36) against oxidative injury in H9c2 cardiomyoblasts: Potential role of PI3K/Akt/NOS pathway. 2021, PER2 Regulates Reactive Oxygen Species Production in the Circadian Susceptibility to	4 ² 41 3

137	Effects of Lipoic Acid on Ischemia-Reperfusion Injury. 2021 , 2021, 5093216
136	Der Sauerstoff im Gewebe: Substrat, Signal und Noxe. 2010 , 763-777
135	Hypoxia/Ischemia Signaling. 2010 , 529-542
134	The Protective Effect of Melatonin on the Heart. 2010 , 517-534
133	Molecular and Genetic Cardiovascular Medicine. 2011 , 157-177
132	Dietary Flavonoids as Modulators of NO Bioavailability in Acute and Chronic Cardiovascular Diseases. 2011 , 123-137
131	Oxidative Insult After Ischemia/Reperfusion in Older Adults. 2013 , 263-284
130	Vascular and Endothelial Regeneration. 2013 , 157-166
129	Intracellular Matrix Remodeling and Cardiac Function in Ischemia R eperfusion Injury. 2013 , 467-485
128	Encyclopedia of Computational Neuroscience. 2013 , 1-8
127	Targets and Strategies for the Mitochondrial Assault on Cancer. 2014 , 211-264
126	Barrier Signalling. 2014 , 245-258
125	The Mechanisms and Modalities of Cell Death. 2015 , 253-277
124	Role of T-Type Ca2+ Channels in the Development of Arrhythmias and IschemiaReperfusion Injury. 2015 , 85-95
123	Activation of Cytokines in CABG Failure. 2016 , 393-402
122	POSTCONDITIONING AS A METHOD TISSUE SURVIVABILITY ENHANCEMENT IN ISCHEMIC DAMAGE. 2016 , 1, 183-186
121	Dietary Flavonoids as Modulators of NO Bioavailability in Acute and Chronic Cardiovascular Diseases. 2017 , 129-140
120	NDUFAB1 Protects Heart by Coordinating Mitochondrial Respiratory Complex and Supercomplex Assembly.

119	2-aminoaethanesulfonic acid compounds possess protective property in reperfusion-induced heart jnjury. 2018 , 4, 19-26	0
118	Ferroptosis in Cardiovascular Disease. 2019 , 147-172	
117	Mitochondrial Morphology Regulates Organellar Ca2+ Uptake and Changes Cellular Ca2+ Homeostasis.	1
116	Environmental Stress: Mitochondria as Targets and Stressors in Cellular Metabolism. 2020 , 43-70	
115	Once delayed non-invasive remote ischemic preconditioning protects against early stroke by modulating neuroinflammatory responses in rats.	
114	□□□□□□□ - □□□□□□ - □□ 2020, 93-100	
113	A Review on the Possible Leakage of Electrons through the Electron Transport Chain within Mitochondria. 2020 , 1, 105-113	2
112	Progress in Pathophysiological Mechanism of Global Cerebral Ischemia-Reperfusion Injury. 2021 , 49-64	
111	Hydrogen-Rich Water Improves Cognitive Ability and Induces Antioxidative, Antiapoptotic, and Anti-Inflammatory Effects in an Acute Ischemia-Reperfusion Injury Mouse Model. 2021 , 2021, 9956938	0
110	A Selective TRPC3 Inhibitor Pyr3 Attenuates Myocardial Ischemia/Reperfusion Injury in Mice. 2020 , 40, 1107-1113	1
109	The molecular mosaic of regulated cell death in the cardiovascular system. 2022 , 1868, 166297	0
108	##### ################################	
107	Target Sestrin2 to Rescue the Damaged Organ: Mechanistic Insight into Its Function. 2021 , 2021, 8790369	2
106	Lenticular mitoprotection. Part A: Monitoring mitochondrial depolarization with JC-1 and artifactual fluorescence by the glycogen synthase kinase-3□inhibitor, SB216763. 2013 , 19, 1406-12	57
105	Intracellular Ca2+ modulation during short exposure to ischemia-mimetic factors in isolated rat ventricular myocytes. 2009 , 33 Suppl 2, 121-6	
104	Lenticular mitoprotection. Part B: GSK-3Dand regulation of mitochondrial permeability transition for lens epithelial cells in atmospheric oxygen. 2013 , 19, 2451-67	6
103	Protection of the ischaemic heart: investigations into the phenomenon of ischaemic preconditioning. 2009 , 20, 43-51	32
102	Efficacy of edaravone on coronary artery bypass patients with myocardial damage after ischemia and reperfusion: a meta analysis. 2015 , 8, 2205-11	1

101	Transient Receptor Potential-Melastatin Channel Family Member 2: Friend or Foe. 2017 , 128, 308-329		5
100	[Activation of aldehyde dehydrogenase 2 alleviates H O -induced injury in cardiomyocytes]. 2018 , 38, 938-942		
99	Elabela alleviates myocardial ischemia reperfusion-induced apoptosis, fibrosis and mitochondrial dysfunction through PI3K/AKT signaling. 2020 , 12, 4467-4477		10
98	Adipose stem cell secretome markedly improves rodent heart and human induced pluripotent stem cell-derived cardiomyocyte recovery from cardioplegic transport solution exposure. 2021 , 39, 170-182		1
97	SYVN1/GPX5 axis affects ischemia/reperfusion induced apoptosis of AC16 cells by regulating ROS generation. 2021 , 13, 4055-4067		2
96	Atypical antipsychotics and oxidative cardiotoxicity: review of literature and future perspectives to prevent sudden cardiac death. 2021 , 18, 663-685		
95	Mitochondrial physiologyBturkieMbook chapter. 2022 , 65-81		
94	New Insights Into the Role of Mitochondria Quality Control in Ischemic Heart Disease 2021 , 8, 774619		5
93	Cardiac fibroblasts display endurance to ischemia, high ROS control and elevated respiration regulated by the JAK2/STAT pathway. 2021 ,		O
92	Restoring Cardiac Functions after Myocardial Infarction-Ischemia/Reperfusion via an Exosome Anchoring Conductive Hydrogel. 2021 , 13, 56892-56908		5
91	Differential regulation of degradation and immune pathways underlies adaptation of the ectosymbiotic nematode Laxus oneistus to oxic-anoxic interfaces.		1
90	MicroRNA-214 in Health and Disease <i>Cells</i> , 2021 , 10,	'.9	2
89	THE EVOLVING CONCEPT OF CAVEOLINS AND INTERMEDIARY ROLE IN VARIOUS MECHANISMS VIA BIOMOLECULAR PATHWAYS. 2018 , 55, 7-17		
88	Upregulation of FAM129B protects cardiomyocytes from hypoxia/reoxygenation-induced injury by inhibiting apoptosis, oxidative stress, and inflammatory response via enhancing Nrf2/ARE activation 2022 ,		O
87	Catalpol alleviates myocardial ischemia reperfusion injury by activating the Nrf2/HO-1 signaling pathway 2021 , 140, 104302		3
86	Adipose stem cell secretome markedly improves rodent heart and human induced pluripotent stem cell-derived cardiomyocyte recovery from cardioplegic transport solution exposure. 2021 , 39, 170-182		2
85	Reversing mitochondrial defects in aged hearts: Role of mitochondrial calpain activation 2022,		1
84	Crocetin: A Systematic Review 2021 , 12, 745683		3

83	Activated Protein C Strengthens Cardiac Tolerance to Ischemic Insults in Aging 2021,		1
82	The nuclear receptor co-repressor 1 is a novel cardioprotective factor against acute myocardial ischemia-reperfusion injury 2022 ,		1
81	Cardioprotective effects of N-methylacetazolamide mediated by inhibition of L-type Ca channel current 2022 , 1866, 130098		
80	Targeting the Mitochondrial Permeability Transition Pore for Drug Discovery: Challenges and Opportunities 2022 ,		1
79	miRNA-19b-3p Stimulates Cardiomyocyte Apoptosis Induced by Myocardial Ischemia Reperfusion via Downregulating PTEN 2021 , 2021, 9956666		1
78	Cardiovascular protective properties of gastrodin. 2022 , 12, 141		O
77	Verapamil Alleviates Myocardial Ischemia/Reperfusion Injury by Attenuating Oxidative Stress via Activation of SIRT1 2022 , 13, 822640		О
76	Some Insights into the Regulation of Cardiac Physiology and Pathology by the Hippo Pathway 2022 , 10,		1
75	Differential Effects of Reperfusion on Cardiac Mitochondrial Subpopulations in a Preclinical Porcine Model of Acute Myocardial Infarction 2022 , 10, 843733		1
74	Oxidative Stress, Vascular Endothelium, and the Pathology of Neurodegeneration in Retina	7.1	1
	Antioxidants, 2022 , 11,	7.1	
73	No-reflow phenomenon and reperfusion injury. Mechanisms and treatment. 2022 , 15, 10-19	, · ·	
73 72		,. <u>.</u>	O
	No-reflow phenomenon and reperfusion injury. Mechanisms and treatment. 2022 , 15, 10-19 Iron promotes neurological function recovery in mice with ischemic stroke through endogenous	7.9	
72	No-reflow phenomenon and reperfusion injury. Mechanisms and treatment. 2022 , 15, 10-19 Iron promotes neurological function recovery in mice with ischemic stroke through endogenous repair mechanisms 2022 , 182, 59-72 An Overview of the Molecular Mechanisms Associated with Myocardial Ischemic Injury: State of the	, and the second	O
7 ²	No-reflow phenomenon and reperfusion injury. Mechanisms and treatment. 2022, 15, 10-19 Iron promotes neurological function recovery in mice with ischemic stroke through endogenous repair mechanisms 2022, 182, 59-72 An Overview of the Molecular Mechanisms Associated with Myocardial Ischemic Injury: State of the Art and Translational Perspectives <i>Cells</i> , 2022, 11, Association Between Specificity of Sulfonylureas to Cardiac Mitochondrial KATP Channels and the	, and the second	0 4
7 ² 71 70	No-reflow phenomenon and reperfusion injury. Mechanisms and treatment. 2022, 15, 10-19 Iron promotes neurological function recovery in mice with ischemic stroke through endogenous repair mechanisms 2022, 182, 59-72 An Overview of the Molecular Mechanisms Associated with Myocardial Ischemic Injury: State of the Art and Translational Perspectives <i>Cells</i> , 2022, 11, Association Between Specificity of Sulfonylureas to Cardiac Mitochondrial KATP Channels and the Risk of Major Adverse Cardiovascular Events in Type 2 Diabetes 2022,	, and the second	0 4
7 ² 7 ¹ 7 ⁰ 69	No-reflow phenomenon and reperfusion injury. Mechanisms and treatment. 2022, 15, 10-19 Iron promotes neurological function recovery in mice with ischemic stroke through endogenous repair mechanisms 2022, 182, 59-72 An Overview of the Molecular Mechanisms Associated with Myocardial Ischemic Injury: State of the Art and Translational Perspectives <i>Cells</i> , 2022, 11, Association Between Specificity of Sulfonylureas to Cardiac Mitochondrial KATP Channels and the Risk of Major Adverse Cardiovascular Events in Type 2 Diabetes 2022, Elevated MCU Expression by CaMKIIB Limits Pathological Cardiac Remodeling 2022,	, and the second	o 4 1 4

65	Caveolins: Expression of Regulating Systemic Physiological Functions in Various Predicaments 2022 ,		
64	Parathyroid Hormone-Related Peptide and Its Analog, Abaloparatide, Attenuate Lethal Myocardial Ischemia-Reperfusion Injury 2022 , 11,		O
63	Data_Sheet_1.docx. 2020 ,		
62	DataSheet_1.docx. 2020 ,		
61	Presentation_1.pdf. 2018 ,		
60	Data_Sheet_1.docx. 2019 ,		
59	Data_Sheet_1.pdf. 2019 ,		
58	Image_1.JPEG. 2020 ,		
57	Image_2.JPEG. 2020 ,		
56	MiR-21-5p-expressing bone marrow mesenchymal stem cells alleviate myocardial ischemia/reperfusion injury by regulating the circRNA_0031672/miR-21-5p/programmed cell death protein 4 pathway 2021 , 18, 1029-1043		1
55	Myocardial ischemia/reperfusion injury: Mechanisms of injury and implications for management (Review). 2022 , 23,		2
54	The mitochondrial electron transport chain contributes to calpain 1 activation during ischemia-reperfusion 2022 , 613, 127-132		1
53	Modulation of mitochondrial respiration during early reperfusion reduces cardiac injury in donation after circulatory death hearts 2022 ,		2
52	The Development of Novel Drug Treatments for Stroke Patients: A Review. 2022 , 23, 5796		1
51	Creatine phosphate administration in cardiac ischemia-reperfusion injury in rats: focus on differences between preconditioning, perconditioning and postconditioning protocol.		
50	Cardioprotective Antioxidant and Anti-Inflammatory Mechanisms Induced by Intermittent Hypobaric Hypoxia. <i>Antioxidants</i> , 2022 , 11, 1043	7.1	O
49	BKEM[REPERFEYON HASARINDA STRES VE HÜRE [IM]]		
48	Liquiritigenin protects against myocardial ischemic by inhibiting oxidative stress, apoptosis, and L-type Ca 2+ channels. <i>Phytotherapy Research</i> ,	6.7	О

47	Human Heart Anoxia and Reperfusion Tissue (HEART) Model for the Rapid Study of Exosome Bound miRNA Expression As Biomarkers for Myocardial Infarction. <i>Small</i> , 2201330	11	3
46	Mitochondrial metabolism in hibernation: Regulation and Implications. <i>Physiology</i> ,	9.8	O
45	Notoginsenoside R1-loaded mesoporous silica nanoparticles targeting the site of injury through inflammatory cells improves heart repair after myocardial infarction. <i>Redox Biology</i> , 2022 , 102384	11.3	1
44	Differential regulation of degradation and immune pathways underlies adaptation of the ectosymbiotic nematode Laxus oneistus to oxic-anoxic interfaces. <i>Scientific Reports</i> , 2022 , 12,	4.9	1
43	Cardiac Excitable Tissue Pathology (Ischemia). 2022 , 682-688		
42	Computational Modeling of Mitochondria to Understand the Dynamics of Oxidative Stress. <i>Methods in Molecular Biology</i> , 2022 , 363-422	1.4	
41	Predicting Risk of Emerging Cardiotoxicity.		
40	The Role of Phosphocreatine in the Perconditioning and Postconditioning of Isolated Rat Heart. <i>Serbian Journal of Experimental and Clinical Research</i> , 2022 , 23, 111-119	0.3	
39	Activation of Autophagic Flux Maintains Mitochondrial Homeostasis during Cardiac Ischemia/Reperfusion Injury. <i>Cells</i> , 2022 , 11, 2111	7.9	O
38	Hsa_circ_0010729 regulates H2O2-induced myocardial injury by regulating miR-1184/RIPK1 axis. <i>Transplant Immunology</i> , 2022 , 74, 101653	1.7	
37	Diisononyl phthalate inhibits cardiac glycolysis and oxidative phosphorylation by down-regulating cytosolic and mitochondrial energy metabolizing enzymes in murine model. <i>Advances in Redox Research</i> , 2022 , 6, 100041		О
36	Butein Ameliorates Oxidative Stress in H9c2 Cardiomyoblasts through Activation of the NRF2 Signaling Pathway. <i>Antioxidants</i> , 2022 , 11, 1430	7.1	
35	Do Inhalational Agents Have Beneficial Effects on Cardiac Ischemia-Reperfusion Injury?. 2023 , 160-167		
34	Advances and challenges in conductive hydrogels: From properties to applications. 2022 , 177, 111454		2
33	Ischemia-Selective Cardioprotection by Malonate for Ischemia/Reperfusion Injury.		3
32	Chronic developmental hypoxia alters mitochondrial oxidative capacity and reactive oxygen species production in the fetal rat heart in a sex-dependent manner.		O
31	Circ-CBFB exacerbates hypoxia/reoxygenation-triggered cardiomyocyte injury via regulating miR-495-3p in a VDAC1-dependent manner.		1
30	A tRNA-derived fragment of ginseng protects heart against ischemia/reperfusion injury via targeting the lncRNA MIAT/VEGFA pathway. 2022 , 29, 672-688		O

29	Mitochondria are an important target of photobiomodulation in cardiomyocytes. 2022, 46, 2637-2644	О
28	The potential role of ischaemialeperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. 2022 , 479, 1653-17	08 ²
27	Hypothermia Alleviates Reductive Stress, a Root Cause of Ischemia Reperfusion Injury. 2022 , 23, 10108	О
26	Glucose 6-P DehydrogenaseAn Antioxidant Enzyme with Regulatory Functions in Skeletal Muscle during Exercise. 2022 , 11, 3041	O
25	Forsythiaside Protected H9c2 Cardiomyocytes from H₂2</sub>2</sub>2</sub>2</sub>-Induced Oxidative Stress and Apoptosis <i>via</i> Activating Nrf2/HO-1 Signaling Pathway. 2022 , 63, 904-914	0
24	Circadian regulated control of myocardial ischemia-reperfusion injury. 2022,	O
23	Mechanisms and significance of tissue-specific MICU regulation of the mitochondrial calcium uniporter complex. 2022 , 82, 3661-3676.e8	О
22	Manganese-Enhanced Magnetic Resonance Imaging of the Heart.	O
21	1,5-disubstituted-1,2,3-triazoles counteract mitochondrial dysfunction acting on F1FO-ATPase in models of cardiovascular diseases. 2023 , 187, 106561	2
20	Role of caveolin-eNOS platform and mitochondrial ATP-sensitive potassium channel in abrogated cardioprotective effect of ischemic preconditioning in postmenopausal women. 58,	O
19	Guhong Injection Mitigates Myocardial Ischemia/Reperfusion Injury by Activating GST P to Inhibit ASK1-JNK/p38 Pathway. 2022 , 154603	0
18	Intravenous Transplantation of an Ischemic-specific Peptide-TPP-mitochondrial Compound Alleviates Myocardial Ischemic Reperfusion Injury.	1
17	Protective Role of Chronic Exercise Training in Modulating the Impact of Hyperglycemia on Vascular Sensitivity to Ischemia-Reperfusion. 2023 , 15, 212	0
16	Mst1 attenuates myocardial ischemia/reperfusion injury following heterotopic heart transplantation in mice through regulating Keap1/Nrf2 axis. 2023 , 644, 140-148	O
15	The P21-Activated Kinase 1 and 2 As Potential Therapeutic Targets for the Management of Cardiovascular Disease. 5	0
14	Novel, Innovative Models to Study Ischemia/Reperfusion-Related Redox Damage in Organ Transplantation. 2023 , 12, 31	O
13	Myocardial overexpression of protein phosphatase 2A-B56⊞mproves resistance against ischemia-reperfusion injury. 2022 , 100030	0
12	Do Inhalational Agents Have Beneficial or Harmful Effects on Ischemia R eperfusion Injury?. 2013 , 136-141	O

CITATION REPORT

11	Comprehensive Analysis of Mitochondrial Dynamics Alterations in Heart Diseases. 2023 , 24, 3414	О
10	Hydrogen peroxide preconditioning is of dual role in cardiac ischemia/reperfusion. 2023, 947, 175684	O
9	Low production of mitochondrial reactive oxygen species after anoxia and reoxygenation in turtle hearts.	O
8	Dexmedetomidine postconditioning attenuates myocardial ischemia/reperfusion injury by activating the Nrf2/Sirt3/SOD2 signaling pathway in the rats. 2023 , 28,	O
7	Intracerebral hirudin injection alleviates cognitive impairment and oxidative stress and promotes hippocampal neurogenesis in rats subjected to cerebral ischemia.	O
6	UNCONTROLLED DONATION AFTER CIRCULATORY DEATH: A BY-PRODUCT OF THE CONTROLLED? A NARRATIVE REVIEW. 2023 , 1, 136-142	O
5	Oxygen for the Newborn: Friend or Foe?. 2023 , 10, 579	O
4	Cardiac regeneration: Pre-existing cardiomyocyte as the hub of novel signaling pathway. 2023,	O
3	Typhaneoside-Tetrahedral Framework Nucleic Acids System: Mitochondrial Recovery and Antioxidation for Acute Kidney Injury treatment.	O
2	Effect of Hypoxia-Ischemia on the Expression of Iron-Related Proteins in Neonatal Rat Brains. 2023 , 2023, 1-11	O
1	A cell-penetrating PHLPP peptide improves cardiac arrest survival in murine and swine models. 2023 , 133,	О