Genomics and Evolution of Heritable Bacterial Symbior

Annual Review of Genetics 42, 165-190

DOI: 10.1146/annurev.genet.41.110306.130119

Citation Report

#	Article	IF	CITATIONS
1	Molecular and biochemical characterization of three bacterial symbionts of fruit fly, Bactrocera tau (Tephritidae: Diptera). Journal of General and Applied Microbiology, 2009, 55, 479-487.	0.4	30
2	General Rules for Optimal Codon Choice. PLoS Genetics, 2009, 5, e1000556.	1.5	203
3	Almost There: Transmission Routes of Bacterial Symbionts between Trophic Levels. PLoS ONE, 2009, 4, e4767.	1.1	108
4	Variable Incidence of Spiroplasma Infections in Natural Populations of Drosophila Species. PLoS ONE, 2009, 4, e5703.	1.1	69
5	Remaining Flexible in Old Alliances: Functional Plasticity in Constrained Mutualisms. DNA and Cell Biology, 2009, 28, 371-382.	0.9	16
6	<i>Hamiltonella defensa</i> , genome evolution of protective bacterial endosymbiont from pathogenic ancestors. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9063-9068.	3.3	214
7	Convergent evolution of metabolic roles in bacterial co-symbionts of insects. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15394-15399.	3.3	343
8	Gene Conversion Maintains Nonfunctional Transposable Elements in an Obligate Mutualistic Endosymbiont. Molecular Biology and Evolution, 2009, 26, 1679-1682.	3.5	19
9	Interactions between Coexisting Intracellular Genomes: Mitochondrial Density and <i>Wolbachia</i> Infection. Applied and Environmental Microbiology, 2009, 75, 1916-1921.	1.4	7
10	Composition of Bacterial Communities Associated with Natural and Laboratory Populations of <i>Asobara tabida</i> Infected with <i>Wolbachia</i> . Applied and Environmental Microbiology, 2009, 75, 3755-3764.	1.4	39
11	Promoter Characterization in the AT-Rich Genome of the Obligate Endosymbiont " <i>Candidatus</i> Blochmannia floridanusâ€: Journal of Bacteriology, 2009, 191, 3747-3751.	1.0	13
12	Effective population size and the rate and pattern of nucleotide substitutions. Biology Letters, 2009, 5, 417-420.	1.0	73
13	Identifying sexual differentiation genes that affect Drosophila life span. BMC Geriatrics, 2009, 9, 56.	1.1	26
14	Aphids acquired symbiotic genes via lateral gene transfer. BMC Biology, 2009, 7, 12.	1.7	151
15	Immunity and symbiosis. Molecular Microbiology, 2009, 73, 751-759.	1.2	80
16	What is microbial community ecology?. ISME Journal, 2009, 3, 1223-1230.	4.4	371
17	Pyrosequencing analysis of endosymbiont population structure: coâ€occurrence of divergent symbiont lineages in a single vesicomyid host clam. Environmental Microbiology, 2009, 11, 2136-2147.	1.8	26
18	Characterization and evolution of two bacteriomeâ€inhabiting symbionts in cixiid planthoppers (Hemiptera: Fulgoromorpha: Pentastirini). Environmental Microbiology, 2009, 11, 3265-3279.	1.8	53

#	Article	IF	CITATIONS
19	Dynamics of genome evolution in facultative symbionts of aphids. Environmental Microbiology, 2010, 12, 2060-2069.	1.8	81
20	Evolution of reduced and compact chloroplast genomes (cpDNAs) in gnetophytes: Selection toward a lower-cost strategy. Molecular Phylogenetics and Evolution, 2009, 52, 115-124.	1.2	151
21	Plants, Mycorrhizal Fungi, and Bacteria: A Network of Interactions. Annual Review of Microbiology, 2009, 63, 363-383.	2.9	699
22	The Dynamics and Time Scale of Ongoing Genomic Erosion in Symbiotic Bacteria. Science, 2009, 323, 379-382.	6.0	276
23	An unseen foe in arthropod conservation efforts: The case of Wolbachia infections in the Karner blue butterfly. Biological Conservation, 2009, 142, 3137-3146.	1.9	63
24	Symbiont-mediated protection in insect hosts. Trends in Microbiology, 2009, 17, 348-354.	3.5	296
25	Complete Genome Sequence of Citrus Huanglongbing Bacterium, â€~ <i>Candidatus</i> Liberibacter asiaticus' Obtained Through Metagenomics. Molecular Plant-Microbe Interactions, 2009, 22, 1011-1020.	1.4	485
26	Inferring clocks when lacking rocks: the variable rates of molecular evolution in bacteria. Biology Direct, 2009, 4, 35.	1.9	179
27	Genetic Recombination and Molecular Evolution. Cold Spring Harbor Symposia on Quantitative Biology, 2009, 74, 177-186.	2.0	94
28	Horizontal gene transfers and cell fusions in microbiology, immunology and oncology (Review). International Journal of Oncology, 2009, 35, 441-65.	1.4	5
29	Vector Transmission of a Plant-Pathogenic Bacterium in the <i>Arsenophonus</i> Clade Sharing Ecological Traits with Facultative Insect Endosymbionts. Phytopathology, 2009, 99, 1289-1296.	1.1	39
30	Functional Convergence in Reduced Genomes of Bacterial Symbionts Spanning 200 My of Evolution. Genome Biology and Evolution, 2010, 2, 708-718.	1.1	320
31	Symbioses and Stress. Cellular Origin and Life in Extreme Habitats, 2010, , 19-36.	0.3	2
32	Facultative Symbionts in Aphids and the Horizontal Transfer of Ecologically Important Traits. Annual Review of Entomology, 2010, 55, 247-266.	5.7	787
33	Reticulate evolution in stick insects: the case of Clonopsis (Insecta Phasmida). BMC Evolutionary Biology, 2010, 10, 258.	3.2	16
34	Insect endosymbionts: manipulators of insect herbivore trophic interactions?. Protoplasma, 2010, 244, 25-51.	1.0	54
35	Four Central Points About Coevolution. Evolution: Education and Outreach, 2010, 3, 7-13.	0.3	24
36	Two chaperonin systems in bacterial genomes with distinct ecological roles. Trends in Genetics, 2010, 26 47-51	2.9	27

	СІТАТ	CITATION REPORT	
#	Article	IF	Citations
37	Mimivirus: the emerging paradox of quasi-autonomous viruses. Trends in Genetics, 2010, 26, 431-437.	2.9	93
38	Unprecedented loss of ammonia assimilation capability in a urease-encoding bacterial mutualist. BMC Genomics, 2010, 11, 687.	1.2	39
39	Bacteriocyte dynamics during development of a holometabolous insect, the carpenter ant Camponotus floridanus. BMC Microbiology, 2010, 10, 308.	1.3	72
40	Research on small genomes: implications for synthetic biology. BioEssays, 2010, 32, 288-295.	1.2	9
41	Evolution of cytoplasmic sex ratio distorters: Effect of paternal transmission. Journal of Theoretical Biology, 2010, 266, 79-87.	0.8	7
42	Molecular approaches to study the insect gut symbiotic microbiota at the â€~omics' age. Insect Scien 2010, 17, 199-219.	ice, 1.5	69
43	EVOLUTIONARY TRANSITIONS IN ENZYME ACTIVITY OF ANT FUNGUS GARDENS. Evolution; International Journal of Organic Evolution, 2010, 64, 2055-69.	1.1	63
44	Molecular characterization and localization of the obligate endosymbiotic bacterium in the birch catkin bug Kleidocerys resedae (Heteroptera: Lygaeidae, Ischnorhynchinae). FEMS Microbiology Ecology, 2010, 73, no-no.	1.3	32
45	Common trends in mutualism revealed by model associations between invertebrates and bacteria: Table 1. FEMS Microbiology Reviews, 2010, 34, 41-58.	3.9	97
46	Expansion of genes encoding a novel type of dynamin in the genome of the pea aphid, <i>Acyrthosiphon pisum</i> . Insect Molecular Biology, 2010, 19, 165-173.	1.0	8
47	Population dynamics and rapid spread of Cardinium, a bacterial endosymbiont causing cytoplasmic incompatibility in Encarsia pergandiella (Hymenoptera: Aphelinidae). Heredity, 2010, 104, 239-246.	1.2	23
48	Diversification of the gut symbiont <i>Lactobacillus reuteri</i> as a result of host-driven evolution. ISME Journal, 2010, 4, 377-387.	4.4	254
49	The obligate endobacteria of arbuscular mycorrhizal fungi are ancient heritable components related to the <i>Mollicutes</i> . ISME Journal, 2010, 4, 862-871.	4.4	136
50	The immune system and the gut microbiota: friends or foes?. Nature Reviews Immunology, 2010, 10, 735-744.	10.6	582
51	A complex journey: transmission of microbial symbionts. Nature Reviews Microbiology, 2010, 8, 218-230.	13.6	669
52	Extraordinarily widespread and fantastically complex: comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecology Letters, 2010, 13, 223-234.	3.0	193
53	Integration of molecular functions at the ecosystemic level: breakthroughs and future goals of environmental genomics and postâ€genomics. Ecology Letters, 2010, 13, 776-791.	3.0	35
54	Interspecific transmission of a maleâ€killing bacterium on an ecological timescale. Ecology Letters, 2010, 13, 1139-1148.	3.0	100

#	Article	IF	CITATIONS
55	Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters, 2010, 13, 1310-1324.	3.0	1,387
56	The evolution of haplodiploidy by maleâ€killing endosymbionts: importance of population structure and endosymbiont mutualisms. Journal of Evolutionary Biology, 2010, 23, 40-52.	0.8	25
57	The group selection controversy. Journal of Evolutionary Biology, 2010, 23, 6-19.	0.8	110
58	The evolution of mutualism. Journal of Evolutionary Biology, 2010, 23, 2507-2528.	0.8	173
59	Combining Next-Generation Sequencing Strategies for Rapid Molecular Resource Development from an Invasive Aphid Species, Aphis glycines. PLoS ONE, 2010, 5, e11370.	1.1	77
60	Spiroplasma Bacteria Enhance Survival of Drosophila hydei Attacked by the Parasitic Wasp Leptopilina heterotoma. PLoS ONE, 2010, 5, e12149.	1.1	203
61	Characterization of the Fecal Microbiome from Non-Human Wild Primates Reveals Species Specific Microbial Communities. PLoS ONE, 2010, 5, e13963.	1.1	225
62	Nutrient provisioning facilitates homeostasis between tsetse fly (Diptera: Glossinidae) symbionts. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2389-2397.	1.2	83
63	Genome size of <i>Pachypsylla venusta</i> (Hemiptera: Psyllidae) and the ploidy of its bacteriocyte, the symbiotic host cell that harbors intracellular mutualistic bacteria with the smallest cellular genome. Bulletin of Entomological Research, 2010, 100, 27-33.	0.5	25
64	Do plants and insects share the same symbionts?. Israel Journal of Plant Sciences, 2010, 58, 113-119.	0.3	9
65	Evolutionary Relationships among Primary Endosymbionts of the Mealybug Subfamily Phenacoccinae (Hemiptera: Coccoidea: Pseudococcidae). Applied and Environmental Microbiology, 2010, 76, 7521-7525.	1.4	74
66	Plant green-island phenotype induced by leaf-miners is mediated by bacterial symbionts. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2311-2319.	1.2	174
67	Bacterial Genes in the Aphid Genome: Absence of Functional Gene Transfer from Buchnera to Its Host. PLoS Genetics, 2010, 6, e1000827.	1.5	164
68	Slip into Something More Functional: Selection Maintains Ancient Frameshifts in Homopolymeric Sequences. Molecular Biology and Evolution, 2010, 27, 833-839.	3.5	38
69	Structural Calibration of the Rates of Amino Acid Evolution in a Search for Darwin in Drifting Biological Systems. Molecular Biology and Evolution, 2010, 27, 2375-2385.	3.5	9
70	Sex and stripping. Communicative and Integrative Biology, 2010, 3, 110-115.	0.6	15
71	The Genome of the Amoeba Symbiont " <i>Candidatus</i> Amoebophilus asiaticus―Reveals Common Mechanisms for Host Cell Interaction among Amoeba-Associated Bacteria. Journal of Bacteriology, 2010, 192, 1045-1057.	1.0	138
72	Integrated Metabonomicâ^'Proteomic Analysis of an Insectâ^'Bacterial Symbiotic System. Journal of Proteome Research, 2010, 9, 1257-1267.	1.8	47

#	Article	IF	CITATIONS
73	Molecular Evolution in Bacterial Endosymbionts of Fungi. Molecular Biology and Evolution, 2010, 27, 622-636.	3.5	19
74	The bacterial essence of tiny symbiont genomes. Current Opinion in Microbiology, 2010, 13, 73-78.	2.3	73
75	Genomics of intracellular symbionts in insects. International Journal of Medical Microbiology, 2010, 300, 271-278.	1.5	56
76	Pervasive associations between Cybaeus spiders and the bacterial symbiont Cardinium. Journal of Invertebrate Pathology, 2010, 103, 150-155.	1.5	43
77	A divergent Cardinium found in daddy long-legs (Arachnida: Opiliones). Journal of Invertebrate Pathology, 2010, 105, 220-227.	1.5	20
78	Bacteriocyte-like cells harbour Wolbachia in the ovary of Drosophila melanogaster (Insecta, Diptera) and Zyginidia pullula (Insecta, Hemiptera). Tissue and Cell, 2010, 42, 328-333.	1.0	29
79	Phage WO of Wolbachia: lambda of the endosymbiont world. Trends in Microbiology, 2010, 18, 173-181.	3.5	114
80	Models and approaches to dissect host–symbiont specificity. Trends in Microbiology, 2010, 18, 504-511.	3.5	41
81	Comparative Dating of Attine Ant and Lepiotaceous Cultivar Phylogenies Reveals Coevolutionary Synchrony and Discord. American Naturalist, 2010, 175, E126-E133.	1.0	75
82	Symbioses and Stress. Cellular Origin and Life in Extreme Habitats, 2010, , .	0.3	10
83	<i>Wolbachia</i> Infection in the <i>Chorthippus parallelus</i> Hybrid Zone: Evidence for Its Role as a Reproductive barrier. Journal of Orthoptera Research, 2010, 19, 205-212.	0.4	17
85	The pea aphid genome sequence brings theories of insect defense into question. Genome Biology, 2010, 11, 106.	13.9	45
86	Genome Wide Analyses Reveal Little Evidence for Adaptive Evolution in Many Plant Species. Molecular Biology and Evolution, 2010, 27, 1822-1832.	3.5	227
87	<i>Wolbachia</i> as a bacteriocyte-associated nutritional mutualist. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 769-774.	3.3	655
88	Reductive Evolution of Bacterial Genome in Insect Gut Environment. Genome Biology and Evolution, 2011, 3, 702-714.	1.1	147
89	Flexible, Efficient and Interactive Retrieval for Supporting In-silico Studies of Endobacteria. , 2011, , .		0
90	The Enteric Microbiota. Colloquium Series on Integrated Systems Physiology From Molecule To Function, 2011, 3, 1-88.	0.3	0
92	Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecological Entomology, 2011, 36, 533-543.	1.1	451

#	Article	IF	CITATIONS
93	Evolution of molecular error rates and the consequences for evolvability. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1082-1087.	3.3	78
94	Symbionts and Pathogens: What is the Difference?. Current Topics in Microbiology and Immunology, 2011, 358, 215-243.	0.7	27
95	Genetic Signature of Reproductive Manipulation in the Phylogeography of the Bat Fly, Trichobius major. Journal of Heredity, 2011, 102, 705-718.	1.0	14
96	Potential Pharmaceuticals from Insects and Their Co-Occurring Microorganisms. , 2011, , 95-119.		10
97	Bacterial symbionts in insects or the story of communities affecting communities. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 1389-1400.	1.8	285
98	Combined phylogenetic and genomic approaches for the high-throughput study of microbial habitat adaptation. Trends in Microbiology, 2011, 19, 472-482.	3.5	23
99	Host-microbial symbiosis in the vertebrate gastrointestinal tract and the <i>Lactobacillus reuteri</i> paradigm. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4645-4652.	3.3	283
100	Ecological and Temporal Constraints in the Evolution of Bacterial Genomes. Genes, 2011, 2, 804-828.	1.0	17
101	Close Interspecies Interactions between Prokaryotes from Sulfureous Environments. Frontiers in Microbiology, 2011, 2, 146.	1.5	23
102	Massive Genomic Decay in Serratia symbiotica, a Recently Evolved Symbiont of Aphids. Genome Biology and Evolution, 2011, 3, 195-208.	1.1	186
103	Arthropods Shopping for Wolbachia. , 2011, , 187-212.		0
104	Secondary Symbionts of Insects: Acetic Acid Bacteria. , 2011, , 83-110.		0
105	Facultative Tenants from the Enterobacteriaceae within Phloem-Feeding Insects. , 2011, , 111-126.		0
106	The yeast <i>Wickerhamomyces anomalus</i> (<i>Pichia anomala</i>) inhabits the midgut and reproductive system of the Asian malaria vector <i>Anopheles stephensi</i> . Environmental Microbiology, 2011, 13, 911-921.	1.8	65
107	A simple and distinctive microbiota associated with honey bees and bumble bees. Molecular Ecology, 2011, 20, 619-628.	2.0	462
108	Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: relevance of local climate and host plants. Molecular Ecology, 2011, 20, 853-868.	2.0	160
109	Lateral genetic transfer and the construction of genetic exchange communities. FEMS Microbiology Reviews, 2011, 35, 707-735.	3.9	137
110	Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar. FEMS Microbiology Ecology, 2011, 75, 377-389.	1.3	205

#	Article	IF	CITATIONS
111	Influence of gut microbiota on mouse B2 B cell ontogeny and function. Molecular Immunology, 2011, 48, 1091-1101.	1.0	39
112	Phylogenetic Validation of the Genera Angomonas and Strigomonas of Trypanosomatids Harboring Bacterial Endosymbionts with the Description of New Species of Trypanosomatids and of Proteobacterial Symbionts. Protist, 2011, 162, 503-524.	0.6	136
113	Grain aphid clones vary in frost resistance, but this trait is not influenced by facultative endosymbionts. Ecological Entomology, 2011, 36, 790-793.	1.1	13
114	Endosymbiosis: Bacteria Sharing the Load. Current Biology, 2011, 21, R623-R624.	1.8	18
115	The Human Gut Microbiome: Ecology and Recent Evolutionary Changes. Annual Review of Microbiology, 2011, 65, 411-429.	2.9	589
116	Molecular subgrouping of Wolbachia and bacteriophage WO infection among some Indian Drosophila species. Journal of Genetics, 2011, 90, 507-510.	0.4	11
117	Effect of the Drosophila endosymbiont Spiroplasma on parasitoid wasp development and on the reproductive fitness of wasp-attacked fly survivors. Evolutionary Ecology, 2011, 25, 1065-1079.	0.5	40
118	Different mosquito species host Wickerhamomyces anomalus (Pichia anomala): perspectives on vector-borne diseases symbiotic control. Antonie Van Leeuwenhoek, 2011, 99, 43-50.	0.7	68
119	Molecular characterization of Psyttalia lounsburyi, a candidate biocontrol agent of the olive fruit fly, and its Wolbachia symbionts as a pre-requisite for future intraspecific hybridization. BioControl, 2011, 56, 713-724.	0.9	16
120	Origin and Examination of a Leafhopper Facultative Endosymbiont. Current Microbiology, 2011, 62, 1565-1572.	1.0	25
121	Survey of Wolbachia and Its Phage WO in the Uzifly Exorista sorbillans (Diptera: Tachinidae). Current Microbiology, 2011, 63, 267-272.	1.0	4
122	Genomic revelations of a mutualism: the pea aphid and its obligate bacterial symbiont. Cellular and Molecular Life Sciences, 2011, 68, 1297-1309.	2.4	146
123	Anthropogenic effects on interaction outcomes: examples from insect-microbial symbioses in forest and savanna ecosystems. Symbiosis, 2011, 53, 101-121.	1.2	26
124	Origin of eukaryotic cells: 40Âyears on. Symbiosis, 2011, 54, 69-86.	1.2	32
125	Multiple origins of endosymbiosis within the Enterobacteriaceae (Î ³ -Proteobacteria): convergence of complex phylogenetic approaches. BMC Biology, 2011, 9, 87.	1.7	90
126	Endosymbiont or host: who drove mitochondrial and plastid evolution?. Biology Direct, 2011, 6, 12.	1.9	18
127	A bacterial genome in transition - an exceptional enrichment of IS elements but lack of evidence for recent transposition in the symbiont Amoebophilus asiaticus. BMC Evolutionary Biology, 2011, 11, 270.	3.2	22
128	Evolution of an endofungal Lifestyle: Deductions from the Burkholderia rhizoxinica Genome. BMC Genomics, 2011, 12, 210.	1.2	102

#	ARTICLE	IF	CITATIONS
129	Caught in the act: Rapid, symbiontâ€driven evolution. BioEssays, 2011, 33, 823-829.	1.2	26
130	The Prevalence of â€~ <l>Candidatus</l> Arsenophonus phytopathogenicus' Infecting the Planthopper Pentastiridius leporinus (Hemiptera: Cixiidae) Increase Nonlinearly With the Population Abundance in Sugar Beet Fields. Environmental Entomology, 2011, 40, 1345-1352.	0.7	15
131	Genome Economization in the Endosymbiont of the Wood Roach Cryptocercus punctulatus Due to Drastic Loss of Amino Acid Synthesis Capabilities. Genome Biology and Evolution, 2011, 3, 1437-1448.	1.1	35
132	Bacterial Communities of Two Parthenogenetic Aphid Species Cocolonizing Two Host Plants across the Hawaiian Islands. Applied and Environmental Microbiology, 2011, 77, 8345-8349.	1.4	57
133	Bacterial Endosymbiont Localization in <i>Hyalesthes obsoletus</i> , the Insect Vector of Bois Noir in <i>Vitis vinifera</i> . Applied and Environmental Microbiology, 2011, 77, 1423-1435.	1.4	68
134	Use of the Internal Transcribed Spacer (ITS) Regions to Examine Symbiont Divergence and as a Diagnostic Tool for Sodalis-Related Bacteria. Insects, 2011, 2, 515-531.	1.0	7
135	Adopting Bacteria in Order to Adapt to Water—How Reed Beetles Colonized the Wetlands (Coleoptera, Chrysomelidae, Donaciinae). Insects, 2011, 2, 540-554.	1.0	21
136	Genomic Characterization of Neoparamoeba pemaquidensis (Amoebozoa) and Its Kinetoplastid Endosymbiont. Eukaryotic Cell, 2011, 10, 1143-1146.	3.4	20
137	Remarkable Abundance and Evolution of Mobile Group II Introns in Wolbachia Bacterial Endosymbionts. Molecular Biology and Evolution, 2011, 28, 685-697.	3.5	54
138	Genome Expansion and Differential Expression of Amino Acid Transporters at the Aphid/Buchnera Symbiotic Interface. Molecular Biology and Evolution, 2011, 28, 3113-3126.	3.5	66
139	Beneficial Microorganisms in Multicellular Life Forms. , 2011, , .		16
140	Aphid genome expression reveals host–symbiont cooperation in the production of amino acids. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2849-2854.	3.3	375
141	New Clues about the Evolutionary History of Metabolic Losses in Bacterial Endosymbionts, Provided by the Genome of Buchnera aphidicola from the Aphid Cinara tujafilina. Applied and Environmental Microbiology, 2011, 77, 4446-4454.	1.4	57
142	Characterization of an Obligate Intracellular Bacterium in the Midgut Epithelium of the Bulrush Bug Chilacis typhae (Heteroptera, Lygaeidae, Artheneinae). Applied and Environmental Microbiology, 2011, 77, 2869-2876.	1.4	54
143	Complex microbiome underlying secondary and primary metabolism in the tunicate- <i>Prochloron</i> symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1423-32.	3.3	146
144	<i>Paracatenula</i> , an ancient symbiosis between thiotrophic <i>Alphaproteobacteria</i> and catenulid flatworms. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12078-12083.	3.3	75
145	DNA barcodes for two scale insect families, mealybugs (Hemiptera: Pseudococcidae) and armored scales (Hemiptera: Diaspididae). Bulletin of Entomological Research, 2011, 101, 429-434.	0.5	73
146	Unity in Variety–The Pan-Genome of the Chlamydiae. Molecular Biology and Evolution, 2011, 28, 2253-3270.	3.5	184

#	Article	IF	CITATIONS
147	Diversification of Wolbachia Endosymbiont in the Culex pipiens Mosquito. Molecular Biology and Evolution, 2011, 28, 2761-2772.	3.5	114
148	Serratia symbiotica from the Aphid Cinara cedri: A Missing Link from Facultative to Obligate Insect Endosymbiont. PLoS Genetics, 2011, 7, e1002357.	1.5	208
149	Short- and Long-term Evolutionary Dynamics of Bacterial Insertion Sequences: Insights from Wolbachia Endosymbionts. Genome Biology and Evolution, 2011, 3, 1175-1186.	1.1	55
150	Sequence Conservation and Functional Constraint on Intergenic Spacers in Reduced Genomes of the Obligate Symbiont Buchnera. PLoS Genetics, 2011, 7, e1002252.	1.5	47
151	Genome Reduction and Co-evolution between the Primary and Secondary Bacterial Symbionts of Psyllids. Molecular Biology and Evolution, 2012, 29, 3781-3792.	3.5	175
152	Understanding the Role of Host Hemocytes in a Squid/Vibrio Symbiosis Using Transcriptomics and Proteomics. Frontiers in Immunology, 2012, 3, 91.	2.2	56
153	The genome of the obligate endobacterium of an AM fungus reveals an interphylum network of nutritional interactions. ISME Journal, 2012, 6, 136-145.	4.4	176
154	Evolution of symbiotic organs and endosymbionts in lygaeid stinkbugs. ISME Journal, 2012, 6, 397-409.	4.4	80
155	Bacteriocyte-associated gammaproteobacterial symbionts of the <i>Adelges nordmannianae/piceae</i> complex (Hemiptera: Adelgidae). ISME Journal, 2012, 6, 384-396.	4.4	49
156	Diversity of Symbiotic Organs and Bacterial Endosymbionts of Lygaeoid Bugs of the Families Blissidae and Lygaeidae (Hemiptera: Heteroptera: Lygaeoidea). Applied and Environmental Microbiology, 2012, 78, 2648-2659.	1.4	84
157	Insect "Symbiology―Is Coming of Age, Bridging Between Bench and Field. , 2012, , 27-41.		0
158	Comparative Genomics Suggests an Independent Origin of Cytoplasmic Incompatibility in Cardinium hertigii. PLoS Genetics, 2012, 8, e1003012.	1.5	135
159	A Novel Human-Infection-Derived Bacterium Provides Insights into the Evolutionary Origins of Mutualistic Insect–Bacterial Symbioses. PLoS Genetics, 2012, 8, e1002990.	1.5	133
160	Selection-Driven Gene Loss in Bacteria. PLoS Genetics, 2012, 8, e1002787.	1.5	206
161	Genome Shrinkage and Loss of Nutrient-Providing Potential in the Obligate Symbiont of the Primitive Termite Mastotermes darwiniensis. Applied and Environmental Microbiology, 2012, 78, 204-210.	1.4	72
162	Purifying Selection, Sequence Composition, and Context-Specific Indel Mutations Shape Intraspecific Variation in a Bacterial Endosymbiont. Genome Biology and Evolution, 2012, 4, 44-51.	1.1	14
163	Some Like It Hot: Evolution and Ecology of Novel Endosymbionts in Bat Flies of Cave-Roosting Bats (Hippoboscoidea, Nycterophiliinae). Applied and Environmental Microbiology, 2012, 78, 8639-8649.	1.4	28
164	Causes and Consequences of Genome Expansion in Fungi. Genome Biology and Evolution, 2012, 4, 13-23.	1.1	68

#	Article	IF	CITATIONS
165	Draft Genome Sequence of Rickettsia sp. Strain MEAM1, Isolated from the Whitefly Bemisia tabaci. Journal of Bacteriology, 2012, 194, 4741-4742.	1.0	14
166	The Tsetse Fly Obligate Mutualist Wigglesworthia morsitans Alters Gene Expression and Population Density via Exogenous Nutrient Provisioning. Applied and Environmental Microbiology, 2012, 78, 7792-7797.	1.4	30
167	A Rickettsia Genome Overrun by Mobile Genetic Elements Provides Insight into the Acquisition of Genes Characteristic of an Obligate Intracellular Lifestyle. Journal of Bacteriology, 2012, 194, 376-394.	1.0	152
168	Insight into the Transmission Biology and Species-Specific Functional Capabilities of Tsetse (Diptera:) Tj ETQq1 1	0.784314 1.8	rgBT /Overlo
169	Identification of Endosymbionts in Ticks by Broad-Range Polymerase Chain Reaction and Electrospray Ionization Mass Spectrometry. Journal of Medical Entomology, 2012, 49, 843-850.	0.9	35
170	Transovarial Transmission of Rickettsia spp. and Organ-Specific Infection of the Whitefly Bemisia tabaci. Applied and Environmental Microbiology, 2012, 78, 5565-5574.	1.4	64
171	Polyphyly of Gut Symbionts in Stinkbugs of the Family Cydnidae. Applied and Environmental Microbiology, 2012, 78, 4758-4761.	1.4	32
172	The Effects of Deleterious Mutations on Evolution at Linked Sites. Genetics, 2012, 190, 5-22.	1.2	275
173	Purifying Selection and Molecular Adaptation in the Genome of Verminephrobacter, the Heritable Symbiotic Bacteria of Earthworms. Genome Biology and Evolution, 2012, 4, 307-315.	1.1	25
174	Cellular mechanism for selective vertical transmission of an obligate insect symbiont at the bacteriocyte–embryo interface. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1230-7.	3.3	221
175	Population genetic structure and secondary endosymbionts of Q <i>Bemisia tabaci</i> (Hemiptera:) Tj ETQq0 0 0	rgBT /Over	lock 10 Tf 5
176	Endosymbiont Transmission Mode in Bacterial Leaf Nodulation as Revealed by a Population Genetic Study of Psychotria leptophylla. Applied and Environmental Microbiology, 2012, 78, 284-287.	1.4	26
177	Endosymbiont Tolerance and Control within Insect Hosts. Insects, 2012, 3, 553-572.	1.0	59
178	Meta-Analysis of General Bacterial Subclades in Whole-Genome Phylogenies Using Tree Topology Profiling. Evolutionary Bioinformatics, 2012, 8, EBO.S9642.	0.6	0
179	An AT Mutational Bias in the Tiny GC-Rich Endosymbiont Genome of Hodgkinia. Genome Biology and Evolution, 2012, 4, 24-27.	1.1	41
180	Independent Genome Reduction and Phylogenetic Reclassification of the Oceanic SAR11 Clade. Molecular Biology and Evolution, 2012, 29, 599-615.	3.5	105
181	The egg and embryology. , 0, , 347-397.		2
182	Evolution of genome base composition and genome size in bacteria. Frontiers in Microbiology, 2012, 3, 420	1.5	46

#	Article	IF	CITATIONS
183	Geographical and ecological stability of the symbiotic midâ€gut microbiota in <scp>E</scp> uropean firebugs, <i><scp>P</scp>yrrhocoris apterus</i> (<scp>H</scp> emiptera, <scp>P</scp> yrrhocoridae). Molecular Ecology, 2012, 21, 6134-6151.	2.0	121
184	Evolutionary relationships of flavobacterial and enterobacterial endosymbionts with their scale insect hosts (<scp>H</scp> emiptera: <scp>C</scp> occoidea). Journal of Evolutionary Biology, 2012, 25, 2357-2368.	0.8	64
185	<i>Wolbachia</i> (Rickettsiales) infections and bee (Apoidea) barcoding: a response to Gerth <i>etÂal.</i> . Systematics and Biodiversity, 2012, 10, 395-401.	0.5	11
186	Wolbachia gonadal density in female and male Drosophila vary with laboratory adaptation and respond differently to physiological and environmental challenges. Journal of Invertebrate Pathology, 2012, 111, 197-204.	1.5	32
187	Highâ€Resolution Melting technology: a new tool for studying the <i>Wolbachia</i> endosymbiont diversity in the field. Molecular Ecology Resources, 2012, 12, 75-81.	2.2	10
188	Infection densities of three Spiroplasma strains in the host Drosophila melanogaster. Symbiosis, 2012, 57, 83-93.	1.2	6
189	Bacteriome-associated endosymbionts of the green rice leafhopper Nephotettix cincticeps (Hemiptera:) Tj ETQq0	0.0 rgBT / 0.6	Oyerlock 10
190	Host–plants shape insect diversity: Phylogeny, origin, and species diversity of native Hawaiian leafhoppers (Cicadellidae: Nesophrosyne). Molecular Phylogenetics and Evolution, 2012, 65, 705-717.	1.2	46
191	A selective force favoring increased G+C content in bacterial genes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14504-14507.	3.3	110
192	Speciation by symbiosis. Trends in Ecology and Evolution, 2012, 27, 443-451.	4.2	326
			_

193	Metabolic Networks and Their Evolution. Advances in Experimental Medicine and Biology, 2012, 751, 29-52.	0.8	31
194	Horizontal transmission of the insect symbiont <i>Rickettsia</i> is plant-mediated. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1791-1796.	1.2	221
195	Acyrthosiphon pisum AQP2: A multifunctional insect aquaglyceroporin. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 627-635.	1.4	34
196	Interactions between Fusarium verticillioides, Ustilago maydis, and Zea mays: An endophyte, a pathogen, and their shared plant host. Fungal Genetics and Biology, 2012, 49, 578-587.	0.9	65
197	Pseudomonas aeruginosa Syntrophy in Chronically Colonized Airways of Cystic Fibrosis Patients. Antimicrobial Agents and Chemotherapy, 2012, 56, 5971-5981.	1.4	34
198	Ants farm subterranean aphids mostly in single clone groups - an example of prudent husbandry for carbohydrates and proteins?. BMC Evolutionary Biology, 2012, 12, 106.	3.2	22

200	Exploration of the core metabolism of symbiotic bacteria. BMC Genomics, 2012, 13, 438.	1.2	11

#	Article	IF	CITATIONS
201	Rapid evolution of <i>Wolbachia</i> incompatibility types. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4473-4480.	1.2	15
202	Microbial Symbiont Transmission: Basic Principles and Dark Sides. , 2012, , 299-311.		1
203	Mutualism meltdown in insects: bacteria constrain thermal adaptation. Current Opinion in Microbiology, 2012, 15, 255-262.	2.3	158
204	A leaf-rolling weevil benefits from general saprophytic fungi in polysaccharide degradation. Arthropod-Plant Interactions, 2012, 6, 417-424.	0.5	10
205	Survey of Heritable Endosymbionts in Southern Mexico Populations of the Fruit Fly Species Anastrepha striata and A. ludens. Current Microbiology, 2012, 65, 711-718.	1.0	21
206	Reductive genome evolution, host–symbiont co-speciation and uterine transmission of endosymbiotic bacteria in bat flies. ISME Journal, 2012, 6, 577-587.	4.4	78
207	Comparative Analysis of Gene Content Evolution in Phytoplasmas and Mycoplasmas. PLoS ONE, 2012, 7, e34407.	1.1	47
208	The Irreversible Loss of a Decomposition Pathway Marks the Single Origin of an Ectomycorrhizal Symbiosis. PLoS ONE, 2012, 7, e39597.	1.1	100
209	Fungal Farming in a Non-Social Beetle. PLoS ONE, 2012, 7, e41893.	1.1	53
210	A Veritable Menagerie of Heritable Bacteria from Ants, Butterflies, and Beyond: Broad Molecular Surveys and a Systematic Review. PLoS ONE, 2012, 7, e51027.	1.1	107
211	Inactivation of Wolbachia Reveals Its Biological Roles in Whitefly Host. PLoS ONE, 2012, 7, e48148.	1.1	50
212	The Chlamydiales Pangenome Revisited: Structural Stability and Functional Coherence. Genes, 2012, 3, 291-319.	1.0	9
213	Factors Behind Junk DNA in Bacteria. Genes, 2012, 3, 634-650.	1.0	26
214	Lateral gene exchanges shape the genomes of amoeba-resisting microorganisms. Frontiers in Cellular and Infection Microbiology, 2012, 2, 110.	1.8	70
215	Exploring Symbioses by Single-Cell Genomics. Biological Bulletin, 2012, 223, 30-43.	0.7	17
216	Strategies of Genomic Integration Within Insect-Bacterial Mutualisms. Biological Bulletin, 2012, 223, 112-122.	0.7	25
217	Evidence of diversity and recombination in Arsenophonus symbionts of the Bemisia tabaci species complex. BMC Microbiology, 2012, 12, S10.	1.3	41
218	Metabolic stasis in an ancient symbiosis: genome-scale metabolic networks from two Blattabacterium cuenoti strains, primary endosymbionts of cockroaches. BMC Microbiology, 2012, 12, S5.	1.3	38

#	Article	IF	CITATIONS
219	Assessment of bacterial endosymbiont diversity in Otiorhynchus spp. (Coleoptera: Curculionidae) larvae using a multitag 454 pyrosequencing approach. BMC Microbiology, 2012, 12, S6.	1.3	24
220	Novel Clade of Alphaproteobacterial Endosymbionts Associated with Stinkbugs and Other Arthropods. Applied and Environmental Microbiology, 2012, 78, 4149-4156.	1.4	85
221	Extreme genome reduction in symbiotic bacteria. Nature Reviews Microbiology, 2012, 10, 13-26.	13.6	1,195
222	Epithelial barrier biology: good fences make good neighbours. Immunology, 2012, 135, 1-8.	2.0	109
223	Resurrecting the ghost of green revolutions past: The brown planthopper as a recurring threat to high-yielding rice production in tropical Asia. Journal of Asia-Pacific Entomology, 2012, 15, 122-140.	0.4	300
224	The biology of small, introduced populations, with special reference to biological control. Evolutionary Applications, 2012, 5, 424-443.	1.5	141
225	EVOLUTIONARY STABILITY IN A 400-MILLION-YEAR-OLD HERITABLE FACULTATIVE MUTUALISM. Evolution; International Journal of Organic Evolution, 2012, 66, 2564-2576.	1.1	73
226	Bistability of endosymbiont evolution of genome size and host sex control. Journal of Theoretical Biology, 2012, 309, 58-66.	0.8	0
227	Highly similar microbial communities are shared among related and trophically similar ant species. Molecular Ecology, 2012, 21, 2282-2296.	2.0	159
228	Environmental and ecological factors that shape the gut bacterial communities of fish: a metaâ€analysis. Molecular Ecology, 2012, 21, 3363-3378.	2.0	814
229	Exploring the effect of the <i>Cardinium</i> endosymbiont on spiders. Journal of Evolutionary Biology, 2012, 25, 1521-1530.	0.8	27
230	An inherited virus influences the coexistence of parasitoid species through behaviour manipulation. Ecology Letters, 2012, 15, 603-610.	3.0	23
231	Coâ€evolution and symbiont replacement shaped the symbiosis between adelgids (Hemiptera: Adelgidae) and their bacterial symbionts. Environmental Microbiology, 2012, 14, 1284-1295.	1.8	89
232	Parasitic wasp responses to symbiont-based defense in aphids. BMC Biology, 2012, 10, 11.	1.7	126
233	Independent Origins of Vectored Plant Pathogenic Bacteria from Arthropod-Associated Arsenophonus Endosymbionts. Microbial Ecology, 2012, 63, 628-638.	1.4	44
234	The Bark Beetle Holobiont: Why Microbes Matter. Journal of Chemical Ecology, 2013, 39, 989-1002.	0.9	103
235	Can't Take the Heat: High Temperature Depletes Bacterial Endosymbionts of Ants. Microbial Ecology, 2013, 66, 727-733.	1.4	40
236	Defensive Bacteriome Symbiont with a Drastically Reduced Genome. Current Biology, 2013, 23, 1478-1484.	1.8	314

#	Article	IF	CITATIONS
237	Aspects of Pathogen Genomics, Diversity, Epidemiology, Vector Dynamics, and Disease Management for a Newly Emerged Disease of Potato: Zebra Chip. Phytopathology, 2013, 103, 524-537.	1.1	34
238	Phylogenetic analysis of symbionts in feather-feeding lice of the genus Columbicola: evidence for repeated symbiont replacements. BMC Evolutionary Biology, 2013, 13, 109.	3.2	60
239	Endosymbiont diversity among sibling weevil species competing for the same resource. BMC Evolutionary Biology, 2013, 13, 28.	3.2	20
240	Arthropods and inherited bacteria: from counting the symbionts to understanding how symbionts count. BMC Biology, 2013, 11, 45.	1.7	96
241	Dynamics of the continentâ€wide spread of a <i>Drosophila</i> defensive symbiont. Ecology Letters, 2013, 16, 609-616.	3.0	45
243	The diversity and fitness effects of infection with facultative endosymbionts in the grain aphid, Sitobion avenae. Oecologia, 2013, 173, 985-996.	0.9	87
244	Reconstructing the phylogeny of aphids (Hemiptera: Aphididae) using DNA of the obligate symbiont Buchnera aphidicola. Molecular Phylogenetics and Evolution, 2013, 68, 42-54.	1.2	102
245	Lack of evidence for an interaction between Buchnera GroEL and Banana bunchy top virus (Nanoviridae). Virus Research, 2013, 177, 98-102.	1.1	4
246	Facultative Symbiont <1>Hamiltonella 1 Confers Benefits to <1>Bemisia tabaci 1 (Hemiptera: Aleyrodidae), an Invasive Agricultural Pest Worldwide. Environmental Entomology, 2013, 42, 1265-1271.	0.7	43
247	Gut bacteria facilitate adaptation to crop rotation in the western corn rootworm. Proceedings of the United States of America, 2013, 110, 11917-11922.	3.3	122
248	<i>Polynucleobacter necessarius</i> , a model for genome reduction in both free-living and symbiotic bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18590-18595.	3.3	80
249	The Epidemiology and Evolution of Symbionts with Mixed-Mode Transmission. Annual Review of Ecology, Evolution, and Systematics, 2013, 44, 623-643.	3.8	194
250	Monophyly of <i>Wolbachia pipientis</i> genomes within <i>Drosophila melanogaster</i> : geographic structuring, titre variation and host effects across five populations. Molecular Ecology, 2013, 22, 5765-5778.	2.0	48
251	Diversity of Bacterial Endosymbionts Associated with Macrosteles Leafhoppers Vectoring Phytopathogenic Phytoplasmas. Applied and Environmental Microbiology, 2013, 79, 5013-5022.	1.4	64
252	Assessment of mutualism between Bombus terrestris and its microbiota by use of microcolonies. Apidologie, 2013, 44, 708-719.	0.9	28
253	In silico experimental evolution: a tool to test evolutionary scenarios. BMC Bioinformatics, 2013, 14, S11.	1.2	30
254	Protection against a fungal pathogen conferred by the aphid facultative endosymbionts <i><scp>R</scp>ickettsia</i> and <i><scp>S</scp>piroplasma</i> is expressed in multiple host genotypes and species and is not influenced by coâ€infection with another symbiont. Journal of Evolutionary Biology, 2013, 26, 2654-2661.	0.8	135
255	Analysis of the gut microbiota of walking sticks (Phasmatodea). BMC Research Notes, 2013, 6, 368.	0.6	44

#	Article	IF	CITATIONS
256	Endosymbiosis in trypanosomatids: the genomic cooperation between bacterium and host in the synthesis of essential amino acids is heavily influenced by multiple horizontal gene transfers. BMC Evolutionary Biology, 2013, 13, 190.	3.2	70
257	Flexible case-based retrieval for comparative genomics. Applied Intelligence, 2013, 39, 144-152.	3.3	2

258 Cryptic diversity within and amongst spring-associated<i>Stygobromus</i>amphipods (Amphipoda:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

259	Polyester synthesis genes associated with stress resistance are involved in an insect–bacterium symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2381-9.	3.3	86
260	By their genes ye shall know them: genomic signatures of predatory bacteria. ISME Journal, 2013, 7, 756-769.	4.4	92
261	Evolution of intracellular compartmentalization. Biochemical Journal, 2013, 449, 319-331.	1.7	148
262	Mealybugs with distinct endosymbiotic systems living on the same host plant. FEMS Microbiology Ecology, 2013, 83, 93-100.	1.3	27
263	Thelytokous Parthenogenesis in Eusocial Hymenoptera. Annual Review of Entomology, 2013, 58, 273-292.	5.7	142
264	Phylogenetic, Metabolic, and Taxonomic Diversities Shape Mediterranean Fruit Fly Microbiotas during Ontogeny. Applied and Environmental Microbiology, 2013, 79, 303-313.	1.4	118
265	A transgenetic algorithm applied to the Traveling Car Renter Problem. Expert Systems With Applications, 2013, 40, 6298-6310.	4.4	18
266	Diversification of endosymbiosis: replacements, co-speciation and promiscuity of bacteriocyte symbionts in weevils. ISME Journal, 2013, 7, 1378-1390.	4.4	90
267	Studies on Recombination Processes in two Chlamydomonas reinhardtii Endogenous Genes, NIT1 and ARG7. Protist, 2013, 164, 570-582.	0.6	15
268	Genome Evolution: A Bacterium with a Napoleon Complex. Current Biology, 2013, 23, R657-R659.	1.8	2
269	Unrelated facultative endosymbionts protect aphids against a fungal pathogen. Ecology Letters, 2013, 16, 214-218.	3.0	266
270	Phylogenetic congruence between <i>Mollitrichosiphum</i> (Aphididae: Greenideinae) and <i>Buchnera</i> indicates insect–bacteria parallel evolution. Systematic Entomology, 2013, 38, 81-92.	1.7	30
271	Diversity of bacterial endosymbionts and bacteria–host coâ€evolution in <scp>G</scp> ondwanan relict moss bugs (<scp>H</scp> emiptera: <scp>C</scp> oleorrhyncha: <scp>P</scp> eloridiidae). Environmental Microbiology, 2013, 15, 2031-2042.	1.8	53
272	Evolution and diversity of <i><scp>A</scp>rsenophonus</i> endosymbionts in aphids. Molecular Ecology, 2013, 22, 260-270.	2.0	83
273	Citrus Huanglongbing: A Newly Relevant Disease Presents Unprecedented Challenges. Phytopathology, 2013, 103, 652-665.	1.1	290

#	Article	IF	CITATIONS
274	Evolution, Multiple Acquisition, and Localization of Endosymbionts in Bat Flies (Diptera:) Tj ETQq0 0 0 rgBT /Over 2952-2961.	lock 10 Tf 1.4	50 747 Td (I 30
275	<i>Wolbachia</i> Induced Cytogenetical Effects as Evidenced in <i>Chorthippus parallelus</i> (Orthoptera). Cytogenetic and Genome Research, 2013, 139, 36-43.	0.6	11
276	Structure and Function of Microbial Communities. , 2013, , 3-30.		5
277	<i>Wolbachia</i> in the Malpighian Tubules: Evolutionary Deadâ€ <scp>E</scp> nd or Adaptation?. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2013, 320, 195-199.	0.6	15
278	Computational meta'omics for microbial community studies. Molecular Systems Biology, 2013, 9, 666.	3.2	253
279	Diversity of proteobacterial endosymbionts in hemlock woolly adelgid (<i><scp>A</scp>delges) Tj ETQq1 1 0.78 Environmental Microbiology, 2013, 15, 2043-2062.</i>	4314 rgBT 1.8	/Overlock 10 46
280	The Impact of Environmental Heterogeneity and Life Stage on the Hindgut Microbiota of Holotrichia parallela Larvae (Coleoptera: Scarabaeidae). PLoS ONE, 2013, 8, e57169.	1.1	57
281	Lateral transfers of insertion sequences between Wolbachia, Cardinium and Rickettsia bacterial endosymbionts. Heredity, 2013, 111, 330-337.	1.2	31
282	What is a genome?. Molecular Ecology, 2013, 22, 3437-3443.	2.0	17
283	Between Pathogenicity and Commensalism. Current Topics in Microbiology and Immunology, 2013, 358, v-vii.	0.7	8
284	Uncovering symbiontâ€driven genetic diversity across <scp>N</scp> orth <scp>A</scp> merican pea aphids. Molecular Ecology, 2013, 22, 2045-2059.	2.0	174
285	Novel Rickettsiella Bacterium in the Leafhopper Orosius albicinctus (Hemiptera: Cicadellidae). Applied and Environmental Microbiology, 2013, 79, 4246-4252.	1.4	24
286	Ultrastructure, distribution, and transovarial transmission of symbiotic microorganisms in Nysius ericae and Nithecus jacobaeae (Heteroptera: Lygaeidae: Orsillinae). Protoplasma, 2013, 250, 325-332.	1.0	18
287	Small, Smaller, Smallest: The Origins and Evolution of Ancient Dual Symbioses in a Phloem-Feeding Insect. Genome Biology and Evolution, 2013, 5, 1675-1688.	1.1	276
288	Comparative Genomic Analysis of the Endosymbionts of Herbivorous Insects Reveals Eco-Environmental Adaptations: Biotechnology Applications. PLoS Genetics, 2013, 9, e1003131.	1.5	56
289	Mom Knows Best: The Universality of Maternal Microbial Transmission. PLoS Biology, 2013, 11, e1001631.	2.6	649
290	Wolbachia Variants Induce Differential Protection to Viruses in Drosophila melanogaster: A Phenotypic and Phylogenomic Analysis. PLoS Genetics, 2013, 9, e1003896.	1.5	277
291	Molecular Characterization of Host-Specific Biofilm Formation in a Vertebrate Gut Symbiont. PLoS Genetics, 2013, 9, e1004057.	1.5	162

#	Article	IF	CITATIONS
292	Phage loss and the breakdown of a defensive symbiosis in aphids. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122103.	1.2	88
293	Coinfection of Dermacentor silvarum Olenev (Acari: Ixodidae) by Coxiella-Like, Arsenophonus-Like, and Rickettsia-Like Symbionts. Applied and Environmental Microbiology, 2013, 79, 2450-2454.	1.4	28
294	Molecular Approaches for Studying Root Herbivores. Advances in Insect Physiology, 2013, , 219-255.	1.1	4
295	Biosynthesis of Vitamins and Cofactors in Bacterium-Harbouring Trypanosomatids Depends on the Symbiotic Association as Revealed by Genomic Analyses. PLoS ONE, 2013, 8, e79786.	1.1	49
296	Genome Evolution and Phylogenomic Analysis of Candidatus Kinetoplastibacterium, the Betaproteobacterial Endosymbionts of Strigomonas and Angomonas. Genome Biology and Evolution, 2013, 5, 338-350.	1.1	47
297	Bacterial Infections across the Ants: Frequency and Prevalence ofWolbachia, Spiroplasma, andAsaia. Psyche: Journal of Entomology, 2013, 2013, 1-11.	0.4	50
298	Localization and morphological variation of three bacteriomeâ€inhabiting symbionts within a planthopper of the genus <i><scp>O</scp>liarus</i> (<i><scp>H</scp>emiptera</i>) Tj ETQq0 0 0 rgBT /Overlo	ock1100 Tf 5	0 49 7 Td (<i></i>
299	Implementing an evolutionary framework for understanding genetic relationships of phenotypically defined insect biotypes in the invasive soybean aphid (A phis glycines). Evolutionary Applications, 2013, 6, 1041-1053.	1.5	32
300	Male Killing Caused by a Spiroplasma Symbiont in the Small Brown Planthopper, Laodelphax striatellus. Journal of Heredity, 2013, 104, 821-829.	1.0	65
301	Density dynamics of diverse <i><i>Spiroplasma</i></i> strains naturally infecting different species of <i><i>Drosophila</i></i> . Fly, 2013, 7, 204-210.	0.9	7
302	The primate vaginal microbiome: Comparative context and implications for human health and disease. American Journal of Physical Anthropology, 2013, 152, 119-134.	2.1	115
303	Specific Midgut Region Controlling the Symbiont Population in an Insect-Microbe Gut Symbiotic Association. Applied and Environmental Microbiology, 2013, 79, 7229-7233.	1.4	44
304	Characterization of the Achromobactin Iron Acquisition Operon in Sodalis glossinidius. Applied and Environmental Microbiology, 2013, 79, 2872-2881.	1.4	21
305	The Evolution of Genomic Instability in the Obligate Endosymbionts of Whiteflies. Genome Biology and Evolution, 2013, 5, 783-793.	1.1	60
306	Genome reduction as the dominant mode of evolution. BioEssays, 2013, 35, 829-837.	1.2	267
307	Diversity and localization of bacterial symbionts in three whitefly species (Hemiptera: Aleyrodidae) from the east coast of the Adriatic Sea. Bulletin of Entomological Research, 2013, 103, 48-59.	0.5	53
308	Expression of genes derived from the genomic DNA fragments of the brown-winged green bug (Plautia) Tj ETQqQ	0.0 rgBT	Oyerlock 10

309	Sequence Context of Indel Mutations and Their Effect on Protein Evolution in a Bacterial Endosymbiont. Genome Biology and Evolution, 2013, 5, 599-605.	1.1	54
-----	---	-----	----

		Citation Re	PORT	
#	Article		IF	CITATIONS
310	Symbiont-mediated functions in insect hosts. Communicative and Integrative Biology, 2	.013, 6, e23804.	0.6	65
311	Active and secreted IgA-coated bacterial fractions from the human gut reveal an under-r microbiota core. Scientific Reports, 2013, 3, 3515.	epresented	1.6	41
312	ORFcor: Identifying and Accommodating ORF Prediction Inconsistencies for Phylogenet PLoS ONE, 2013, 8, e58387.	ic Analysis.	1.1	15
313	Distribution of Endosymbiotic Reproductive Manipulators Reflects Invasion Process and Reproductive System Polymorphism in the Little Fire Ant Wasmannia auropunctata. PLc e58467.	Not S ONE, 2013, 8,	1.1	26
314	Predicting the Proteins of Angomonas deanei, Strigomonas culicis and Their Respective Endosymbionts Reveals New Aspects of the Trypanosomatidae Family. PLoS ONE, 2013	, 8, e60209 .	1.1	55
315	Gene Expression in Gut Symbiotic Organ of Stinkbug Affected by Extracellular Bacterial PLoS ONE, 2013, 8, e64557.	Symbiont.	1.1	61
316	Horizontal Gene Acquisition of Liberibacter Plant Pathogens from a Bacteriome-Confine Endosymbiont of Their Psyllid Vector. PLoS ONE, 2013, 8, e82612.	d	1.1	46
317	Microbial Ecology of the Hive and Pollination Landscape: Bacterial Associates from Flora Alimentary Tract and Stored Food of Honey Bees (Apis mellifera). PLoS ONE, 2013, 8, e8	l Nectar, the 33125.	1.1	233
318	Diverse Strategies for Vertical Symbiont Transmission among Subsocial Stinkbugs. PLoS e65081.	ONE, 2013, 8,	1.1	68
319	VI.7. Coevolution and Speciation. , 2013, , 535-542.			0
320	Host Control of Symbiont Natural Product Chemistry in Cryptic Populations of the Tunic Lissoclinum patella. PLoS ONE, 2014, 9, e95850.	cate	1.1	31
321	Ixodes pacificus Ticks Maintain Embryogenesis and Egg Hatching after Antibiotic Treatn Rickettsia Endosymbiont. PLoS ONE, 2014, 9, e104815.	nent of	1.1	28
322	The earthwormââ,¬â€Verminephrobacter symbiosis: an emerging experimental system extracellular symbiosis. Frontiers in Microbiology, 2014, 5, 128.	to study	1.5	23
323	Cooperation, communication, and co-evolution: grand challenges in microbial symbiosis Frontiers in Microbiology, 2014, 5, 164.	research.	1.5	30
325	A host as an ecosystem: <scp><i>W</i></scp> <i>olbachia</i> coping with environment Environmental Microbiology, 2014, 16, 3583-3607.	al constraints.	1.8	36
326	The Pine Bark Adelgid, Pineus strobi, Contains Two Novel Bacteriocyte-Associated Gammaproteobacterial Symbionts. Applied and Environmental Microbiology, 2014, 80,	878-885.	1.4	35
327	Interactions between fungi and bacteria influence microbial community structure in the rotundata larval gut. Proceedings of the Royal Society B: Biological Sciences, 2014,	<i>Megachile 281, 20132653.</i>	1.2	46
328	Genome Degeneration and Adaptation in a Nascent Stage of Symbiosis. Genome Biolog 2014, 6, 76-93.	y and Evolution,	1.1	200

#	Article	IF	CITATIONS
329	The Genome of Cardinium cBtQ1 Provides Insights into Genome Reduction, Symbiont Motility, and Its Settlement in Bemisia tabaci. Genome Biology and Evolution, 2014, 6, 1013-1030.	1.1	68
330	Reduced Nuclear Genomes Maintain High Gene Transcription Levels. Molecular Biology and Evolution, 2014, 31, 625-635.	3.5	20
331	Intrasperm vertical symbiont transmission. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7433-7437.	3.3	63
332	Male-Killing Spiroplasma Induces Sex-Specific Cell Death via Host Apoptotic Pathway. PLoS Pathogens, 2014, 10, e1003956.	2.1	33
333	Molecular evidence for ongoing complementarity and horizontal gene transfer in endosymbiotic systems of mealybugs. Frontiers in Microbiology, 2014, 5, 449.	1.5	12
334	Phylogenetic and Cophylogenetic Analyses of the Leaf-Nodule Symbiosis in <i>Ardisia</i> Subgenus <i>Crispardisia</i> (Myrsinaceae): Evidence from Nuclear and Chloroplast Markers and Bacterial <i>rrn</i> Operons. International Journal of Plant Sciences, 2014, 175, 92-109.	0.6	10
335	Extreme Divergence of Wolbachia Tropism for the Stem-Cell-Niche in the Drosophila Testis. PLoS Pathogens, 2014, 10, e1004577.	2.1	16
336	Paulinella chromatophora – rethinking the transition from endosymbiont to organelle. Acta Societatis Botanicorum Poloniae, 2014, 83, 387-397.	0.8	69
337	Attenuated Virulence and Genomic Reductive Evolution in the Entomopathogenic Bacterial Symbiont Species, Xenorhabdus poinarii. Genome Biology and Evolution, 2014, 6, 1495-1513.	1.1	28
338	Endosymbiotic microorganisms of aphids (Hemiptera: Sternorrhyncha: Aphidoidea): Ultrastructure, distribution and transovarial transmission. European Journal of Entomology, 2014, 111, 91-104.	1.2	26
339	Whole-Genome Sequence of Serratia symbiotica Strain CWBI-2.3 ^T , a Free-Living Symbiont of the Black Bean Aphid <i>Aphis fabae</i> . Genome Announcements, 2014, 2, .	0.8	28
340	The Crypt-Dwelling Primary Bacterial Symbiont of the Polyphagous Pentatomid Pest <i>Halyomorpha halys</i> (Hemiptera: Pentatomidae). Environmental Entomology, 2014, 43, 617-625.	0.7	43
341	How resident microbes modulate ecologically-important traits of insects. Current Opinion in Insect Science, 2014, 4, 1-7.	2.2	99
342	The diversity of sexual cycles. , 2014, , 18-36.		1
343	Phylogenomics of "Candidatus Hepatoplasma crinochetorum,―a Lineage of Mollicutes Associated with Noninsect Arthropods. Genome Biology and Evolution, 2014, 6, 407-415.	1.1	35
344	The impact of transmission mode on the evolution of benefits provided by microbial symbionts. Ecology and Evolution, 2014, 4, 3350-3361.	0.8	30
345	Correlates of gut community composition across an ant species (<i><scp>C</scp>ephalotes) Tj ETQq0 0 0 rgBT / 1284-1300.</i>	Overlock 2.0	10 Tf 50 107 82
346	<i>Arsenophonus</i> insect symbionts are commonly infected with APSE, a bacteriophage involved in protective symbiosis. FEMS Microbiology Ecology, 2014, 90, 184-194.	1.3	36

#	Article	IF	CITATIONS
347	ldentifying the core microbial community in the gut of fungusâ€growing termites. Molecular Ecology, 2014, 23, 4631-4644.	2.0	151
348	Purine biosynthesis-deficient <i>Burkholderia</i> mutants are incapable of symbiotic accommodation in the stinkbug. ISME Journal, 2014, 8, 552-563.	4.4	58
349	Origin, acquisition and diversification of heritable bacterial endosymbionts in louse flies and bat flies. Molecular Ecology, 2014, 23, 2105-2117.	2.0	38
350	Evidence for horizontal transmission from multilocus phylogeny of deepâ€sea mussel (<scp>M</scp> ytilidae) symbionts. Environmental Microbiology, 2014, 16, 3608-3621.	1.8	24
351	Swapping symbionts in spittlebugs: evolutionary replacement of a reduced genome symbiont. ISME Journal, 2014, 8, 1237-1246.	4.4	121
352	The evolutionary ecology of the <scp>L</scp> ygaeidae. Ecology and Evolution, 2014, 4, 2278-2301.	0.8	32
353	Microbiome diversity of <i><scp>A</scp>phis glycines</i> with extensive superinfection in native and invasive populations. Environmental Microbiology Reports, 2014, 6, 57-69.	1.0	46
355	Aphids as models for ecological and evolutionary studies. Insect Science, 2014, 21, 247-250.	1.5	14
356	Signs of Neutralization in a Redundant Gene Involved in Homologous Recombination in Wolbachia Endosymbionts. Genome Biology and Evolution, 2014, 6, 2654-2664.	1.1	10
357	Obligate Insect Endosymbionts Exhibit Increased Ortholog Length Variation and Loss of Large Accessory Proteins Concurrent with Genome Shrinkage. Genome Biology and Evolution, 2014, 6, 763-775.	1.1	10
358	Effect of the symbiont Candidatus Erwinia dacicola on mating success of the olive fly Bactrocera oleae (Diptera: Tephritidae). International Journal of Tropical Insect Science, 2014, 34, S123-S131.	0.4	30
359	The genome of the intracellular bacterium of the coastal bivalve, Solemya velum: a blueprint for thriving in and out of symbiosis. BMC Genomics, 2014, 15, 924.	1.2	26
360	Bacterial associates of seed-parasitic wasps (Hymenoptera: Megastigmus). BMC Microbiology, 2014, 14, 224.	1.3	20
361	Genome Sequence of <i>Candidatus</i> Riesia pediculischaeffi, Endosymbiont of Chimpanzee Lice, and Genomic Comparison of Recently Acquired Endosymbionts from Human and Chimpanzee Lice. G3: Genes, Genomes, Genetics, 2014, 4, 2189-2195.	0.8	30
362	Microbial impacts on insect evolutionary diversification: from patterns to mechanisms. Current Opinion in Insect Science, 2014, 4, 29-34.	2.2	39
363	Unique genome evolution in an intracellular N2-fixing symbiont of a rhopalodiacean diatom. Acta Societatis Botanicorum Poloniae, 2014, 83, 409-413.	0.8	8
364	Factors Limiting the Spread of the Protective Symbiont Hamiltonella defensa in Aphis craccivora Aphids. Applied and Environmental Microbiology, 2014, 80, 5818-5827.	1.4	58
365	Defensive symbiosis in the real world – advancing ecological studies of heritable, protective bacteria in aphids and beyond. Functional Ecology, 2014, 28, 341-355.	1.7	310

#	Article	IF	CITATIONS
366	Unearthing carrion beetles' microbiome: characterization of bacterial and fungal hindgut communities across the <scp>S</scp> ilphidae. Molecular Ecology, 2014, 23, 1251-1267.	2.0	77
367	Ribosomal proteins: Toward a next generation standard for prokaryotic systematics?. Molecular Phylogenetics and Evolution, 2014, 75, 103-117.	1.2	30
368	Population genomics of a symbiont in the early stages of a pest invasion. Molecular Ecology, 2014, 23, 1516-1530.	2.0	50
369	The impact of microbial symbionts on host plant utilization by herbivorous insects. Molecular Ecology, 2014, 23, 1473-1496.	2.0	380
370	Chemical defensive symbioses in the marine environment. Functional Ecology, 2014, 28, 328-340.	1.7	69
371	Live imaging of symbiosis: spatiotemporal infection dynamics of a <scp>GFP</scp> â€labelled <i><scp>B</scp>urkholderia</i> symbiont in the bean bug <i><scp>R</scp>iptortus pedestris</i> . Molecular Ecology, 2014, 23, 1445-1456.	2.0	69
372	Aphid facultative symbionts reduce survival of the predatory lady beetle Hippodamia convergens. BMC Ecology, 2014, 14, 5.	3.0	40
373	Nature's microbiome: introduction. Molecular Ecology, 2014, 23, 1225-1237.	2.0	36
374	Endosymbiosis. , 2014, , .		6
375	Emergence and evolution of Arsenophonus bacteria as insect-vectored plant pathogens. Infection, Genetics and Evolution, 2014, 22, 81-90.	1.0	39
376	Male killing Spiroplasma protects Drosophila melanogaster against two parasitoid wasps. Heredity, 2014, 112, 399-408.	1.2	128
377	Transcriptional responses in a <i><scp>D</scp>rosophila</i> defensive symbiosis. Molecular Ecology, 2014, 23, 1558-1570.	2.0	44
378	Genetic conflict, kin and the origins of novel genetic systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130364.	1.8	21
379	Fecal microbiomes of nonâ€human primates in Western Uganda reveal speciesâ€specific communities largely resistant to habitat perturbation. American Journal of Primatology, 2014, 76, 347-354.	0.8	72
380	The origins of cellular life. Antonie Van Leeuwenhoek, 2014, 106, 27-41.	0.7	23
381	Bacterial Genome Instability. Microbiology and Molecular Biology Reviews, 2014, 78, 1-39.	2.9	372
382	Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements. Microbiology and Molecular Biology Reviews, 2014, 78, 278-303.	2.9	200
383	Stability and phylogenetic correlation in gut microbiota: lessons from ants and apes. Molecular Ecology, 2014, 23, 1268-1283.	2.0	276

#	Article	IF	Citations
384	Tissue tropism and vertical transmission of <scp><i>C</i></scp> <i>oxiella</i> in <scp><i>R</i></scp> <i>hipicephalus sanguineus</i> and <scp><i>R</i></scp> <i>hipicephalus turanicus</i> ticks. Environmental Microbiology, 2014, 16, 3657-3668.	1.8	64
385	Partner choice and fidelity stabilize coevolution in a Cretaceous-age defensive symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6359-6364.	3.3	111
386	The (d)evolution of methanotrophy in the <i>Beijerinckiaceae</i> —a comparative genomics analysis. ISME Journal, 2014, 8, 369-382.	4.4	91
387	Detection of a novel intracellular microbiome hosted in arbuscular mycorrhizal fungi. ISME Journal, 2014, 8, 257-270.	4.4	128
388	Phenotypic Effect of "Candidatus Rickettsiella viridis,―a Facultative Symbiont of the Pea Aphid (Acyrthosiphon pisum), and Its Interaction with a Coexisting Symbiont. Applied and Environmental Microbiology, 2014, 80, 525-533.	1.4	81
389	Evolutionary origin of insect– <i>Wolbachia</i> nutritional mutualism. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10257-10262.	3.3	327
390	Vitamin B 12 as a Modulator of Gut Microbial Ecology. Cell Metabolism, 2014, 20, 769-778.	7.2	356
391	Root microbiome relates to plant host evolution in maize and other <scp>P</scp> oaceae. Environmental Microbiology, 2014, 16, 2804-2814.	1.8	233
392	Reductive genome evolution at both ends of the bacterial population size spectrum. Nature Reviews Microbiology, 2014, 12, 841-850.	13.6	158
393	Eco-Taxonomic Insights into Actinomycete Symbionts of Termites for Discovery of Novel Bioactive Compounds. Advances in Biochemical Engineering/Biotechnology, 2014, 147, 111-135.	0.6	16
394	The Facultative Symbiont Rickettsia Protects an Invasive Whitefly against Entomopathogenic Pseudomonas syringae Strains. Applied and Environmental Microbiology, 2014, 80, 7161-7168.	1.4	75
395	Symbiont-Supplemented Maternal Investment Underpinning Host's Ecological Adaptation. Current Biology, 2014, 24, 2465-2470.	1.8	117
396	Phylogenomic analyses uncover origin and spread of the Wolbachia pandemic. Nature Communications, 2014, 5, 5117.	5.8	121
397	Evolutionary Biology: Genome Evolution, Speciation, Coevolution and Origin of Life. , 2014, , .		7
398	Cultivable Gut Bacteria of Scarabs (Coleoptera: Scarabaeidae) InhibitBacillus thuringiensisMultiplication. Environmental Entomology, 2014, 43, 612-616.	0.7	15
399	Support for the coevolution of Neoparamoeba and their endosymbionts, Perkinsela amoebae-like organisms. European Journal of Protistology, 2014, 50, 509-523.	0.5	28
400	Evidence of Environmental and Vertical Transmission of Burkholderia Symbionts in the Oriental Chinch Bug, Cavelerius saccharivorus (Heteroptera: Blissidae). Applied and Environmental Microbiology, 2014, 80, 5974-5983.	1.4	83
401	Complete genome of a nonphotosynthetic cyanobacterium in a diatom reveals recent adaptations to an intracellular lifestyle. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11407-11412.	3.3	121

#	Article	IF	CITATIONS
402	Erosion of functional independence early in the evolution of a microbial mutualism. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14822-14827.	3.3	63
403	Cytokinin-Induced Phenotypes in Plant-Insect Interactions: Learning from the Bacterial World. Journal of Chemical Ecology, 2014, 40, 826-835.	0.9	43
404	Host-specific assemblages typify gut microbial communities of related insect species. SpringerPlus, 2014, 3, 138.	1.2	49
405	Insect Gut Bacterial Diversity Determined by Environmental Habitat, Diet, Developmental Stage, and Phylogeny of Host. Applied and Environmental Microbiology, 2014, 80, 5254-5264.	1.4	591
406	The evolution of bacterial DNA base composition. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2014, 322, 517-528.	0.6	41
407	Shortâ€ŧerm heat stress results in diminution of bacterial symbionts but has little effect on life history in adult female citrus mealybugs. Entomologia Experimentalis Et Applicata, 2014, 153, 1-9.	0.7	10
408	Evolutionary relationships of <i>Pemphigus</i> and allied genera (Hemiptera: Aphididae:) Tj ETQq0 0 0 rgBT /Ove 301-312.	rlock 10 T 1.5	f 50 507 Td 14
409	An Insight Into the Microbiome of the <i>Amblyomma maculatum</i> (Acari: Ixodidae). Journal of Medical Entomology, 2014, 51, 119-129.	0.9	115
410	Host tissues as microhabitats for <i><scp>W</scp>olbachia</i> and quantitative insights into the bacterial community in terrestrial isopods. Molecular Ecology, 2014, 23, 2619-2635.	2.0	28
411	Bacterial endosymbionts in field-collected samples of Trialeurodes sp. nr. abutiloneus (Hemiptera:) Tj ETQq1 1 0.7	784314 rg 1.0	BT_/Overloc
412	Parallel Histories of Horizontal Gene Transfer Facilitated Extreme Reduction of Endosymbiont Genomes in Sap-Feeding Insects. Molecular Biology and Evolution, 2014, 31, 857-871.	3.5	180
413	LESS IS MORE: SELECTIVE ADVANTAGES CAN EXPLAIN THE PREVALENT LOSS OF BIOSYNTHETIC GENES IN BACTERIA. Evolution; International Journal of Organic Evolution, 2014, 68, 2559-2570.	1.1	197
414	Evidence of horizontal transmission of primary and secondary endosymbionts between maize and rice weevils (Sitophilus zeamais and Sitophilus oryzae) and the parasitoid Theocolax elegans. Journal of Stored Products Research, 2014, 59, 61-65.	1.2	14
415	Diversity and global distribution of the Coxiella intracellular bacterium in seabird ticks. Ticks and Tick-borne Diseases, 2014, 5, 557-563.	1.1	77
416	Host life stage- and temperature-dependent density of the symbiont Buchnera aphidicola in a subtropical pea aphid (Acyrthosiphon pisum) population. Journal of Asia-Pacific Entomology, 2014, 17, 537-541.	0.4	14
418	Nitrogen-fixing Rhizobium-legume symbiosis: are polyploidy and host peptide-governed symbiont differentiation general principles of endosymbiosis?. Frontiers in Microbiology, 2014, 5, 326.	1.5	84
419	Population Structure of Endomicrobia in Single Host Cells of Termite Gut Flagellates (<i>Trichonympha</i> spp.). Microbes and Environments, 2015, 30, 92-98.	0.7	29
421	Evolutionary Ecology of Microorganisms: From the Tamed to the Wild. , 0, , 4.1.2-1-4.1.2-12.		4

IF

ARTICLE

422 Invertebrate Gut Associations. , 2015, , 4.4.1-1-4.4.1-7.

CITATIONS

0

423	Title is missing!. Kagaku To Seibutsu, 2015, 53, 820-821.	0.0	0
424	Dynamics of <i>Wolbachia pipientis</i> Gene Expression Across the <i>Drosophila melanogaster</i> Life Cycle. G3: Genes, Genomes, Genetics, 2015, 5, 2843-2856.	0.8	55
425	Identification and analysis of the bacterial endosymbiont specialized for production of the chemotherapeutic natural product <scp>ET</scp> â€743. Environmental Microbiology, 2015, 17, 3964-3975.	1.8	78
426	Morphology and ultrastructure of the alimentary canal of the cicada <i><scp>P</scp>latypleura kaempferi</i> (<scp>H</scp> emiptera: <scp>C</scp> icadidae). Entomological Science, 2015, 18, 340-352.	0.3	3
427	Long-term selection experiment produces breakdown of horizontal transmissibility in parasite with mixed transmission mode. Evolution; International Journal of Organic Evolution, 2015, 69, 1069-1076.	1.1	27
428	Horizontal transfer of facultative endosymbionts is limited by host relatedness. Evolution; International Journal of Organic Evolution, 2015, 69, 2757-2766.	1.1	37
429	12 Evolutionary pressures and the establishment of endosymbiotic associations. , 0, , .		0
430	Microbes in the coral holobiont: partners through evolution, development, and ecological interactions. Frontiers in Cellular and Infection Microbiology, 2014, 4, 176.	1.8	223
431	Inside or out? Possible genomic consequences of extracellular transmission of crypt-dwelling stinkbug mutualists. Frontiers in Ecology and Evolution, 2015, 3, .	1.1	8
432	The reduced genomes of Parcubacteria (OD1) contain signatures of a symbiotic lifestyle. Frontiers in Microbiology, 2015, 6, 713.	1.5	280
433	French invasive Asian tiger mosquito populations harbor reduced bacterial microbiota and genetic diversity compared to Vietnamese autochthonous relatives. Frontiers in Microbiology, 2015, 6, 970.	1.5	86
434	Slow and Fast Evolving Endosymbiont Lineages: Positive Correlation between the Rates of Synonymous and Non-Synonymous Substitution. Frontiers in Microbiology, 2015, 6, 1279.	1.5	17
435	Endosymbiont Dominated Bacterial Communities in a Dwarf Spider. PLoS ONE, 2015, 10, e0117297.	1.1	52
436	Infection Dynamic of Symbiotic Bacteria in the Pea Aphid Acyrthosiphon pisum Gut and Host Immune Response at the Early Steps in the Infection Process. PLoS ONE, 2015, 10, e0122099.	1.1	47
437	Bacterial Communities Associated with Host-Adapted Populations of Pea Aphids Revealed by Deep Sequencing of 16S Ribosomal DNA. PLoS ONE, 2015, 10, e0120664.	1.1	110
438	The Hologenome Concept: Helpful or Hollow?. PLoS Biology, 2015, 13, e1002311.	2.6	346

#	Article	IF	CITATIONS
440	The Hoopoe's Uropygial Gland Hosts a Bacterial Community Influenced by the Living Conditions of the Bird. PLoS ONE, 2015, 10, e0139734.	1.1	29
441	Whole Genome Sequence of the Soybean Aphid Endosymbiont Buchnera aphidicola and Genetic Differentiation among Biotype-Specific Strains. Journal of Genomics, 2015, 3, 85-94.	0.6	11
442	Major evolutionary transitions in individuality. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10112-10119.	3.3	278
443	Colon Cancer Prevention through Probiotics: An Overview. Journal of Cancer Science & Therapy, 2015, 07, .	1.7	15
444	The Endosymbiont Arsenophonus Provides a General Benefit to Soybean Aphid (Hemiptera: Aphididae) Regardless of Host Plant Resistance (Rag). Environmental Entomology, 2015, 44, 574-581.	0.7	27
445	Diversity and phylogenetic analysis of endosymbiotic bacteria of the date palm root borer Oryctes agamemnon (Coleoptera: Scarabaeidae). BMC Microbiology, 2015, 15, 88.	1.3	15
446	Infection prevalence of Sodalis symbionts among stinkbugs. Zoological Letters, 2015, 1, 5.	0.7	32
447	Signatures of host/symbiont genome coevolution in insect nutritional endosymbioses. Proceedings of the United States of America, 2015, 112, 10255-10261.	3.3	129
448	Heritable symbiosis: The advantages and perils of an evolutionary rabbit hole. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10169-10176.	3.3	401
449	Minimal genomes of mycoplasma-related endobacteria are plastic and contain host-derived genes for sustained life within Clomeromycota. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7791-7796.	3.3	88
450	Evolutionary transition in symbiotic syndromes enabled diversification of phytophagous insects on an imbalanced diet. ISME Journal, 2015, 9, 2587-2604.	4.4	63
451	Reproductive Parasitism: Maternally Inherited Symbionts in a Biparental World. Cold Spring Harbor Perspectives in Biology, 2015, 7, a017699.	2.3	117
452	Found and Lost: The Fates of Horizontally Acquired Genes in Arthropod-Symbiotic <i>Spiroplasma</i> . Genome Biology and Evolution, 2015, 7, 2458-2472.	1.1	51
453	A facultative endosymbiont in aphids can provide diverse ecological benefits. Journal of Evolutionary Biology, 2015, 28, 1753-1760.	0.8	107
454	Distinctive Genome Reduction Rates Revealed by Genomic Analyses of Two <i>Coxiella-</i> Like Endosymbionts in Ticks. Genome Biology and Evolution, 2015, 7, 1779-1796.	1.1	140
455	Genomic Analysis of an Ascomycete Fungus from the Rice Planthopper Reveals How It Adapts to an Endosymbiotic Lifestyle. Genome Biology and Evolution, 2015, 7, 2623-2634.	1.1	51
456	Geographic patterns in the bacterial microbiome of the glassy-winged sharpshooter, Homalodisca vitripennis (Hemiptera: Cicadellidae). Symbiosis, 2015, 66, 1-12.	1.2	17
457	Diversity and Infection Frequency of Symbiotic Bacteria in Different Populations of the Rice Brown Planthopper in China. Journal of Entomological Science, 2015, 50, 47-66.	0.2	10

#	Article	IF	CITATIONS
458	Experimental replacement of an obligate insect symbiont. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2093-2096.	3.3	130
459	Patterns, causes and consequences of defensive microbiome dynamics across multiple scales. Molecular Ecology, 2015, 24, 1135-1149.	2.0	126
460	Dynamics of the Endosymbiont Rickettsia in an Insect Pest. Microbial Ecology, 2015, 70, 287-297.	1.4	22
461	Microbial Associates of the Vine Mealybug Planococcus ficus (Hemiptera: Pseudococcidae) under Different Rearing Conditions. Microbial Ecology, 2015, 69, 204-214.	1.4	18
462	The whiteflyâ€associated facultative symbiont <i>Hamiltonella defensa</i> suppresses induced plant defences in tomato. Functional Ecology, 2015, 29, 1007-1018.	1.7	114
463	Hitchhiking of host biology by beneficial symbionts enhances transmission. Scientific Reports, 2014, 4, 5825.	1.6	10
464	Armored scale insect endosymbiont diversity at the species level: genealogical patterns of <i>Uzinura diasipipdicola</i> in the <i>Chionaspis pinifoliae</i> – <i>Chionaspis heterophyllae</i> species complex (Hemiptera: Coccoidea: Diaspididae). Bulletin of Entomological Research, 2015, 105, 110-120.	0.5	1
465	Evolution of small prokaryotic genomes. Frontiers in Microbiology, 2014, 5, 742.	1.5	83
466	Mutualism Breakdown by Amplification of Wolbachia Genes. PLoS Biology, 2015, 13, e1002065.	2.6	127
467	An Extraordinary Host-Specific Sex Ratio in an Avian Louse (Phthiraptera: Insecta)—Chemical Distortion?. Environmental Entomology, 2015, 44, 1149-1154.	0.7	2
468	Small molecules from the human microbiota. Science, 2015, 349, 1254766.	6.0	592
469	Arsenophonus and Sodalis Symbionts in Louse Flies: an Analogy to the Wigglesworthia and Sodalis System in Tsetse Flies. Applied and Environmental Microbiology, 2015, 81, 6189-6199.	1.4	73
470	Novel Endosymbioses as a Catalyst of Fast Speciation. Interdisciplinary Evolution Research, 2015, , 107-120.	0.2	4
471	Phenotypic characterization of Sodalis praecaptivus sp. nov., a close non-insect-associated member of the Sodalis-allied lineage of insect endosymbionts. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 1400-1405.	0.8	57
472	Do Bacterial Symbionts Govern Aphid's Dropping Behavior?. Environmental Entomology, 2015, 44, 588-592.	0.7	4
473	Two Host Clades, Two Bacterial Arsenals: Evolution through Gene Losses in Facultative Endosymbionts. Genome Biology and Evolution, 2015, 7, 839-855.	1.1	26
474	The Recent Evolution of a Maternally-Inherited Endosymbiont of Ticks Led to the Emergence of the Q Fever Pathogen, Coxiella burnetii. PLoS Pathogens, 2015, 11, e1004892.	2.1	218
475	Horizontal gene transfers in insects. Current Opinion in Insect Science, 2015, 7, 24-29.	2.2	35

#	Article	IF	CITATIONS
476	Endosymbiotic Candidates for Parasitoid Defense in Exotic and Native New Zealand Weevils. Microbial Ecology, 2015, 70, 274-286.	1.4	21
477	Habitat Visualization and Genomic Analysis of "Candidatus Pantoea carbekii,―the Primary Symbiont of the Brown Marmorated Stink Bug. Genome Biology and Evolution, 2015, 7, 620-635.	1.1	50
478	The significance and scope of evolutionary developmental biology: a vision for the 21st century. Evolution & Development, 2015, 17, 198-219.	1.1	92
479	Elimination of Arsenophonus and decrease in the bacterial symbionts diversity by antibiotic treatment leads to increase in fitness of whitefly, Bemisia tabaci. Infection, Genetics and Evolution, 2015, 32, 224-230.	1.0	24
480	A Coxiella-Like Endosymbiont Is a Potential Vitamin Source for the Lone Star Tick. Genome Biology and Evolution, 2015, 7, 831-838.	1.1	204
481	Plasticity and epistasis strongly affect bacterial fitness after losing multiple metabolic genes. Evolution; International Journal of Organic Evolution, 2015, 69, 1244-1254.	1.1	24
482	An out-of-body experience: the extracellular dimension for the transmission of mutualistic bacteria in insects. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142957.	1.2	222
483	Female-Specific Specialization of a Posterior End Region of the Midgut Symbiotic Organ in Plautia splendens and Allied Stinkbugs. Applied and Environmental Microbiology, 2015, 81, 2603-2611.	1.4	35
484	Concordance of bacterial communities of two tick species and blood of their shared rodent host. Molecular Ecology, 2015, 24, 2566-2579.	2.0	100
485	Endosymbiont evolution: predictions from theory and surprises from genomes. Annals of the New York Academy of Sciences, 2015, 1360, 16-35.	1.8	99
486	Functionally Structured Genomes in Lactobacillus kunkeei Colonizing the Honey Crop and Food Products of Honeybees and Stingless Bees. Genome Biology and Evolution, 2015, 7, 1455-1473.	1.1	50
487	Evidence for host specificity among dominant bacterial symbionts in temperate gorgonian corals. Coral Reefs, 2015, 34, 1087-1098.	0.9	48
488	Microbial ecology-based methods to characterize the bacterial communities of non-model insects. Journal of Microbiological Methods, 2015, 119, 110-125.	0.7	14
489	Genome reduction and potential metabolic complementation of the dual endosymbionts in the whitefly Bemisia tabaci. BMC Genomics, 2015, 16, 226.	1.2	100
490	<i>Ultrabithorax</i> is essential for bacteriocyte development. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9376-9381.	3.3	53
491	Scrambled and not-so-tiny genomes of fungal endosymbionts. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7622-7623.	3.3	12
492	The Importance of Ticks in Q Fever Transmission: What Has (and Has Not) Been Demonstrated?. Trends in Parasitology, 2015, 31, 536-552.	1.5	149
493	<i>Burkholderia</i> bacteria infectiously induce the proto-farming symbiosis of <i>Dictyostelium</i> amoebae and food bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5029-37.	3.3	98

#	Article	IF	CITATIONS
494	Cheat invasion causes bacterial trait loss in lung infections. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10577-10578.	3.3	5
495	Endosymbiotic origin and differential loss of eukaryotic genes. Nature, 2015, 524, 427-432.	13.7	251
496	Insect's intestinal organ for symbiont sorting. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5179-88.	3.3	138
497	Review of the Gross Anatomy and Microbiology of the Phasmatodea Digestive Tract. Journal of Orthoptera Research, 2015, 24, 29-40.	0.4	25
498	Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents. Nature Reviews Genetics, 2015, 16, 611-622.	7.7	281
499	Insect Gut Symbiont Susceptibility to Host Antimicrobial Peptides Caused by Alteration of the Bacterial Cell Envelope. Journal of Biological Chemistry, 2015, 290, 21042-21053.	1.6	45
500	Rapid spread of the defensive endosymbiont Spiroplasma in Drosophila hydei under high parasitoid wasp pressure. FEMS Microbiology Ecology, 2015, 91, 1-11.	1.3	242
501	Species and endosymbiont diversity of <i>Bemisia tabaci</i> (Homoptera: Aleyrodidae) on vegetable crops in Senegal. Insect Science, 2015, 22, 386-398.	1.5	15
502	Low Levels of Mitochondrial DNA and Symbiont Diversity in the Worldwide Agricultural Pest, the Greenhouse Whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). Journal of Heredity, 2015, 106, 80-92.	1.0	34
503	Single strain infection of adult and larval cardamom thrips (Sciothrips cardamomi) byWolbachiasubgroupConbelonging to supergroup B in India. Invertebrate Reproduction and Development, 2015, 59, 1-8.	0.3	10
505	Methyloprofundus sedimenti gen. nov., sp. nov., an obligate methanotroph from ocean sediment belonging to the â€~deep sea-1' clade of marine methanotrophs. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 251-259.	0.8	74
506	Bacterial Community Composition of Three Candidate Insect Vectors of Palm Phytoplasma (Texas) Tj ETQq1 1 0.	784314 rg 1.0	BŢ/Overlock
507	Genitaliaâ€associated microbes in insects. Insect Science, 2015, 22, 325-339.	1.5	23
508	Plant-insect interactions under bacterial influence: ecological implications and underlying mechanisms. Journal of Experimental Botany, 2015, 66, 467-478.	2.4	146
509	Wolbachia Associations with Insects: Winning or Losing Against a Master Manipulator. Frontiers in Ecology and Evolution, 2016, 3, .	1.1	99
510	Dynamics of Bacterial Community Composition in the Malaria Mosquito's Epithelia. Frontiers in Microbiology, 2015, 6, 1500.	1.5	80
511	Phylogenetic Diversity, Distribution, and Cophylogeny of Giant Bacteria (Epulopiscium) with their Surgeonfish Hosts in the Red Sea. Frontiers in Microbiology, 2016, 7, 285.	1.5	41
512	Pika Gut May Select for Rare but Diverse Environmental Bacteria. Frontiers in Microbiology, 2016, 7, 1269.	1.5	65

29

#	Article	IF	Citations
513	Disentangling a Holobiont – Recent Advances and Perspectives in Nasonia Wasps. Frontiers in Microbiology, 2016, 7, 1478.	1.5	48
514	Reduced Diversity in the Bacteriome of the Phytophagous Mite Brevipalpus yothersi (Acari:) Tj ETQq1 1 0.784314	rgBT /Ove	erlgck 10 Tf
515	The Cosmic Zoo: The (Near) Inevitability of the Evolution of Complex, Macroscopic Life. Life, 2016, 6, 25.	1.1	24
516	Deep divergence and rapid evolutionary rates in gut-associated Acetobacteraceae of ants. BMC Microbiology, 2016, 16, 140.	1.3	38
517	Drosophila Adaptation to Viral Infection through Defensive Symbiont Evolution. PLoS Genetics, 2016, 12, e1006297.	1.5	29
518	Experimental Evolution of Metabolic Dependency in Bacteria. PLoS Genetics, 2016, 12, e1006364.	1.5	119
519	Codivergence of the primary bacterial endosymbiont of psyllids versus host switches and replacement of their secondary bacterial endosymbionts. Environmental Microbiology, 2016, 18, 2591-2603.	1.8	50
520	<i>Trichoplusia ni</i> (Lepidoptera: Noctuidae) Survival, Immune Response, and Gut Bacteria Changes after Exposure to <i>Azadirachta indica</i> (Sapindales: Meliaceae) Volatiles. Florida Entomologist, 2016, 99, 12-20.	0.2	6
521	â€~ <i>Candidatus</i> Adiutrix intracellularis', an endosymbiont of termite gut flagellates, is the first representative of a deepâ€branching clade of <i>Deltaproteobacteria</i> and a putative homoacetogen. Environmental Microbiology, 2016, 18, 2548-2564.	1.8	50
522	Recurrent evolution of gut symbiotic bacteria in pentatomid stinkbugs. Zoological Letters, 2016, 2, 24.	0.7	33
523	Genomes of <i>Candidatus</i> Wolbachia bourtzisii <i>w</i> DacA and <i>Candidatus</i> Wolbachia pipientis <i>w</i> DacB from the Cochineal Insect <i>Dactylopius coccus</i> (Hemiptera:) Tj ETQq0 0 0 rgBT /Ove	rloæk 10 T	f 50 337 Td
524	Extreme mutation bias and high AT content in <i>Plasmodium falciparum</i> . Nucleic Acids Research, 2017, 45, gkw1259.	6.5	89
525	Coâ€evolution of marine worms and their chemoautotrophic bacterial symbionts: unexpected host switches explained by ecological fitting?. Molecular Ecology, 2016, 25, 2964-2966.	2.0	4
526	Symbiogenesis as a model for reconstructing the early stages of genome evolution. Russian Journal of Genetics, 2016, 52, 117-124.	0.2	8
527	7 Evolution in Heritable Bacterial–Fungal Endosymbioses. , 2016, , 151-160.		3
528	The Mechanistic Benefits of Microbial Symbionts. Advances in Environmental Microbiology, 2016, , .	0.1	2
529	Microbiomes, metagenomics, and primate conservation: New strategies, tools, and applications. Biological Conservation, 2016, 199, 56-66.	1.9	73
530	Nondegenerative Evolution in Ancient Heritable Bacterial Endosymbionts of Fungi. Molecular Biology and Evolution, 2016, 33, 2216-2231.	3.5	14

ARTICLE

IF CITATIONS

Fungal and bacterial endosymbionts of eared leafhoppers of the subfamily Ledrinae (Hemiptera:) Tj ETQq0 0 0 rgBT $_{0.6}^{10}$ Verlock 10 Tf 50 7

532	Long-term ungulate exclusion reduces fungal symbiont prevalence in native grasslands. Oecologia, 2016, 181, 1151-1161.	0.9	7
533	The Symbiotic Bacteria <i>Nardonella</i> in Rice Water Weevil (Coleoptera: Curculionidae): Diversity, Density, and Associations With Host Reproduction. Annals of the Entomological Society of America, 2016, 109, 415-423.	1.3	11
534	Molecular data reveal a cryptic species within the <i>Culex pipiens</i> mosquito complex. Insect Molecular Biology, 2016, 25, 800-809.	1.0	15
535	Phylogenetic Evidence for Ancient and Persistent Environmental Symbiont Reacquisition in Largidae (Hemiptera: Heteroptera). Applied and Environmental Microbiology, 2016, 82, 7123-7133.	1.4	31
536	How Likely Are We? Evolution of Organismal Complexity. , 2016, , 255-272.		2
537	Phylogeographic analyses of bacterial endosymbionts in fig homotomids (Hemiptera: Psylloidea) reveal codiversification of both primary and secondary endosymbionts. FEMS Microbiology Ecology, 2016, 92, fiw205.	1.3	19
538	Diversity in symbiont consortia in the pea aphid complex is associated with large phenotypic variation in the insect host. Evolutionary Ecology, 2016, 30, 925-941.	0.5	46
539	Comparison of Intracellular " <i>Ca.</i> Endomicrobium Trichonymphae―Genomovars Illuminates the Requirement and Decay of Defense Systems against Foreign DNA. Genome Biology and Evolution, 2016, 8, 3099-3107.	1.1	27
540	Molecular screening for Midichloria in hard and soft ticks reveals variable prevalence levels and bacterial loads in different tick species. Ticks and Tick-borne Diseases, 2016, 7, 1186-1192.	1.1	33
541	The natural occurrence of secondary bacterial symbionts in aphids. Ecological Entomology, 2016, 41, 13-26.	1.1	139
542	Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5416-24.	3.3	222
543	Winding paths to simplicity: genome evolution in facultative insect symbionts. FEMS Microbiology Reviews, 2016, 40, 855-874.	3.9	103
544	When Obligate Partners Melt Down. MBio, 2016, 7, .	1.8	17
545	Symbiosis, Introduction to. , 2016, , 282-290.		6
546	Obligate bacterial mutualists evolving from environmental bacteria in natural insect populations. Nature Microbiology, 2016, 1, 15011.	5.9	129
547	Resource conflict and cooperation between human host and gut microbiota: implications for nutrition and health. Annals of the New York Academy of Sciences, 2016, 1372, 20-28.	1.8	36
548	Genome Evolution in the Obligate but Environmentally Active Luminous Symbionts of Flashlight Fish. Genome Biology and Evolution, 2016, 8, 2203-2213.	1.1	23

#	Article	IF	CITATIONS
549	Phylogeny of the Aphids. , 2016, , 11-23.		6
550	Plant and insect microbial symbionts alter the outcome of plant–herbivore–parasitoid interactions: implications for invaded, agricultural and natural systems. Journal of Ecology, 2016, 104, 1734-1744.	1.9	24
551	Microbiome. , 2016, , 14-18.		0
552	Small Regulatory RNAs of Rickettsia conorii. Scientific Reports, 2016, 6, 36728.	1.6	36
553	Intraspecific genetic variation in hosts affects regulation of obligate heritable symbionts. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13114-13119.	3.3	71
554	Collapse of Insect Gut Symbiosis under Simulated Climate Change. MBio, 2016, 7, .	1.8	127
555	Inevitability of Genetic Parasites. Genome Biology and Evolution, 2016, 8, 2856-2869.	1.1	85
556	Male-killing symbiont damages host's dosage-compensated sex chromosome to induce embryonic apoptosis. Nature Communications, 2016, 7, 12781.	5.8	47
557	Aphid– <i>Buchnera</i> –Ant symbiosis; or why are aphids rare in the tropics and very rare further south?. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2016, 107, 297-310.	0.3	21
558	The unity, diversity and conformity of bugs (Hemiptera) through time. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2016, 107, 109-128.	0.3	71
559	Snapshots of a shrinking partner: Genome reduction in Serratia symbiotica. Scientific Reports, 2016, 6, 32590.	1.6	68
560	Defying Muller's Ratchet: Ancient Heritable Endobacteria Escape Extinction through Retention of Recombination and Genome Plasticity. MBio, 2016, 7, .	1.8	39
561	Endosymbiotic bacteria in honey bees: <i>Arsenophonus</i> spp. are not transmitted transovarially. FEMS Microbiology Letters, 2016, 363, fnw147.	0.7	26
562	Restriction-Modification Systems as Mobile Genetic Elements in the Evolution of an Intracellular Symbiont. Molecular Biology and Evolution, 2016, 33, 721-725.	3.5	22
563	Diverse Bacteriophage Roles in an Aphid-Bacterial Defensive Mutualism. Advances in Environmental Microbiology, 2016, , 173-206.	0.1	12
564	Symbiotic Streptomyces Provide Antifungal Defense in Solitary Wasps. Advances in Environmental Microbiology, 2016, , 207-238.	0.1	2
565	From microbiology to cell biology: when an intracellular bacterium becomes part of its host cell. Current Opinion in Cell Biology, 2016, 41, 132-136.	2.6	36
566	Adaptation by Deletogenic Replication Slippage in a Nascent Symbiont. Molecular Biology and Evolution, 2016, 33, 1957-1966.	3.5	18

#	Article	IF	CITATIONS
567	Lineage-Specific Patterns of Genome Deterioration in Obligate Symbionts of Sharpshooter Leafhoppers. Genome Biology and Evolution, 2016, 8, 296-301.	1.1	28
568	The High Diversity and Global Distribution of the Intracellular Bacterium Rickettsiella in the Polar Seabird Tick Ixodes uriae. Microbial Ecology, 2016, 71, 761-770.	1.4	27
569	Novel Trypanosomatid-Bacterium Association: Evolution of Endosymbiosis in Action. MBio, 2016, 7, e01985.	1.8	64
570	Host origin and tissue microhabitat shaping the microbiota of the terrestrial isopod <i>Armadillidium vulgare</i> . FEMS Microbiology Ecology, 2016, 92, fiw063.	1.3	41
571	A bacterial filter protects and structures the gut microbiome of an insect. ISME Journal, 2016, 10, 1866-1876.	4.4	114
572	Detecting Microbial Dysbiosis Associated with Pediatric Crohn Disease Despite the High Variability of the Gut Microbiota. Cell Reports, 2016, 14, 945-955.	2.9	49
573	Molecular Identification of Mealybugs. , 2016, , 75-86.		1
574	The holobiont concept: the case of xylophagous termites and cockroaches. Symbiosis, 2016, 68, 49-60.	1.2	25
575	The role of mobile genetic elements in evolutionary longevity of heritable endobacteria. Mobile Genetic Elements, 2016, 6, e1136375.	1.8	14
576	Agricultural applications of insect ecological genomics. Current Opinion in Insect Science, 2016, 13, 61-69.	2.2	23
577	Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant. Journal of Insect Physiology, 2016, 84, 70-89.	0.9	193
578	Stable and sporadic symbiotic communities of coral and algal holobionts. ISME Journal, 2016, 10, 1157-1169.	4.4	149
579	Aphid parasitoid generalism: development, assessment, and implications for biocontrol. Journal of Pest Science, 2016, 89, 7-20.	1.9	28
580	Chronic pulmonary pseudomonal infection in patients with cystic fibrosis: A model for early phase symbiotic evolution. Critical Reviews in Microbiology, 2016, 42, 144-157.	2.7	12
581	Population dynamics of multiple symbionts in the hard tick, Dermacentor silvarum Olenev (Acari:) Tj ETQq0 0 0 r	gBT (Overl	ock 10 Tf 50
582	Use the insiders: could insect facultative symbionts control vector-borne plant diseases?. Journal of Pest Science, 2017, 90, 51-68.	1.9	29
583	Genetic conflicts: the usual suspects and beyond. Journal of Experimental Biology, 2017, 220, 6-17.	0.8	132
584	<i>Buchnera aphidicola</i> of the birch blister aphid, <i>Hamamelistes betulinus</i> (Horváth, 1896) (Insecta, Hemiptera, Aphididae: Hormaphidinae): molecular characterization, transmission between generations and its geographic significance. Acta Zoologica, 2017, 98, 412-421.	0.6	5

#	Article	IF	CITATIONS
585	Convergent patterns in the evolution of mealybug symbioses involving different intrabacterial symbionts. ISME Journal, 2017, 11, 715-726.	4.4	49
586	Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nature Communications, 2017, 8, 14319.	5.8	357
587	Gut Microbiota Colonization and Transmission in the Burying Beetle Nicrophorus vespilloides throughout Development. Applied and Environmental Microbiology, 2017, 83, .	1.4	55
588	Evolutionary changes in symbiont community structure in ticks. Molecular Ecology, 2017, 26, 2905-2921.	2.0	187
589	Aphid Heritable Symbiont Exploits Defensive Mutualism. Applied and Environmental Microbiology, 2017, 83, .	1.4	52
590	Insect Symbiosis and Immunity. Advances in Insect Physiology, 2017, , 179-197.	1.1	5
591	The structured diversity of specialized gut symbionts of the New World army ants. Molecular Ecology, 2017, 26, 3808-3825.	2.0	62
592	Strong spatialâ€genetic congruence between a woodâ€feeding cockroach and its bacterial endosymbiont, across a topographically complex landscape. Journal of Biogeography, 2017, 44, 1500-1511.	1.4	17
593	Bandâ€aids for <i>Buchnera</i> and B vitamins for all. Molecular Ecology, 2017, 26, 2199-2203.	2.0	23
594	Sociomics: Using Omic Approaches to Understand Social Evolution. Trends in Genetics, 2017, 33, 408-419.	2.9	23
595	Predictive Genomic Analyses Inform the Basis for Vitamin Metabolism and Provisioning in Bacteria-Arthropod Endosymbioses. G3: Genes, Genomes, Genetics, 2017, 7, 1887-1898.	0.8	8
596	Influence of Microbial Symbionts on Plant–Insect Interactions. Advances in Botanical Research, 2017, , 225-257.	0.5	40
597	Quorum Sensing Attenuates Virulence in Sodalis praecaptivus. Cell Host and Microbe, 2017, 21, 629-636.e5.	5.1	47
598	Bacterial microbiota in small brown planthopper populations with different rice viruses. Journal of Basic Microbiology, 2017, 57, 590-596.	1.8	18
599	Cellular and population level processes influence the rate, accumulation and observed frequency of inherited and somatic mtDNA mutations. Mutagenesis, 2017, 32, 323-334.	1.0	17
600	Made for Each Other: Ascomycete Yeasts and Insects. Microbiology Spectrum, 2017, 5, .	1.2	44
601	Phylogenomics. , 2017, , .		47
602	Biparental transmission of Verminephrobacter symbionts in the earthworm Aporrectodea tuberculata (Lumbricidae). FEMS Microbiology Ecology, 2017, 93, .	1.3	10

#	Article	IF	CITATIONS
603	Genetic diversity of <i>Diaphorina citri</i> and its endosymbionts across east and southâ€east Asia. Pest Management Science, 2017, 73, 2090-2099.	1.7	15
604	PhaR, a Negative Regulator of PhaP, Modulates the Colonization of a Burkholderia Gut Symbiont in the Midgut of the Host Insect, Riptortus pedestris. Applied and Environmental Microbiology, 2017, 83, .	1.4	13
605	Chance and necessity in the genome evolution of endosymbiotic bacteria of insects. ISME Journal, 2017, 11, 1291-1304.	4.4	35
606	Who lives in a fungus? The diversity, origins and functions of fungal endobacteria living in Mucoromycota. ISME Journal, 2017, 11, 1727-1735.	4.4	145
607	Protein interaction networks at the host–microbe interface in <i>Diaphorina citri</i> , the insect vector of the citrus greening pathogen. Royal Society Open Science, 2017, 4, 160545.	1.1	65
608	Relative Abundance and Strain Diversity in the Bacterial Endosymbiont Community of a Sap-Feeding Insect Across Its Native and Introduced Geographic Range. Microbial Ecology, 2017, 74, 722-734.	1.4	13
609	Nine facultative endosymbionts in aphids. A review. Journal of Asia-Pacific Entomology, 2017, 20, 794-801.	0.4	82
610	Symbiont Acquisition and Replacement as a Source of Ecological Innovation. Trends in Microbiology, 2017, 25, 375-390.	3.5	244
611	Detoxifying symbionts in agriculturally important pest insects. Microbial Biotechnology, 2017, 10, 531-540.	2.0	125
612	Assessing the use of antimicrobials to sterilize brown marmorated stink bug egg masses and prevent symbiont acquisition. Journal of Pest Science, 2017, 90, 1287-1294.	1.9	9
613	A midgut lysate of the Riptortus pedestris has antibacterial activity against LPS O-antigen-deficient Burkholderia mutants. Developmental and Comparative Immunology, 2017, 67, 97-106.	1.0	4
614	In it for the long haul: evolutionary consequences of persistent endosymbiosis. Current Opinion in Genetics and Development, 2017, 47, 83-90.	1.5	31
615	Heritability of the Symbiodinium community in vertically- and horizontally-transmitting broadcast spawning corals. Scientific Reports, 2017, 7, 8219.	1.6	89
616	Culture of an aphid heritable symbiont demonstrates its direct role in defence against parasitoids. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171925.	1.2	76
617	Yeasts in Insects and Other Invertebrates. , 2017, , 397-433.		12
618	A Novel, Extremely Elongated, and Endocellular Bacterial Symbiont Supports Cuticle Formation of a Grain Pest Beetle. MBio, 2017, 8, .	1.8	34
619	Genome-Wide Analysis of the Transcription Start Sites and Promoter Motifs of Phytoplasmas. DNA and Cell Biology, 2017, 36, 1081-1092.	0.9	8
620	An exceptional family: <i>Ophiocordyceps</i> â€allied fungus dominates the microbiome of soft scale insects (Hemiptera: Sternorrhyncha: Coccidae). Molecular Ecology, 2017, 26, 5855 <u>-</u> 5868.	2.0	29

#	Article	IF	CITATIONS
621	Extended genomes: symbiosis and evolution. Interface Focus, 2017, 7, 20170001.	1.5	80
622	Identification and characterization of bacterial symbionts in three species of filth fly parasitoids. FEMS Microbiology Ecology, 2017, 93, .	1.3	16
623	Sources of Variation in the Gut Microbial Community of Lycaeides melissa Caterpillars. Scientific Reports, 2017, 7, 11335.	1.6	31
624	Small genome symbiont underlies cuticle hardness in beetles. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8382-E8391.	3.3	127
625	Transcriptome analyses suggest a novel hypothesis for whitefly adaptation to tobacco. Scientific Reports, 2017, 7, 12102.	1.6	11
626	Environmental drivers of a microbial genomic transition zone in the ocean's interior. Nature Microbiology, 2017, 2, 1367-1373.	5.9	177
627	Insect-bacteria parallel evolution in multiple-co-obligate-aphid association: a case in Lachninae (Hemiptera: Aphididae). Scientific Reports, 2017, 7, 10204.	1.6	23
628	Methods for the Extraction of Endosymbionts from the Whitefly Bemisia tabaci . Journal of Visualized Experiments, 2017, , .	0.2	2
629	Dramatic Differences in Gut Bacterial Densities Correlate with Diet and Habitat in Rainforest Ants. Integrative and Comparative Biology, 2017, 57, 705-722.	0.9	77
630	Symbiont dynamics and strain diversity in the defensive mutualism between <i>Lagria</i> beetles and <i>Burkholderia</i> . Environmental Microbiology, 2017, 19, 3674-3688.	1.8	42
631	Aseptic rearing procedure for the stinkbug Plautia stali (Hemiptera: Pentatomidae) by sterilizing food-derived bacterial contaminants. Applied Entomology and Zoology, 2017, 52, 407-415.	0.6	16
632	Symbiotic bacteria associated with gut symbiotic organs and female genital accessory organs of the leaf beetle Bromius obscurus (Coleoptera: Chrysomelidae). Applied Entomology and Zoology, 2017, 52, 589-598.	0.6	12
633	Parallel genome reduction in symbionts descended from closely related free-living bacteria. Nature Ecology and Evolution, 2017, 1, 1160-1167.	3.4	62
634	Drastic Genome Reduction in an Herbivore's Pectinolytic Symbiont. Cell, 2017, 171, 1520-1531.e13.	13.5	148
635	Gut microbiomes and reproductive isolation in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12767-12772.	3.3	71
636	The epidemicity of facultative microsymbionts in faba bean rhizosphere soils. Soil Biology and Biochemistry, 2017, 115, 243-252.	4.2	13
637	The evolution of host-symbiont dependence. Nature Communications, 2017, 8, 15973.	5.8	202
638	The evolution of transmission mode. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160083.	1.8	80

#	Article	IF	CITATIONS
639	Are microbial symbionts involved in the speciation of the gall-inducing aphid, Slavum wertheimae?. Arthropod-Plant Interactions, 2017, 11, 475-484.	0.5	3
640	Diversity and Persistence of the Gut Microbiome of the Giant Neotropical Bullet Ant. Integrative and Comparative Biology, 2017, 57, 682-689.	0.9	21
641	Symbionts in waiting: the dynamics of incipient endosymbiont complementation and replacement in minimal bacterial communities of psyllids. Microbiome, 2017, 5, 58.	4.9	47
642	Artificial selection on ant female caste ratio uncovers a link between femaleâ€biased sex ratios and infection by <i>Wolbachia</i> endosymbionts. Journal of Evolutionary Biology, 2017, 30, 225-234.	0.8	34
643	Host genotype–endosymbiont associations and their relationship with aphid parasitism at the field level. Ecological Entomology, 2017, 42, 86-95.	1.1	16
644	Host nuclear genotype influences phenotype of a conditional mutualist symbiont. Journal of Evolutionary Biology, 2017, 30, 141-149.	0.8	17
645	Bacterial associates of Hyalesthes obsoletus (Hemiptera: Cixiidae), the insect vector of bois noir disease, with a focus on cultivable bacteria. Research in Microbiology, 2017, 168, 94-101.	1.0	19
646	Dissecting genome reduction and trait loss in insect endosymbionts. Annals of the New York Academy of Sciences, 2017, 1389, 52-75.	1.8	87
647	Symbiont Diversity of Aphis (Toxoptera) citricidus (Hemiptera: Aphididae) as Influenced by Host Plants. Microbial Ecology, 2017, 73, 201-210.	1.4	34
648	Into the Wild: Parallel Transcriptomics of the Tsetse-Wigglesworthia Mutualism within Kenyan Populations. Genome Biology and Evolution, 2017, 9, 2276-2291.	1.1	9
649	Comparative Genomics of the Dual-Obligate Symbionts from the Treehopper, Entylia carinata (Hemiptera: Membracidae), Provide Insight into the Origins and Evolution of an Ancient Symbiosis. Genome Biology and Evolution, 2017, 9, 1803-1815.	1.1	44
650	Transcriptome Sequencing Reveals Novel Candidate Genes for <i>Cardinium hertigii</i> -Caused Cytoplasmic Incompatibility and Host-Cell Interaction. MSystems, 2017, 2, .	1.7	35
651	Endosymbiont CLS-HI plays a role in reproduction and development of Haemaphysalis longicornis. Experimental and Applied Acarology, 2017, 73, 429-438.	0.7	63
652	Horizontal Acquisition and Transcriptional Integration of Novel Genes in Mosquito-Associated Spiroplasma. Genome Biology and Evolution, 2017, 9, 3246-3259.	1.1	27
653	Made for Each Other: Ascomycete Yeasts and Insects. , 0, , 945-962.		9
654	Role of the Microbiota During Development of the Arthropod Vector Immune System. , 2017, , 161-172.		Ο
655	Combined Venom Gland Transcriptomic and Venom Peptidomic Analysis of the Predatory Ant Odontomachus monticola. Toxins, 2017, 9, 323.	1.5	28
656	The All-Rounder Sodalis: A New Bacteriome-Associated Endosymbiont of the Lygaeoid Bug Henestaris halophilus (Heteroptera: Henestarinae) and a Critical Examination of Its Evolution. Genome Biology and Evolution, 2017, 9, 2893-2910.	1.1	65

#	Article	IF	Citations
657	The Tick Microbiome: Why Non-pathogenic Microorganisms Matter in Tick Biology and Pathogen Transmission. Frontiers in Cellular and Infection Microbiology, 2017, 7, 236.	1.8	267
658	Genome of Ca. Pandoraea novymonadis, an Endosymbiotic Bacterium of the Trypanosomatid Novymonas esmeraldas. Frontiers in Microbiology, 2017, 8, 1940.	1.5	34
659	Diversity and Transmission of Gut Bacteria in Atta and Acromyrmex Leaf-Cutting Ants during Development. Frontiers in Microbiology, 2017, 8, 1942.	1.5	72
660	Comparative Genomics of Facultative Bacterial Symbionts Isolated from European Orius Species Reveals an Ancestral Symbiotic Association. Frontiers in Microbiology, 2017, 8, 1969.	1.5	11
661	Horizontal Transmission of Intracellular Insect Symbionts via Plants. Frontiers in Microbiology, 2017, 8, 2237.	1.5	115
662	Importance of Microorganisms to Macroorganisms Invasions. Advances in Ecological Research, 2017, 57, 99-146.	1.4	40
663	Behavior of bacteriome symbionts during transovarial transmission and development of the Asian citrus psyllid. PLoS ONE, 2017, 12, e0189779.	1.1	39
664	Generality of toxins in defensive symbiosis: Ribosome-inactivating proteins and defense against parasitic wasps in Drosophila. PLoS Pathogens, 2017, 13, e1006431.	2.1	82
665	The human microbiome in evolution. BMC Biology, 2017, 15, 127.	1.7	243
666	The plant pathogen Gluconobacter cerinus strain CDF1 is beneficial to the fruit fly Bactrocera dorsalis. AMB Express, 2017, 7, 207.	1.4	12
667	Multi-level comparisons of cloacal, skin, feather and nest-associated microbiota suggest considerable influence of horizontal acquisition on the microbiota assembly of sympatric woodlarks and skylarks. Microbiome, 2017, 5, 156.	4.9	73
668	Novel bacteriocyte-associated pleomorphic symbiont of the grain pest beetle Rhyzopertha dominica (Coleoptera: Bostrichidae). Zoological Letters, 2017, 3, 13.	0.7	17
669	Legionella Becoming a Mutualist: Adaptive Processes Shaping the Genome of Symbiont in the Louse Polyplax serrata. Genome Biology and Evolution, 2017, 9, 2946-2957.	1.1	47
670	Diversity and Phylogenetic Analyses of Bacterial Symbionts in Three Whitefly Species from Southeast Europe. Insects, 2017, 8, 113.	1.0	16
671	Biological Species Are Universal across Life's Domains. Genome Biology and Evolution, 2017, 9, 491-501.	1.1	119
672	The Native Hawaiian Insect Microbiome Initiative: A Critical Perspective for Hawaiian Insect Evolution. Insects, 2017, 8, 130.	1.0	18
673	Reply to Rosenberg et al.: Diet, gut bacteria, and assortative mating in <i>Drosophila melanogaster</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2154-E2155.	3.3	8
674	Defense contracts: molecular protection in insect-microbe symbioses. Chemical Society Reviews, 2018, 47, 1638-1651.	18.7	122

IF CITATIONS ARTICLE # Culture-Facilitated Comparative Genomics of the Facultative Symbiont Hamiltonella defensa. Genome 675 1.1 37 Biology and Evolution, 2018, 10, 786-802. Symbiosis in the microbial world: from ecology to genome evolution. Biology Open, 2018, 7, . 34 Cladogenesis and Genomic Streamlining in Extracellular Endosymbionts of Tropical Stink Bugs. 677 1.1 21 Genome Biology and Evolution, 2018, 10, 680-693. Host-microbe interactions in octocoral holobionts - recent advances and perspectives. Microbiome, 2018, 6, 64.

CITATION REPORT

High diversity and variability in the bacterial microbiota of the coffee berry borer ($\langle i \rangle$ Coleoptera $\langle i \rangle$:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

680	Microbial Symbionts of Insects: Genetic Organization, Adaptive Role, and Evolution. Microbiology, 2018, 87, 151-163.	0.5	6
681	Convergent Evolution in Intracellular Elements: Plasmids as Model Endosymbionts. Trends in Microbiology, 2018, 26, 755-768.	3.5	15
682	Chemical Ecology and Sociality in Aphids: Opportunities and Directions. Journal of Chemical Ecology, 2018, 44, 770-784.	0.9	10
683	Detoxifying symbiosis: microbe-mediated detoxification of phytotoxins and pesticides inÂinsects. Natural Product Reports, 2018, 35, 434-454.	5.2	161
684	Host–symbiont–pathogen interactions in blood-feeding parasites: nutrition, immune cross-talk and gene exchange. Parasitology, 2018, 145, 1294-1303.	0.7	32
685	Fitness costs of infection with <i>Serratia symbiotica</i> are associated with greater susceptibility to insecticides in the pea aphid <scp><i>Acyrthosiphon pisum</i></scp> . Pest Management Science, 2018, 74, 1829-1836.	1.7	52
686	Metaorganisms in extreme environments: do microbes play a role in organismal adaptation?. Zoology, 2018, 127, 1-19.	0.6	194
687	Unexpected mixed-mode transmission and moderate genetic regulation of Symbiodinium communities in a brooding coral. Heredity, 2018, 121, 524-536.	1.2	53
688	Symbionts in excess? No correlation between symbiont density and the ability of mealybug hosts to exploit plant species or tolerate insecticide stress. Agricultural and Forest Entomology, 2018, 20, 451-460.	0.7	0
689	Nancy A. Moran ―Recipient of the 2017 Molecular Ecology Prize. Molecular Ecology, 2018, 27, 35-37.	2.0	0
690	Parallel lives of symbionts and hosts: chemical mutualism in marine animals. Natural Product Reports, 2018, 35, 357-378.	5.2	57
691	Can social partnerships influence the microbiome? Insights from ant farmers and their trophobiont mutualists. Molecular Ecology, 2018, 27, 1898-1914.	2.0	42
692	Endosymbiont diversity and prevalence in herbivorous spider mite populations in South-Western Europe. FEMS Microbiology Ecology, 2018, 94, .	1.3	53

#	Article	IF	CITATIONS
693	Coexistence of novel gammaproteobacterial and <i>Arsenophonus</i> symbionts in the scale insect <i>Greenisca brachypodii</i> (Hemiptera, Coccomorpha: Eriococcidae). Environmental Microbiology, 2018, 20, 1148-1157.	1.8	21
694	Unbiased Estimate of Synonymous and Nonsynonymous Substitution Rates with Nonstationary Base Composition. Molecular Biology and Evolution, 2018, 35, 734-742.	3.5	43
695	Evolutionary loss and replacement of <i>Buchnera</i> , the obligate endosymbiont of aphids. ISME Journal, 2018, 12, 898-908.	4.4	64
696	Sex ratios of the tick Ixodes arboricola are strongly female-biased, but there are no indications of sex-distorting bacteria. Ticks and Tick-borne Diseases, 2018, 9, 307-313.	1.1	16
697	Multiple origins of interdependent endosymbiotic complexes in a genus of cicadas. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E226-E235.	3.3	69
698	Microbiomeâ€Germline Interactions and Their Transgenerational Implications. BioEssays, 2018, 40, e1700018.	1.2	9
699	Rifampicin treatment of Blattella germanica evidences a fecal transmission route of their gut microbiota. FEMS Microbiology Ecology, 2018, 94, .	1.3	43
700	Incidence of Facultative Bacterial Endosymbionts in Spider Mites Associated with Local Environments and Host Plants. Applied and Environmental Microbiology, 2018, 84, .	1.4	52
701	Bacterial communities associated with the ectoparasitic mites Varroa destructor and Tropilaelaps mercedesae of the honey bee (Apis mellifera). FEMS Microbiology Ecology, 2018, 94, .	1.3	13
702	Introduction: The hostâ€associated microbiome: Pattern, process and function. Molecular Ecology, 2018, 27, 1749-1765.	2.0	46
703	Stochastic processes govern bacterial communities from the blood of pikas and from their arthropod vectors. FEMS Microbiology Ecology, 2018, 94, .	1.3	14
704	Good <i>Daphnia</i> parents do not control the offspring microbiome. Journal of Animal Ecology, 2018, 87, 320-322.	1.3	4
705	Genome Sequence of Coxiella-Like Endosymbiont Strain CLE-RmD, a Bacterial Agent in the Cattle Tick (Rhipicephalus microplus) Deutsch Strain. Genome Announcements, 2018, 6, .	0.8	6
706	Variations in Endosymbiont Infection Between Buprofezin-Resistant and Susceptible Strains of Laodelphax striatellus (Fallén). Current Microbiology, 2018, 75, 709-715.	1.0	27
707	Symbiotic cornucopia of the monophagous planthopper Ommatidiotus dissimilis (Fallén, 1806) (Hemiptera: Fulgoromorpha: Caliscelidae). Protoplasma, 2018, 255, 1317-1329.	1.0	15
708	Pine Engravers Carry Bacterial Communities Whose Members Reduce Concentrations of Host Monoterpenes With Variable Degrees of Redundancy, Specificity, and Capability. Environmental Entomology, 2018, 47, 638-645.	0.7	28
709	The defensive aphid symbiont Hamiltonella defensa affects host quality differently for Aphelinus glycinis versus Aphelinus atriplicis. Biological Control, 2018, 116, 3-9.	1.4	21
710	Symbiotic microorganisms in Puto superbus (Leonardi, 1907) (Insecta, Hemiptera, Coccomorpha:) Tj ETQq1 1 0.	784314 rg	BT/Overlock

	C	itation Rei	PORT	
#	Article		IF	CITATIONS
711	Intraspecific variation in facultative symbiont infection among native and exotic pest populations: Potential implications for biological control. Biological Control, 2018, 116, 27-35.		1.4	26
712	Comparative analysis of microbial communities associated with bacteriomes, reproductive organs an eggs of the cicada Subpsaltria yangi. Archives of Microbiology, 2018, 200, 227-235.	d	1.0	15
713	Dual "Bacterial-Fungal―Symbiosis in Deltocephalinae Leafhoppers (Insecta, Hemiptera, Cicadon	ıorpha:) Tj ET(QqQ 0 0 r 1:4	gBT /Overloc
714	The roles of antimicrobial peptide, rip-thanatin, in the midgut of Riptortus pedestris. Developmental and Comparative Immunology, 2018, 78, 83-90.		1.0	30

715	Breakdown of a defensive symbiosis, but not endogenous defences, at elevated temperatures. Molecular Ecology, 2018, 27, 2138-2151.	2.0	62
716	Evolution and Diversity of Inherited Spiroplasma Symbionts in Myrmica Ants. Applied and Environmental Microbiology, 2018, 84, .	1.4	16
717	Gut microbiota composition is associated with environmental landscape in honey bees. Ecology and Evolution, 2018, 8, 441-451.	0.8	106

718	Genetic Structure of the Bacterial Endosymbiont Buchnera aphidicola from Its Host Aphid Schlechtendalia chinensis and Evolutionary Implications. Current Microbiology, 2018, 75, 309-315.	1.0	7

	Historical and cospeciating associations between Cerataphidini aphids (Hemiptera: Aphididae:) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 42
719		1.0	8
	Linnean Society, 2018, 182, 604-613.		

720	The Cost of Metabolic Interactions in Symbioses between Insects and Bacteria with Reduced Genomes. MBio, 2018, 9, .	1.8	51
721	What can a weevil teach a fly, and reciprocally? Interaction of host immune systems with endosymbionts in Glossina and Sitophilus. BMC Microbiology, 2018, 18, 150.	1.3	39
722	Evolution of host support for two ancient bacterial symbionts with differentially degraded genomes in a leafhopper host. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11691-E11700.	3.3	49
723	Changes in Endosymbiont Complexity Drive Host-Level Compensatory Adaptations in Cicadas. MBio, 2018, 9, .	1.8	29
724	<i>Nysius cymoides</i> (Hemiptera: Lygaeidae), a New Economically Important Pest on <i>Acacia tortilis</i> and Its Intracellular Bacterial Endosymbionts. Entomological News, 2018, 128, 11-23.	0.1	2
725	The Evolution of Living Beings Started with Prokaryotes and in Interaction with Prokaryotes. , 2018, , 241-338.		2
727	Extended mutualism between termites and gut microbes: nutritional symbionts contribute to nest hygiene. Die Naturwissenschaften, 2018, 105, 52.	0.6	11
728	Estimating bacteria diversity in different organs of nine species of mosquito by next generation sequencing. BMC Microbiology, 2018, 18, 126.	1.3	81
729	First insight into microbiome profile of fungivorous thrips Hoplothrips carpathicus (Insecta:) Tj ETQq1 1 0.784314	rgBT /Ov 1.6	erlock 10 ⁻¹ 24

Scientific Reports, 2018, 8, 14376.

#	Article	IF	CITATIONS
730	<i>Diplogastrellus</i> nematodes are sexually transmitted mutualists that alter the bacterial and fungal communities of their beetle host. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10696-10701.	3.3	16
731	Diet, Gut Microbes and Host Mate Choice. BioEssays, 2018, 40, e1800053.	1.2	10
732	Random Genetic Drift and Selective Pressures Shaping the Blattabacterium Genome. Scientific Reports, 2018, 8, 13427.	1.6	4
733	Multi-scale characterization of symbiont diversity in the pea aphid complex through metagenomic approaches. Microbiome, 2018, 6, 181.	4.9	47
734	The Importance of Revisiting Legionellales Diversity. Trends in Parasitology, 2018, 34, 1027-1037.	1.5	26
735	A distinct strain of Arsenophonus symbiont decreases insecticide resistance in its insect host. PLoS Genetics, 2018, 14, e1007725.	1.5	88
736	The Potential Control Strategies Based on the Interaction Between Indoor Cockroaches and Their Symbionts in China. Advances in Insect Physiology, 2018, 55, 55-122.	1.1	23
737	Genome Evolution of Bartonellaceae Symbionts of Ants at the Opposite Ends of the Trophic Scale. Genome Biology and Evolution, 2018, 10, 1687-1704.	1.1	26
738	Biology of Fungi and Their Bacterial Endosymbionts. Annual Review of Phytopathology, 2018, 56, 289-309.	3.5	58
739	Microbiota in insect fungal pathology. Applied Microbiology and Biotechnology, 2018, 102, 5873-5888.	1.7	65
740	Comparative Genomic Insights into Endofungal Lifestyles of Two Bacterial Endosymbionts, <i>Mycoavidus cysteinexigens</i> and <i>Burkholderia rhizoxinica</i> . Microbes and Environments, 2018, 33, 66-76.	0.7	28
741	Multi-locus phylogenetics of the <i>Midichloria</i> endosymbionts reveals variable specificity of association with ticks. Parasitology, 2018, 145, 1969-1978.	0.7	13
742	Ecology and evolution of metabolic cross-feeding interactions in bacteria. Natural Product Reports, 2018, 35, 455-488.	5.2	322
743	Tick-Bacteria Mutualism Depends on B Vitamin Synthesis Pathways. Current Biology, 2018, 28, 1896-1902.e5.	1.8	246
744	Transmission of mutualistic bacteria in social and gregarious insects. Current Opinion in Insect Science, 2018, 28, 50-58.	2.2	61
745	The genome of an endosymbiotic methanogen is very similar to those of its freeâ€living relatives. Environmental Microbiology, 2018, 20, 2538-2551.	1.8	21
746	An antifungal polyketide associated with horizontally acquired genes supports symbiont-mediated defense in Lagria villosa beetles. Nature Communications, 2018, 9, 2478.	5.8	86
747	Readapting to DCV Infection without Wolbachia: Frequency Changes of Drosophila Antiviral Alleles Can Replace Endosymbiont Protection. Genome Biology and Evolution, 2018, 10, 1783-1791.	1.1	13

		CITATION REPORT		
#	Article		IF	CITATIONS
748	The evolution of caste-biasing symbionts in the social hymenoptera. Insectes Sociaux, 2018, 65, 51	.3-519.	0.7	4
749	Co-Infection Patterns in Individual Ixodes scapularis Ticks Reveal Associations between Viral, Eukaryotic and Bacterial Microorganisms. Viruses, 2018, 10, 388.		1.5	44
750	Reproductive Manipulators in the Bark Beetle Pityogenes chalcographus (Coleoptera:) Tj ETQq0 0 Science, 2018, 18, .) rgBT /Overloo	ck 10 Tf 5 0.6	0 667 Td (Cι 5
751	Environmental Metagenomic Assemblies Reveal Seven New Highly Divergent Chlamydial Lineages a Hallmarks of a Conserved Intracellular Lifestyle. Frontiers in Microbiology, 2018, 9, 79.	ind	1.5	34
752	Genetic Diversity and Phylogenetic Relationships of Coevolving Symbiont-Harboring Insect Trypanosomatids, and Their Neotropical Dispersal by Invader African Blowflies (Calliphoridae). Frontiers in Microbiology, 2018, 9, 131.		1.5	10
753	Long-Term Warming Shifts the Composition of Bacterial Communities in the Phyllosphere of Galiur album in a Permanent Grassland Field-Experiment. Frontiers in Microbiology, 2018, 9, 144.	n	1.5	76
754	Ongoing Transposon-Mediated Genome Reduction in the Luminous Bacterial Symbionts of Deep-So Ceratioid Anglerfishes. MBio, 2018, 9, .	ea	1.8	51
755	Can Plant Defence Mechanisms Provide New Approaches for the Sustainable Control of the Two-Spotted Spider Mite Tetranychus urticae?. International Journal of Molecular Sciences, 2018, 1 614.	.9,	1.8	63
756	Camponotus floridanus Ants Incur a Trade-Off between Phenotypic Development and Pathogen Susceptibility from Their Mutualistic Endosymbiont Blochmannia. Insects, 2018, 9, 58.		1.0	20
757	Effect of Steam Treatment on Feeding, Mating, and Fecundity of the Common Bed Bug (Hemiptera	::) Tj ETQq1 1 ().784314 0.9	rgBT /Overlo
758	Genome analysis of new Blattabacterium spp., obligatory endosymbionts of Periplaneta fuliginosa P. japonica. PLoS ONE, 2018, 13, e0200512.	and	1.1	13
759	Feminizing Wolbachia influence microbiota composition in the terrestrial isopod Armadillidium vulgare. Scientific Reports, 2018, 8, 6998.		1.6	45
761	A Freeloader? The Highly Eroded Yet Large Genome of the Serratia symbiotica Symbiont of Cinara strobi. Genome Biology and Evolution, 2018, 10, 2178-2189.		1.1	29
762	Enrichment of low-density symbiont DNA from minute insects. Journal of Microbiological Methods, 2018, 151, 16-19.		0.7	7
763	Genomic Insight into Symbiosis-Induced Insect Color Change by a Facultative Bacterial Endosymbic Candidatus Rickettsiella viridis― MBio, 2018, 9, .	ont, "	1.8	28
764	The Mexican bean beetle (Epilachna varivestis) regurgitome and insights into beetle-borne virus specificity. PLoS ONE, 2018, 13, e0192003.		1.1	11
765	The bacterial community associated with the sheep gastrointestinal nematode parasite Haemonch contortus. PLoS ONE, 2018, 13, e0192164.	ШS	1.1	25
766	Partnering With a Pest: Genomes of Hemlock Woolly Adelgid Symbionts Reveal Atypical Nutritiona Provisioning Patterns in Dual-Obligate Bacteria. Genome Biology and Evolution, 2018, 10, 1607-16	21.	1.1	15

#	Article	IF	CITATIONS
767	Recurrent symbiont recruitment from fungal parasites in cicadas. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5970-E5979.	3.3	138
768	Trading amino acids at the aphid– <i>Buchnera</i> symbiotic interface. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16003-16011.	3.3	53
769	Influences of two coexisting endosymbionts, Clâ€inducing Wolbachia and maleâ€killing Spiroplasma , on the performance of their host Laodelphax striatellus (Hemiptera: Delphacidae). Ecology and Evolution, 2019, 9, 8214-8224.	0.8	11
770	Exposure to opposing temperature extremes causes comparable effects on Cardinium density but contrasting effects on Cardinium-induced cytoplasmic incompatibility. PLoS Pathogens, 2019, 15, e1008022.	2.1	18
771	Evolutionary Insights into the Tick Hologenome. Trends in Parasitology, 2019, 35, 725-737.	1.5	43
772	Symbionts of the ciliate <i>Euplotes</i> : diversity, patterns and potential as models for bacteria–eukaryote endosymbioses. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190693.	1.2	73
773	Widespread hybridization among native and invasive species of Operophtera moths (Lepidoptera:) Tj ETQq0 0 0 r	gBT /Over	logk 10 Tf 50

774	A single-cell genome perspective on studying intracellular associations in unicellular eukaryotes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190082.	1.8	1
775	Effects of Tropilaelaps mercedesae on midgut bacterial diversity of Apis mellifera. Experimental and Applied Acarology, 2019, 79, 169-186.	0.7	9
776	Genetic Diversity and Wolbachia Infection Patterns in a Globally Distributed Invasive Ant. Frontiers in Genetics, 2019, 10, 838.	1.1	25
777	The Tsetse Fly Displays an Attenuated Immune Response to Its Secondary Symbiont, Sodalis glossinidius. Frontiers in Microbiology, 2019, 10, 1650.	1.5	16
778	Fitness costs and benefits vary for two facultative Burkholderia symbionts of the social amoeba, Dictyostelium discoideum. Ecology and Evolution, 2019, 9, 9878-9890.	0.8	20
779	Fitness costs of the cultivable symbiont Serratia symbiotica and its phenotypic consequences to aphids in presence of environmental stressors. Evolutionary Ecology, 2019, 33, 825-838.	0.5	5
780	Regional biogeography of microbiota composition in the Chagas disease vector Rhodnius pallescens. Parasites and Vectors, 2019, 12, 504.	1.0	17
781	Cultivation-assisted genome of Candidatus Fukatsuia symbiotica; the enigmatic â€~X-type' symbiont of aphids. Genome Biology and Evolution, 2019, 11, 3510-3522.	1.1	23
782	In vitro Propagation of Arbuscular Mycorrhizal Fungi May Drive Fungal Evolution. Frontiers in Microbiology, 2019, 10, 2420.	1.5	26
783	Host hybridization as a potential mechanism of lateral symbiont transfer in deepâ€sea vesicomyid clams. Molecular Ecology, 2019, 28, 4697-4708.	2.0	14
784	Evolutionary and Ecological Consequences of Gut Microbial Communities. Annual Review of Ecology, Evolution, and Systematics, 2019, 50, 451-475.	3.8	175

#	Article	IF	CITATIONS
785	Diversity, Genomics, and Distribution of Phytoplankton-Cyanobacterium Single-Cell Symbiotic Associations. Annual Review of Microbiology, 2019, 73, 435-456.	2.9	49
786	The fate of obligate endosymbionts: reduction, integration, or extinction. Current Opinion in Genetics and Development, 2019, 58-59, 1-8.	1.5	38
787	Characterization of a Bacterial Symbiont Asaia sp. in the White-Backed Planthopper, Sogatella furcifera, and Its Effects on Host Fitness. Frontiers in Microbiology, 2019, 10, 2179.	1.5	11
788	New Data on the Range Expansion of the Thaumetopoea pityocampa (Lepidoptera: Notodontidae) †ENA clade' in Greece: The Role of Bacterial Endosymbionts. Journal of Economic Entomology, 2019, 112, 2761-2766.	0.8	0
789	Symbiotic organs shaped by distinct modes of genome evolution in cephalopods. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3030-3035.	3.3	123
790	Venus flytrap microbiotas withstand harsh conditions during prey digestion. FEMS Microbiology Ecology, 2019, 95, .	1.3	3
791	Effects of biodiversity in agricultural landscapes on the protective microbiome of insects – a review. Entomologia Experimentalis Et Applicata, 2019, 167, 2-13.	0.7	17
792	Diversity and Phylogenetic Analyses Reveal Horizontal Transmission of Endosymbionts Between Whiteflies and Their Parasitoids. Journal of Economic Entomology, 2019, 112, 894-905.	0.8	14
793	Phylogenetic analysis based on the 16S rDNA, gltA, gatB, and hcpA gene sequences of Wolbachia from the novel host Ceratozetes thienemanni (Acari: Oribatida). Infection, Genetics and Evolution, 2019, 70, 175-181.	1.0	8
794	Microbiome engineering: enhancing climate resilience in corals. Frontiers in Ecology and the Environment, 2019, 17, 100-108.	1.9	58
795	Life at Home and on the Roam: Genomic Adaptions Reflect the Dual Lifestyle of an Intracellular, Facultative Symbiont. MSystems, 2019, 4, .	1.7	30
796	Dynamics of an Ongoing Wolbachia Spread in the European Cherry Fruit Fly, Rhagoletis cerasi (Diptera: Tephritidae). Insects, 2019, 10, 172.	1.0	5
797	Effect of heritable symbionts on maternally-derived embryo transcripts. Scientific Reports, 2019, 9, 8847.	1.6	5
798	Genetic manipulation allows in vivo tracking of the life cycle of the sonâ€killer symbiont, <i>Arsenophonus nasoniae</i> , and reveals patterns of host invasion, tropism and pathology. Environmental Microbiology, 2019, 21, 3172-3182.	1.8	50
799	Morphogenesis and development of midgut symbiotic organ of the stinkbug Plautia stali (Hemiptera:) Tj ETQqO	0 0 rgBT /(Overlock 10 7 42
800	The Life of an Insect Endosymbiont from the Cradle to the Grave. Current Biology, 2019, 29, R485-R495.	1.8	157
801	Tissue tropism and metabolic pathways of Midichloria mitochondrii suggest tissue-specific functions in the symbiosis with Ixodes ricinus. Ticks and Tick-borne Diseases, 2019, 10, 1070-1077.	1.1	44
802_	Mycobacterium leprae's evolution and environmental adaptation. Acta Tropica, 2019, 197, 105041	0.9	24

#	Article	IF	CITATIONS
803	Surface sterilization methods impact measures of internal microbial diversity in ticks. Parasites and Vectors, 2019, 12, 268.	1.0	81
805	Diaphorin, a polyketide produced by a bacterial symbiont of the Asian citrus psyllid, kills various human cancer cells. PLoS ONE, 2019, 14, e0218190.	1.1	17
806	Genomic erosion and extensive horizontal gene transfer in gut-associated Acetobacteraceae. BMC Genomics, 2019, 20, 472.	1.2	32
807	Living in Cold Blood: Arcobacter, Campylobacter, and Helicobacter in Reptiles. Frontiers in Microbiology, 2019, 10, 1086.	1.5	18
808	Use of the Ion Torrent PGM for Determining the Genomic Sequences of Francisella and Coxiella-Like Endosymbionts and Rickettsia Directly from Hard Ticks. , 2019, , 1-35.		1
809	Sex ratios in the haplodiploid herbivores, Aleyrodidae and Thysanoptera: A review and tools for study. Advances in Insect Physiology, 2019, , 251-281.	1.1	4
810	Omnivory in Bees: Elevated Trophic Positions among All Major Bee Families. American Naturalist, 2019, 194, 414-421.	1.0	47
811	Designing Metabolic Division of Labor in Microbial Communities. MSystems, 2019, 4, .	1.7	88
812	Evolutionary costs and benefits of infection with diverse strains of <i>Spiroplasma</i> in pea aphids*. Evolution; International Journal of Organic Evolution, 2019, 73, 1466-1481.	1.1	27
813	Genome Evolution of the Obligate Endosymbiont Buchnera aphidicola. Molecular Biology and Evolution, 2019, 36, 1481-1489.	3.5	85
814	Molecular convergence and positive selection associated with the evolution of symbiont transmission mode in stony corals. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190111.	1.2	5
815	Spatial Structure Can Decrease Symbiotic Cooperation. Artificial Life, 2019, 24, 229-249.	1.0	3
816	Phytoplasmas: Plant Pathogenic Bacteria - II. , 2019, , .		18
817	Adaptations and evolution of a heritable leaf nodule symbiosis between <i>Dioscorea sansibarensis</i> and <i>Orrella dioscoreae</i> . ISME Journal, 2019, 13, 1831-1844.	4.4	17
818	Microbe Relationships with Phytoplasmas in Plants and Insects. , 2019, , 207-235.		4
819	Host, Symbionts, and the Microbiome: The Missing Tripartite Interaction. Trends in Microbiology, 2019, 27, 480-488.	3.5	70
820	Evolutionary dynamics of the chromatophore genome in three photosynthetic Paulinella species. Scientific Reports, 2019, 9, 2560.	1.6	30
821	Study of gut bacterial diversity of Bombyx mandarina and Bombyx mori through 16S rRNA gene sequencing. Journal of Asia-Pacific Entomology, 2019, 22, 522-530.	0.4	10

#	Article	IF	CITATIONS
822	The role of microbial motility and chemotaxis in symbiosis. Nature Reviews Microbiology, 2019, 17, 284-294.	13.6	160
823	New Insights into the Nature of Symbiotic Associations in Aphids: Infection Process, Biological Effects, and Transmission Mode of Cultivable <i>Serratia symbiotica</i> Bacteria. Applied and Environmental Microbiology, 2019, 85, .	1.4	34

Phylogenetic analyses and characteristics of the microbiomes from five mealybugs (Hemiptera:) Tj ETQq0 0 0 rgBT $\stackrel{O}{_{O,8}}$ erlock 10 Tf 50 66

825	The <i>Wolbachia</i> Endosymbionts. Microbiology Spectrum, 2019, 7, .	1.2	95
826	Endogenous non-retroviral elements in genomes of <i>Aedes</i> mosquitoes and vector competence. Emerging Microbes and Infections, 2019, 8, 542-555.	3.0	34
827	Sequencing the Obligate Intracellular Rhabdochlamydia helvetica within Its Tick Host Ixodes ricinus to Investigate Their Symbiotic Relationship. Genome Biology and Evolution, 2019, 11, 1334-1344.	1.1	21
828	Transmission of a Protease-Secreting Bacterial Symbiont Among Pea Aphids via Host Plants. Frontiers in Physiology, 2019, 10, 438.	1.3	23
829	Virulence of Two Entomophthoralean Fungi, Pandora neoaphidis and Entomophthora planchoniana, to Their Conspecific (Sitobion avenae) and Heterospecific (Rhopalosiphum padi) Aphid Hosts. Insects, 2019, 10, 54.	1.0	7
830	Genome expansion of an obligate parthenogenesis-associated Wolbachia poses an exception to the symbiont reduction model. BMC Genomics, 2019, 20, 106.	1.2	24
831	What's in a name? How organelles of endosymbiotic origin can be distinguished from endosymbionts. Microbial Cell, 2019, 6, 123-133.	1.4	8
832	Eukaryotic Acquisition of a Bacterial Operon. Cell, 2019, 176, 1356-1366.e10.	13.5	74
833	Estimating costs of aphid resistance to parasitoids conferred by a protective strain of the bacterial endosymbiont <i>Regiella insecticola</i> . Entomologia Experimentalis Et Applicata, 2019, 167, 252-260.	0.7	14
834	Geographic and Temporal Variation of Distinct Intracellular Endosymbiont Strains of Wolbachia sp. in the Grasshopper Chorthippus parallelus: a Frequency-Dependent Mechanism?. Microbial Ecology, 2019, 77, 1036-1047.	1.4	6
835	The Developmental Stage Symbionts of the Pea Aphid-Feeding Chrysoperla sinica (Tjeder). Frontiers in Microbiology, 2019, 10, 2454.	1.5	25
836	Obligate bacterial endosymbionts limit thermal tolerance of insect host species. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24712-24718.	3.3	91
837	Development of a multi-locus sequence typing system helps reveal the evolution of Cardinium hertigii, a reproductive manipulator symbiont of insects. BMC Microbiology, 2019, 19, 266.	1.3	12
838	Division of labor in honey bee gut microbiota for plant polysaccharide digestion. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25909-25916.	3.3	191
839	Origins and Bioactivities of Natural Compounds Derived from Marine Ascidians and Their Symbionts. Marine Drugs, 2019, 17, 670.	2.2	49

ARTICLE IF CITATIONS The specificity of $\langle i \rangle$ Burkholderia $\langle i \rangle$ symbionts in the social amoeba farming symbiosis: Prevalence, 840 2.0 40 species, genetic and phenotypic diversity. Molecular Ecology, 2019, 28, 847-862. Bacteriome-associated<i>Wolbachia</i>of the parthenogenetic termite<i>Cavitermes tuberosus</i>. 841 1.3 FEMS Microbiology Ecology, 2019, 95, . Biodiversity of the microbiota in <i>Spodoptera exigua </i> (Lepidoptera: Noctuidae). Journal of Applied 842 1.4 35 Microbiology, 2019, 126, 1199-1208. A new Cardinium group of bacteria found in Achipteria coleoptrata (Acari: Oribatida). Molecular 843 1.2 Phylogenetics and Evolution, 2019, 131, 64-71. Impact of host endosymbionts on parasitoid host range â€" from mechanisms to communities. Current 844 2.2 18 Opinion in Insect Science, 2019, 32, 77-82. Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. FEMS Microbiology Letters, 845 2019, 366, . Potential Management Tactics for Pistachio Stink Bugs, Brachynema germari, Acrosternum 846 heegeriandAcrosternum arabicum(Hemiptera: Pentatomidae): High Temperature and Chemical Surface 0.8 15 Sterilants Leading to Symbiont Suppression. Journal of Economic Entomology, 2019, 112, 244-254. Partners in crime: symbiont-assisted resource acquisition in Steinernema entomopathogenic 847 nematodes. Current Opinion in Insect Science, 2019, 32, 22-27. A change in the bacterial community of spider mites decreases fecundity on multiple host plants. 848 1.2 25 MicrobiologyOpen, 2019, 8, e00743. Evidence for Gut-Associated Serratia symbiotica in Wild Aphids and Ants Provides New Perspectives on 849 1.4 39 the Evolution of Bacterial Mutualism in Insects. Microbial Ecology, 2019, 78, 159-169. Ecological factors influencing the beneficial endosymbionts of the hemlock woolly adelgid 850 3 1.5 (Hemiptera: Adelgidae). Insect Science, 2019, 26, 97-107. Mi Casa es Su Casa: how an intracellular symbiont manipulates host biology. Environmental 1.8 Microbiology, 2019, 21, 3188-3196. Habitat visualization, acquisition features and necessity of the gammaproteobacterial symbiont of 852 pistachio stink Bug, <i>Acrosternum heegeri</i> (Hem.: Pentatomidae). Bulletin of Entomological 0.5 14 Research, 2020, 110, 22-33. What do we know about biological nitrogen fixation in insects? Evidence and implications for the 1.5 insect and the ecosystem. Insect Science, 2020, 27, 392-403. Tephritidae bacterial symbionts: potentials for pest management. Bulletin of Entomological Research, 854 43 0.52020, 110, 1-14. Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids' di-symbiotic systems. ISME Journal, 2020, 14, 259-273. 4.4 79 Versatile and Dynamic Symbioses Between Insects and <i>Burkholderia</i>Bacteria. Annual Review of 856 5.756 Entomology, 2020, 65, 145-170. What Goes Up Might Come Down: the Spectacular Spread of an Endosymbiont Is Followed by Its 1.4 Decline a Decade Later. Microbial Ecology, 2020, 79, 482-494.

#	Article	IF	CITATIONS
858	Genetic variability on worldwide populations of the scale insect Pulvinariella mesembryanthemi. Biological Invasions, 2020, 22, 735-748.	1.2	2
859	Bacterial communities in digestive and excretory organs of cicadas. Archives of Microbiology, 2020, 202, 539-553.	1.0	11
860	Networks Consolidate the Core Concepts of Evolution by Natural Selection. Trends in Microbiology, 2020, 28, 254-265.	3.5	17
861	Microorganisms in the reproductive tissues of arthropods. Nature Reviews Microbiology, 2020, 18, 97-111.	13.6	74
862	The Bacterial Flora Associated withÂtheÂPolyphagous Aphid Aphis gossypii Glover (Hemiptera: Aphididae) Is Strongly Affected by Host Plants. Microbial Ecology, 2020, 79, 971-984.	1.4	29
863	Putative host-derived growth factors inducing colonization of Burkholderia gut symbiont in Riptortus pedestris insect. Developmental and Comparative Immunology, 2020, 104, 103570.	1.0	4
864	Co-infection with Wolbachia and Cardinium may promote the synthesis of fat and free amino acids in a small spider, Hylyphantes graminicola. Journal of Invertebrate Pathology, 2020, 169, 107307.	1.5	16
865	Efficient but occasionally imperfect vertical transmission of gut mutualistic protists in a woodâ€feeding termite. Molecular Ecology, 2020, 29, 308-324.	2.0	32
866	Analysis of the diversity of endosymbiotic microorganisms in two spider mite species. International Journal of Acarology, 2020, 46, 22-30.	0.3	4
867	Tissue- and Population-Level Microbiome Analysis of the Wasp Spider Argiope bruennichi Identified a Novel Dominant Bacterial Symbiont. Microorganisms, 2020, 8, 8.	1.6	26
868	Integrative description of bisexual Paramacrobiotus experimentalis sp. nov. (Macrobiotidae) from republic of Madagascar (Africa) with microbiome analysis. Molecular Phylogenetics and Evolution, 2020, 145, 106730.	1.2	34
869	General Microbiota of the Soft Tick Ornithodoros turicata Parasitizing the Bolson Tortoise (Gopherus flavomarginatus) in the Mapimi Biosphere Reserve, Mexico. Biology, 2020, 9, 275.	1.3	13
870	The Microbiome of Neotropical Water Striders and Its Potential Role in Codiversification. Insects, 2020, 11, 578.	1.0	12
871	The Role of Bacterial Symbionts in Triatomines: An Evolutionary Perspective. Microorganisms, 2020, 8, 1438.	1.6	26
872	Pervasive Effects of <i>Wolbachia</i> on Host Temperature Preference. MBio, 2020, 11, .	1.8	47
873	Linking omics and ecology to dissect interactions between the apple proliferation phytoplasma and its psyllid vector Cacopsylla melanoneura. Insect Biochemistry and Molecular Biology, 2020, 127, 103474.	1.2	5
874	Food Resource Sharing of Alder Leaf Beetle Specialists (Coleoptera: Chrysomelidae) as Potential Insect–Plant Interface for Horizontal Transmission of Endosymbionts. Environmental Entomology, 2020, 49, 1402-1414.	0.7	10
875	Evolution of a Record-Setting AT-Rich Genome: Indel Mutation, Recombination, and Substitution Bias. Genome Biology and Evolution, 2020, 12, 2344-2354.	1.1	16

#	Article	IF	CITATIONS
876	MinYS: mine your symbiont by targeted genome assembly in symbiotic communities. NAR Genomics and Bioinformatics, 2020, 2, Iqaa047.	1.5	5
877	Host–microbiome coevolution can promote cooperation in a rock–paper–scissors dynamics. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192754.	1.2	30
878	Genomic Comparison of Insect Gut Symbionts from Divergent Burkholderia Subclades. Genes, 2020, 11, 744.	1.0	14
879	Multiple origins of obligate nematode and insect symbionts by a clade of bacteria closely related to plant pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31979-31986.	3.3	40
880	The role of the microbiota in human genetic adaptation. Science, 2020, 370, .	6.0	61
881	Evolution from Free-Living Bacteria to Endosymbionts of Insects: Genomic Changes and the Importance of the Chaperonin GroEL. Results and Problems in Cell Differentiation, 2020, 69, 77-103.	0.2	3
882	Growing Ungrowable Bacteria: Overview and Perspectives on Insect Symbiont Culturability. Microbiology and Molecular Biology Reviews, 2020, 84, .	2.9	28
883	Regulation of an insect symbiosis. Advances in Insect Physiology, 2020, 58, 207-232.	1.1	3
884	Increased Mutation Rate Is Linked to Genome Reduction in Prokaryotes. Current Biology, 2020, 30, 3848-3855.e4.	1.8	44
885	Characterization of the bacterial communities of psyllids associated with Rutaceae in Bhutan by high throughput sequencing. BMC Microbiology, 2020, 20, 215.	1.3	21
886	Microbiomes are integral to conservation of parasitic arthropods. Biological Conservation, 2020, 250, 108695.	1.9	6
887	Highly Reduced Genomes of Protist Endosymbionts Show Evolutionary Convergence. Current Biology, 2020, 30, 925-933.e3.	1.8	41
888	Convergence of Nutritional Symbioses in Obligate Blood Feeders. Trends in Parasitology, 2020, 36, 816-825.	1.5	49
889	Bacteriome-Associated Endosymbiotic Bacteria of Nosodendron Tree Sap Beetles (Coleoptera:) Tj ETQq1 1 0.784	314 rgBT	Oyerlock 10
890	Transmission efficiency drives host–microbe associations. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200820.	1.2	30
891	Environmental specificity in Drosophila-bacteria symbiosis affects host developmental plasticity. Evolutionary Ecology, 2020, 34, 693-712.	0.5	8
892	Comparative Genomics Underlines Multiple Roles of Profftella, an Obligate Symbiont of Psyllids: Providing Toxins, Vitamins, and Carotenoids. Genome Biology and Evolution, 2020, 12, 1975-1987.	1.1	39
893	Microbes make the meal: oligolectic bees require microbes within their host pollen to thrive. Ecological Entomology, 2020, 45, 1418-1427.	1.1	20

#	Article	IF	CITATIONS
894	Endosymbionts facilitate rapid evolution in a polyphagous herbivore. Journal of Evolutionary Biology, 2020, 33, 1507-1511.	0.8	9
895	Molecular causes of an evolutionary shift along the parasitism–mutualism continuum in a bacterial symbiont. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21658-21666.	3.3	12
896	Lactobacilli and other gastrointestinal microbiota of Peromyscus leucopus, reservoir host for agents of Lyme disease and other zoonoses in North America. PLoS ONE, 2020, 15, e0231801.	1.1	10
897	Disruption of Host-Symbiont Associations for the Symbiotic Control and Management of Pentatomid Agricultural Pests—A Review. Frontiers in Microbiology, 2020, 11, 547031.	1.5	9
898	Wolbachia infection in wild mosquitoes (Diptera: Culicidae): implications for transmission modes and host-endosymbiont associations in Singapore. Parasites and Vectors, 2020, 13, 612.	1.0	14
899	Cardinium Localization During Its Parasitoid Wasp Host's Development Provides Insights Into Cytoplasmic Incompatibility. Frontiers in Microbiology, 2020, 11, 606399.	1.5	9
900	Biotin provisioning by horizontally transferred genes from bacteria confers animal fitness benefits. ISME Journal, 2020, 14, 2542-2553.	4.4	40
901	Symbiotic solutions to nitrogen limitation and amino acid imbalance in insect diets. Advances in Insect Physiology, 2020, , 161-205.	1.1	19
902	Manipulation of insect gut microbiota towards the improvement of <i>Bactrocera oleae</i> artificial rearing. Entomologia Experimentalis Et Applicata, 2020, 168, 523-540.	0.7	18
903	When bacteria meet mitochondria: The strange case of the tick symbiont <i>Midichloria mitochondrii</i> ^{â€} . Cellular Microbiology, 2020, 22, e13189.	1.1	18
904	Metagenomic analysis suggests broad metabolic potential in extracellular symbionts of the bivalve Thyasira cf. gouldi. Animal Microbiome, 2020, 2, 7.	1.5	5
905	Co-evolution in the Jungle: From Leafcutter Ant Colonies to Chromosomal Ends. Journal of Molecular Evolution, 2020, 88, 293-318.	0.8	1
906	Microbial symbioses and host nutrition. , 2020, , 78-97.		1
907	Microbiome analysis of the saliva and midgut from partially or fully engorged female adult Dermacentor silvarum ticks in China. Experimental and Applied Acarology, 2020, 80, 543-558.	0.7	13
908	Relevance of microbial symbiosis to insect behavior. Current Opinion in Insect Science, 2020, 39, 91-100.	2.2	55
909	<i>Burkholderia insecticola</i> triggers midgut closure in the bean bug <i>Riptortus pedestris</i> to prevent secondary bacterial infections of midgut crypts. ISME Journal, 2020, 14, 1627-1638.	4.4	50
910	Continent-Scale Sampling Reveals Fine-Scale Turnover in a Beneficial Bug Symbiont. Frontiers in Microbiology, 2020, 11, 1276.	1.5	7
911	Dynamics of Insect–Microbiome Interaction Influence Host and Microbial Symbiont. Frontiers in Microbiology, 2020, 11, 1357.	1.5	98

#	Article	IF	CITATIONS
912	Recent infection by Wolbachia alters microbial communities in wild Laodelphax striatellus populations. Microbiome, 2020, 8, 104.	4.9	43
913	The vectoring of Starmerella species and other yeasts by stingless bees in a Neotropical savanna. Fungal Ecology, 2020, 47, 100973.	0.7	17
914	A genomic view of trophic and metabolic diversity in clade-specific Lamellodysidea sponge microbiomes. Microbiome, 2020, 8, 97.	4.9	38
915	Microbial community structure reveals instability of nutritional symbiosis during the evolutionary radiation of <i>Amblyomma</i> ticks. Molecular Ecology, 2020, 29, 1016-1029.	2.0	48
916	A Mutualistic Poxvirus Exhibits Convergent Evolution with Other Heritable Viruses in Parasitoid Wasps. Journal of Virology, 2020, 94, .	1.5	21
917	More Is Not Always Better: Coinfections with Defensive Symbionts Generate Highly Variable Outcomes. Applied and Environmental Microbiology, 2020, 86, .	1.4	42
918	Insect—Symbiont Gene Expression in the Midgut Bacteriocytes of a Blood-Sucking Parasite. Genome Biology and Evolution, 2020, 12, 429-442.	1.1	15
919	Symbiont replacements reset the co-evolutionary relationship between insects and their heritable bacteria. ISME Journal, 2020, 14, 1384-1395.	4.4	36
920	The Wolbachia Endosymbionts. , 2020, , 139-153.		7
921	Comparative genomics: Dominant coral-bacterium <i>Endozoicomonas acroporae</i> metabolizes dimethylsulfoniopropionate (DMSP). ISME Journal, 2020, 14, 1290-1303.	4.4	96
922	16S rRNA Sequencing Detected Profftella, Liberibacter, Wolbachia, and Diplorickettsia from Relatives of the Asian Citrus Psyllid. Microbial Ecology, 2020, 80, 410-422.	1.4	24
923	Genomic Analysis of Wolbachia from Laodelphax striatellus (Delphacidae, Hemiptera) Reveals Insights into Its "Jekyll and Hyde―Mode of Infection Pattern. Genome Biology and Evolution, 2020, 12, 3818-3831.	1.1	41
924	Bacterial endosymbionts of Placobdella (Annelida: Hirudinea: Glossiphoniidae): phylogeny, genetic distance, and vertical transmission. Hydrobiologia, 2020, 847, 1177-1194.	1.0	2
925	Environmental Inheritance: Conceptual Ambiguities and TheoreticalÂlssues. Biological Theory, 2020, , 1.	0.8	4
926	Applying the core microbiome to understand host–microbe systems. Journal of Animal Ecology, 2020, 89, 1549-1558.	1.3	200
927	The Phylum Bryozoa: From Biology to Biomedical Potential. Marine Drugs, 2020, 18, 200.	2.2	16
928	Rickettsia spp. in Five Tick Species Collected in Central California. Journal of Medical Entomology, 2020, 57, 1596-1603.	0.9	7
929	Ecological and evolutionary mechanisms underlying patterns of phylosymbiosis in host-associated microbial communities. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190251.	1.8	85

#	Article	IF	Citations
930	Transovarial Transmission of Bacteriome-Associated Symbionts in the Cicada <i>Pycna repanda</i> (Hemiptera: Cicadidae). Applied and Environmental Microbiology, 2020, 86, .	1.4	14
931	Diversity and phylogenetic analysis of endosymbionts from <i>Trioza erytreae</i> (Del Guercio) and its parasitoids in Kenya. Journal of Applied Entomology, 2021, 145, 104-116.	0.8	7
932	Characterization of a novel <i>Pantoea</i> symbiont allows inference of a pattern of convergent genome reduction in bacteria associated with Pentatomidae. Environmental Microbiology, 2021, 23, 36-50.	1.8	12
933	Changes in Bacterial Diversity, Composition and Interactions During the Development of the Seabird Tick Ornithodoros maritimus (Argasidae). Microbial Ecology, 2021, 81, 770-783.	1.4	10
934	Endosymbiont load, personality and reproductive output of maize weevils (Sitophilus zeamais). Journal of Pest Science, 2021, 94, 691-701.	1.9	2
935	Assessment of fungal diversity in soil rhizosphere associated with Rhazya stricta and some desert plants using metagenomics. Archives of Microbiology, 2021, 203, 1211-1219.	1.0	2
936	Update on the intricate tango between tick microbiomes and tickâ€borne pathogens. Parasite Immunology, 2021, 43, e12813.	0.7	55
937	Evolutionary Diversification in Insect Vector–Phytoplasma–Plant Associations. Annals of the Entomological Society of America, 2021, 114, 137-150.	1.3	16
938	Horizontal Transmission of Microbial Symbionts Within a Guild of Fly Parasitoids. Microbial Ecology, 2021, 81, 818-827.	1.4	5
940	Pantothenate mediates the coordination of whitefly and symbiont fitness. ISME Journal, 2021, 15, 1655-1667.	4.4	24
941	Symbiosis in a Rapidly Changing World. Advances in Environmental Microbiology, 2021, , 263-296.	0.1	1
943	Ten recent insights for our understanding of cooperation. Nature Ecology and Evolution, 2021, 5, 419-430.	3.4	54
944	Exploring Changes in the Microbiota of Aedes albopictus: Comparison Among Breeding Site Water, Larvae, and Adults. Frontiers in Microbiology, 2021, 12, 624170.	1.5	24
948	Essential Amino Acid Enrichment and Positive Selection Highlight Endosymbiont's Role in a Global Virus-Vectoring Pest. MSystems, 2021, 6, .	1.7	3
949	<i>Wolbachia</i> and Virus Alter the Host Transcriptome at the Interface of Nucleotide Metabolism Pathways. MBio, 2021, 12, .	1.8	23
950	Genetic Modification of <i>Sodalis</i> Species by DNA Transduction. MSphere, 2021, 6, .	1.3	9
952	Two Deoxythymidine Triphosphate Synthesis-Related Genes Regulate Obligate Symbiont Density and Reproduction in the Whitefly Bemisia tabaci MED. Frontiers in Physiology, 2020, 11, 574749.	1.3	3
953	Rapid molecular evolution of Spiroplasma symbionts of Drosophila. Microbial Genomics, 2021, 7, .	1.0	15

#	Article	IF	CITATIONS
954	Thermal niches of specialized gut symbionts: the case of social bees. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20201480.	1.2	29
956	The Gut Microbiota of the Insect Infraorder Pentatomomorpha (Hemiptera: Heteroptera) for the Light of Ecology and Evolution. Microorganisms, 2021, 9, 464.	1.6	9
957	Alpha-Gal Syndrome. Türkiye Kalça Cerrahisi Dergisi, 2021, 1, 102-106.	0.1	0
958	Wolbachia Endosymbionts of Fleas Occur in All Females but Rarely in Males and Do Not Show Evidence of Obligatory Relationships, Fitness Effects, or Sex-Distorting Manipulations. Frontiers in Microbiology, 2021, 12, 649248.	1.5	8
959	Evolutionary Rates are Correlated Between Buchnera Endosymbionts andÂthe Mitochondrial Genomes of Their Aphid Hosts. Journal of Molecular Evolution, 2021, 89, 238-248.	0.8	5
960	A strategy to decrease vectorial competence of dengue mosquito Aedes aegypti by alteration of its gut microbiota using Indian traditional medicinal plants. International Journal of Tropical Insect Science, 2021, 41, 2947-2956.	0.4	1
961	Evidence of gene nucleotide composition favoring replication and growth in a fastidious plant pathogen. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	5
962	Mechanistically comparing reproductive manipulations caused by selfish chromosomes and bacterial symbionts. Heredity, 2021, 126, 707-716.	1.2	2
963	Vertical Transmission at the Pathogen-Symbiont Interface: Serratia symbiotica and Aphids. MBio, 2021, 12, .	1.8	19
964	The Utility of Macroecological Rules for Microbial Biogeography. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	31
965	Incipient genome erosion and metabolic streamlining for antibiotic production in a defensive symbiont. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	12
967	Microbial evolution and transitions along the parasite–mutualist continuum. Nature Reviews Microbiology, 2021, 19, 623-638.	13.6	125
968	Intraspecific variation in immune gene expression and heritable symbiont density. PLoS Pathogens, 2021, 17, e1009552.	2.1	15
969	Multiple concurrent and convergent stages of genome reduction in bacterial symbionts across a stink bug family. Scientific Reports, 2021, 11, 7731.	1.6	7
971	Paternal and maternal effects in a mosquito: A bridge for life history transition. Journal of Insect Physiology, 2021, 131, 104243.	0.9	3
972	A broadscale analysis of hostâ€symbiont cophylogeny reveals the drivers of phylogenetic congruence. Ecology Letters, 2021, 24, 1681-1696.	3.0	26
973	Transmission of the wMel Wolbachia strain is modulated by its titre and by immune genes in Drosophila melanogaster (Wolbachia density and transmission). Journal of Invertebrate Pathology, 2021, 181, 107591.	1.5	7
975	Interactions Between Tsetse Endosymbionts and Glossina pallidipes Salivary Gland Hypertrophy Virus in Glossina Hosts. Frontiers in Microbiology, 2021, 12, 653880.	1.5	4

#	Article	IF	CITATIONS
976	Serratia symbiotica Enhances Fatty Acid Metabolism of Pea Aphid to Promote Host Development. International Journal of Molecular Sciences, 2021, 22, 5951.	1.8	15
977	Extinction of anciently associated gut bacterial symbionts in a clade of stingless bees. ISME Journal, 2021, 15, 2813-2816.	4.4	30
978	Infection with Borrelia afzelii and manipulation of the egg surface microbiota have no effect on the fitness of immature Ixodes ricinus ticks. Scientific Reports, 2021, 11, 10686.	1.6	8
979	Transitions in symbiosis: evidence for environmental acquisition and social transmission within a clade of heritable symbionts. ISME Journal, 2021, 15, 2956-2968.	4.4	26
980	Pervasive effects of <i>Wolbachia</i> on host activity. Biology Letters, 2021, 17, 20210052.	1.0	10
981	Inhibition of a nutritional endosymbiont by glyphosate abolishes mutualistic benefit on cuticle synthesis in Oryzaephilus surinamensis. Communications Biology, 2021, 4, 554.	2.0	21
982	Enhanced Mutation Rate, Relaxed Selection, and the "Domino Effect―are associated with Gene Loss in <i>Blattabacterium</i> , A Cockroach Endosymbiont. Molecular Biology and Evolution, 2021, 38, 3820-3831.	3.5	13
985	Gut Bacterial Diversity in Different Life Cycle Stages of Adelphocoris suturalis (Hemiptera: Miridae). Frontiers in Microbiology, 2021, 12, 670383.	1.5	22
986	Phylogenomics of flavobacterial insect nutritional endosymbionts with implications for Auchenorrhyncha phylogeny. Cladistics, 2022, 38, 38-58.	1.5	13
987	The Evolution of Interdependence in a Four-Way Mealybug Symbiosis. Genome Biology and Evolution, 2021, 13, .	1.1	9
988	Forward genetics in Wolbachia: Regulation of Wolbachia proliferation by the amplification and deletion of an addictive genomic island. PLoS Genetics, 2021, 17, e1009612.	1.5	24
989	Bacterial and archaeal symbioses with protists. Current Biology, 2021, 31, R862-R877.	1.8	74
991	Genomic and transcriptomic analyses reveal metabolic complementarity between whiteflies and their symbionts. Insect Science, 2022, 29, 539-549.	1.5	9
992	Evolutionarily recent dual obligatory symbiosis among adelgids indicates a transition between fungus- and insect-associated lifestyles. ISME Journal, 2022, 16, 247-256.	4.4	16
993	Ecological Contacts and Host Specificity Promote Replacement of Nutritional Endosymbionts in Ticks. Microbial Ecology, 2022, 83, 776-788.	1.4	3
994	The Genomics and Cell Biology of Host-Beneficial Intracellular Infections. Annual Review of Cell and Developmental Biology, 2021, 37, 115-142.	4.0	27
995	An eco-systems biology approach for modeling tritrophic networks reveals the influence of dietary amino acids on symbiont dynamics of <i>Bemisia tabaci</i> . FEMS Microbiology Ecology, 2021, 97, .	1.3	4
996	Natural experiments and long-term monitoring are critical to understand and predict marine host–microbe ecology and evolution. PLoS Biology, 2021, 19, e3001322.	2.6	17

#	Article	IF	CITATIONS
997	Phyllosphere Community Assembly and Response to Drought Stress on Common Tropical and Temperate Forage Grasses. Applied and Environmental Microbiology, 2021, 87, e0089521.	1.4	11
1000	The coral symbiont <i>Candidatus</i> Aquarickettsia is variably abundant in threatened Caribbean acroporids and transmitted horizontally. ISME Journal, 2022, 16, 400-411.	4.4	21
1001	Shining light on a deep-sea bacterial symbiont population structure with CRISPR. Microbial Genomics, 2021, 7, .	1.0	4
1002	Strong within-host selection in a maternally inherited obligate symbiont: <i>Buchnera</i> and aphids. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
1003	Genetic innovations in animal–microbe symbioses. Nature Reviews Genetics, 2022, 23, 23-39.	7.7	60
1004	A New Model Trypanosomatid, <i>Novymonas esmeraldas</i> : Genomic Perception of Its " <i>Candidatus</i> Pandoraea novymonadis―Endosymbiont. MBio, 2021, 12, e0160621.	1.8	8
1005	Insight into the bacterial communities of the subterranean aphid Anoecia corni. PLoS ONE, 2021, 16, e0256019.	1.1	0
1006	Alternative Transmission Patterns in Independently Acquired Nutritional Cosymbionts of Dictyopharidae Planthoppers. MBio, 2021, 12, e0122821.	1.8	22
1007	Transitional genomes and nutritional role reversals identified for dual symbionts of adelgids (Aphidoidea: Adelgidae). ISME Journal, 2022, 16, 642-654.	4.4	11
1008	Geography-dependent symbiont communities in two oligophagous aphid species. FEMS Microbiology Ecology, 2021, 97, .	1.3	6
1009	Olive fruit fly and its obligate symbiont Candidatus Erwinia dacicola: Two new symbiont haplotypes in the Mediterranean basin. PLoS ONE, 2021, 16, e0256284.	1.1	2
1011	A Rickettsiella Endosymbiont Is a Potential Source of Essential B-Vitamins for the Poultry Red Mite, Dermanyssus gallinae. Frontiers in Microbiology, 2021, 12, 695346.	1.5	5
1012	Transmission of Bacterial Symbionts With and Without Genome Erosion Between a Beetle Host and the Plant Environment. Frontiers in Microbiology, 2021, 12, 715601.	1.5	10
1013	Structural diversity of symbionts and related cellular mechanisms underlying vertical symbiont transmission in cicadas. Environmental Microbiology, 2021, 23, 6603-6621.	1.8	13
1015	Frequent Drivers, Occasional Passengers: Signals of Symbiont-Driven Seasonal Adaptation and Hitchhiking in the Pea Aphid, Acyrthosiphon pisum. Insects, 2021, 12, 805.	1.0	10
1016	Symbiotic Models for Reconstruction of Organellogenesis. Russian Journal of Genetics, 2021, 57, 10-22.	0.2	0
1018	Microbiome of forest tree insects. , 2021, , 327-355.		0
1019	Are bacterial symbionts associated with gall induction in insects?. Arthropod-Plant Interactions, 2021, 15, 1-12.	0.5	12

#	Article	IF	Citations
1022	Arthropod Endosymbiosis and Evolution. , 2013, , 441-477.		4
1023	Comparative Genomics of the Liberibacteral Plant Pathogens. , 2014, , 203-233.		3
1024	Symbionts and Pathogens: What is the Difference?. Current Topics in Microbiology and Immunology, 2011, , 215-243.	0.7	2
1025	Arthropod Endosymbiosis and Evolution. , 2013, , 441-477.		14
1026	Nucleomorph Comparative Genomics. , 2014, , 197-213.		8
1027	Rhopalodia gibba: The First Steps in the Birth of a Novel Organelle?. , 2014, , 167-179.		7
1028	Microorganisms and Biotic Interactions. , 2015, , 395-444.		30
1029	Host-symbiont specificity in insects: Underpinning mechanisms and evolution. Advances in Insect Physiology, 2020, 58, 27-62.	1.1	8
1030	The saboteur's tools: Common mechanistic themes across manipulative symbioses. Advances in Insect Physiology, 2020, , 317-353.	1.1	14
1031	Toxin-mediated protection against natural enemies by insect defensive symbionts. Advances in Insect Physiology, 2020, 58, 277-316.	1.1	23
1032	Microbial symbionts of herbivorous species across the insect tree. Advances in Insect Physiology, 2020, , 111-159.	1.1	19
1033	The Insects. , 2012, , .		311
1034	Endosymbiont diversity in natural populations of Tetranychus mites is rapidly lost under laboratory conditions. Heredity, 2020, 124, 603-617.	1.2	12
1036	Elements, biochemicals, and structures of microbes. , 2011, , 19-34.		1
1037	Microbial primary production and phototrophy. , 2011, , 55-78.		2
1038	Degradation of organic material. , 2011, , 79-98.		3
1039	Microbial growth, biomass production, and controls. , 2011, , 99-116.		3
1040	Ecology of viruses. , 2011, , 137-156.		1

#	Article	IF	CITATIONS
1042	What are sexes, and why are there sexes?. , 2014, , 1-17.		3
1043	Molecular mechanisms of sex determination. , 2014, , 37-77.		1
1044	The quantitative genetics of sex determination. , 2014, , 78-88.		3
1045	The evolution of sex chromosomes. , 2014, , 89-114.		5
1046	Evolutionary correlates of sex-determination systems. , 2014, , 115-132.		2
1047	The study of quantitative genetics in wild populations. , 2014, , 1-15.		17
1048	Isolation, pure culture and characterization of Serratia symbiotica sp. nov., the R-type of secondary endosymbiont of the black bean aphid Aphis fabae. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 2081-2088.	0.8	60
1049	â€~Candidatus Moeniiplasma glomeromycotorum', an endobacterium of arbuscular mycorrhizal fungi. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 1177-1184.	0.8	48
1050	Mixta gen. nov., a new genus in the Erwiniaceae. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 1396-1407.	0.8	53
1051	Long-range dispersal moved Francisella tularensis into Western Europe from the East. Microbial Genomics, 2016, 2, e000100.	1.0	32
1052	Simulating the evolutionary trajectories of metabolic pathways for insect symbionts in the genus Sodalis. Microbial Genomics, 2020, 6, .	1.0	7
1073	Transformation of the <i>Drosophila</i> Sex-Manipulative Endosymbiont Spiroplasma poulsonii and Persisting Hurdles for Functional Genetic Studies. Applied and Environmental Microbiology, 2020, 86, .	1.4	10
1074	Parasitic wasp responses to symbiont-based defense in aphids. BMC Biology, 2012, 10, 11.	1.7	11
1075	Origin of an Alternative Genetic Code in the Extremely Small and GC–Rich Genome of a Bacterial Symbiont. PLoS Genetics, 2009, 5, e1000565.	1.5	247
1076	Evidence of Selection upon Genomic GC-Content in Bacteria. PLoS Genetics, 2010, 6, e1001107.	1.5	355
1077	Evidence That Mutation Is Universally Biased towards AT in Bacteria. PLoS Genetics, 2010, 6, e1001115.	1.5	386
1078	Heat Sensitivity of wMel Wolbachia during Aedes aegypti Development. PLoS Neglected Tropical Diseases, 2016, 10, e0004873.	1.3	84
1079	Persistent Wolbachia and Cultivable Bacteria Infection in the Reproductive and Somatic Tissues of the	1.1	92

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1080	Biological Role of Nardonella Endosymbiont in Its Weevil Host. PLoS ONE, 2010, 5, e13	101.	1.1	60
1081	Facultative Symbiont Infections Affect Aphid Reproduction. PLoS ONE, 2011, 6, e21831	·	1.1	141
1082	Phylogenomics of Reichenowia parasitica, an Alphaproteobacterial Endosymbiont of the Leech Placobdella parasitica. PLoS ONE, 2011, 6, e28192.	Freshwater	1.1	10
1083	Reduced Selective Constraint in Endosymbionts: Elevation in Radical Amino Acid Replac Genome-Wide. PLoS ONE, 2011, 6, e28905.	ements Occurs	1.1	33
1084	Bacterial Endosymbiosis in a Chordate Host: Long-Term Co-Evolution and Conservation Metabolism. PLoS ONE, 2013, 8, e80822.	of Secondary	1.1	52
1085	Location of Symbionts in the Whitefly Bemisia tabaci Affects Their Densities during Hos and Environmental Stress. PLoS ONE, 2014, 9, e91802.	t Development	1.1	26
1086	Mortality, Temporary Sterilization, and Maternal Effects of Sublethal Heat in Bed Bugs. I 2015, 10, e0127555.	PLoS ONE,	1.1	26
1087	Microbial Communities Can Be Described by Metabolic Structure: A General Framework Application to a Seasonally Variable, Depth-Stratified Microbial Community from the Co Antarctic Peninsula. PLoS ONE, 2015, 10, e0135868.	and astal West	1.1	146
1088	Wolbachia Has Two Different Localization Patterns in Whitefly Bemisia tabaci Asiall7 Sp ONE, 2016, 11, e0162558.	ecies. PLoS	1.1	14
1089	Heat Stress Affects Facultative Symbiont-Mediated Protection from a Parasitoid Wasp. 11, e0167180.	PLoS ONE, 2016,	1.1	35
1090	Loss of genes related to Nucleotide Excision Repair (NER) and implications for reductive evolution in symbionts of deep-sea vesicomyid clams. PLoS ONE, 2017, 12, e0171274.	genome	1.1	6
1091	Identification of the potentiating mutations and synergistic epistasis that enabled the e inter-species cooperation. PLoS ONE, 2017, 12, e0174345.	volution of	1.1	20
1092	The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria source for biotechnological exploitation. PLoS ONE, 2017, 12, e0174754.	ı: A potential	1.1	125
1093	Polyphyly of the extinct family Oviparosiphidae and its implications for inferring aphid e (Hemiptera, Sternorrhyncha). PLoS ONE, 2017, 12, e0174791.	volution	1.1	14
1094	Bacterial diversity of bacteriomes and organs of reproductive, digestive and excretory sy cicada species (Hemiptera: Cicadidae). PLoS ONE, 2017, 12, e0175903.	stems in two	1.1	23
1095	Genomic analysis reveals an exogenous viral symbiont with dual functionality in parasito their hosts. PLoS Pathogens, 2020, 16, e1009069.	oid wasps and	2.1	10
1096	The Princeton Guide to Evolution. , 2013, , .			21
1097	Detection of Wolbachia pipientis, including a new strain containing the wsp gene, in tw species of Paraphlebotomus sandflies, potential vectors of zoonotic cutaneous leishman Memorias Do Instituto Oswaldo Cruz, 2013, 108, 414-420.	o sister hiasis.	0.8	19

	CITATION	Report	
#	Article	IF	CITATIONS
1098	The state of art and prospects for development of symbiogenetics. Ecological Genetics, 2019, 17, 5-10.	0.1	3
1099	Looking for Darwin in Endosymbionts. The Open Evolution Journal, 2009, 3, 31-37.	0.2	1
1100	Hidden arsenal endosymbionts in arthropods their role and possible implications for biological control success. New Zealand Plant Protection, 0, 67, 204-212.	0.3	2
1101	Reduced Genome of the Gut Symbiotic Bacterium "Candidatus Benitsuchiphilus tojoi―Provides Insight Into Its Possible Roles in Ecology and Adaptation of the Host Insect. Frontiers in Microbiology, 2020, 11, 840.	1.5	7
1102	Endomicrobial Community Profiles of Two Different Mealybugs: <i>Paracoccus marginatus</i> and <i>Ferrisia virgata</i> . Journal of Microbiology and Biotechnology, 2020, 30, 1013-1017.	0.9	3
1103	Role of Probiotics in Pancreatic Cancer Prevention: The Prospects and Challenges. Advances in Bioscience and Biotechnology (Print), 2016, 07, 468-500.	0.3	11
1104	The Potential Role of Environment in Structuring the Microbiota of <i>Camponotus</i> across Parts of the Body. Advances in Entomology (Irvine, Calif), 2019, 07, 47-70.	0.1	13
1105	Insect endosymbiont proliferation is limited by lipid availability. ELife, 2014, 3, e02964.	2.8	102
1106	Active invasion of bacteria into living fungal cells. ELife, 2014, 3, e03007.	2.8	107
1107	Reconstructing the functions of endosymbiotic Mollicutes in fungus-growing ants. ELife, 2018, 7, .	2.8	39
1108	Diverse deep-sea anglerfishes share a genetically reduced luminous symbiont that is acquired from the environment. ELife, 2019, 8, .	2.8	23
1109	<i>Ixodes scapularis</i> microbiome correlates with life stage, not the presence of human pathogens, in ticks submitted for diagnostic testing. PeerJ, 2020, 8, e10424.	0.9	17
1110	Effects of 16S rDNA sampling on estimates of the number of endosymbiont lineages in sucking lice. PeerJ, 2016, 4, e2187.	0.9	14
1111	Toward a better understanding of the mechanisms of symbiosis: a comprehensive proteome map of a nascent insect symbiont. PeerJ, 2017, 5, e3291.	0.9	21
1112	The bivalveThyasiracf.gouldihosts chemoautotrophic symbiont populations with strain level diversity. PeerJ, 2017, 5, e3597.	0.9	6
1113	<i>Arsenophonus</i> and <i>Sodalis</i> replacements shape evolution of symbiosis in louse flies. PeerJ, 2017, 5, e4099.	0.9	41
1114	Uncovering the hidden players in Lepidoptera biology: the heritable microbial endosymbionts. PeerJ, 2018, 6, e4629.	0.9	40
1115	Low bacterial community diversity in two introduced aphid pests revealed with 16S rRNA amplicon sequencing. PeerJ, 2018, 6, e4725.	0.9	17

#	Article	IF	CITATIONS
1116	Conserved microbiota among young Heliconius butterfly species. PeerJ, 2018, 6, e5502.	0.9	25
1117	Conservation of transcriptional elements in the obligate symbiont of the whitefly <i>Bemisia tabaci</i> . PeerJ, 2019, 7, e7477.	0.9	6
1118	Comparison of bacterial diversity and abundance between sexes of <i>Leptocybe invasa</i> Fisher & La Salle (Hymenoptera: Eulophidae) from China. PeerJ, 2020, 8, e8411.	0.9	10
1119	Genome evolution in an ancient bacteria-ant symbiosis: parallel gene loss among <i>Blochmannia</i> spanning the origin of the ant tribe Camponotini. PeerJ, 2015, 3, e881.	0.9	46
1120	Endosymbiotic adaptations in three new bacterial species associated with <i>Dictyostelium discoideum</i> : <i>Paraburkholderia agricolaris</i> sp. nov., <i>Paraburkholderia hayleyella</i> sp. nov., and <i>Paraburkholderia bonniea</i> sp. nov. PeerJ, 2020, 8, e9151.	0.9	49
1121	Tightly Constrained Genome Reduction and Relaxation of Purifying Selection during Secondary Plastid Endosymbiosis. Molecular Biology and Evolution, 2022, 39, .	3.5	5
1122	Intracellular Bacterial Symbionts in Corals: Challenges and Future Directions. Microorganisms, 2021, 9, 2209.	1.6	20
1125	Enzyme producing insect gut microbes: an unexplored biotechnological aspect. Critical Reviews in Biotechnology, 2022, 42, 384-402.	5.1	36
1127	Flexible Genome Retrieval for Supporting In-Silico Studies of Endobacteria-AMFs. International Federation for Information Processing, 2010, , 138-147.	0.4	0
1128	Symbiosis. Encyclopedia of Earth Sciences Series, 2011, , 866-870.	0.1	0
1129	A Modular Database Architecture Enabled to Comparative Sequence Analysis. Lecture Notes in Computer Science, 2011, , 124-147.	1.0	0
1130	Genomes and metagenomes of microbes and viruses. , 2011, , 177-194.		0
1131	Symbiosis and microbes. , 2011, , 257-276.		0
1132	Community structure of microbes in natural environments. , 2011, , 157-176.		0
1133	Physical-chemical environment of microbes. , 2011, , 35-54.		0
1134	Introduction to geomicrobiology. , 2011, , 237-256.		0
1135	Predation and protists. , 2011, , 117-136.		0
1137	Processes in anoxic environments. , 2011, , 195-216.		0

.

#	Article	IF	CITATIONS
1138	The nitrogen cycle. , 2011, , 217-236.		0
1139	Role of Symbiosis in Evolution. Social and Ecological Interactions in the Galapagos Islands, 2013, , 63-70.	0.4	0
1143	From Genetics to Genomics. , 0, , 255-266.		0
1144	Transitions among sex-determination systems. , 2014, , 133-150.		1
1145	Endosymbiosis. , 2015, , 733-734.		0
1149	Symbiosis. , 2016, , 127-146.		0
1152	Organelle Genomes and Endosymbionts. , 2017, , 21-42.		0
1159	<p class="Body">Maternally inherited symbiotic bacteria in ticks: incidence and biological importance. Systematic and Applied Acarology, 2019, 24, 158.</p>	0.5	3
1169	Evolution: Predictable Patterns of Symbiont Cointegration. Current Biology, 2020, 30, R446-R448.	1.8	1
1173	A perspective on insect–microbe holobionts facing thermal fluctuations in a climateâ€change context. Environmental Microbiology, 2022, 24, 18-29.	1.8	10
1174	Worker-dependent gut symbiosis in an ant. ISME Communications, 2021, 1, .	1.7	6
1175	Prevalence, complete genome, and metabolic potentials of a phylogenetically novel cyanobacterial symbiont in the coralâ€killing sponge, <i>Terpios hoshinota</i> . Environmental Microbiology, 2022, 24, 1308-1325.	1.8	2
1176	Fungal Epigenetic Engineering. Fungal Biology, 2020, , 1-15.	0.3	0
1178	The Photosynthetic Adventure of Paulinella Spp. Results and Problems in Cell Differentiation, 2020, 69, 353-386.	0.2	2
1179	Gene Transfer Agents in Symbiotic Microbes. Results and Problems in Cell Differentiation, 2020, 69, 25-76.	0.2	8
1185	Composition and function of the microbiotas in the different parts of the midgut of Pyrrhocoris sibiricus (Hemiptera: Pyrrhocoridae) revealed using high-throughput sequencing of 16S rRNA. European Journal of Entomology, 0, 117, 352-371.	1.2	4
1188	Cytotype Affects the Capability of the Whitefly Bemisia tabaci MED Species To Feed and Oviposit on an Unfavorable Host Plant. MBio, 2021, 12, e0073021.	1.8	3
1189	Salinity effects on the microbiome of a Neotropical water strider. Hydrobiologia, 0, , .	1.0	2

	Сітат	ion Report	
#	Article	IF	CITATIONS
1190	Evolutionary genomics of APSE: a tailed phage that lysogenically converts the bacterium Hamiltonella defensa into a heritable protective symbiont of aphids. Virology Journal, 2021, 18, 219.	1.4	11
1191	Lysine provisioning by horizontally acquired genes promotes mutual dependence between whitefly and two intracellular symbionts. PLoS Pathogens, 2021, 17, e1010120.	2.1	18
1192	Metagenomic Approaches for Insect Symbionts. , 2021, , 271-313.		3
1195	Evolutionary Dynamics of Host Organs for Microbial Symbiosis in Tortoise Leaf Beetles (Coleoptera:) Tj ET	Qq1 1 0.784314 r 1.8	gBT /Overlo
1196	Development of Common Leaf-Footed Bug Pests Depends on the Presence and Identity of Their Environmentally Acquired Symbionts. Applied and Environmental Microbiology, 2022, 88, AEM0177821.	1.4	7
1197	Roles of Bacterial Symbionts in Transmission of Plant Virus by Hemipteran Vectors. Frontiers in Microbiology, 2022, 13, 805352.	1.5	10
1200	Microbiome analyses of 12 psyllid species of the family Psyllidae identified various bacteria including Fukatsuia and Serratia symbiotica, known as secondary symbionts of aphids. BMC Microbiology, 2022, 22, 15.	1.3	17
1201	Limited Evidence for Microbial Transmission in the Phylosymbiosis between Hawaiian Spiders and Their Microbiota. MSystems, 2022, 7, e0110421.	1.7	12
1202	Species interactions constrain adaptation and preserve ecological stability in an experimental microbial community. ISME Journal, 2022, 16, 1442-1452.	4.4	23
1203	Panoramic Insights into Microevolution and Macroevolution of A Prevotella copri-containing Lineage in Primate Guts. Genomics, Proteomics and Bioinformatics, 2022, 20, 334-349.	3.0	3
1204	The "Other― <i>Rickettsiales</i> : an Overview of the Family " <i>Candidatus</i> Midichloriaceae Applied and Environmental Microbiology, 2022, 88, aem0243221.	― 1.4	14
1205	Large dataset of octocoral mitochondrial genomes provides new insights into mt-mutS evolution and function. DNA Repair, 2022, 110, 103273.	1.3	16
1206	Temperature effects on cellular host-microbe interactions explain continent-wide endosymbiont prevalence. Current Biology, 2022, 32, 878-888.e8.	1.8	29
1207	Reconstitution and Transmission of Gut Microbiomes and Their Genes between Generations. Microorganisms, 2022, 10, 70.	1.6	17
1208	Spatial distribution and community structure of microbiota associated with cowpea aphid (Aphis) Tj ETQc	0 0 0 rgBT /Overlo 0 0 rgBT	ck 10 Tf 50
1209	Silencing horizontally transferred genes for the control of the whitefly Bemisia tabaci. Journal of Pest Science, 2023, 96, 195-208.	1.9	9
1210	Common endosymbionts affect host fitness and sex allocation via egg size provisioning. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212582.	1.2	7
1211	Fifty shades of bacterial endosymbionts and some of them still remain a mystery: Wolbachia and Cardinium in oribatid mites (Acari: Oribatida). Journal of Invertebrate Pathology, 2022, 189, 107733.	1.5	2

#	Article	IF	CITATIONS
1212	Comparative microbiome analysis of <i>Diaphorina citri</i> and its associated parasitoids <i>Tamarixia radiata</i> and <i>Diaphorencyrtus aligarhensis</i> reveals <i>Wolbachia</i> as a dominant endosymbiont. Environmental Microbiology, 2022, 24, 1638-1652.	1.8	6
1213	Bacteriocyte development is sexually differentiated in Bemisia tabaci. Cell Reports, 2022, 38, 110455.	2.9	9
1214	Analyses of symbiotic bacterial communities in the plant pest Bemisia tabaci reveal high prevalence of Candidatus Hemipteriphilus asiaticus on the African continent. , 0, 2, .		4
1215	A novel microRNA regulates cooperation between symbiont and a laterally acquired gene in the regulation of pantothenate biosynthesis within <i>Bemisia tabaci</i> whiteflies. Molecular Ecology, 2022, 31, 2611-2624.	2.0	9
1216	Recovered microbiome of an oviparous lizard differs across gut and reproductive tissues, cloacal swabs, and faeces. Molecular Ecology Resources, 2022, 22, 1693-1705.	2.2	10
1217	Complex coâ€evolutionary relationships between cicadas and their symbionts. Environmental Microbiology, 2022, 24, 195-211.	1.8	6
1219	Computational modelling of chromosomally clustering protein domains in bacteria. BMC Bioinformatics, 2021, 22, 593.	1.2	1
1220	Recently Evolved Francisella-Like Endosymbiont Outcompetes an Ancient and Evolutionarily Associated Coxiella-Like Endosymbiont in the Lone Star Tick (Amblyomma americanum) Linked to the Alpha-Gal Syndrome. Frontiers in Cellular and Infection Microbiology, 2022, 12, 787209.	1.8	9
1221	Symbiont-Induced Phagosome Changes Rather than Extracellular Discrimination Contribute to the Formation of Social Amoeba Farming Symbiosis. Microbiology Spectrum, 2022, , e0172721.	1.2	6
1222	A viral mutualist employs posthatch transmission for vertical and horizontal spread among parasitoid wasps. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120048119.	3.3	6
1223	Bugs in Bugs: The Role of Probiotics and Prebiotics in Maintenance of Health in Mass-Reared Insects. Insects, 2022, 13, 376.	1.0	14
1224	Symbiont-mediated immune priming in animals through an evolutionary lens. Microbiology (United) Tj ETQq1 1	0.784314 0.7	rgBT /Overlo
1225	Novel symbionts and potential human pathogens excavated from argasid tick microbiomes that are shaped by dual or single symbiosis. Computational and Structural Biotechnology Journal, 2022, 20, 1979-1992.	1.9	4
1226	Extreme Polyploidy of <i>Carsonella</i> , an Organelle-Like Bacterium with a Drastically Reduced Genome. Microbiology Spectrum, 2022, 10, e0035022.	1.2	9
1276	Characterisation of the symbionts in the Mediterranean fruit fly gut. Microbial Genomics, 2022, 8, .	1.0	3
1277	Discovery of Early-Branching Wolbachia Reveals Functional Enrichment on Horizontally Transferred Genes. Frontiers in Microbiology, 2022, 13, 867392.	1.5	6
1278	Engineering artificial photosynthetic life-forms through endosymbiosis. Nature Communications, 2022, 13, 2254.	5.8	11
1279	Inheritance through the cytoplasm. Heredity, 2022, 129, 31-43.	1.2	26

	Cr	CITATION REPORT	
#	Article	IF	CITATIONS
1280	Highly transmissible cytoplasmic incompatibility by the extracellular insect symbiont Spiroplasma. IScience, 2022, 25, 104335.	1.9	20
1281	A mucin protein predominantly expressed in the female-specific symbiotic organ of the stinkbug Plautia stali. Scientific Reports, 2022, 12, 7782.	1.6	7
1282	No Evidence of Bacterial Symbionts Influencing Host Specificity in Aphis gossypii Glover (Hemiptera:)	Tj ETQq0 0 0 rgBT 1:0	/Overlock 10 Tf
1283	Evolutionary jumps in bacterial GC content. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	1
1284	Developmental Integration of Endosymbionts in Insects. Frontiers in Ecology and Evolution, 2022, 10,	. 1.1	2
1291	Honey bee symbiont buffers larvae against nutritional stress and supplements lysine. ISME Journal, 2022, 16, 2160-2168.	4.4	17
1292	Unraveling coevolutionary dynamics using ecological genomics. Trends in Genetics, 2022, 38, 1003-1	012. 2.9	4
1293	Convergent evolution of a labile nutritional symbiosis in ants. ISME Journal, 2022, 16, 2114-2122.	4.4	15
1294	Strain Tracking of â€~ <i>Candidatus</i> Liberibacter asiaticus', the Citrus Greening Pathogen, by High-Resolution Microbiome Analysis of Asian Citrus Psyllids. Phytopathology, 2022, 112, 2273-2287.	1.1	4
1296	Impact of host demography and evolutionary history on endosymbiont molecular evolution: A test in carpenter ants (genus <i>Camponotus</i>) and their <i>Blochmannia</i> endosymbionts. Ecology an Evolution, 2022, 12, .	d 0.8	7
1297	Symbiosis: the other cells in development. Development (Cambridge), 2022, 149, .	1.2	13
1298	The Di-Symbiotic Systems in the Aphids Sipha maydis and Periphyllus lyropictus Provide a Contrasting Picture of Recent Co-Obligate Nutritional Endosymbiosis in Aphids. Microorganisms, 2022, 10, 1360.	1.6	6
1299	Diaphorin, a Polyketide Produced by a Bacterial Symbiont of the Asian Citrus Psyllid, Inhibits the Growth and Cell Division of Bacillus subtilis but Promotes the Growth and Metabolic Activity of Escherichia coli. Microbiology Spectrum, 2022, 10, .	1.2	6
1300	Chromosomalâ€level assembly of <i>Bactericera cockerelli</i> reveals rampant gene family expansion impacting genome structure, function and insectâ€microbeâ€plantâ€interactions. Molecular Ecology Resources, 2023, 23, 233-252.	s 2.2	5
1302	Rational engineering of a synthetic insect-bacterial mutualism. Current Biology, 2022, 32, 3925-3938.	.e6. 1.8	8
1303	Microbiome of pear psyllids: A tale about closely related species sharing their endosymbionts. Environmental Microbiology, 2022, 24, 5788-5808.	1.8	13
1304	A continental-scale survey of <i>Wolbachia</i> infections in blue butterflies reveals evidence of interspecific transfer and invasion dynamics. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	3
1305	Endosymbiotic bacteria of the boar louse Haematopinus apri (Insecta: Phthiraptera: Anoplura). Frontiers in Microbiology, 0, 13,	1.5	1

#	Article	IF	CITATIONS
1306	Microbiome composition is shaped by geography and population structure in the parasitic wasp <i>Asobara japonica</i> , but not in the presence of the endosymbiont <i>Wolbachia</i> . Molecular Ecology, 2023, 32, 6644-6658.	2.0	3
1307	Morphological adaptation for ectosymbiont maintenance and transmission during metamorphosis in Lagria beetles. Frontiers in Physiology, 0, 13, .	1.3	8
1308	Motility-Independent Vertical Transmission of Bacteria in Leaf Symbiosis. MBio, 2022, 13, .	1.8	6
1309	Reduced and Nonreduced Genomes in <i>Paraburkholderia</i> Symbionts of Social Amoebas. MSystems, 0, , .	1.7	5
1310	Tropical and Temperate Lineages of <i>Rhipicephalus sanguineus s.l.</i> Ticks (Acari: Ixodidae) Host Different Strains of <i>Coxiella</i> -like Endosymbionts. Journal of Medical Entomology, 0, , .	0.9	0
1311	Evaluation of <i>Hamiltonella</i> on <i>Aphis gossypii</i> fitness based on life table parameters and <scp>RNA</scp> sequencing. Pest Management Science, 0, , .	1.7	1
1313	A highly divergent <i>Wolbachia</i> with a tiny genome in an insect-parasitic tylenchid nematode. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	5
1314	Pharmacological potential of ants and their symbionts – a review. Entomologia Experimentalis Et Applicata, 2022, 170, 1032-1048.	0.7	4
1315	Coevolution of Metabolic Pathways in Blattodea and Their <i>Blattabacterium</i> Endosymbionts, and Comparisons with Other Insect-Bacteria Symbioses. Microbiology Spectrum, 2022, 10, .	1.2	2
1316	Host's demand for essential amino acids is compensated by an extracellular bacterial symbiont in a hemipteran insect model. Frontiers in Physiology, 0, 13, .	1.3	3
1318	The diversity and evolutionary relationships of ticks and tick-borne bacteria collected in China. Parasites and Vectors, 2022, 15, .	1.0	7
1319	Fidelity varies in the symbiosis between a gutless marine worm and its microbial consortium. Microbiome, 2022, 10, .	4.9	6
1320	A Novel Widespread MITE Element in the Repeat-Rich Genome of the <i>Cardinium</i> Endosymbiont of the Spider <i>Oedothorax gibbosus</i> . Microbiology Spectrum, 2022, 10, .	1.2	3
1322	Global patterns in symbiont selection and transmission strategies in sponges. Frontiers in Ecology and Evolution, 0, 10, .	1.1	9
1323	Spiroplasma as facultative bacterial symbionts of stinkbugs. Frontiers in Microbiology, 0, 13, .	1.5	0
1324	How It All Begins: Bacterial Factors Mediating the Colonization of Invertebrate Hosts by Beneficial Symbionts. Microbiology and Molecular Biology Reviews, 2022, 86, .	2.9	10
1326	Phylogenetic reconciliation. PLoS Computational Biology, 2022, 18, e1010621.	1.5	6
1327	Microbiome comparison of Dermanyssus gallinae populations from different farm rearing systems and the presence of common endosymbiotic bacteria at developmental stages. Parasitology Research, 2023, 122, 227-235.	0.6	1

#	Article	IF	CITATIONS
1328	Bacterial gut microbiomes of aculeate brood parasites overlap with their aculeate hosts', but have higher diversity and specialization. FEMS Microbiology Ecology, 2022, 98, .	1.3	3
1330	High-resolution Microbiome Analyses of Nine Psyllid Species of the Family Triozidae Identified Previously Unrecognized but Major Bacterial Populations, including <i>Liberibacter</i> and <i>Wolbachia</i> of Supergroup O. Microbes and Environments, 2022, 37, n/a.	0.7	6
1331	Lack of host phylogenetic structure in the gut bacterial communities of New Zealand cicadas and their interspecific hybrids. Scientific Reports, 2022, 12, .	1.6	4
1332	Cellular and potential molecular mechanisms underlying transovarial transmission of the obligate symbiont <scp><i>Sulcia</i></scp> in cicadas. Environmental Microbiology, 2023, 25, 836-852.	1.8	3
1333	Cyclitol metabolism is a central feature of <scp><i>Burkholderia</i></scp> leaf symbionts. Environmental Microbiology, 2023, 25, 454-472.	1.8	5
1337	Ancient Darwinian replicators nested within eubacterial genomes. BioEssays, 2023, 45, .	1.2	4
1338	Facultative Endosymbiont Serratia symbiotica Inhibits the Apterization of Pea Aphid To Enhance Its Spread. Microbiology Spectrum, 2022, 10, .	1.2	1
1339	Subcellular Niche Segregation of Co-Obligate Symbionts in Whiteflies. Microbiology Spectrum, 2023, 11, .	1.2	2
1342	Insects in Scientific Research Advancement. , 2023, , 243-279.		0
1343	Partner fidelity and environmental filtering preserve stageâ€specific turtle ant gut symbioses for over 40 million years. Ecological Monographs, 2023, 93, .	2.4	9
1344	Dietary Association with Midgut Microbiota Components of Eocanthecona furcellata (Wolff). Diversity, 2022, 14, 1130.	0.7	0
1346	Parasitoid-mediated horizontal transmission of Rickettsia between whiteflies. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	1
1347	Untangling the complex interactions between turtle ants and their microbial partners. Animal Microbiome, 2023, 5, .	1.5	3
1348	Amendment of a thermophile-fermented compost to humus improves the growth of female larvae of the Hercules beetle <i>Dynastes hercules</i> (Coleoptera: scarabaeidae). Journal of Applied Microbiology, 2023, 134, .	1.4	4
1349	Vitellogenin Facilitates Associations between the Whitefly and a Bacteriocyte Symbiont. MBio, 2023, 14,	1.8	2
1350	The Known and Unknowns of Aphid Biotypes, and Their Role in Mediating Host Plant Defenses. Diversity, 2023, 15, 186.	0.7	1
1351	Endosymbiotic interactions of actinobacteria with the insects. , 2023, , 645-658.		0
1352	The structure and diversity of microbial communities in Paederus fuscipes (Coleoptera: Staphylinidae): from ecological paradigm to pathobiome. Microbiome, 2023, 11, .	4.9	5

#	Article	IF	CITATIONS
1354	Secondary symbionts affect aphid fitness and the titer of primary symbiont. Frontiers in Plant Science, 0, 14, .	1.7	1
1355	Dynamics and diversity of symbiotic bacteria in Apolygus lucorum at different developmental stages. Journal of Cotton Research, 2023, 6, .	1.0	1
1356	The gut symbiont Sphingomonas mediates imidacloprid resistance in the important agricultural insect pest Aphis gossypii Glover. BMC Biology, 2023, 21, .	1.7	10
1357	The effect of individual state on the strength of mate choice in females and males. Behavioral Ecology, 2023, 34, 197-209.	1.0	5
1359	Singleâ€amplified genomes reveal most streamlined freeâ€living marine bacteria. Environmental Microbiology, 2023, 25, 1136-1154.	1.8	5
1360	Diversity of the Bacterial Community Associated with Hindgut, Malpighian Tubules, and Foam of Nymphs of Two Spittlebug Species (Hemiptera: Aphrophoridae). Microorganisms, 2023, 11, 466.	1.6	4
1361	<i>Wolbachia</i> and <i>Spiroplasma</i> endosymbionts in the <i>Anurida maritima</i> (Collembola) species group. , 0, , .		0
1362	Eco-evolutionary implications of helminth microbiomes. Journal of Helminthology, 2023, 97, .	0.4	2
1365	Research progress on horizontal gene transfer and its functions in insects. , 2023, 2, 1-12.		3
1367	Bacterial aerobic methane cycling by the marine sponge-associated microbiome. Microbiome, 2023, 11, .	4.9	3
1368	Role of gut symbionts of insect pests: A novel target for insect-pest control. Frontiers in Microbiology, 0, 14, .	1.5	9
1369	Endosymbiont-containing germarium transcriptional survey in a cereal weevil depicts downregulation of immune effectors at the onset of sexual maturity. Frontiers in Physiology, 0, 14, .	1.3	2
1371	Localization of symbiotic bacteria in embryogenesis of the lesser grain borer Rhyzopertha dominica and the African powderpost beetle Lyctus africanus (Coleoptera: Bostrichidae). Applied Entomology and Zoology, 0, , .	0.6	0
1373	Wolbachia infection in native populations of Blattella germanica and Periplaneta americana. PLoS ONE, 2023, 18, e0284704.	1.1	1
1374	Cuticle supplementation and nitrogen recycling by a dual bacterial symbiosis in a family of xylophagous beetles. ISME Journal, 2023, 17, 1029-1039.	4.4	1
1392	Forest Insect—Plant Interactions. , 2023, , 169-204.		3
1396	Endosymbiosis. , 2023, , 901-902.		0
1423	Lepidoptera: Moths and Butterflies. , 2024, , 548-566.		0

#	Article	IF	CITATIONS
1427	Organization and Inheritance in Twenty-First-Century Evolutionary Biology. History, Philosophy and Theory of the Life Sciences, 2024, , 219-240.	0.4	0
1428	Populations and Communities. , 2023, , 415-589.		1