Binaphthol-derived phosphoric acid as a versatile cataly carbon–carbon bond forming reactions

Chemical Communications , 4097

DOI: 10.1039/b807577h

Citation Report

#	ARTICLE	IF	CITATIONS
1	Phosphonium Salt Organocatalysis. Advanced Synthesis and Catalysis, 2009, 351, 1469-1481.	2.1	219
3	Stereoselective synthesis and characterization of new enantiomerically pure phosphoric acids. Chirality, 2010, 22, 369-378.	1.3	4
5	Enantioselective Synthesis of Fluorene Derivatives by Chiral Phosphoric Acid Catalyzed Tandem Double Friedel–Crafts Reaction. Chemistry - A European Journal, 2009, 15, 8709-8712.	1.7	155
6	Chiral Brønstedâ€Acidâ€Catalyzed Enantioselective Arylation of Ethyl Trifluoroacetoacetate and Ethyl Trifluoropyruvate. European Journal of Organic Chemistry, 2009, 2009, 3145-3149.	1.2	59
16	Activation of Hemiaminal Ethers by Chiral Brønsted Acids for Facile Access to Enantioselective Twoâ€Carbon Homologation Using Enecarbamates. Angewandte Chemie - International Edition, 2009, 48, 2553-2556.	7.2	108
17	Enantioselective Robinsonâ€Type Annulation Reaction Catalyzed by Chiral Phosphoric Acids. Angewandte Chemie - International Edition, 2009, 48, 4226-4228.	7.2	114
18	A Powerful Chiral Counteranion Motif for Asymmetric Catalysis. Angewandte Chemie - International Edition, 2009, 48, 4363-4366.	7.2	257
19	Catalytic Functionalization of Indoles in a New Dimension. Angewandte Chemie - International Edition, 2009, 48, 9608-9644.	7.2	1,246
20	Axial Chirality Control of Gold(biphep) Complexes by Chiral Anions: Application to Asymmetric Catalysis. Angewandte Chemie - International Edition, 2009, 48, 6073-6077.	7.2	164
21	Brønsted Acid Catalyzed Enantioselective Threeâ€Component Reaction Involving the αâ€Addition of Isocyanides to Imines. Angewandte Chemie - International Edition, 2009, 48, 6717-6721.	7.2	161
22	Asymmetric Construction of Polycyclic Indoles through Olefin Crossâ€Metathesis/Intramolecular Friedel–Crafts Alkylation under Sequential Catalysis. Angewandte Chemie - International Edition, 2009, 48, 7428-7431.	7.2	172
23	Brønsted Acid Catalyzed Enantioselective Semipinacol Rearrangement for the Synthesis of Chiral Spiroethers. Angewandte Chemie - International Edition, 2009, 48, 8572-8574.	7.2	195
24	A Catalytic Asymmetric 6 π Electrocyclization: Enantioselective Synthesis of 2â€Pyrazolines. Angewandte Chemie - International Edition, 2009, 48, 9975-9978.	7.2	119
25	Chiral Phosphoric Acid Catalyzed Desymmetrization of <i>meso</i> à€1,3â€Diones: Asymmetric Synthesis of Chiral Cyclohexenones. Angewandte Chemie - International Edition, 2009, 48, 9652-9654.	7.2	112
26	Synthesis of BINOL derived phosphorodithioic acids as new chiral BrÃ,nsted acids and an improved synthesis of 3,3′-disubstituted H8-BINOL derivatives. Tetrahedron, 2009, 65, 10617-10622.	1.0	35
27	Enantioselective aldol reaction of silyl ketene acetals promoted by a Lewis base-activated Lewis acid catalyst. Tetrahedron: Asymmetry, 2009, 20, 1369-1370.	1.8	33
28	Enantioselective radical addition reactions to imines using binaphthol-derived chiral N-triflyl phosphoramides. Tetrahedron Letters, 2009, 50, 3345-3348.	0.7	54
29	A new BrÃ,nsted acid derived from squaric acid and its application to Mukaiyama aldol and Michael reactions. Tetrahedron Letters, 2009, 50, 3555-3558.	0.7	24

#	Article	IF	Citations
30	Consecutive Intramolecular Hydroamination/Asymmetric Transfer Hydrogenation under Relay Catalysis of an Achiral Gold Complex/Chiral Brnsted Acid Binary System. Journal of the American Chemical Society, 2009, 131, 9182-9183.	6.6	361
31	Highly Enantioselective Ketone-Ene Reactions of Trifluoropyruvate: Significant Counterion Effect of the In(III)â^PyBox Complex. Organic Letters, 2009, 11, 5714-5716.	2.4	38
32	Chiral BrÃ, nsted Acid-Catalyzed Enantioselective \hat{l}_{\pm} -Hydroxylation of \hat{l}^2 -Dicarbonyl Compounds. Journal of the American Chemical Society, 2009, 131, 4562-4563.	6.6	166
33	Chiral Phosphoric Acid-Catalyzed Desymmetrization of meso-Aziridines with Functionalized Mercaptans. Organic Letters, 2009, 11, 5186-5189.	2.4	80
34	Highly Enantioselective Alkylation Reaction of Enamides by BrÃ,nsted-Acid Catalysis. Organic Letters, 2009, 11, 4620-4623.	2.4	221
35	Enantioselective Aza-Darzens Reaction Catalyzed by A Chiral Phosphoric Acid. Organic Letters, 2009, 11, 2445-2447.	2.4	132
36	DFT Study on Bifunctional Chiral Brønsted Acid-Catalyzed Asymmetric Hydrophosphonylation of Imines. Journal of Organic Chemistry, 2009, 74, 3266-3271.	1.7	82
37	Metal-Free Brønsted Acid Catalyzed Formal [3 + 3] Annulation. Straightforward Synthesis of Dihydro-2 <i>H</i> -Chromenones, Pyranones, and Tetrahydroquinolinones. Journal of Organic Chemistry, 2009, 74, 8963-8973.	1.7	68
38	Double Bond Isomerization/Enantioselective Aza-Petasisâ "Ferrier Rearrangement Sequence as an Efficient Entry to Anti- and Enantioenriched β-Amino Aldehydes. Journal of the American Chemical Society, 2009, 131, 6354-6355.	6.6	137
39	Mechanism of BINOLâ^Phosphoric Acid-Catalyzed Strecker Reaction of Benzyl Imines. Journal of the American Chemical Society, 2009, 131, 4070-4077.	6.6	105
40	Chiral Arylaminophosphonium Barfates as a New Class of Charged BrÃ,nsted Acid for the Enantioselective Activation of Nonionic Lewis Bases. Journal of the American Chemical Society, 2009, 131, 7242-7243.	6.6	112
41	Benzothiazoline: Highly Efficient Reducing Agent for the Enantioselective Organocatalytic Transfer Hydrogenation of Ketimines. Organic Letters, 2009, 11, 4180-4183.	2.4	161
42	Catalytic Asymmetric Passerini-Type Reaction: Chiral Aluminumâ^'Organophosphate-Catalyzed Enantioselective α-Addition of Isocyanides to Aldehydes. Journal of Organic Chemistry, 2009, 74, 8396-8399.	1.7	111
43	Highly Enantioselective Catalytic 1,3-Dipolar Cycloaddition Involving 2,3-Allenoate Dipolarophiles. Organic Letters, 2009, 11, 4946-4949.	2.4	112
44	Chiral Broì·nsted Acid-Catalyzed Asymmetric Friedelâ^'Crafts Alkylation of Pyrroles with Nitroolefins. Journal of Organic Chemistry, 2009, 74, 6899-6901.	1.7	105
45	Chiral Pd aqua complex-catalyzed asymmetric C–C bond-forming reactions: a Brønsted acid–base cooperative system. Chemical Communications, 2009, , 5787.	2.2	47
46	Gold-Catalyzed [4C+2C] Cycloadditions of Allenedienes, including an Enantioselective Version with New Phosphoramidite-Based Catalysts: Mechanistic Aspects of the Divergence between [4C+3C] and [4C+2C] Pathways. Journal of the American Chemical Society, 2009, 131, 13020-13030.	6.6	258
47	Chiral BrÃ, nsted Acid-Catalyzed Enantioselective Multicomponent Mannich Reaction: Synthesis of <i>anti</i> -1,3-Diamines Using Enecarbamates as Nucleophiles. Organic Letters, 2009, 11, 5546-5549.	2.4	116

#	ARTICLE	IF	CITATIONS
48	Organocatalytic Synthesis of Spiro[pyrrolidin-3,3′-oxindoles] with High Enantiopurity and Structural Diversity. Journal of the American Chemical Society, 2009, 131, 13819-13825.	6.6	539
49	Amide-based bifunctional organocatalysts in asymmetric reactions. Chemical Communications, 2009, , 6145.	2.2	193
50	A perfect double role of CF3 groups in activating substrates and stabilizing adducts: the chiral BrA¸nsted acid-catalyzed direct arylation of trifluoromethyl ketones. Chemical Communications, 2009, , 2356.	2.2	101
51	Enantioselective Direct Aldol-Type Reaction of Azlactone via Protonation of Vinyl Ethers by a Chiral BrÃ,nsted Acid Catalyst. Journal of the American Chemical Society, 2009, 131, 3430-3431.	6.6	195
52	Chiral Phosphoric Acid-Governed Anti-Diastereoselective and Enantioselective Hetero-Dielsâ^'Alder Reaction of Glyoxylate. Journal of the American Chemical Society, 2009, 131, 12882-12883.	6.6	101
53	Highly Enantioselective Organocatalytic Biginelli and Biginelli-Like Condensations: Reversal of the Stereochemistry by Tuning the 3,3′-Disubstituents of Phosphoric Acids. Journal of the American Chemical Society, 2009, 131, 15301-15310.	6.6	180
54	Highly Enantioselective Hydrogenation of Enamides Catalyzed by Chiral Phosphoric Acids. Organic Letters, 2009, 11, 1075-1078.	2.4	129
55	Asymmetric Friedel-Crafts Alkylation of Indole with Chalcones Catalyzed by Chiral Phosphoric Acids. Molecules, 2009, 14, 3030-3036.	1.7	24
56	Development of Chiral Thiourea Catalysts and Its Application to Asymmetric Catalytic Reactions. Chemical and Pharmaceutical Bulletin, 2010, 58, 593-601.	0.6	390
57	Chiral Phosphoric Acids as Versatile Catalysts for Enantioselective Carbon–Carbon Bond Forming Reactions. Bulletin of the Chemical Society of Japan, 2010, 83, 101-119.	2.0	203
58	Enantioselective Friedel–Crafts Alkylation of Indoles, Pyrroles, and Furans with Trifluoropyruvate Catalyzed by Chiral Phosphoric Acid. Chemistry - an Asian Journal, 2010, 5, 470-472.	1.7	62
59	Enantioselective 6 ï€â€Electrocyclizations: Pushing the Limits in Organocatalytic Pericyclic Reactions. ChemCatChem, 2010, 2, 375-378.	1.8	15
60	Chiral Brønsted Acid Catalyzed Enantioselective Addition of α-Isocyanoacetamides to Aldehydes. Organic Letters, 2010, 12, 2414-2417.	2.4	50
61	BrÃ,nsted Acid Catalyzed Asymmetric Aldol Reaction: A Complementary Approach to Enamine Catalysis. Organic Letters, 2010, 12, 3582-3585.	2.4	92
62	Exploration of the interrupted Fischer indolization reaction. Tetrahedron, 2010, 66, 4687-4695.	1.0	99
63	Asymmetric intramolecular oxa-Michael addition of activated \hat{l}_{\pm},\hat{l}^2 -unsaturated ketones by chiral N-triflyl phosphoramide. Science Bulletin, 2010, 55, 1723-1725.	1.7	17
64	Chargeâ€Transfer Effect on Chiral Phosphoric Acid Catalyzed Asymmetric Baeyerâ€Villiger Oxidation of 3â€Substituted Cyclobutanones Using 30% Aqueous H ₂ O ₂ as the Oxidant. Chinese Journal of Chemistry, 2010, 28, 1731-1735.	2.6	18
65	Enantioselective Synthesis of Unsymmetrical Triarylmethanes by Chiral Brønsted Acids. European Journal of Organic Chemistry, 2010, 2010, 47-50.	1.2	165

#	Article	IF	CITATIONS
66	Electronâ€Withdrawing, Biphenylâ€2,2â€2â€diolâ€Based Compounds for Asymmetric Catalysis. European Journal of Organic Chemistry, 2010, 2010, 3027-3031.	1.2	21
67	Enantioselective Organocatalytic Transfer Hydrogenation of αâ€lmino Esters by Utilization of Benzothiazoline as Highly Efficient Reducing Agent. Advanced Synthesis and Catalysis, 2010, 352, 1846-1850.	2.1	92
68	Chiral Brønsted Acid atalyzed Enantioselective Friedel–Crafts Reaction of 4,7â€Dihydroindoles with Trifluoromethyl Ketones. Advanced Synthesis and Catalysis, 2010, 352, 2773-2777.	2.1	39
69	First Highly Enantioselective Synthesis of Benzodiazepinones by Catalytic Hydrogenation. Advanced Synthesis and Catalysis, 2010, 352, 2629-2634.	2.1	69
70	Catalytic Asymmetric Inverseâ€Electronâ€Demand (IED) [4+2] Cycloaddition of Salicylaldimines: Preparation of Optically Active 4â€Aminobenzopyran Derivatives. Advanced Synthesis and Catalysis, 2010, 352, 3399-3406.	2.1	52
73	The BrÃ,nsted Acid Catalyzed, Enantioselective Vinylogous Mannich Reaction. Chemistry - A European Journal, 2010, 16, 2806-2818.	1.7	77
74	Mechanistic Investigation of Chiral Phosphoric Acid Catalyzed Asymmetric Baeyer–Villiger Reaction of 3‧ubstituted Cyclobutanones with H ₂ O ₂ as the Oxidant. Chemistry - A European Journal, 2010, 16, 3021-3035.	1.7	95
75	Chiral BrÃnsted Acid Directed Ironâ€Catalyzed Enantioselective Friedel–Crafts Alkylation of Indoles with βâ€Aryl α′â€Hydroxy Enones. Chemistry - A European Journal, 2010, 16, 1638-1645.	1.7	82
76	A 4â€Hydroxypyrrolidineâ€Catalyzed Mannich Reaction of Aldehydes: Control of <i>antiâ€</i> Selectivity by Hydrogen Bonding Assisted by BrÃ,nsted Acids. Chemistry - A European Journal, 2010, 16, 5333-5342.	1.7	26
77	Synthesis and Structural Aspects of <i>N</i> â€Triflylphosphoramides and Their Calcium Salts—Highly Acidic and Effective Brønsted Acids. Chemistry - A European Journal, 2010, 16, 13116-13126.	1.7	95
78	Organocatalytic Asymmetric Synthesis of <i>trans</i> àê€1,3â€Disubstituted Tetrahydroisoquinolines via a Reductive Amination/Azaâ€Michael Sequence. Chemistry - A European Journal, 2010, 16, 9763-9766.	1.7	83
88	To Protonate or Alkylate? Stereoselective BrÃ,nsted Acid Catalysis of CC Bond Formation Using Diazoalkanes. Angewandte Chemie - International Edition, 2010, 49, 2290-2298.	7.2	83
89	Asymmetric Counteranionâ€Directed Transitionâ€Metal Catalysis: Enantioselective Epoxidation of Alkenes with Manganese(III) Salen Phosphate Complexes. Angewandte Chemie - International Edition, 2010, 49, 628-631.	7.2	180
90	A New Structural Motif for Bifunctional Brønsted Acid/Base Organocatalysis. Angewandte Chemie - International Edition, 2010, 49, 4136-4139.	7.2	62
91	Which Is the Actual Catalyst: Chiral Phosphoric Acid or Chiral Calcium Phosphate?. Angewandte Chemie - International Edition, 2010, 49, 3823-3826.	7.2	222
92	Catalytic Asymmetric Reductive Amination of αâ€Branched Ketones. Angewandte Chemie - International Edition, 2010, 49, 4612-4614.	7.2	146
93	Asymmetric Amplification in Phosphoric Acid Catalyzed Reactions. Angewandte Chemie - International Edition, 2010, 49, 6378-6381.	7.2	42
94	Chiral BrÃ,nsted Acid Catalyzed Enantioselective αâ€Aminoxylation of Enecarbamates. Angewandte Chemie - International Edition, 2010, 49, 8588-8592.	7.2	60

#	Article	IF	CITATIONS
95	Chiral Phosphoric Acid Catalyzed Peroxidation of Imines. Angewandte Chemie - International Edition, 2010, 49, 6589-6591.	7.2	77
96	Chiral BrÃ, nsted Acid Catalyzed Pinacol Rearrangement. Angewandte Chemie - International Edition, 2010, 49, 9734-9736.	7.2	118
97	A theoretical investigation into chiral phosphoric acid-catalyzed asymmetric Friedel–Crafts reactions of nitroolefins and 4,7-dihydroindoles: reactivity and enantioselectivity. Tetrahedron, 2010, 66, 2875-2880.	1.0	46
98	Development of N,N-bis(perfluoroalkanesulfonyl)squaramides as new strong Brønsted acids and their application to organic reactions. Tetrahedron, 2010, 66, 4257-4264.	1.0	28
99	Synthesis of chiral 3,3′-disubstituted 1,1′-binaphthyl-2,2′-disulfonic acids. Tetrahedron: Asymmetry, 2010, 21, 1311-1314.	'1.8	17
100	Enantioselective aza-Friedel–Crafts reaction catalyzed by a water inclusion complex of O,O′-diacyl tartaric acid. Tetrahedron: Asymmetry, 2010, 21, 1203-1205.	1.8	43
101	$\hat{l}\pm,\hat{l}\pm$ -Diarylprolinol-derived chiral ionic liquids: recoverable organocatalysts for the domino reaction between $\hat{l}\pm,\hat{l}^2$ -enals and N-protected hydroxylamines. Tetrahedron: Asymmetry, 2010, 21, 2659-2670.	1.8	56
102	Chiral BrÃ, nsted acid-catalyzed regio- and enantioselective arylation of $\hat{l}\pm,\hat{l}^2$ -unsaturated trifluoromethyl ketones. Tetrahedron Letters, 2010, 51, 4658-4661.	0.7	31
103	Convenient synthesis of chiral H4-BINOL via direct hydrogenation of BINOL. Chinese Chemical Letters, 2010, 21, 1277-1280.	4.8	0
104	Axially Chiral Guanidines as Efficient Bronsted Base Catalysts for Enantioselective Transformations. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2010, 68, 1159-1168.	0.0	60
105	Synthesis and Properties of Phosphoroselenoic Acids and Their salts Bearing Binaphthyl Groups. Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 185, 964-973.	0.8	17
106	Chiral Phosphoric Acid-Catalyzed Enantioselective Transfer Hydrogenation of <i>ortho</i> -Hydroxyaryl Alkyl Nâ^H Ketimines. Organic Letters, 2010, 12, 4705-4707.	2.4	76
107	Stereoselective Synthesis of Trisubstituted Aziridines with $\langle i \rangle N \langle i \rangle - \hat{l}_{\pm}$ -Diazoacyl Camphorsultam. Organic Letters, 2010, 12, 1668-1671.	2.4	40
108	Catalytic Asymmetric Transacetalization. Journal of the American Chemical Society, 2010, 132, 8536-8537.	6.6	148
109	Direct Enantioselective BrÃ,nsted Acid Catalyzed <i>N</i> Acyliminium Cyclization Cascades of Tryptamines and Ketoacids. Organic Letters, 2010, 12, 4720-4723.	2.4	132
110	Desymmetrization of Cyclohexadienones via Brønsted Acid-Catalyzed Enantioselective Oxo-Michael Reaction. Journal of the American Chemical Society, 2010, 132, 4056-4057.	6.6	244
111	Chiral BINOL-derived phosphoric acids: privileged Brønsted acid organocatalysts for C–C bond formation reactions. Organic and Biomolecular Chemistry, 2010, 8, 5262-76.	1.5	322
112	Enantioselective Synthesis of 2-Aryl-2,3-dihydro-4-quinolones by Chiral BrÃ,nsted Acid Catalyzed Intramolecular Aza-Michael Addition Reaction. Heterocycles, 2010, 80, 765.	0.4	38

#	Article	IF	Citations
113	Asymmetric Brønsted acid catalysis in aqueous solution. Chemical Science, 2010, 1, 473.	3.7	157
114	Chiral BrÃ, nsted Acid-Catalyzed Allylboration of Aldehydes. Journal of the American Chemical Society, 2010, 132, 11884-11886.	6.6	237
115	Chiral Phosphoric Acid Catalyzed Addition of Dihydropyrans to <i>N</i> -Acyl Imines: Stereocontrolled Access to Enantioenriched Spirocyclic Oxazoletetrahydropyrans with Three Contiguous Stereocenters. Organic Letters, 2010, 12, 1960-1963.	2.4	36
116	Enantioenriched Synthesis of <i>C</i> ₁ -Symmetric BINOLs: Iron-Catalyzed Cross-Coupling of 2-Naphthols and Some Mechanistic Insight. Journal of the American Chemical Society, 2010, 132, 13633-13635.	6.6	217
117	Glycosylation Catalyzed by a Chiral BrÃ, nsted Acid. Organic Letters, 2010, 12, 1452-1455.	2.4	98
118	Asymmetric Synthesis of Indolines by Catalytic Enantioselective Reduction of 3 <i>H</i> li>Indoles. Organic Letters, 2010, 12, 4604-4607.	2.4	113
119	Direct Catalytic Asymmetric Conjugate Addition of Terminal Alkynes to \hat{l}_{\pm},\hat{l}^2 -Unsaturated Thioamides. Journal of the American Chemical Society, 2010, 132, 10275-10277.	6.6	158
120	Asymmetric Binary-Acid Catalysis with Chiral Phosphoric Acid and MgF ₂ : Catalytic Enantioselective Friedelâ´Crafts Reactions of \hat{l}^2 , \hat{l}^3 -Unsaturated \hat{l}_\pm -Ketoesters. Organic Letters, 2010, 12, 1096-1099.	2.4	139
121	Perchloric Acid Catalyzed Homogeneous and Heterogeneous Addition of \hat{l}^2 -Dicarbonyl Compounds to Alcohols and Alkenes and Investigation of the Mechanism. Journal of Organic Chemistry, 2010, 75, 5017-5030.	1.7	30
122	Brønsted acid-catalyzed efficient Strecker reaction of ketones, amines and trimethylsilyl cyanide. Organic and Biomolecular Chemistry, 2010, 8, 1399.	1.5	68
123	$\langle i \rangle$ N $\langle i \rangle$ -Triflylthiophosphoramide Catalyzed Enantioselective Mukaiyama Aldol Reaction of Aldehydes with Silyl Enol Ethers of Ketones. Organic Letters, 2010, 12, 2476-2479.	2.4	76
124	Synthesis of 3-substituted indoles via reactive alkylideneindolenine intermediates. Organic and Biomolecular Chemistry, 2010, 8, 1259-1270.	1.5	178
125	Enantioselective Friedel–Crafts alkylation reaction of indoles with α,β-unsaturated acyl phosphonates catalyzed by chiral phosphoric acid. Chemical Communications, 2010, 46, 4112.	2.2	56
126	Organocatalytic asymmetric Povarov reactions with 2- and 3-vinylindoles. Chemical Communications, 2010, 46, 327-329.	2.2	165
127	Highly Enantioselective Relay Catalysis in the Three-Component Reaction for Direct Construction of Structurally Complex Heterocycles. Organic Letters, 2010, 12, 2266-2269.	2.4	195
128	Development of a new Lewis base-tolerant chiral LBA and its application to catalytic asymmetric protonation reaction. Chemical Communications, 2010, 46, 6980.	2.2	30
129	The role of double hydrogen bonds in asymmetric direct aldol reactions catalyzed by amino amide derivatives. Chemical Communications, 2010, 46, 6437.	2.2	69
130	Asymmetric organocatalytic formal double-arylation of azomethines for the synthesis of highly enantiomerically enriched isoindolines. Chemical Communications, 2010, 46, 1275.	2.2	83

#	ARTICLE	IF	CITATIONS
131	Chiral Brønsted acid catalyzed asymmetric Friedel–Crafts alkylation reaction of indoles with α¸Î²-unsaturated ketones: short access to optically active 2- and 3-substituted indole derivatives. Organic and Biomolecular Chemistry, 2010, 8, 5448.	1.5	69
132	Organocatalytic asymmetric intramolecular [3+2] cycloaddition: A straightforward approach to access multiply substituted hexahydrochromeno [4,3-b]pyrrolidine derivatives in high optical purity. Organic and Biomolecular Chemistry, 2010, 8, 2016.	1.5	47
133	Impact of core chirality on mesophase properties of perylene bisimides. Journal of Materials Chemistry, 2011, 21, 7201.	6.7	22
134	Chiral selection in the formation of borates from racemic binaphthols and related diols. CrystEngComm, 2011, 13, 2923.	1.3	8
135	Chiral Phosphoric Acid Catalyzed Enantioselective Synthesis of β-Amino-α,α-difluoro Carbonyl Compounds. Organic Letters, 2011, 13, 1860-1863.	2.4	122
136	Brønsted-acid catalyzed condensation-Michael reaction-Pictet–Spengler cyclization—highly stereoselective synthesis of indoloquinolizidines. RSC Advances, 2011, 1, 79.	1.7	31
137	Phosphoric and phosphoramidic acids as bifunctional catalysts for the ring-opening polymerization of $\hat{l}\mu$ -caprolactone: a combined experimental and theoretical study. Polymer Chemistry, 2011, 2, 2249.	1.9	98
138	Convergent Asymmetric Disproportionation Reactions: Metal/BrÃ,nsted Acid Relay Catalysis for Enantioselective Reduction of Quinoxalines. Journal of the American Chemical Society, 2011, 133, 6126-6129.	6.6	198
139	Chemoenzymatic Synthesis of Each Enantiomer of Orthogonally Protected 4,4-Difluoroglutamic Acid: A Candidate Monomer for Chiral Brønsted Acid Peptide-Based Catalysts. Journal of Organic Chemistry, 2011, 76, 9785-9791.	1.7	11
140	Diastereoselectively Switchable Enantioselective Trapping of Carbamate Ammonium Ylides with Imines. Journal of the American Chemical Society, 2011, 133, 8428-8431.	6.6	215
141	Chiral Phosphoric Acid Catalyzed Enantioselective Aza-Michael Addition of Aromatic Amines to Nitroolefins. Chinese Journal of Catalysis, 2011, 32, 1573-1576.	6.9	12
142	Triclorosilane-mediated stereoselective synthesis of \hat{l}^2 -amino esters and their conversion to highly enantiomerically enriched \hat{l}^2 -lactams. Organic and Biomolecular Chemistry, 2011, 9, 739-743.	1.5	43
143	Catalytic Asymmetric Aza-Darzens Reaction with a Vaulted Biphenanthrol Magnesium Phosphate Salt. Organic Letters, 2011, 13, 2188-2191.	2.4	91
144	Chiral Calcium VAPOL Phosphate Mediated Asymmetric Chlorination and Michael Reactions of 3-Substituted Oxindoles. Journal of the American Chemical Society, 2011, 133, 3339-3341.	6.6	175
145	Chiral Calcium Organophosphate-Catalyzed Enantioselective Electrophilic Amination of Enamides. Organic Letters, 2011, 13, 94-97.	2.4	79
146	Brønsted acid-catalyzed enantioselective Friedläder condensations: achiral amine promoter plays crucial role in the stereocontrol. Chemical Communications, 2011, 47, 11683.	2,2	40
147	Chiral Phosphoric Acid-Catalyzed Enantioselective Three-Component Povarov Reaction Using Enecarbamates as Dienophiles: Highly Diastereo- and Enantioselective Synthesis of Substituted 4-Aminotetrahydroquinolines. Journal of the American Chemical Society, 2011, 133, 14804-14813.	6.6	249
148	Binaphthol-Derived Bisphosphoric Acids Serve as Efficient Organocatalysts for Highly Enantioselective 1,3-Dipolar Cycloaddition of Azomethine Ylides to Electron-Deficient Olefins. Journal of the American Chemical Society, 2011, 133, 13504-13518.	6.6	119

#	ARTICLE	IF	CITATIONS
149	Design of Chiral Bis-phosphoric Acid Catalyst Derived from (⟨i⟩R⟨ i⟩)-3,3′-Di(2-hydroxy-3-arylphenyl)binaphthol: Catalytic Enantioselective Diels–Alder Reaction of α,β-Unsaturated Aldehydes with Amidodienes. Journal of the American Chemical Society, 2011, 133, 19294-19297.	6.6	93
150	Selective Activation of Enantiotopic C(sp ³)â^Hydrogen by Means of Chiral Phosphoric Acid: Asymmetric Synthesis of Tetrahydroquinoline Derivatives. Journal of the American Chemical Society, 2011, 133, 6166-6169.	6.6	243
151	A Model for the Enantioselectivity of Imine Reactions Catalyzed by BINOLâ^Phosphoric Acid Catalysts. Journal of Organic Chemistry, 2011, 76, 1775-1788.	1.7	155
152	Organocatalyzed Conjugate Additions. , 2011, , 41-185.		5
155	Chiral Phosphoric Acid-Catalyzed Addition of Thiols to <i>N</i> -Acyl Imines: Access to Chiral <i>N</i> -Acetals. Organic Letters, 2011, 13, 4822-4825.	2.4	84
156	Catalytic Asymmetric Pictet–Spengler-Type Reaction for the Synthesis of Optically Active Indolo[3,4- <i>cd</i>][1]benzazepines. Organic Letters, 2011, 13, 5636-5639.	2.4	77
157	Biomimetic Asymmetric Hydrogenation: In Situ Regenerable Hantzsch Esters for Asymmetric Hydrogenation of Benzoxazinones. Journal of the American Chemical Society, 2011, 133, 16432-16435.	6.6	175
158	Direct enantioselective access to 4-substituted tetrahydroquinolines by catalytic asymmetric transfer hydrogenation of quinolines. Organic and Biomolecular Chemistry, 2011, 9, 6844.	1.5	83
159	Chiral Phosphoric Acid Catalyzed Asymmetric Friedel–Crafts Alkylation of Indoles with Nitroolefins. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 2038-2046.	0.8	7
160	Super Brønsted acid catalysis. Chemical Communications, 2011, 47, 3043.	2.2	135
161	Bifunctional Acid Catalysts for Organic Synthesis. Topics in Organometallic Chemistry, 2011, , 161-183.	0.7	29
162	Asymmetric Organocatalysis. Topics in Organometallic Chemistry, 2011, , 153-205.	0.7	7
163	Chiral Organic Contact Ion Pairs in Metal-Free Catalytic Asymmetric Allylic Substitutions. Journal of the American Chemical Society, 2011, 133, 3732-3735.	6.6	228
164	Chiral BrÃ, nsted Acid Catalysis for Enantioselective Hosomiâ 'Sakurai Reaction of Imines with Allyltrimethylsilane. Organic Letters, 2011, 13, 2126-2129.	2.4	57
165	Novel Sulfonamide Catalyzed Asymmetric Hetero-Diels-Alder Reaction of Ethyl Glyoxylate with Danishefsky's Diene. Heterocycles, 2011, 83, 2525.	0.4	18
166	Chiral Magnesium BINOL Phosphate-Catalyzed Phosphination of Imines: Access to Enantioenriched α-Amino Phosphine Oxides. Organic Letters, 2011, 13, 2054-2057.	2.4	101
167	Asymmetric additions to dienes catalysed by a dithiophosphoric acid. Nature, 2011, 470, 245-249.	13.7	196
168	Metals are not the only catalysts. Nature, 2011, 470, 183-185.	13.7	5

#	Article	IF	CITATIONS
169	Highly enantioselective synthesis of biologically important 2,5-dihydropyrroles via phosphoric acid-catalyzed three-component reactions and evaluation of their cytotoxicity. Tetrahedron: Asymmetry, 2011, 22, 2056-2064.	1.8	27
170	Enantioselective concomitant creation of vicinal quaternary stereogenic centers via cyclization of alkynols triggered addition of azlactones. Tetrahedron Letters, 2011, 52, 5963-5967.	0.7	84
171	Chiral phosphoric acid-catalysed Friedel–Crafts alkylation reaction of indoles with racemic spiro indolin-3-ones. Chemical Science, 2011, 2, 1344.	3.7	118
172	Direct Câ^'H Transformation via Iron Catalysis. Chemical Reviews, 2011, 111, 1293-1314.	23.0	1,869
173	DFT Study of Chiralâ€Phosphoricâ€Acidâ€Catalyzed Enantioselective Friedel–Crafts Reaction of Indole with Nitroalkene: Bifunctionality and Substituent Effect of Phosphoric Acid. Chemistry - an Asian Journal, 2011, 6, 510-516.	1.7	47
174	Cooperative Activation of Alkyne and Thioamide Functionalities; Direct Catalytic Asymmetric Conjugate Addition of Terminal Alkynes to α,βâ€Unsaturated Thioamides. Chemistry - an Asian Journal, 2011, 6, 1778-1790.	1.7	48
175	Chiral BrÃ,nsted Acidâ€Promoted Enantioselective Desymmetrization in an Intramolecular Schmidt Reaction of Symmetric Azido 1,3â€Hexanediones: Asymmetric Synthesis of Azaquaternary Pyrroloazepine Skeletons. Chemistry - an Asian Journal, 2011, 6, 1344-1347.	1.7	25
176	Dual Catalysis in Highly Enantioselective Multicomponent Reaction with Water: An Efficient Approach to Chiral βâ€Aminoâ€Î±â€Hydroxy Acid Derivatives. ChemCatChem, 2011, 3, 653-656.	1.8	31
177	Benzothiazoline: The Surrogate of Hantzsch Ester. ChemCatChem, 2011, 3, 1850-1851.	1.8	28
178	Metal-Free C–H Cross-Coupling toward Oxygenated Naphthalene-Benzene Linked Biaryls. Organic Letters, 2011, 13, 6208-6211.	2.4	88
179	Asymmetric Strecker Reactions. Chemical Reviews, 2011, 111, 6947-6983.	23.0	447
180	The Catalytic Asymmetric 1,3-Dipolar Cycloaddition of Ynones with Azomethine Ylides. Organic Letters, 2011, 13, 4680-4683.	2.4	106
181	Asymmetric Electrophilic Fluorination Using an Anionic Chiral Phase-Transfer Catalyst. Science, 2011, 334, 1681-1684.	6.0	455
182	C3-Symmetric chiral trisimidazoline: the role of a third imidazoline and its application to the nitro Michael reaction and the \hat{l}_{\pm} -amination of \hat{l}^{2} -ketoesters. Tetrahedron, 2011, 67, 4862-4868.	1.0	41
183	Phosphoric Acidâ€Catalyzed Enantioselective Transfer Hydrogenation of <i>N</i> à€Arylâ€xi>orthoàâ€Hydroxybenzophenone Ketimines. Advanced Synthesis and Catalysis, 2011, 353, 257-262.	2.1	47
184	Asymmetric Brønsted Acidâ€Catalyzed Friedel–Crafts Reactions of Indoles with Cyclic Imines ―Efficient Generation of Nitrogenâ€6ubstituted Quaternary Carbon Centers. Advanced Synthesis and Catalysis, 2011, 353, 563-568.	2.1	125
185	An Easy Entry to Optically Active Spiroindolinones: Chiral Brønsted Acid atalysed Pictet–Spengler Reactions of Isatins. Advanced Synthesis and Catalysis, 2011, 353, 860-864.	2.1	149
187	Asymmetric Baeyer–Villiger Oxidation of 2,3―and 2,3,4―bubstituted Cyclobutanones Catalyzed by Chiral Phosphoric Acids with Aqueous H ₂ O ₂ as the Oxidant. European Journal of Organic Chemistry, 2011, 2011, 110-116.	1.2	47

#	Article	IF	Citations
188	Chiral Phosphoric Acid Catalyzed Asymmetric Friedel–Crafts Alkylation of Indole with 3â€Hydroxyisoindolinâ€1â€one: EnantioÂselective Synthesis of 3â€Indolylâ€Gubstituted Isoindolinâ€1â€ones. E Journal of Organic Chemistry, 2011, 2011, 892-897.	uroppean	61
189	Developments in Chiral Binaphthylâ€Derived Brønsted/Lewis Acids and Hydrogenâ€Bondâ€Donor Organocatalysis. European Journal of Organic Chemistry, 2011, 2011, 2209-2222.	1.2	172
190	Strategies Based on Aryllithium and <i>N</i> â€Acyliminium Ion Cyclizations for the Stereocontrolled Synthesis of Alkaloids and Related Systems. European Journal of Organic Chemistry, 2011, 2011, 3610-3633.	1.2	61
191	Organocatalyzed Enantioselective Synthesis of Quaternary Carbonâ€Containing Isoindolinâ€1â€ones. European Journal of Organic Chemistry, 2011, 2011, 3060-3066.	1.2	93
192	A Protectingâ€Groupâ€Free Route to Chiral BINOL–Phosphoric Acids. European Journal of Organic Chemistry, 2011, 2011, 3932-3937.	1.2	16
193	A Practical, Oneâ€Pot Multicomponent Synthesis of αâ€Amidosulfides and Their Application as Latent <i>N</i> â€Acylimines in the Friedel–Crafts Reaction. European Journal of Organic Chemistry, 2011, 2011, 3695-3699.	1.2	24
194	The Asymmetric Friedel–Crafts Reaction of Indoles with Fluoroalkylated Nitroalkenes Catalyzed by Chiral Phosphoric Acid. European Journal of Organic Chemistry, 2011, 2011, 4536-4539.	1.2	35
195	(1 <i>R</i> ,2 <i>R</i>)â€Bis[(<i>S</i>)â€prolinamido]cyclohexane Modified with Ionic Groups: The First <i>C</i> ₂ â€Symmetric Immobilized Organocatalyst for Asymmetric Aldol Reactions in Aqueous Media. European Journal of Organic Chemistry, 2011, 2011, 6128-6133.	1.2	32
196	Expanding the Scope of the Direct Regiospecific Asymmetric Aldol Reaction to Enones and Dienones Catalyzed by a BINOLâ€Derived Brønsted Acid. European Journal of Organic Chemistry, 2011, 2011, 6628-6631.	1.2	14
197	Chiral Phosphoric Acid Catalyzed Enantioselective Allylation of Aldehydes with Allyltrichlorosilane. Chinese Journal of Chemistry, 2011, 29, 1669-1671.	2.6	7
208	Highly Enantioselective Catalytic Benzoyloxylation of 3â€Aryloxindoles Using Chiral VAPOL Calcium Phosphate. Angewandte Chemie - International Edition, 2011, 50, 1135-1138.	7.2	146
209	Modulating the Acidity: Highly Acidic Br \tilde{A} , nsted Acids in Asymmetric Catalysis. Angewandte Chemie - International Edition, 2011, 50, 6706-6720.	7.2	233
210	Asymmetric Binary Acid Catalysis: A Regioselectivity Switch between Enantioselective 1,2―and 1,4â€Addition through Different Counteranions of In ^{III} . Angewandte Chemie - International Edition, 2011, 50, 6610-6614.	7.2	107
211	Brønsted Acid Catalysis: Hydrogen Bonding versus Ion Pairing in Imine Activation. Angewandte Chemie - International Edition, 2011, 50, 6364-6369.	7.2	110
212	Enantioselective N–H Functionalization of Indoles with α,βâ€Unsaturated γâ€Lactams Catalyzed by Chiral Brønsted Acids. Angewandte Chemie - International Edition, 2011, 50, 5682-5686.	7.2	118
213	Asymmetric Organocatalysis and Analysis on a Single Microfluidic Nanospray Chip. Angewandte Chemie - International Edition, 2011, 50, 9467-9470.	7.2	83
214	Chiral Phosphoric Acid Catalyzed Transfer Hydrogenation: Facile Synthetic Access to Highly Optically Active Trifluoromethylated Amines. Angewandte Chemie - International Edition, 2011, 50, 8180-8183.	7.2	143
215	Asymmetric Reduction of Ketones by Phosphoric Acid Derived Catalysts. Angewandte Chemie - International Edition, 2011, 50, 10961-10964.	7.2	82

#	Article	IF	CITATIONS
216	Asymmetric NH Insertion Reaction Cooperatively Catalyzed by Rhodium and Chiral Spiro Phosphoric Acids. Angewandte Chemie - International Edition, 2011, 50, 11483-11486.	7.2	283
217	Chiral BrÃ,nsted Acid Catalyzed Stereoselective Addition of Azlactones to 3â€Vinylindoles for Facile Access to Enantioenriched Tryptophan Derivatives. Angewandte Chemie - International Edition, 2011, 50, 12586-12590.	7.2	79
218	Chiral Phosphoric Acid Catalyzed Enantioselective Transfer Hydrogenation of <i>ortho</i> â∈Hydroxybenzophenone NH Ketimines and Applications. Chemistry - A European Journal, 2011, 17, 9576-9580.	1.7	51
219	Phosphonium ion tagged chiral phosphoric acids and their application in Friedel–Crafts reactions of indoles. Tetrahedron, 2011, 67, 4103-4109.	1.0	36
220	Synthesis and Characterization of Privileged Monodentate Phosphoramidite Ligands and Chiral BrÃ,nsted Acids Derived from D-Mannitol. International Journal of Molecular Sciences, 2012, 13, 2727-2743.	1.8	5
221	6.10 C–C Bond Formation: Diels–Alder Reaction. , 2012, , 264-292.		3
223	Metallic organophosphates as catalysts in asymmetric synthesis: a return journey. Organic and Biomolecular Chemistry, 2012, 10, 5001.	1.5	81
224	Asymmetric hydrogenolysis of racemic tertiary alcohols, 3-substituted 3-hydroxyisoindolin-1-ones. Chemical Communications, 2012, 48, 1698-1700.	2.2	90
225	Highly regio-, diastereo- and enantioselective one-pot gold/chiral BrÃ,nsted acid-catalysed cascade synthesis of bioactive diversely substituted tetrahydroquinolines. Organic and Biomolecular Chemistry, 2012, 10, 7208.	1.5	34
226	Oneâ \in Pot Synthesis of Pyrrolo[1,2â \in <i>>a</i>]indoles by Chiral <i>N</i> â \in Triflyl Phosphoramide Catalyzed Friedelâ \in Crafts Alkylation of 4,7â \in Dihydroindole with <i>\hat{I}^2</i> , <i>\hat{I}^3</i> di>â \in Unsaturated <i>\hat{I}^{\pm}</i> à \in Keto Esters. Chinese Journal of Chemistry, 2012, 30, 2615-2623.	2.6	14
227	Combining <i>in situ</i> Generated Chiral Silicon Lewis Acid and Chiral Brønsted Acid Catalysts for [3+2] Cycloadditions: Cooperative Catalysis as a Convenient Enantioselective Route to Pyrazolidines. Advanced Synthesis and Catalysis, 2012, 354, 3115-3121.	2.1	25
229	Asymmetric Brønsted Acid Catalyzed Cycloadditions—Efficient Enantioselective Synthesis of Pyrazolidines, Pyrazolines, and 1,3â€Diamines from <i>N</i> à€Acyl Hyrazones and Alkenes. Angewandte Chemie - International Edition, 2012, 51, 12864-12868.	7.2	86
230	Catalytic asymmetric cleavage of sp ³ C–N bonds for access to highly enantioenriched N-benzylic sulfonamides. Chemical Communications, 2012, 48, 898-900.	2,2	34
231	Kinetic Resolution of Secondary Alcohols by the Combination of a Chiral Br $\tilde{A}_{,n}$ nsted Acid, DABCO, and Acetyl Chloride. Organic Letters, 2012, 14, 3486-3489.	2.4	40
232	The progression of chiral anions from concepts to applications in asymmetric catalysis. Nature Chemistry, 2012, 4, 603-614.	6.6	703
233	Bifunctional organo/metal cooperative catalysis with cinchona alkaloid scaffolds. Chemical Science, 2012, 3, 942-958.	3.7	112
234	The highly enantioselective addition of indoles and pyrroles to isatins-derived N-Boc ketimines catalyzed by chiral phosphoric acids. Chemical Communications, 2012, 48, 8003.	2.2	178
235	Mechanism of Amination of \hat{l}^2 -Keto Esters by Azadicarboxylates Catalyzed by an Axially Chiral Guanidine: Acyclic Keto Esters React through an E Enolate. Journal of the American Chemical Society, 2012, 134, 16869-16876.	6.6	27

#	Article	IF	CITATIONS
237	Enantioselective Construction of Pyrroloindolines Catalyzed by Chiral Phosphoric Acids: Total Synthesis of (â^')â€Debromoflustramineâ€B. Angewandte Chemie - International Edition, 2012, 51, 11778-1178	s ^{7.2}	161
238	Catalytic Asymmetric Construction of Spiro(γâ€butyrolactamâ€Î³â€butyrolactone) Moieties through Sequential Reactions of Cyclic Imino Esters with Morita–Baylis–Hillman Bromides. Chemistry - A European Journal, 2012, 18, 12614-12618.	1.7	46
239	Palladium atalyzed Dehydrogenative βâ€2â€Arylation of βâ€Keto Esters under Aerobic Conditions: Interplay o Metal and Brønsted Acids. Chemistry - A European Journal, 2012, 18, 12590-12594.	f 1.7	41
241	Chiral Br \tilde{A}_i nsted acid catalyzed enantioselective allenylation of aldehydes. Chemical Communications, 2012, 48, 9189.	2.2	41
242	Hybrid Metal/Organo Relay Catalysis Enables Enynes To Be Latent Dienes for Asymmetric Diels–Alder Reaction. Journal of the American Chemical Society, 2012, 134, 6532-6535.	6.6	159
244	Tuning the reactivity of Au-complexes in an Au(i)/chiral Brønsted acid cooperative catalytic system: an approach to optically active fused 1,2-dihydroisoquinolines. Chemical Communications, 2012, 48, 3094.	2.2	74
245	Enantioselective Synthesis of <i>anti</i> -and <i>syn</i> -Homopropargyl Alcohols via Chiral BrÃ,nsted Acid Catalyzed Asymmetric Allenylboration Reactions. Journal of the American Chemical Society, 2012, 134, 10947-10952.	6.6	81
246	Chiral Brønsted Acid Catalyzed Enantioselective Propargylation of Aldehydes with Allenylboronate. Organic Letters, 2012, 14, 1142-1145.	2.4	88
247	Enantioselective organocatalytic reductive amination of aliphatic ketones by benzothiazoline as hydrogen donor. Chemical Communications, 2012, 48, 4573.	2.2	60
248	Chiral Phosphoric Acid Catalyzed Inverse-Electron-Demand Aza-Diels–Alder Reaction of Isoeugenol Derivatives. Organic Letters, 2012, 14, 3158-3161.	2.4	91
249	Mukaiyama-Michael vinylogous additions to nitroalkenes under solvent-free conditions. Open Chemistry, 2012, 10, 47-53.	1.0	3
250	The asymmetric synthesis of CF3- or –CF2-substituted tetrahydroquinolines by employing a chiral phosphoric acid as catalyst. Chemical Communications, 2012, 48, 7738.	2.2	46
251	Asymmetric catalysis based on tropos ligands. Chemical Communications, 2012, 48, 11050.	2.2	55
252	An Asymmetric Organocatalytic Povarov Reaction with 2-Hydroxystyrenes. Journal of Organic Chemistry, 2012, 77, 6970-6979.	1.7	102
253	Kinetic Resolution in Chiral Phosphoric Acid Catalyzed Aldol Reactions: Enantioselective Robinsonâ€Type Annulation Reactions. European Journal of Organic Chemistry, 2012, 2012, 4508-4514.	1.2	35
254	Asymmetric Counteranionâ€Directed Catalysis (ACDC): A Remarkably General Approach to Enantioselective Synthesis. Israel Journal of Chemistry, 2012, 52, 630-638.	1.0	42
255	BrÃ, nsted Acid Catalyzed Enantioselective α-Amidoalkylation in the Synthesis of Isoindoloisoquinolines. Journal of Organic Chemistry, 2012, 77, 2986-2991.	1.7	64
256	Highly Enantioselective Electrophilic α-Bromination of Enecarbamates: Chiral Phosphoric Acid and Calcium Phosphate Salt Catalysts. Journal of the American Chemical Society, 2012, 134, 10389-10392.	6.6	160

#	Article	IF	CITATIONS
257	FeCl ₃ -Catalyzed Stereoselective Construction of Spirooxindole Tetrahydroquinolines via Tandem 1,5-Hydride Transfer/Ring Closure. Organic Letters, 2012, 14, 4054-4057.	2.4	142
258	Chiral Phosphoric Acidâ€Catalyzed Asymmetric Oxidation of Aryl Alkyl Sulfides and Aldehydeâ€Derived 1,3â€Dithianes: Using Aqueous Hydrogen Peroxide as the Terminal Oxidant. Advanced Synthesis and Catalysis, 2012, 354, 1012-1022.	2.1	50
259	Catalytic Asymmetric Synthesis of Dihydroquinazolinones from Imines and 2â€Aminobenzamides. Advanced Synthesis and Catalysis, 2012, 354, 995-999.	2.1	48
264	Asymmetric Calcium Catalysis: Highly Enantioselective Carbonylâ€Ene and Friedel–Crafts Reactions for the Synthesis of Quaternary αâ€Hydroxy Esters Bearing a Trifluoromethyl Group. Chemistry - an Asian Journal, 2012, 7, 1195-1198.	1.7	51
265	Scaffoldâ€Inspired Enantioselective Synthesis of Biologically Important Spiro[pyrrolidinâ€3,2â€2â€oxindoles] with Structural Diversity through Catalytic Isatinâ€Derived 1,3â€Dipolar Cycloadditions. Chemistry - A European Journal, 2012, 18, 6885-6894.	1.7	188
266	Chiral Phosphoric Acidâ€Catalyzed Enantioselective Threeâ€Component Povarov Reaction Using Cyclic Enethioureas as Dienophiles: Stereocontrolled Access to Enantioenriched Hexahydropyrroloquinolines. Chemistry - A European Journal, 2012, 18, 5869-5873.	1.7	80
267	Transfer hydrogenation with Hantzsch esters and related organic hydride donors. Chemical Society Reviews, 2012, 41, 2498.	18.7	521
268	Enantioselective synthesis of fluorene derivatives by chiral N-triflyl phosphoramide catalyzed double Friedel–Crafts alkylation reaction. Organic and Biomolecular Chemistry, 2012, 10, 3202.	1.5	41
269	Cyclic phosphoric acid catalyzed one-pot, four-component synthesis of 1,2,4,5-tetrasubstituted imidazoles. Chinese Chemical Letters, 2012, 23, 13-16.	4.8	25
270	Enantioselective organocatalytic aldol reaction using small organic molecules. Tetrahedron, 2012, 68, 4541-4580.	1.0	161
271	Enantioselective intramolecular \hat{l}_{\pm} -amidoalkylation reaction in the synthesis of pyrrolo [2,1-a] isoquinolines. Tetrahedron Letters, 2012, 53, 2157-2159.	0.7	32
272	Monitoring Onâ€Chip Pictet–Spengler Reactions by Integrated Analytical Separation and Labelâ€Free Timeâ€Resolved Fluorescence. Chemistry - A European Journal, 2012, 18, 1240-1246.	1.7	27
273	Highly Enantioselective Pictet–Spengler Reaction Catalyzed by SPINOLâ€Phosphoric Acids. Chemistry - A European Journal, 2012, 18, 3148-3152.	1.7	132
274	Asymmetric Binaryâ€Acid Catalysis with InBr ₃ in the Inverseâ€Electronâ€Demanding Heteroâ€Diels–Alder Reaction of Monoâ€and Bisâ€Substituted Cyclopentadienes: Remote Fluoroâ€Effect on Stereocontrol. Chemistry - A European Journal, 2012, 18, 799-803.	1.7	63
275	The Direct Asymmetric αâ€Alkylation of Ketones by Brønsted Acid Catalysis. Angewandte Chemie - International Edition, 2012, 51, 1899-1902.	7.2	135
276	Coreâ€Structureâ€Oriented Asymmetric Organocatalytic Substitution of 3â€Hydroxyoxindoles: Application in the Enantioselective Total Synthesis of (+)â€Folicanthine. Angewandte Chemie - International Edition, 2012, 51, 1046-1050.	7.2	233
277	BrÃ,nsted Acid Catalyzed Asymmetric Propargylation of Aldehydes. Angewandte Chemie - International Edition, 2012, 51, 1391-1394.	7.2	124
278	Relay Catalysis Using a Rhodium Complex/Chiral BrÃ, nsted Acid Binary System: Enantioselective Reduction of a Carbonyl Ylide as the Reactive Intermediate. Angewandte Chemie - International Edition, 2012, 51, 2093-2097.	7.2	94

#	Article	IF	CITATIONS
279	Catalytic Asymmetric 1,3â€Dipolar Cycloadditions of Alkynes with Isatinâ€Derived Azomethine Ylides: Enantioselective Synthesis of Spiro[indolineâ€3,2â€2â€pyrrole] Derivatives. Advanced Synthesis and Catalysis, 2013, 355, 2447-2458.	2.1	79
280	Highly enantioselective hydrophosphonylation of imines catalyzed by SPINOL-phosphoric acid. RSC Advances, 2013, 3, 11895.	1.7	25
281	Chiral Phosphoric Acid-Catalyzed Oxidative Kinetic Resolution of Indolines Based on Transfer Hydrogenation to Imines. Journal of the American Chemical Society, 2013, 135, 11740-11743.	6.6	122
283	Chemo―and Enantioselective BrÃ,nsted Acidâ€Catalyzed Reduction of αâ€Imino Esters with Catecholborane. Advanced Synthesis and Catalysis, 2013, 355, 1937-1942.	2.1	32
284	Asymmetric Cascade Annulation Based on Enantioselective Oxa-Diels–Alder Cycloaddition of in Situ Generated Isochromenyliums by Cooperative Binary Catalysis of Pd(OAc)⟨sub⟩2⟨/sub⟩ and (⟨i⟩S⟨/i⟩)-Trip. Journal of the American Chemical Society, 2013, 135, 11402-11407.	6.6	150
285	Enantioselective 1,3-dipolar cycloaddition of methyleneindolinones and N,N′-cyclic azomethine imines. Chemical Communications, 2013, 49, 6713.	2.2	90
287	Prediction of suitable catalyst by 1H NMR: asymmetric synthesis of multisubstituted biaryls by chiral phosphoric acid catalyzed asymmetric bromination. Chemical Science, 2013, 4, 4235.	3.7	45
288	Asymmetric Organocatalysis for the Construction of Quaternary Carbon Stereogenic Centers. , 2013, , 563-603.		3
289	Exploring the Potential of Diarylacetylenediols as Hydrogen Bonding Catalysts. Journal of Organic Chemistry, 2013, 78, 8340-8353.	1.7	19
290	Shedding light on Brønsted acid catalysis – a photocyclization–reduction reaction for the asymmetric synthesis of tetrahydroquinolines from aminochalcones in batch and flow. Chemical Communications, 2013, 49, 7953.	2.2	63
292	A New Organic Twoâ€Electron Oxidant: 9,10â€Diarylâ€9,10â€dihydroanthraceneâ€9,10â€bis(ylium). Chemistry - Asian Journal, 2013, 8, 2588-2591.	an 1.7	3
293	Highly enantioselective three-component Povarov reaction catalyzed by SPINOL-phosphoric acids. RSC Advances, 2013, 3, 573-578.	1.7	42
294	Chiral Ionic Liquid/ESI-MS Methodology as an Efficient Tool for the Study of Transformations of Supported Organocatalysts. Topics in Catalysis, 2013, 56, 923-932.	1.3	6
295	Electrostatic Repulsion and Hydrogenâ€Bonding Interactions in a Simple <i>N</i> à€Arylâ€xscp>Lâ€valinamide Organocatalyst Control the Stereoselectivity in Asymmetric Aldol Reactions. European Journal of Organic Chemistry, 2013, 2013, 6535-6539.	1.2	24
296	On the Acidity and Reactivity of Highly Effective Chiral BrÃ, nsted Acid Catalysts: Establishment of an Acidity Scale. Angewandte Chemie - International Edition, 2013, 52, 11569-11572.	7.2	159
297	Highly Enantioselective Synthesis of Dihydroquinazolinones Catalyzed by SPINOL-Phosphoric Acids. ACS Catalysis, 2013, 3, 2244-2247.	5.5	92
298	Asymmetric Synthesis of βâ€Substituted αâ€Methylenebutyro‷lactones <i>via</i> TRIPâ€Catalyzed Allylation: Mechanistic Studies and Application to the Synthesis of (<i>S</i>)â€(â^')â€Hydroxymatairesinol. Advanced Synthesis and Catalysis, 2013, 355, 2499-2505.	2.1	20
299	Gold and BINOL-Phosphoric Acid Catalyzed Enantioselective Hydroamination/ <i>N</i> -Sulfonyliminium Cyclization Cascade. Organic Letters, 2013, 15, 4330-4333.	2.4	85

#	Article	IF	CITATIONS
302	Chiral Copper(II) Phosphate Catalyzed Enantioselective Synthesis of Isochromene Derivatives by Sequential Intramolecular Cyclization and Asymmetric Transfer Hydrogenation of ⟨i⟩o⟨ i⟩â€Alkynylacetophenones. Angewandte Chemie - International Edition, 2013, 52, 13284-13288.	7.2	97
303	Enantio†and Diastereoselective Assembly of Tetrahydrofuran and Tetrahydropyran Skeletons with Allâ€Carbonâ€Substituted Quaternary Stereocenters. Angewandte Chemie - International Edition, 2013, 52, 13593-13596.	7.2	73
304	Highly Enantioselective Azaâ€Diels–Alder Reaction of 1â€Azadienes with Enecarbamates Catalyzed by Chiral Phosphoric Acids. Angewandte Chemie - International Edition, 2013, 52, 11088-11091.	7.2	81
305	Cascade Hydroamination/Redox Reaction for the Synthesis of Cyclic Aminals Catalyzed by a Combined Gold Complex and Brønsted Acid. Chemistry - A European Journal, 2013, 19, 5232-5237.	1.7	88
306	Chiral boron Lewis acid-catalyzed asymmetric synthesis of 4,5-dihydropyrrolo[1,2-a]quinoxalines. RSC Advances, 2013, 3, 18275.	1.7	20
307	Conjugateâ€Baseâ€Stabilized Brønsted Acids as Asymmetric Catalysts: Enantioselective Povarov Reactions with Secondary Aromatic Amines. Angewandte Chemie - International Edition, 2013, 52, 14084-14088.	7.2	95
308	Enantioselective construction of 2,5-dihydropyrrole skeleton with quaternary stereogenic center via catalytic asymmetric 1,3-dipolar cycloaddition involving \hat{l}_{\pm} -arylglycine esters. Organic and Biomolecular Chemistry, 2013, 11, 1482.	1.5	47
309	Enantioselective synthesis of biologically important spiro[indoline-3,2′-quinazolines] via catalytic asymmetric isatin-involved tandem reactions. Tetrahedron: Asymmetry, 2013, 24, 1286-1296.	1.8	24
310	Asymmetric Organocatalytic Tandem Cyclization/Transfer Hydrogenation: A Synthetic Strategy for Enantioenriched Nitrogen Heterocycles. Advanced Synthesis and Catalysis, 2013, 355, 3715-3726.	2.1	54
311	(<i>R/S</i>)â€BINOLâ€Î±â€Phosphoryloxy Enecarbamateâ€Mediated and (<i>R</i> / <i>S</i>)â€Titanium(IV) BINOLatesâ€Catalyzed Enantioselective Intramolecular Heck/Azaâ€Diels–Alder Cycloaddition (IHADA): An Expedient Methodology. Advanced Synthesis and Catalysis, 2013, 355, 2617-2626.	2.1	7
312	Enantioselective Reactions of <i>N</i> â€Acyliminium Ions Using Chiral Organocatalysts. Chemistry - an Asian Journal, 2013, 8, 2906-2919.	1.7	49
313	Enantioselective Organocatalytic Construction of Hexahydropyrroloindole by Means of αâ€Alkylation of Aldehydes Leading to the Total Synthesis of (+)â€Gliocladin C. Chemistry - A European Journal, 2013, 19, 3319-3323.	1.7	124
314	Stereocontrolled Cyanohydrin Ether Synthesis through Chiral BrÃ, nsted Acid-Mediated Vinyl Ether Hydrocyanation. Journal of Organic Chemistry, 2013, 78, 9366-9376.	1.7	26
315	Catalytic Enantioselective Synthesis of Tetrahydroisoquinolines and Their Analogues Bearing a C4 Stereocenter: Formal Synthesis of (+)â€(8 <i>\$</i> ,13 <i>R</i>)â€Cyclocelabenzine. Chemistry - A European Journal, 2013, 19, 8426-8430.	1.7	69
316	Chiral BrÃ,nsted Acid Mediated Glycosylation with Recognition of Alcohol Chirality. Angewandte Chemie - International Edition, 2013, 52, 12131-12134.	7.2	62
317	Enantioselective Transfer Hydrogenation of Difluoromethyl Ketimines Using Benzothiazoline as a Hydrogen Donor in Combination with a Chiral Phosphoric Acid. Asian Journal of Organic Chemistry, 2013, 2, 943-946.	1.3	22
318	A Catalytic Asymmetric Isatin-Involved Povarov Reaction: Diastereo- and Enantioselective Construction of Spiro[indolin-3,2′-quinoline] Scaffold. Organic Letters, 2013, 15, 128-131.	2.4	185
319	Asymmetric binary acid catalysis: chiral phosphoric acid as dual ligand and acid. Chemical Communications, 2013, 49, 847-858.	2.2	104

#	Article	IF	CITATIONS
320	Exploiting the Modularity of Ion-Paired Chiral Ligands for Palladium-Catalyzed Enantioselective Allylation of Benzofuran-2(3 <i>H</i>)-ones. Journal of the American Chemical Society, 2013, 135, 590-593.	6.6	107
321	Complex Bioactive Alkaloidâ€Type Polycycles through Efficient Catalytic Asymmetric Multicomponent Azaâ€Diels–Alder Reaction of Indoles with Oxetane as Directing Group. Angewandte Chemie - International Edition, 2013, 52, 2027-2031.	7.2	191
322	Direct Access to Enantioenriched Spiroacetals through Asymmetric Relay Catalytic Three-Component Reaction. Organic Letters, 2013, 15, 460-463.	2.4	140
323	Organocatalytic asymmetric multicomponent reactions of aromatic aldehydes and anilines with \hat{l}^2 -ketoesters: facile and atom-economical access to chiral tetrahydropyridines. Chemical Communications, 2013, 49, 1401.	2.2	79
324	Enantioselective synthesis of 2-substituted pyrrolidinesvia domino cross metathesis/intramolecular aza-Michael addition. RSC Advances, 2013, 3, 1666-1668.	1.7	27
325	Applications of asymmetric organocatalysis in medicinal chemistry. Chemical Society Reviews, 2013, 42, 774-793.	18.7	374
328	Asymmetric Counteranionâ€Directed Catalysis: Concept, Definition, and Applications. Angewandte Chemie - International Edition, 2013, 52, 518-533.	7.2	763
329	Asymmetric Ionâ€Pairing Catalysis. Angewandte Chemie - International Edition, 2013, 52, 534-561.	7.2	879
330	Chiral Phosphoric Acid Catalyzed Enantioselective Desymmetrization of <i>meso</i> -Epoxides by Thiols. Organic Letters, 2013, 15, 5964-5966.	2.4	68
332	Catalytic Asymmetric Threeâ€Component Synthesis of Homoallylic Amines. Angewandte Chemie - International Edition, 2013, 52, 2573-2576.	7.2	72
333	Asymmetric Counteranion-Directed Catalysis (ACDC). , 2013, , 79-85.		4
334	Enantioselective Synthesis of Multisubstituted Biaryl Skeleton by Chiral Phosphoric Acid Catalyzed Desymmetrization/Kinetic Resolution Sequence. Journal of the American Chemical Society, 2013, 135, 3964-3970.	6.6	262
335	Chiral Phosphoric Acidâ€Catalyzed Enantioselective Azaâ€Friedel–Crafts Alkylation of Indoles with γâ€Hydroxyâ€Ĵ³â€lactams. Advanced Synthesis and Catalysis, 2013, 355, 836-840.	2.1	39
336	Asymmetric organocatalytic reduction of ketimines with catecholborane employing a N-triflyl phosphoramide BrÃ,nsted acid as catalyst. Tetrahedron Letters, 2013, 54, 470-473.	0.7	38
337	Palladium-catalyzed ortho-alkenylation of aryl hydrogen phosphates using a new mono-phosphoric acid directing group. Chemical Communications, 2013, 49, 4682.	2.2	86
338	Pd(II)-Catalyzed <i>ortho</i> -Arylation of Aryl Phosphates and Aryl Hydrogen Phosphates with Diaryliodonium Triflates. Organic Letters, 2013, 15, 2186-2189.	2.4	79
339	Chiral αâ€Arylethanamines: An Organocatalyst for the Enantioselective αâ€Amination of Branched Aldehydes. European Journal of Organic Chemistry, 2013, 2013, 2864-2868.	1.2	8
340	Relay Catalysis: Enantioselective Synthesis of Cyclic Benzoâ€Fused Homoallylic Alcohols by Chiral BrÃnsted Acidâ€Catalyzed Allylboration/Ring Closing Metathesis. Advanced Synthesis and Catalysis, 2013, 355, 1058-1064.	2.1	44

#	Article	IF	CITATIONS
341	Origins of Stereoselectivities in Chiral Phosphoric Acid Catalyzed Allylborations and Propargylations of Aldehydes. Journal of Organic Chemistry, 2013, 78, 1208-1215.	1.7	103
342	Catalytic Enantioselective Intermolecular Desymmetrization of 3â€Substituted Oxetanes. Angewandte Chemie - International Edition, 2013, 52, 6685-6688.	7.2	114
343	Chiral phosphoric acid catalyzed asymmetric hydrogenolysis of racemic 3-aryl-3-hydroxyisoindolin-1-ones. Tetrahedron Letters, 2013, 54, 3082-3084.	0.7	51
344	Catalytic Asymmetric Fiveâ€Component Tandem Reaction: Diastereo―and Enantioselective Synthesis of Densely Functionalized Tetrahydropyridines with Biological Importance. Advanced Synthesis and Catalysis, 2013, 355, 1605-1622.	2.1	63
345	Enantioselective Michael Addition/Iminium Ion Cyclization Cascades of Tryptamine-Derived Ureas. Organic Letters, 2013, 15, 2946-2949.	2.4	45
346	Asymmetric Ion Pair Catalysis of 6Ï€â€Electrocyclizations: Brønsted Acid Catalyzed Enantioselective Synthesis of Optically Active 1,4â€Đihydropyridazines. Angewandte Chemie - International Edition, 2013, 52, 8008-8011.	7.2	57
347	Diastereomeric Resolution of $\langle i \rangle -1,1\hat{a} \in ^2$ -Bi-2-naphthol Boronic Acid with a Chiral Boron Ligand and Its Application to Simultaneous Synthesis of ($\langle i \rangle R \langle i \rangle$)- and ($\langle i \rangle S \langle i \rangle$)-3,3 $\hat{a} \in ^2$ -Disubstituted 1,1 $\hat{a} \in ^2$ -Bi-2-naphthol Derivatives. Journal of Organic Chemistry, 2013, 78, 7086-7092.	1.7	15
349	Catalytic Asymmetric Benzidine Rearrangement. Angewandte Chemie - International Edition, 2013, 52, 9293-9295.	7.2	179
350	Enantioselective cooperative triple catalysis: unique roles of Au(i)/amine/chiral BrÃ,nsted acid catalysts in the addition/cycloisomerization/transfer hydrogenation cascade. Chemical Communications, 2013, 49, 570-572.	2.2	59
351	Biomimetic Asymmetric 1,3-Dioplar Cycloaddition: Amino Acid Precursors in Biosynthesis Serve as Latent Azomethine Ylides. Organic Letters, 2013, 15, 2676-2679.	2.4	93
352	Shedding Light on Organocatalysis—Lightâ€Assisted Asymmetric Ionâ€Pair Catalysis for the Enantioselective Hydrogenation of Pyrylium Ions. Chemistry - A European Journal, 2013, 19, 9775-9779.	1.7	78
353	Studies on the true catalyst in the phosphate-promoted desymmetrization of meso-aziridines with silylated nucleophiles. Tetrahedron, 2013, 69, 50-56.	1.0	37
354	Enantioselective Relay Catalytic Cascade Intramolecular Hydrosiloxylation and Mukaiyama Aldol Reaction. Chemistry - A European Journal, 2013, 19, 6234-6238.	1.7	41
355	Organocatalytic asymmetric selenofunctionalization of tryptamine for the synthesis of hexahydropyrrolo[2,3- <i>b</i>) indole derivatives. Beilstein Journal of Organic Chemistry, 2013, 9, 1559-1564.	1.3	42
356	Anti-Markovnikov hydrophosphoroselenoylation of alkenes using phosphorodiselenoic acid esters leading to the formation of phosphonoselenoic acid esters. Chemical Communications, 2013, 49, 9675.	2.2	13
357	Chiral Anion Catalysis in the Enantioselective 1,4â€Reduction of the 1â€Benzopyrylium Ion as a Reactive Intermediate. Chemistry - A European Journal, 2013, 19, 13658-13662.	1.7	64
359	Chiral BrÃ, nsted Acid Mediated Glycosylation with Recognition of Alcohol Chirality. Angewandte Chemie, 2013, 125, 12353-12356.	1.6	15
365	Enantioselective reduction of ketoimines promoted by easily available (<i>S</i>)-proline derivatives. Beilstein Journal of Organic Chemistry, 2013, 9, 633-640.	1.3	19

#	Article	IF	CITATIONS
366	Development of New Chiral Br^ ^oslash;nsted Acid Catalysis. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2013, 71, 1116-1125.	0.0	8
367	Thiophostoneâ€Derived Brønsted Acids in the Organocatalyzed Transfer Hydrogenation of Quinolines: Influence of the Pâ€6tereogenicity. European Journal of Organic Chemistry, 2014, 2014, 188-193.	1.2	24
368	Catalytic Asymmetric Torgov Cyclization: A Concise Total Synthesis of (+)â€Estrone. Angewandte Chemie - International Edition, 2014, 53, 8770-8773.	7.2	73
370	Highly Enantioselective [3+2] Coupling of Indoles with Quinone Monoimines Promoted by a Chiral Phosphoric Acid. Angewandte Chemie - International Edition, 2014, 53, 10471-10475.	7.2	138
371	Imine and iminium precursors as versatile intermediates inÂenantioselective organocatalysis. Tetrahedron, 2014, 70, 8783-8815.	1.0	61
373	Phosphoric Acid Catalyzed Desymmetrization of Bicyclic Bislactones Bearing an Allâ€Carbon Stereogenic Center: Total Syntheses of (â°')â€Rhazinilam and (â°')â€Leucomidineâ€B. Angewandte Chemie - International Edition, 2014, 53, 9926-9930.	7.2	75
375	Metalâ€Free Enantioselective Electrophilic Activation of Allenamides: Stereoselective Dearomatization of Indoles. Angewandte Chemie - International Edition, 2014, 53, 13854-13857.	7.2	127
376	Imidazolium Saltâ€Catalyzed Friedel–Craftsâ€Type Conjugate Addition of Indoles: Analysis of Indole/Imidazolium Complex by High Level ab Initio Calculations. Asian Journal of Organic Chemistry, 2014, 3, 497-503.	1.3	17
379	Asymmetric organocatalytic synthesis of 4,6-bis(1 <i>H</i> iorganic and Biomolecular Chemistry, 2014, 12, 3265-3270.	1.5	24
380	Catalytic Asymmetric Formal [3+3] Cycloaddition of an Azomethine Ylide with 3â€Indolylmethanol: Enantioselective Construction of a Sixâ€Membered Piperidine Framework. Chemistry - A European Journal, 2014, 20, 2597-2604.	1.7	137
381	A General Strategy for the Catalytic, Highly Enantio―and Diastereoselective Synthesis of Indolizidineâ€Based Alkaloids. Chemistry - A European Journal, 2014, 20, 1964-1979.	1.7	43
382	Enantioselective heterogeneous Brønsted acid catalysis. Organic Chemistry Frontiers, 2014, 1, 582-586.	2.3	29
383	Highly Enantioselective Kinetic Resolution of Axially Chiral BINAM Derivatives Catalyzed by a Brønsted Acid. Angewandte Chemie - International Edition, 2014, 53, 3684-3687.	7.2	114
384	Highly efficient $[3+2]$ reaction of 3-vinylindoles with 3-indolylmethanols by Br \tilde{A}_{i} nsted-acid catalysis. RSC Advances, 2014, 4, 6916.	1.7	54
385	Phosphoric Acid Catalyzed Diastereo- and Enantioselective Synthesis of Substituted 1,3-Diaminotetralins. Organic Letters, 2014, 16, 2554-2557.	2.4	23
386	Phosphoric acid mediated tautomerism of imines: addition of a secondary enamine intermediate to aldehydes. Tetrahedron Letters, 2014, 55, 3100-3103.	0.7	7
387	Catalytic asymmetric homo-1,3-dipolar cycloadditions of azomethine ylides: diastereo- and enantioselective synthesis of imidazolidines. Tetrahedron: Asymmetry, 2014, 25, 617-624.	1.8	35
388	Mechanistic Studies of Highly Enantio- and Diastereoselective Aza-Petasis–Ferrier Rearrangement Catalyzed by Chiral Phosphoric Acid. Journal of the American Chemical Society, 2014, 136, 7044-7057.	6.6	47

#	Article	IF	Citations
389	Enantioselective Construction of the Biologically Significant Dibenzo[1,4]diazepine Scaffold ⟨i⟩via⟨ i⟩ Organocatalytic Asymmetric Threeâ€Component Reactions. Advanced Synthesis and Catalysis, 2014, 356, 2009-2019.	2.1	37
390	Chiral Î²â€Łactam Synthesis through the Enantioselective Reduction of Iminocyclobutenones and the Thermal Rearrangement of Aminocyclobutenones. Asian Journal of Organic Chemistry, 2014, 3, 614-618.	1.3	10
391	Chiral Phosphoric Acidâ€Catalyzed Enantioselective Three―Component Azaâ€Diels–Alder Reactions of Aminopyrroles and Aminopyrazoles. Advanced Synthesis and Catalysis, 2014, 356, 1719-1724.	2.1	37
392	Catalytic Asymmetric Aza-ene Reaction of 3-Indolylmethanols with Cyclic Enaminones: Enantioselective Approach to C3-Functionalized Indoles. Journal of Organic Chemistry, 2014, 79, 4635-4643.	1.7	70
393	Organocatalytic Asymmetric Assembly Reactions: Synthesis of Spirooxindoles via Organocascade Strategies. ACS Catalysis, 2014, 4, 743-762.	5.5	735
394	Catalytic asymmetric semipinacol rearrangements. Chemical Communications, 2014, 50, 2393-2408.	2.2	113
395	Organocatalytic Arylation of 3-Indolylmethanols via Chemo- and Regiospecific C6-Functionalization of Indoles. Journal of Organic Chemistry, 2014, 79, 10390-10398.	1.7	66
396	When gold meets chiral Br \tilde{A}_i nsted acid catalysts: extending the boundaries of enantioselective gold catalysis. Chemical Communications, 2014, 50, 15124-15135.	2.2	100
398	Catalytic asymmetric Povarov reaction of isatin-derived 2-azadienes with 3-vinylindoles. Organic and Biomolecular Chemistry, 2014, 12, 9539-9546.	1.5	48
399	Asymmetric Alkynylation of Seven-Membered Cyclic Imines by Combining Chiral Phosphoric Acids and Ag(I) Catalysts: Synthesis of 11-Substituted-10,11-dihydrodibenzo[$\langle i \rangle b \langle i \rangle, \langle i \rangle f \langle i \rangle$][1,4]oxazepine Derivatives. Journal of Organic Chemistry, 2014, 79, 11759-11767.	1.7	45
400	Enantioselective synthesis of benzazepinoindoles bearing trifluoromethylated quaternary stereocenters catalyzed by chiral spirocyclic phosphoric acids. Chemical Communications, 2014, 50, 7538-7541.	2.2	57
401	Enantio-differentiation of O-heterocycles using a binol-derived disulfonimide as a chiral solvating agent. Chemical Communications, 2014, 50, 5997.	2.2	30
402	Chiral BrÃ,nsted Acid Catalysts. Activation of Methyl 3,3,3-Trifluoropyruvate by Hydroxymethylpyridine-Containing Half-Sandwich Complexes. Organometallics, 2014, 33, 4016-4026.	1.1	21
403	Organocatalytic Asymmetric Arylative Dearomatization of 2,3â€Disubstituted Indoles Enabled by Tandem Reactions. Angewandte Chemie - International Edition, 2014, 53, 13912-13915.	7.2	190
404	Secondary stereocontrolling interactions in chiral BrÃ,nsted acid catalysis: study of a Petasisâ€"Ferrier-type rearrangement catalyzed by chiral phosphoric acids. Chemical Science, 2014, 5, 3515-3523.	3.7	55
405	Enantioselective Prins cyclization: BINOL-derived phosphoric acid and CuCl synergistic catalysis. Chemical Communications, 2014, 50, 7495-7498.	2.2	47
406	Catalytic asymmetric direct α-alkylation of amino esters by aldehydes via imine activation. Chemical Science, 2014, 5, 1988.	3.7	91
407	Expedient BINOL derivative arylations. Tetrahedron Letters, 2014, 55, 6420-6422.	0.7	7

#	Article	IF	CITATIONS
408	<i>N</i> -Boc Amines to Oxazolidinones via Pd(II)/Bis-sulfoxide/Brønsted Acid Co-Catalyzed Allylic C–H Oxidation. Journal of the American Chemical Society, 2014, 136, 11176-11181.	6.6	86
409	Phosphonium salt induced stereoselective allylic rearrangement during chlorination of α-hydroxyallylphosphinates. Tetrahedron Letters, 2014, 55, 5742-5744.	0.7	6
410	Chiral transition-metal complexes as Brønsted-acid catalysts for the asymmetric Friedel–Crafts hydroxyalkylation of indoles. Dalton Transactions, 2014, 43, 11260-11268.	1.6	23
411	Hydroxymethylpyridine containing half-sandwich complexes of Rh(iii), Ir(iii) or Ru(ii). Dalton Transactions, 2014, 43, 15546-15559.	1.6	5
412	Arene–Ruthenium Chemistry and Brønsted Acid Catalysis of a Chiral Phosphane-Hydroxyl Ligand. Organometallics, 2014, 33, 616-619.	1.1	18
413	6.12 Inorganic Acid Derivatives. , 2014, , 479-554.		0
414	Organocatalytic Chemo-, (<i>E/Z</i>)- and Enantioselective Formal Alkenylation of Indole-Derived Hydroxylactams Using <i>o</i> -Hydroxystyrenes as a Source of Alkenyl Group. Journal of Organic Chemistry, 2014, 79, 7141-7151.	1.7	42
415	2.07 The Aldol Reaction: Organocatalysis Approach. , 2014, , 273-339.		9
416	Organocatalytic enantioselective and (Z)-selective allylation of 3-indolylmethanol via hydrogen-bond activation. Chemical Communications, 2014, 50, 12054-12057.	2,2	82
417	Rapid Synthesis of 3,3′ Bis-Arylated BINOL Derivatives Using a C–H Borylation <i>in Situ</i> Suzuki–Miyaura Coupling Sequence. Organic Letters, 2014, 16, 4332-4335.	2.4	26
418	Binaphthol-derived phosphoric acids as efficient chiral organocatalysts for the enantiomer-selective polymerization of rac-lactide. Chemical Communications, 2014, 50, 2883-2885.	2.2	67
419	Desymmetrization of <i>meso</i> -Aziridines with TMSNCS Using Metal Salts of Novel Chiral Imidazolineâ€"Phosphoric Acid Catalysts. Organic Letters, 2014, 16, 4452-4455.	2.4	61
420	Chiral Phosphoric Acid Catalyzed Highly Enantioselective Desymmetrization of 2-Substituted and 2,2-Disubstituted 1,3-Diols via Oxidative Cleavage of Benzylidene Acetals. Journal of the American Chemical Society, 2014, 136, 12249-12252.	6.6	82
421	Catalytic Asymmetric Reactions by Metal and Chiral Phosphoric Acid Sequential Catalysis. Journal of Organic Chemistry, 2014, 79, 7785-7798.	1.7	94
422	Asymmetric One-Pot Synthesis of 1,3-Oxazolidines and 1,3-Oxazinanes via Hemiaminal Intermediates. Organic Letters, 2014, 16, 4098-4101.	2.4	62
423	Pd(II)-Catalyzed Intermolecular Direct C–H Bond Iodination: An Efficient Approach toward the Synthesis of Axially Chiral Compounds via Kinetic Resolution. ACS Catalysis, 2014, 4, 2741-2745.	5.5	205
424	Enantiomeric Separations of Chiral Sulfonic and Phosphoric Acids with Barium-Doped Cyclofructan Selectors via an Ion Interaction Mechanism. Analytical Chemistry, 2014, 86, 1282-1290.	3.2	26
425	Complete Field Guide to Asymmetric BINOL-Phosphate Derived BrÃ,nsted Acid and Metal Catalysis: History and Classification by Mode of Activation; BrÃ,nsted Acidity, Hydrogen Bonding, Ion Pairing, and Metal Phosphates. Chemical Reviews, 2014, 114, 9047-9153.	23.0	1,675

#	Article	IF	Citations
426	Axially Chiral Imidodiphosphoric Acid Catalyst for Asymmetric Sulfoxidation Reaction: Insights on Asymmetric Induction. Angewandte Chemie - International Edition, 2014, 53, 4432-4436.	7.2	75
427	Organocatalytic Asymmetric Inverse-Electron-Demand 1,3-Dipolar Cycloaddition of <i>N</i> , <i>N</i> ,2014, 79, 9305-9312.	1.7	73
428	Recent development of direct asymmetric functionalization of inert C–H bonds. RSC Advances, 2014, 4, 6173.	1.7	532
429	Highly diastereo- and enantioselective construction of a spiro[cyclopenta[b]indole-1,3′-oxindole] scaffold via catalytic asymmetric formal [3+2] cycloadditions. Chemical Communications, 2014, 50, 15901-15904.	2.2	139
430	Brønsted Acid Catalyzed, Conjugate Addition of βâ€Dicarbonyls to In Situ Generated <i>ortho</i> å€Quinone Methides—Enantioselective Synthesis of 4â€Arylâ€4 <i>H</i> â€Chromenes. Angewandt Chemie - International Edition, 2014, 53, 7923-7927.	e 7. 2	259
431	Stereoselective construction of all-carbon quaternary center by means of chiral phosphoric acid: highly enantioselective Friedelâ \in "Crafts reaction of indoles with \hat{l}^2 , \hat{l}^2 -disubstituted nitroalkenes. Chemical Science, 2014, 5, 1799-1803.	3.7	74
432	Organocatalytic Chemo- and Regioselective Oxyarylation of Styrenes via a Cascade Reaction: Remote Activation of Hydroxyl Groups. Journal of Organic Chemistry, 2014, 79, 6143-6152.	1.7	31
433	Diastereo―and Enantioselective Construction of a Bispirooxindole Scaffold Containing a Tetrahydroâ€Î²â€€arboline Moiety through an Organocatalytic Asymmetric Cascade Reaction. Chemistry - A European Journal, 2014, 20, 11382-11389.	1.7	139
434	5.09 Intermolecular Diels–Alder Reactions. , 2014, , 351-408.		6
435	Catalytic Asymmetric Construction of 3,3′â€Spirooxindoles Fused with Sevenâ€Membered Rings by Enantioselective Tandem Reactions. Chemistry - A European Journal, 2014, 20, 15047-15052.	1.7	45
436	In situ generation of ion-paired chiral ligands: rapid identification of the optimal ligand for palladium-catalyzed asymmetric allylation. Chemical Science, 2014, 5, 3645-3650.	3.7	44
437	An Organocatalytic Asymmetric Allylic Alkylation Allows Enantioselective Total Synthesis of Hydroxymetasequirin-A and Metasequirin-B Tetramethyl Ether Diacetates. Organic Letters, 2014, 16, 976-979.	2.4	61
438	Chiral Synthetic Equivalents of 2â€Cyanoethyl Tetraisopropylphosphorodiamidite: Application to the Synthesis and Resolution of Chiral Phosphoric Acids. European Journal of Organic Chemistry, 2014, 2014, 4099-4106.	1.2	6
439	Chiral phosphoric acid catalyzed 1,3-dipolar cycloadditions of aldehydes, diethyl α-aminomalonate, and nitroalkenes. Tetrahedron: Asymmetry, 2014, 25, 787-791.	1.8	8
440	A facile synthesis of 3-hydroxy-3-(trifluoromethyl)-1H-pyrrol-2(3H)-ones with BrÃ,nsted acid-catalyzed condensation–cyclization reactions of β-enamino esters and ethyl trifluoropyruvate. Tetrahedron, 2014, 70, 4595-4601.	1.0	7
441	Enantioselective Fluorination of \hat{l}^2 -Ketoesters Catalyzed by Chiral Sodium Phosphate: Remarkable Enhancement of Reactivity by Simultaneous Utilization of Metal Enolate and Metal Phosphate. Chemistry Letters, 2014, 43, 137-139.	0.7	23
442	Facile Synthesis of 3,3′-Disubstituted 2,2′-Binaphthyls by Transition-metal-catalyzed Double Benzannulation. Chemistry Letters, 2014, 43, 883-884.	0.7	16
446	Enantioselective Allylation of $(2 < i > E < /i > , 4 < i > E < /i >)$ $\hat{a} \in \mathbb{Z}$, $4\hat{a} \in \mathbb{D}$ imethylhexadienal: Synthesis of $(5 < i > R < /i > , 6 < i > S < /i >)$ $\hat{a} \in \mathbb{Q}$ teroenone. Chemistry - A European Journal, 2015, 21, 7408-7412.	1.7	12

#	Article	IF	Citations
447	Enantioselective Construction of the Biologically Important Cyclopenta[1,4]diazepine Framework Enabled by Asymmetric Catalysis by Chiral Spiroâ€Phosphoric Acid. European Journal of Organic Chemistry, 2015, 2015, 7926-7934.	1.2	10
448	Amineâ€Catalyzed Highly Regioselective and Stereoselective C(sp ²)–C(sp ²) Crossâ€Coupling of Naphthols with <i>trans</i> â€Î±,βâ€Unsaturated Aldehydes. Chemistry - an Asian Journal, 2015, 10, 1859-1863.	1.7	7
449	Organocatalytic Activation of the Leaving Group in the Intramolecular Asymmetric S _N 2′ Reaction. Angewandte Chemie - International Edition, 2015, 54, 8263-8266.	7.2	31
450	Catalytic Enantioselective Arylative Dearomatization of 3â€Methylâ€2â€vinylindoles Enabled by Reactivity Switch. Advanced Synthesis and Catalysis, 2015, 357, 4031-4040.	2.1	34
452	Organocatalytic Activation of the Leaving Group in the Intramolecular Asymmetric S _N 2′ Reaction. Angewandte Chemie, 2015, 127, 8381-8384.	1.6	11
453	Synthesis of (<i>R</i>)â€BINOLâ€Derived (Cyclopentadienone)iron Complexes and Their Application in the Catalytic Asymmetric Hydrogenation of Ketones. European Journal of Organic Chemistry, 2015, 2015, 5526-5536.	1.2	45
454	Enantioselective Cycloaddition Reactions Catalyzed by BINOL-Derived Phosphoric Acids and N-Triflyl Phosphoramides: Recent Advances. Molecules, 2015, 20, 16103-16126.	1.7	66
455	Chiral Phosphoric Acid Catalyzed Enantioselective Decarboxylative Alkylation of \hat{l}^2 -Keto Acids with 3-Hydroxy-3-indolyloxindoles. Organic Letters, 2015, 17, 1389-1392.	2.4	68
456	Enantioselective cooperative catalysis. Organic and Biomolecular Chemistry, 2015, 13, 8116-8162.	1.5	181
457	Synthetic Method for 2,2'â€Disubstituted Fluorinated Binaphthyl Derivatives and Application as Chiral Source in Design of Chiral Monoâ€Phosphoric Acid Catalyst. Chirality, 2015, 27, 464-475.	1.3	16
458	Chiral (Cyclopentadienone)iron Complexes for the Catalytic Asymmetric Hydrogenation of Ketones. European Journal of Organic Chemistry, 2015, 2015, 1887-1893.	1.2	56
459	Enantioselective Synthesis of \hat{l}^2 -Arylamines via Chiral Phosphoric Acid-Catalyzed Asymmetric Reductive Amination. Journal of Organic Chemistry, 2015, 80, 6367-6374.	1.7	35
460	Chiral Brønsted Acid as a True Catalyst: Asymmetric Mukaiyama Aldol and Hosomi–Sakurai Allylation Reactions. Journal of the American Chemical Society, 2015, 137, 7091-7094.	6.6	57
461	C2-Symmetric diamines and their derivatives as promising organocatalysts for asymmetric synthesis. Russian Chemical Reviews, 2015, 84, 1077-1099.	2.5	29
462	C–H Bond Functionalization via [1,5]-Hydride Shift/Cyclization Sequence: Approach to Spiroindolenines. Journal of Organic Chemistry, 2015, 80, 1155-1162.	1.7	55
463	Organocatalytic Enantio- and Diastereoselective Synthesis of 1,2-Dihydronaphthalenes from Isobenzopyrylium Ions. Journal of the American Chemical Society, 2015, 137, 560-563.	6.6	52
464	Chiral BrÃ,nsted acid catalyzed intermolecular Friedel–Crafts alkylation of styrenes with indoles: construction of all-carbon quaternary stereocenters. Tetrahedron: Asymmetry, 2015, 26, 219-224.	1.8	28
465	Origins of Asymmetric Phosphazene Organocatalysis: Computations Reveal a Common Mechanism for Nitro- and Phospho-Aldol Additions. Journal of Organic Chemistry, 2015, 80, 2756-2766.	1.7	30

#	Article	IF	CITATIONS
466	Organocatalytic enantioselective synthesis of 1-vinyl tetrahydroisoquinolines through allenamide activation with chiral Br \tilde{A}_{j} nsted acids. RSC Advances, 2015, 5, 10546-10550.	1.7	19
467	Organocatalytic asymmetric hydroarylation of o-hydroxyl styrenes via remote activation of phenylhydrazones. Tetrahedron: Asymmetry, 2015, 26, 109-117.	1.8	18
468	Catalyst-Controlled Chemoselective Reaction of 3-Indolylmethanols with Cyclic Enaminones Leading to C2-Functionalized Indoles. Journal of Organic Chemistry, 2015, 80, 1841-1848.	1.7	24
469	Organocatalytic enantioselective Friedel–Crafts reaction: an efficient access to chiral isoindolo-β-carboline derivatives. Organic and Biomolecular Chemistry, 2015, 13, 4395-4398.	1.5	41
470	Organocatalysis on Tap: Enantioselective Continuous Flow Processes Mediated by Solidâ€Supported Chiral Organocatalysts. European Journal of Organic Chemistry, 2015, 2015, 1173-1188.	1.2	105
471	Organocatalytic Asymmetric Cascade Reactions of 7â€Vinylindoles: Diastereo―and Enantioselective Synthesis of C7â€Functionalized Indoles. Chemistry - A European Journal, 2015, 21, 3465-3471.	1.7	90
472	Kinetic Resolution of Racemic Amino Alcohols through Intermolecular Acetalization Catalyzed by a Chiral BrÃ, nsted Acid. Journal of the American Chemical Society, 2015, 137, 1048-1051.	6.6	60
473	Benzothiazoline: Versatile Hydrogen Donor for Organocatalytic Transfer Hydrogenation. Accounts of Chemical Research, 2015, 48, 388-398.	7.6	146
474	Directing Group Assisted Nucleophilic Substitution of Propargylic Alcohols via o-Quinone Methide Intermediates: BrÃ,nsted Acid Catalyzed, Highly Enantio- and Diastereoselective Synthesis of 7-Alkynyl-12a-acetamido-Substituted Benzoxanthenes. Organic Letters, 2015, 17, 648-651.	2.4	166
475	Robustness Screen in Enantioselective Catalysis Enabled Generation of Enantioenriched Heterocyclic Scaffolds in One Pot. Chemistry - A European Journal, 2015, 21, 3580-3584.	1.7	7
476	Catalytic Asymmetric Dearomatizing Redox Cross Coupling of Ketones with Aryl Hydrazines Giving 1,4-Diketones. Journal of the American Chemical Society, 2015, 137, 3446-3449.	6.6	90
478	Catalytic Asymmetric Inverseâ€Electronâ€Demand Oxaâ€Diels–Alder Reaction of Inâ€Situ Generated <i>ortho</i> â€Quinone Methides with 3â€Methylâ€2â€Vinylindoles. Angewandte Chemie - International Edition, 2015, 54, 5460-5464.	7.2	305
479	Design and Synthesis of Chiral Binaphtholâ€Derived Bisphosphoric Acids and Their Application in the Catalytic Enantioselective Hydrogenation of Quinolines. Asian Journal of Organic Chemistry, 2015, 4, 430-433.	1.3	9
480	Brønsted Acid Catalyzed Asymmetric Diels–Alder Reactions: Stereoselective Construction of Spiro[tetrahydrocarbazole-3,3′-oxindole] Framework. Journal of Organic Chemistry, 2015, 80, 3223-3232.	1.7	97
481	Enantioselective synthesis of 4,5,6,7-tetrahydroindoles via olefin cross-metathesis/intramolecular Friedel–Crafts alkylation reaction of pyrroles. Organic Chemistry Frontiers, 2015, 2, 476-480.	2.3	22
482	Enantioselective construction of a 2,2′-bisindolylmethane scaffold via catalytic asymmetric reactions of 2-indolylmethanols with 3-alkylindoles. Organic and Biomolecular Chemistry, 2015, 13, 7993-8000.	1.5	37
483	Stronger BrÃ,nsted Acids: Recent Progress. Chemical Reviews, 2015, 115, 9277-9306.	23.0	570
484	Catalytic Enantioselective Intermolecular Desymmetrization of Azetidines. Journal of the American Chemical Society, 2015, 137, 5895-5898.	6.6	56

#	Article	IF	CITATIONS
485	Formal Asymmetric Organocatalytic [3+2] Cyclization between Enecarbamates and 3â€Indolylmethanols: Rapid Access to 3â€Aminocyclopenta[<i>b</i>) indoles. Chemistry - A European Journal, 2015, 21, 8399-8402.	1.7	46
486	Enantioselective synthesis of chiral heterocycles containing both chroman and pyrazolone derivatives catalysed by a chiral squaramide. Organic and Biomolecular Chemistry, 2015, 13, 5636-5645.	1.5	34
487	Catalytic Asymmetric Arylation of $3\hat{a}\in \mathbb{N}$ indolylmethanols: Enantioselective Synthesis of $3,3\hat{a}\in \mathbb{N}$ is (indolyl) oxindoles with High Atom Economy. ChemCatChem, 2015, 7, 1211-1221.	1.8	69
488	Triply Hydrogenâ€Bondâ€Directed Enantioselective Assembly of Pyrrolobenzoâ€1,4â€diazine Skeletons with Quaternary Stereocenters. Chemistry - A European Journal, 2015, 21, 9039-9043.	1.7	35
489	Enantioselective synthesis of bicyclo[3.n.1]alkanes by chiral phosphoric acid-catalyzed desymmetrizing Michael cyclizations. Chemical Science, 2015, 6, 3550-3555.	3.7	30
490	Diastereo- and Enantioselective Construction of 3,3′-Pyrrolidinyldispirooxindole Framework via Catalytic Asymmetric 1,3-Dipolar Cycloadditions. Journal of Organic Chemistry, 2015, 80, 5737-5744.	1.7	163
491	Highly Enantioselective SPINOLâ€Derived Phosphoric Acid Catalyzed Transfer Hydrogenation of Diverse C=Nâ€Containing Heterocycles. European Journal of Organic Chemistry, 2015, 2015, 3344-3351.	1.2	46
492	Enantioselective Synthesis of 3-Methyleneindan-1-ols via a One-Pot Allylboration–Heck Reaction of 2-Bromobenzaldehydes. Organic Letters, 2015, 17, 2514-2517.	2.4	15
493	Palladium-Catalyzed Asymmetric Arylation of C(sp ³)â€"H Bonds of Aliphatic Amides: Controlling Enantioselectivity Using Chiral Phosphoric Amides/Acids. Organic Letters, 2015, 17, 2458-2461.	2.4	167
494	Design of supramolecular chiral ligands for asymmetric metal catalysis. Tetrahedron Letters, 2015, 56, 2043-2048.	0.7	28
495	H8-BINOL chiral imidodiphosphoric acid catalyzed highly enantioselective aza-Friedel–Crafts reactions of pyrroles and enamides/imines. Chemical Communications, 2015, 51, 8054-8057.	2.2	35
496	Synthesis and Evaluation of 5,5′-Bitetralone-Based Chiral Phosphoric Acids. Organic Letters, 2015, 17, 4976-4979.	2.4	18
497	Chiral phosphoric acid catalyzed oxidative kinetic resolution of cyclic secondary amine derivatives including tetrahydroquinolines by hydrogen transfer to imines. Chemical Communications, 2015, 51, 16648-16651.	2.2	35
498	Synthesis and applications of exo N-((1R,2R,4R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl)benzamides as NMR solvating agents for the chiral discrimination of $1,1\hat{a}\in^2$ -binaphthyl-2, $2\hat{a}\in^2$ -diyl hydrogenphosphates and \hat{l} ±-substituted acids. Tetrahedron: Asymmetry, 2015, 26, 1102-1107.	1.8	12
499	Synthesis and structures of a chiral phosphine–phosphoric acid ligand and its rhodium(I) complexes. Tetrahedron: Asymmetry, 2015, 26, 1245-1250.	1.8	6
500	Phosphoric Acid-Catalyzed Asymmetric Classic Passerini Reaction. Journal of the American Chemical Society, 2015, 137, 14039-14042.	6.6	74
501	Catalytic Kinetic Resolution of Biaryl Compounds. Chemistry - A European Journal, 2015, 21, 11644-11657.	1.7	166
502	Enantioselective desymmetrization of prochiral allenic diols via cooperative catalysis of Pd(OAc)2 and a chiral phosphoric acid. Tetrahedron: Asymmetry, 2015, 26, 1150-1155.	1.8	11

#	Article	IF	CITATIONS
503	Catalytic asymmetric construction of spiro[pyrrolidine-2,3 \hat{a} \in 2-oxindole] scaffolds through chiral phosphoric acid-catalyzed 1,3-dipolar cycloaddition involving 3-amino oxindoles. Chemical Communications, 2015, 51, 15510-15513.	2.2	50
504	Regio-, Diastereo-, and Enantioselective Nitroso-Diels–Alder Reaction of 1,3-Diene-1-carbamates Catalyzed by Chiral Phosphoric Acids. Journal of the American Chemical Society, 2015, 137, 11950-11953.	6.6	79
505	Organocatalytic asymmetric desymmetrization of 4,4-disubstituted cyclohexadienones via an intermolecular Diels–Alder reaction. Organic and Biomolecular Chemistry, 2015, 13, 11039-11045.	1.5	25
506	Catalytic Chemo-, E/Z-, and Enantioselective Cyclizations of o-Hydroxybenzyl Alcohols with Dimedone-Derived Enaminones. Journal of Organic Chemistry, 2015, 80, 10016-10024.	1.7	64
507	Atroposelective Synthesis of Axially Chiral Biaryldiols via Organocatalytic Arylation of 2-Naphthols. Journal of the American Chemical Society, 2015, 137, 15062-15065.	6.6	242
508	Organocatalytic Asymmetric Synthesis of 1,1-Diarylethanes by Transfer Hydrogenation. Journal of the American Chemical Society, 2015, 137, 383-389.	6.6	262
509	Mechanistic Insights on Cooperative Catalysis through Computational Quantum Chemical Methods. ACS Catalysis, 2015, 5, 480-503.	5 . 5	88
510	Enantioselective Construction of Spiro[indoline-3,2′-pyrrole] Framework via Catalytic Asymmetric 1,3-Dipolar Cycloadditions Using Allenes as Equivalents of Alkynes. Journal of Organic Chemistry, 2015, 80, 512-520.	1.7	126
511	Squalene hopene cyclases are protonases for stereoselective BrÃ,nsted acid catalysis. Nature Chemical Biology, 2015, 11, 121-126.	3.9	83
512	Enantioselective Synthesis of Chiral Biaryl Chlorides/Iodides by a Chiral Phosphoric Acid Catalyzed Sequential Halogenation Strategy. Advanced Synthesis and Catalysis, 2015, 357, 35-40.	2.1	18
513	Catalytic, highly enantioselective, direct amination of enecarbamates. Chemical Communications, 2015, 51, 5383-5386.	2.2	28
514	Gold(I)/Chiral Brønsted Acid Catalyzed Enantioselective Hydroamination–Hydroarylation of Alkynes: The Effect of a Remote Hydroxyl Group on the Reactivity and Enantioselectivity. Chemistry - A European Journal, 2015, 21, 975-979.	1.7	38
515	BrÃ,nsted Acidâ€Catalyzed Threeâ€Component 1,3â€Dipolar Cycloadditions of 1,2â€Disubstituted Alkynes with Aldehydeâ€Generated Azomethine Ylides. Journal of Heterocyclic Chemistry, 2015, 52, 1055-1061.	1.4	4
516	Chiral Calcium–BINOL Phosphate Catalyzed Diastereo―and Enantioselective Synthesis of <i>syn</i> â€1,2â€Disubstituted 1,2â€Diamines: Scope and Mechanistic Studies. Chemistry - A European Journal, 2015, 21, 1704-1712.	1.7	34
517	Enantioselective Formation of All arbon Quaternary Stereocenters from Indoles and Tertiary Alcohols Bearing A Directing Group. Angewandte Chemie - International Edition, 2015, 54, 1910-1913.	7.2	261
518	Recent Advances in Dynamic Kinetic Resolution by Chiral Bifunctional (Thio)urea- and Squaramide-Based Organocatalysts. Molecules, 2016, 21, 1327.	1.7	22
519	A Powerful Chiral Phosphoric Acid Catalyst for Enantioselective Mukaiyama–Mannich Reactions. Angewandte Chemie - International Edition, 2016, 55, 8970-8974.	7.2	44
520	A Concise Oneâ€Pot Organo―and Biocatalyzed Preparation of Enantiopure Hexahydrofuro[2,3â€∢i>b⟨ i>]furanâ€3â€ol: An Approach to the Synthesis of HIV Protease Inhibitors. European Journal of Organic Chemistry, 2016, 2016, 1874-1880.	1.2	13

#	Article	IF	CITATIONS
521	Cyclization of an $\langle i \rangle \hat{1} \pm \langle i \rangle$, $\langle i \rangle \hat{1}^2 \langle i \rangle \hat{a} \in U$ nsaturated hydrazone catalyzed by a BINOL $\hat{a} \in P$ hosphoric acid: Pericyclic or not?. Journal of Computational Chemistry, 2016, 37, 280-285.	1.5	8
522	Organocatalytic Enantioselective Azaâ€Friedel–Crafts Reaction of Cyclic Ketimines with Pyrroles using Imidazolinephosphoric Acid Catalysts. Chemistry - A European Journal, 2016, 22, 9478-9482.	1.7	76
523	Enantioselective Allylation of βâ€Haloacrylaldehydes: Formal Total Syntheses of Pteroenone and Antillatoxin. European Journal of Organic Chemistry, 2016, 2016, 2110-2114.	1.2	16
524	Intermediateâ€Dependent Unusual [4+3], [3+2] and Cascade Reactions of 3â€Indolylmethanols: Controllable Chemodivergent and Stereoselective Synthesis of Diverse Indole Derivatives. Advanced Synthesis and Catalysis, 2016, 358, 1259-1288.	2.1	42
525	Chiral Phosphoric Acid Catalyzed Kinetic Resolution of Indolines Based on a Selfâ€Redox Reaction. Angewandte Chemie, 2016, 128, 3200-3204.	1.6	18
526	Enantioselective Oxetane Ring Opening with Chloride: Unusual Use of Wet Molecular Sieves for the Controlled Release of HCl. Angewandte Chemie - International Edition, 2016, 55, 6954-6958.	7.2	63
527	A Powerful Chiral Phosphoric Acid Catalyst for Enantioselective Mukaiyama–Mannich Reactions. Angewandte Chemie, 2016, 128, 9116-9120.	1.6	11
528	The Application of Nâ€Protected 3â€Vinylindoles in Chiral Phosphoric Acidâ€Catalyzed [3+2] Cyclization with 3â€Indolylmethanols: Monoactivation of the Catalyst to Vinyliminium. Advanced Synthesis and Catalysis, 2016, 358, 2017-2031.	2.1	64
529	Chiral Phosphoric Acid Catalyzed Asymmetric Ugi Reaction by Dynamic Kinetic Resolution of the Primary Multicomponent Adduct. Angewandte Chemie - International Edition, 2016, 55, 5282-5285.	7.2	95
530	Catalytic Enantioselective Construction of Sulfur-Containing Tetrasubstituted Carbon Stereocenters. ACS Catalysis, 2016, 6, 5319-5344.	5.5	118
531	Rational Design of Amine Nucleophiles for Dynamic Kinetic Resolution of Azlactones Leading to Highly Enantioselective Synthesis of Bisamides. Asian Journal of Organic Chemistry, 2016, 5, 914-919.	1.3	14
532	Enantioselective Oxetane Ring Opening with Chloride: Unusual Use of Wet Molecular Sieves for the Controlled Release of HCl. Angewandte Chemie, 2016, 128, 7068-7072.	1.6	16
533	Phosphoric Acid-Catalyzed Asymmetric Synthesis of SPINOL Derivatives. Journal of the American Chemical Society, 2016, 138, 16561-16566.	6.6	88
534	Ligandâ€Accelerated Direct Câ^'H Arylation of BINOL: A Rapid Oneâ€Step Synthesis of Racemic 3,3′â€Diaryl BINOLs. Angewandte Chemie, 2016, 128, 14322-14326.	1.6	26
535	An Enantioselective Bidentate Auxiliary Directed Palladiumâ€Catalyzed Benzylic Câ^'H Arylation of Amines Using a BINOL Phosphate Ligand. Angewandte Chemie, 2016, 128, 15613-15617.	1.6	46
536	A unified approach to pyrrole-embedded aza-heterocyclic scaffolds based on the RCM/isomerization/cyclization cascade catalyzed by a Ru/B-H binary catalyst system. RSC Advances, 2016, 6, 34428-34433.	1.7	10
537	Cofactor-Controlled Chirality of Tropoisomeric Ligand. Organometallics, 2016, 35, 1956-1963.	1.1	26
538	Dynamic Kinetic Resolution of Biaryl Lactones via a Chiral Bifunctional Amine Thiourea-Catalyzed Highly Atropo-enantioselective Transesterification. Journal of the American Chemical Society, 2016, 138, 6956-6959.	6.6	144

#	Article	IF	CITATIONS
539	Catalytic Enantioselective Conversion of Epoxides to Thiiranes. Journal of the American Chemical Society, 2016, 138, 5230-5233.	6.6	54
540	Transition State Models for Understanding the Origin of Chiral Induction in Asymmetric Catalysis. Accounts of Chemical Research, 2016, 49, 1019-1028.	7.6	118
541	Organocatalytic Transfer Hydrogenation and Hydrosilylation Reactions. Topics in Current Chemistry, 2016, 374, 29.	3.0	20
542	Selective removal of isoquinoline and quinoline from simulated fuel using 1,1′-binaphthyl-2,2′-diol (BINOL): crystal structure and evaluation of the adduct electronic properties. RSC Advances, 2016, 6, 39024-39038.	1.7	6
543	A Disulfonimide Catalyst for Highly Enantioselective Mukaiyama–Mannich Reaction. Organic Letters, 2016, 18, 4974-4977.	2.4	21
544	Catalytic Enantioselective and Regioselective [3+3] Cycloadditions Using 2â€Indolylmethanols as 3 C Building Blocks. Chemistry - A European Journal, 2016, 22, 17526-17532.	1.7	84
545	Sequential Deprotonation–Alkylation of Binaphthyloxy-Substituted Phosphonochalcogenoates: Chiral Tri- and Tetrasubstituted Carbon Centers Adjacent to a Phosphorus Atom. Organic Letters, 2016, 18, 5264-5267.	2.4	12
546	Polystyrene-Supported TRIP: A Highly Recyclable Catalyst for Batch and Flow Enantioselective Allylation of Aldehydes. ACS Catalysis, 2016, 6, 7647-7651.	5 . 5	77
547	Catalytic Asymmetric Piancatelli Rearrangement: Brønsted Acid Catalyzed 4Ï€â€Electrocyclization for the Synthesis of Multisubstituted Cyclopentenones. Angewandte Chemie - International Edition, 2016, 55, 14126-14130.	7.2	60
548	Ligandâ€Accelerated Direct Câ^'H Arylation of BINOL: A Rapid Oneâ€Step Synthesis of Racemic 3,3′â€Diaryl BINOLs. Angewandte Chemie - International Edition, 2016, 55, 14116-14120.	7.2	73
549	Use of a Catalytic Chiral Leaving Group for Asymmetric Substitutions at sp ³ â∈Hybridized Carbon Atoms: Kinetic Resolution of βâ∈Amino Alcohols by <i>p</i> â∈Methoxybenzylation. Angewandte Chemie, 2016, 128, 13331-13335.	1.6	15
550	Imidodiphosphoric acid catalysis. Tetrahedron, 2016, 72, 5247-5255.	1.0	17
551	Concise Asymmetric Total Synthesis of <i>ent</i> â€Ancistrocladinium A. Advanced Synthesis and Catalysis, 2016, 358, 2883-2888.	2.1	12
552	Enantiodivergent Atroposelective Synthesis of Chiral Biaryls by Asymmetric Transfer Hydrogenation: Chiral Phosphoric Acid Catalyzed Dynamic Kinetic Resolution. Angewandte Chemie, 2016, 128, 11814-11818.	1.6	71
553	Enantiodivergent Atroposelective Synthesis of Chiral Biaryls by Asymmetric Transfer Hydrogenation: Chiral Phosphoric Acid Catalyzed Dynamic Kinetic Resolution. Angewandte Chemie - International Edition, 2016, 55, 11642-11646.	7.2	167
554	BrÃ,nstedâ€sÃæreâ€katalysierte Addition von Enamiden an <i>ortho</i> òe€Chinonmethidimine – ein effizienter und hoch enantioselektiver Zugang zu chiralen Tetrahydroacridinen. Angewandte Chemie, 2016, 128, 9941-9946.	1.6	29
555	Synthesis of Optically Pure 3,3′-Disubstituted-1,1′-Bi-6-Methoxy-2-Phenol (BIPhOL) Derivatives via Diastereomeric Resolution. Journal of Organic Chemistry, 2016, 81, 8464-8469.	1.7	6
556	Practical Synthesis of Axially Chiral Dicarboxylates <i>via</i> Pd-Catalyzed External-CO-Free Carbonylation. Chemical and Pharmaceutical Bulletin, 2016, 64, 1438-1441.	0.6	12

#	Article	IF	CITATIONS
557	Enantioselective Construction of Cyclic Enaminoneâ€Based 3â€Substituted 3â€Aminoâ€2â€oxindole Scaffolds <i>via</i> Catalytic Asymmetric Additions of Isatinâ€Derived Imines. Advanced Synthesis and Catalysis, 2016, 358, 3069-3083.	2.1	43
558	Competing Noncovalent Interactions Control the Stereoselectivity of Chiral Phosphoric Acid Catalyzed Ring Openings of 3-Substituted Oxetanes. ACS Catalysis, 2016, 6, 7222-7228.	5.5	41
559	Asymmetric Cycloetherification via the Kinetic Resolution of Alcohols Using Chiral Phosphoric Acid Catalysts. Chemistry Letters, 2016, 45, 1300-1303.	0.7	16
560	Use of a Catalytic Chiral Leaving Group for Asymmetric Substitutions at sp ³ â€Hybridized Carbon Atoms: Kinetic Resolution of βâ€Amino Alcohols by <i>p</i> â€Methoxybenzylation. Angewandte Chemie - International Edition, 2016, 55, 13137-13141.	7.2	38
561	BrÃ,nsted Acid Catalyzed Addition of Enamides to <i>ortho</i> â€Quinone Methide Iminesâ€"An Efficient and Highly Enantioselective Synthesis of Chiral Tetrahydroacridines. Angewandte Chemie - International Edition, 2016, 55, 9788-9792.	7.2	77
562	Catalytic Asymmetric Nucleophilic Addition of 3-Vinyl Indoles to Imines. Organic Letters, 2016, 18, 3874-3877.	2.4	25
563	Recent Developments in the Chiral BrÃ,nsted Acidâ€catalyzed Allylboration Reaction with Polyfunctionalized Substrates. Chemical Record, 2016, 16, 2046-2060.	2.9	22
564	N-Heterocyclic Carbene and Chiral BrÃ, nsted Acid Cooperative Catalysis for a Highly Enantioselective [4+2] Annulation. Synthesis, 2016, 49, 293-298.	1.2	24
565	Catalytic Asymmetric [3+2] Cycloadditions of Câ€3 Unsubstituted 2â€Indolylmethanols: Regioâ€, Diastereo†and Enantioselective Construction of the Cyclopenta[<i>b</i> i>dole Framework. Advanced Synthesis and Catalysis, 2016, 358, 3797-3808.	2.1	74
566	An Enantioselective Bidentate Auxiliary Directed Palladium atalyzed Benzylic Câ^'H Arylation of Amines Using a BINOL Phosphate Ligand. Angewandte Chemie - International Edition, 2016, 55, 15387-15391.	7.2	142
567	Catalytic Enantioselective Azaâ€Piancatelli Rearrangement. Angewandte Chemie - International Edition, 2016, 55, 15125-15128.	7.2	49
568	An Arylation Strategy to Propargylamines: Catalytic Asymmetric Friedel–Craftsâ€type Arylation Reactions of Câ€Alkynyl Imines. Angewandte Chemie - International Edition, 2016, 55, 15142-15146.	7.2	60
569	BrÃ, nsted Acid Catalyzed [3 + 2]-Cycloaddition of Cyclic Enamides with <i>in Situ</i> Generated 2-Methide-2 <i>H</i> -indoles: Enantioselective Synthesis of Indolo[1,2- <i>a</i>) indoles. Organic Letters, 2016, 18, 5660-5663.	2.4	81
570	Catalytic Enantioselective Azaâ€Piancatelli Rearrangement. Angewandte Chemie, 2016, 128, 15349-15352.	1.6	11
571	An Arylation Strategy to Propargylamines: Catalytic Asymmetric Friedel–Craftsâ€ŧype Arylation Reactions of Câ€Alkynyl Imines. Angewandte Chemie, 2016, 128, 15366-15370.	1.6	9
572	Catalytic Asymmetric Piancatelli Rearrangement: Brønsted Acid Catalyzed 4Ï€â€Electrocyclization for the Synthesis of Multisubstituted Cyclopentenones. Angewandte Chemie, 2016, 128, 14332-14336.	1.6	16
573	Chiral Phosphoric Acid-Catalyzed Enantioselective Reductive Amination of 2-Pyridyl Ketones: Construction of Structurally Chiral Pyridine-Based Ligands. Journal of Organic Chemistry, 2016, 81, 11384-11388.	1.7	9
574	Chiral Phosphoric Acid Catalyzed Asymmetric Ugi Reaction by Dynamic Kinetic Resolution of the Primary Multicomponent Adduct. Angewandte Chemie, 2016, 128, 5368-5371.	1.6	65

#	ARTICLE	IF	CITATIONS
575	Remarkable Differences in Reactivity between Benzothiazoline and Hantzsch Ester as a Hydrogen Donor in Chiral Phosphoric Acid Catalyzed Asymmetric Reductive Amination of Ketones. Chemistry - an Asian Journal, 2016, 11, 274-279.	1.7	12
576	Organocatalytic Enantioselective Synthesis of 1,4â€Dioxanes and Other Oxaâ€Heterocycles by Oxetane Desymmetrization. Angewandte Chemie, 2016, 128, 1900-1903.	1.6	25
577	Highly enantioselective [3+2] coupling of cyclic enamides with quinone monoimines promoted by a chiral phosphoric acid. Chemical Communications, 2016, 52, 8757-8760.	2.2	27
578	Chiral Phosphoric Acid Catalyzed [3 + 2] Cycloaddition and Tandem Oxidative [3 + 2] Cycloaddition: Asymmetric Synthesis of Substituted 3-Aminodihydrobenzofurans. Organic Letters, 2016, 18, 3422-3425.	2.4	57
579	Phosphoric Acid Catalyzed Asymmetric 1,6â€Conjugate Addition of Thioacetic Acid to <i>para</i> â€Quinone Methides. Angewandte Chemie, 2016, 128, 1482-1486.	1.6	47
580	Phosphoric Acid Catalyzed Asymmetric 1,6â€Conjugate Addition of Thioacetic Acid to <i>para</i> Acid to <i< td=""><td>7.2</td><td>202</td></i<>	7.2	202
581	Organocatalytic Enantioselective Synthesis of 1,4â€Dioxanes and Other Oxaâ€Heterocycles by Oxetane Desymmetrization. Angewandte Chemie - International Edition, 2016, 55, 1868-1871.	7.2	78
582	Chiral Phosphoric Acid Catalyzed Kinetic Resolution of Indolines Based on a Selfâ€Redox Reaction. Angewandte Chemie - International Edition, 2016, 55, 3148-3152.	7.2	56
583	BrÃ,nsted Acid Catalyzed [3+2]â€Cycloaddition of 2â€Vinylindoles with Inâ€Situ Generated 2â€Methideâ€2 <i>H</i> àêindoles: Highly Enantioselective Synthesis of Pyrrolo[1,2â€ <i>a</i> jindoles. Chemistry - A European Journal, 2016, 22, 7074-7078.	1.7	88
584	A new generation of chiral phase-transfer catalysts. Organic and Biomolecular Chemistry, 2016, 14, 5367-5376.	1.5	115
585	Diastereo- and enantioselective construction of an indole-based 2,3-dihydrobenzofuran scaffold via catalytic asymmetric [3+2] cyclizations of quinone monoimides with 3-vinylindoles. Chemical Communications, 2016, 52, 2968-2971.	2.2	61
586	Merging Chiral Br \tilde{A}_i nsted Acid/Base Catalysis: An Enantioselective [4 \hat{A} + 2] Cycloaddition of <i>>0</i> -Hydroxystyrenes with Azlactones. Journal of Organic Chemistry, 2016, 81, 1681-1688.	1.7	101
587	Chiral Brønsted acid-catalyzed alkylation of C3-substituted indoles with o-hydroxybenzyl alcohols: highly enantioselective synthesis of diarylindol-2-ylmethanes and evaluation on their cytotoxicity. Tetrahedron: Asymmetry, 2016, 27, 307-316.	1.8	24
588	Organocatalytic Asymmetric Synthesis of Dihydrobenzoxazinones Bearing Trifluoromethylated Quaternary Stereocenters. Journal of Organic Chemistry, 2016, 81, 2019-2026.	1.7	56
589	Catalytic Asymmetric Synthesis of <i>anti</i> -α,β-Diamino Acid Derivatives. Organic Letters, 2016, 18, 696-699.	2.4	36
590	Phosphonoselenoic acid esters from the reaction between phosphoroselenoyl chlorides and Grignard reagents: synthetic and stereochemical aspects. RSC Advances, 2016, 6, 15180-15183.	1.7	11
591	QM/MM study on the enantioselectivity of spiroacetalization catalysed by an imidodiphosphoric acid catalyst: how confinement works. Organic and Biomolecular Chemistry, 2016, 14, 3031-3039.	1.5	24
592	Application of 3-Methyl-2-vinylindoles in Catalytic Asymmetric Povarov Reaction: Diastereo- and Enantioselective Synthesis of Indole-Derived Tetrahydroquinolines. Journal of Organic Chemistry, 2016, 81, 185-192.	1.7	89

#	Article	IF	Citations
593	A case study of proton shuttling in palladium catalysis. Chemical Science, 2016, 7, 2179-2187.	3.7	32
594	Catalytic asymmetric chemoselective 1,3-dipolar cycloadditions of an azomethine ylide with isatin-derived imines: diastereo- and enantioselective construction of a spiro[imidazolidine-2,3′-oxindole] framework. Chemical Communications, 2016, 52, 1804-1807.	2.2	136
595	Highly Atroposelective Synthesis of Arylpyrroles by Catalytic Asymmetric Paal–Knorr Reaction. Journal of the American Chemical Society, 2017, 139, 1714-1717.	6.6	255
596	Chiral Phosphoric Acid Catalyzed Intramolecular Dearomative Michael Addition of Indoles to Enones. Organic Letters, 2017, 19, 762-765.	2.4	52
597	Asymmetric Catalysis of the Carbonyl-Amine Condensation: Kinetic Resolution of Primary Amines. Journal of the American Chemical Society, 2017, 139, 1357-1359.	6.6	41
598	A catalytic enantioselective approach to tetrol bearing vicinal all-carbon quaternary stereogenic centers. Chemical Communications, 2017, 53, 3737-3740.	2.2	20
599	Br \tilde{A} ,nsted acid-catalyzed stereoselective [4+3] cycloadditions of ortho-hydroxybenzyl alcohols with N,N \hat{a} \in 2-cyclic azomethine imines. Chemical Communications, 2017, 53, 2768-2771.	2,2	80
600	Phosphoric Acid Catalyzed 1,2â€Rearrangements of 3â€Hydroxyindolenines to Indoxyls and 2â€Oxindoles: Reagentâ€Controlled Regioselectivity Enabled by Dual Activation. European Journal of Organic Chemistry, 2017, 2017, 3134-3138.	1.2	25
601	Controlling the Reactivity of Ferrocenyl Carbocations: Routes to Enantiomerically Pure Chlorophosphites and Solidâ€State Characterization of a Benzopentalene Dimer. European Journal of Organic Chemistry, 2017, 2017, 2848-2854.	1.2	4
602	Asymmetric synthesis of CF ₃ - and indole-containing tetrahydro-β-carbolines via chiral spirocyclic phosphoric acid-catalyzed aza-Friedel–Crafts reaction. Organic Chemistry Frontiers, 2017, 4, 1407-1410.	2.3	37
603	Construction of Chiral Tetrahydroâ€Î²â€Carbolines: Asymmetric Pictet–Spengler Reaction of Indolyl Dihydropyridines. Angewandte Chemie, 2017, 129, 7548-7551.	1.6	30
604	Diastereo- and enantioselective construction of spirooxindole scaffolds through a catalytic asymmetric [3 + 3] cycloaddition. Organic and Biomolecular Chemistry, 2017, 15, 4794-4797.	1.5	29
605	Catalytic Asymmetric 1,2â€Difunctionalization of Indolenines with αâ€(Benzothiazolâ€2â€ylsulfonyl) Carbonyl Compounds. Advanced Synthesis and Catalysis, 2017, 359, 2549-2556.	2.1	17
606	Chiral Phosphoric Acid-Catalyzed Kinetic Resolution via Amide Bond Formation. Journal of the American Chemical Society, 2017, 139, 6855-6858.	6.6	24
607	Construction of Chiral Tetrahydroâ€Î²â€Carbolines: Asymmetric Pictet–Spengler Reaction of Indolyl Dihydropyridines. Angewandte Chemie - International Edition, 2017, 56, 7440-7443.	7.2	84
608	Enantioselective [4 + 2] Cycloaddition of o-Quinone Methides and Vinyl Sulfides: Indirect Access to Generally Substituted Chiral Chromanes. Organic Letters, 2017, 19, 2334-2337.	2.4	108
609	BrÃ,nsted acid-catalysed enantioselective construction of axially chiral arylquinazolinones. Nature Communications, 2017, 8, 15489.	5.8	115
610	Catalytic Asymmetric [3+3] Cycloaddition of Azomethine Ylides with C3â€Substituted 2â€Indolylmethanols. Advanced Synthesis and Catalysis, 2017, 359, 2660-2670.	2.1	51

#	Article	IF	Citations
611	Study of a new â€~chiral proton' organocatalyst with hydrolase activity: application in azlactone racemic dynamic resolution. Tetrahedron: Asymmetry, 2017, 28, 819-823.	1.8	4
612	A surface molecularly imprinted polymer as chiral stationary phase for chiral separation of 1,1′â€binaphthaleneâ€2â€naphthol racemates. Chirality, 2017, 29, 340-347.	1.3	13
613	Asymmetric [3+2] cycloaddition of 3-amino oxindole-based azomethine ylides with $\hat{l}\pm,\hat{l}^2$ -ynones: a straightforward approach to spirooxindoles incorporating 2,5-dihydropyrroles and pyrroles. Chemical Communications, 2017, 53, 4714-4717.	2.2	34
614	Highly Efficient Atomâ€Economic Synthesis of Chiral Bis(indolyl)methanes Bearing Quaternary Stereogenic Carbon Centers. ChemCatChem, 2017, 9, 3107-3110.	1.8	30
615	BrÃ, nsted acid-catalyzed, enantioselective synthesis of 1,4-dihydroquinoline-3-carboxylates via in situ generated ortho-quinone methide imines. Organic and Biomolecular Chemistry, 2017, 15, 3706-3716.	1.5	35
616	Concise catalytic asymmetric total syntheses of ancistrocladinium A and its atropdiastereomer. Organic Chemistry Frontiers, 2017, 4, 1341-1349.	2.3	5
617	Asymmetric [3 + 2] Cycloaddition of 3-Amino Oxindole-Based Azomethine Ylides and \hat{l}_{\pm},\hat{l}^2 -Enones with Divergent Diastereocontrol on the Spiro[pyrrolidine-oxindoles]. Organic Letters, 2017, 19, 1862-1865.	2.4	61
618	Highâ€Pressure Accelerated Enantioselective Addition of Indoles to Trifluoromethyl Ketones with a Low Loading of Chiral BINOLâ€Derived Phosphoric Acid. ChemCatChem, 2017, 9, 2453-2456.	1.8	17
619	Enantioselective Direct \hat{l}_{\pm} -Arylation of Pyrazol-5-ones with 2-Indolylmethanols via Organo-Metal Cooperative Catalysis. Organic Letters, 2017, 19, 1542-1545.	2.4	68
620	Synthesis of a novel sterically hindered chiral cyclic phosphoric acid derived from l-tartaric acid and application to the asymmetric catalytic Biginelli reaction. Tetrahedron: Asymmetry, 2017, 28, 69-74.	1.8	18
621	Catalytic asymmetric substitution of ortho-hydroxybenzyl alcohols with tetronic acid-derived enamines: enantioselective synthesis of tetronic acid-derived diarylmethanes. Organic Chemistry Frontiers, 2017, 4, 358-368.	2.3	32
622	Synthesis of annulated bis-indoles through Au(<scp>i</scp>)/Brønsted acid-catalyzed reactions of (1H-indol-3-yl)(aryl)methanols with 2-(arylethynyl)-1H-indoles. Organic and Biomolecular Chemistry, 2017, 15, 863-869.	1.5	32
623	Frustrated Lewis Acid/Brønsted Base Catalysts for Direct Enantioselective α-Amination of Carbonyl Compounds. Journal of the American Chemical Society, 2017, 139, 95-98.	6.6	96
624	Carbene and Acid Cooperative Catalytic Reactions of Aldehydes and <i>o</i> -Hydroxybenzhydryl Amines for Highly Enantioselective Access to Dihydrocoumarins. Organic Letters, 2017, 19, 5892-5895.	2.4	42
625	Self-Supported BINOL-Derived Phosphoric Acid Based on a Chiral Carbazolic Porous Framework. Organic Letters, 2017, 19, 6072-6075.	2.4	24
626	Catalytic asymmetric chemodivergent arylative dearomatization of tryptophols. Chemical Communications, 2017, 53, 12124-12127.	2.2	47
627	Enantioselective Construction of Cyclopenta[$\langle i \rangle b \langle i \rangle$]indole Scaffolds via the Catalytic Asymmetric [3 + 2] Cycloaddition of 2-Indolylmethanols with $\langle i \rangle p \langle i \rangle$ -Hydroxystyrenes. Journal of Organic Chemistry, 2017, 82, 10226-10233.	1.7	48
628	Catalytic asymmetric C2-nucleophilic substitutions of C3-substituted indoles with ortho-hydroxybenzyl alcohols. Organic Chemistry Frontiers, 2017, 4, 2465-2479.	2.3	39

#	Article	IF	Citations
629	Catalyst-Controlled Chemoselective and Enantioselective Reactions of Tryptophols with Isatin-Derived Imines. ACS Catalysis, 2017, 7, 6984-6989.	5 . 5	94
630	Chiral triptycene-pyrene π-conjugated chromophores with circularly polarized luminescence. Organic and Biomolecular Chemistry, 2017, 15, 8440-8447.	1.5	35
632	Enantioselective Oxidative (4+3) Cycloadditions between Allenamides and Furans through Bifunctional Hydrogenâ∈Bonding/Ionâ∈Pairing Interactions. Angewandte Chemie - International Edition, 2017, 56, 10535-10538.	7.2	54
633	Enantioselective Oxidative (4+3) Cycloadditions between Allenamides and Furans through Bifunctional Hydrogenâ€Bonding/Ionâ€Pairing Interactions. Angewandte Chemie, 2017, 129, 10671-10674.	1.6	13
634	Enantioselective Organocatalytic Intramolecular Azaâ€Diels–Alder Reaction. Angewandte Chemie, 2017, 129, 10709-10712.	1.6	13
635	Relay Catalysis: Manganese(III) Phosphate Catalyzed Asymmetric Addition of β-Dicarbonyls to <i>ortho</i> -Quinone Methides Generated by Catalytic Aerobic Oxidation. Organic Letters, 2017, 19, 4588-4591.	2.4	68
636	Chiral Atropisomeric 8,8′-Diiodobinaphthalene for Asymmetric Dearomatizing Spirolactonizations in Hypervalent Iodine Oxidations. Journal of Organic Chemistry, 2017, 82, 11954-11960.	1.7	59
637	Enantioselective synthesis of cyclic quaternary \hat{l}_{\pm} -amino acid derivatives by chiral phosphoric acid catalysis. Organic and Biomolecular Chemistry, 2017, 15, 6033-6041.	1.5	19
638	Indolylmethanols as Reactants in Catalytic Asymmetric Reactions. Journal of Organic Chemistry, 2017, 82, 7695-7707.	1.7	142
639	Enantioselective Organocatalytic Intramolecular Azaâ€Diels–Alder Reaction. Angewandte Chemie - International Edition, 2017, 56, 10573-10576.	7.2	41
640	Design and Enantioselective Construction of Axially Chiral Naphthylâ€Indole Skeletons. Angewandte Chemie, 2017, 129, 122-127.	1.6	82
641	Design and Enantioselective Construction of Axially Chiral Naphthylâ€Indole Skeletons. Angewandte Chemie - International Edition, 2017, 56, 116-121.	7.2	274
642	The Brønsted Acidâ€Catalyzed, Enantioselective Azaâ€Dielsâ€"Alder Reaction for the Direct Synthesis of Chiral Piperidones. Chemistry - A European Journal, 2017, 23, 513-518.	1.7	31
643	Diastereo- and enantioselective construction of biologically important pyrrolo $[1,2-a]$ indole scaffolds via catalytic asymmetric $[3+2]$ cyclodimerizations of 3-alkyl-2-vinylindoles. Organic Chemistry Frontiers, 2017, 4, 57-68.	2.3	28
644	Integration of aerobic oxidation and intramolecular asymmetric aza-Friedel–Crafts reactions with a chiral bifunctional heterogeneous catalyst. Chemical Science, 2017, 8, 1356-1359.	3.7	20
645	Synthesis of (R)-Modafinil via Organocatalyzed and Non-Heme Iron-Catalyzed Sulfoxidation Using H2O2 as an Environmentally Benign Oxidant. Symmetry, 2017, 9, 88.	1.1	5
646	The Design of Environmentally-Benign, High-Performance Organocatalysts for Asymmetric Catalysis. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2017, 75, 1141-1149.	0.0	0
647	Phosphoric Acid Catalyzed Asymmetric [2+2] Cyclization/Penicillin–Penillonic Acid Rearrangement. Angewandte Chemie - International Edition, 2018, 57, 4921-4925.	7.2	29

#	Article	IF	Citations
648	Catalytic Asymmetric [2+3] Cyclizations of Azlactones with Azonaphthalenes. Angewandte Chemie - International Edition, 2018, 57, 5398-5402.	7.2	93
649	Asymmetric Induction via a Helically Chiral Anion: Enantioselective Pentacarboxycyclopentadiene Brnsted Acid-Catalyzed Inverse-Electron-Demand Diels–Alder Cycloaddition of Oxocarbenium Ions. Journal of the American Chemical Society, 2018, 140, 3523-3527.	6.6	55
650	Intramolecular Azaâ€Diels–Alder Reactions of <i>ortho</i> à€Quinone Methide Imines: Rapid, Catalytic, and Enantioselective Assembly of Benzannulated Quinolizidines. Angewandte Chemie - International Edition, 2018, 57, 4774-4778.	7.2	39
651	Catalytic Enantioselective 1,3â€Alkyl Shift in Alkyl Aryl Ethers: Efficient Synthesis of Optically Active 3,3′â€Diaryloxindoles. Angewandte Chemie - International Edition, 2018, 57, 5735-5739.	7.2	24
652	Application of 7â€Indolylmethanols in Catalytic Asymmetric Arylations with Tryptamines: Enantioselective Synthesis of 7â€Indolylmethanes. Advanced Synthesis and Catalysis, 2018, 360, 1850-1860.	2.1	29
653	Phosphoric Acid Catalyzed Asymmetric [2+2] Cyclization/Penicillin–Penillonic Acid Rearrangement. Angewandte Chemie, 2018, 130, 5015-5019.	1.6	13
654	Oxidative Asymmetric Azaâ€Friedel–Crafts Alkylation of Indoles with 3â€Indolinoneâ€2â€carboxylates Catalyzed by a BINOL Phosphoric Acid and Promoted by DDQ. Chemistry - an Asian Journal, 2018, 13, 1327-1334.	1.7	18
655	Chiral BrÃ,nsted Acid Catalyzed Enantioselective Dehydrative Nazarov-Type Electrocyclization of Aryl and 2-Thienyl Vinyl Alcohols. Journal of the American Chemical Society, 2018, 140, 5834-5841.	6.6	33
656	Intramolekulare Azaâ€Dielsâ€Alderâ€Reaktionen von <i>ortho</i> òrthoòrthoòrthoofie methidiminen – ein schneller, katalytischer und enantioselektiver Aufbau benzanellierter Chinolizidine. Angewandte Chemie, 2018, 130, 4864-4868.	1.6	14
657	Covalent or Nonâ€Covalent? A Mechanistic Insight into the Enantioselective Brønsted Acid Catalyzed Dearomatization of Indoles with Allenamides. ChemCatChem, 2018, 10, 2442-2449.	1.8	18
658	Cooperative Catalysis-Enabled Asymmetric \hat{l} ±-Arylation of Aldehydes Using 2-Indolylmethanols as Arylation Reagents. Journal of Organic Chemistry, 2018, 83, 5027-5034.	1.7	38
659	Application of Green Chemistry in Homogeneous Catalysis. , 2018, , 375-414.		4
660	Diastereo- and enantioselective construction of chiral cyclopenta[b]indole framework via a catalytic asymmetric tandem cyclization of 2-indolymethanols with 2-naphthols. Organic Chemistry Frontiers, 2018, 5, 1436-1445.	2.3	22
661	Biomimetic Desymmetrization of a Carboxylic Acid. Journal of the American Chemical Society, 2018, 140, 1998-2001.	6.6	37
662	Chiral Phosphoric Acid Catalyzed Enantioselective Ring Expansion Reaction of 1,3-Dithiane Derivatives: Case Study of the Nature of Ion-Pairing Interaction. Journal of the American Chemical Society, 2018, 140, 2629-2642.	6.6	42
663	Organocatalytic asymmetric synthesis of benzazepinoindole derivatives with trifluoromethylated quaternary stereocenters by chiral phosphoric acid catalysts. Organic and Biomolecular Chemistry, 2018, 16, 1367-1374.	1.5	25
664	Direct C3-arylations of 2-indolylmethanols with tryptamines and tryptophols <i>via</i> an umpolung strategy. Organic and Biomolecular Chemistry, 2018, 16, 1536-1542.	1.5	14
665	Catalytically Enantioselective Synthesis of Acyclic \hat{l}_{\pm} -Tertiary Amines through Desymmetrization of 2-Substituted 2-Nitro-1,3-diols. Organic Letters, 2018, 20, 518-521.	2.4	26

#	Article	IF	CITATIONS
666	Enantioselectivity in CPA-catalyzed Friedel–Crafts reaction of indole and <i>N</i> -tosylimines: a challenge for guiding models. Organic and Biomolecular Chemistry, 2018, 16, 2225-2238.	1.5	11
667	Streamlined asymmetric α-difunctionalization of ynones. Nature Communications, 2018, 9, 375.	5.8	20
668	Catalytic Asymmetric [4+2] Cycloaddition of in Situ Generated <i>o</i> -Quinone Methide Imines with <i>o</i> -Hydroxystyrenes: Diastereo- and Enantioselective Construction of Tetrahydroquinoline Frameworks. Journal of Organic Chemistry, 2018, 83, 614-623.	1.7	46
669	Catalytic Kinetic Resolution of Spiro-Epoxyoxindoles with 1-Naphthols: Switchable Asymmetric Tandem Dearomatization/Oxa-Michael Reaction and Friedel–Crafts Alkylation of 1-Naphthols at the C4 Position. ACS Catalysis, 2018, 8, 1810-1816.	5.5	44
670	Catalytic Asymmetric Dearomatization of Indolyl Dihydropyridines through an Enamine Isomerization/Spirocyclization/Transfer Hydrogenation Sequence. Angewandte Chemie, 2018, 130, 2683-2686.	1.6	12
671	Catalytic Asymmetric Dearomatization of Indolyl Dihydropyridines through an Enamine Isomerization/Spirocyclization/Transfer Hydrogenation Sequence. Angewandte Chemie - International Edition, 2018, 57, 2653-2656.	7.2	59
672	Catalytic Enantioselective 1,3â€Alkyl Shift in Alkyl Aryl Ethers: Efficient Synthesis of Optically Active 3,3′â€Diaryloxindoles. Angewandte Chemie, 2018, 130, 5837-5841.	1.6	7
673	The True Catalyst Revealed: The Intervention of Chiral Ca and Mg Phosphates in Brønsted Acid Promoted Asymmetric Mannich Reactions. Journal of the American Chemical Society, 2018, 140, 5412-5420.	6.6	21
674	Catalytic Asymmetric [2+3] Cyclizations of Azlactones with Azonaphthalenes. Angewandte Chemie, 2018, 130, 5496-5500.	1.6	56
675	Chiral proton-transfer shuttle catalysts for carbene insertion reactions. Organic and Biomolecular Chemistry, 2018, 16, 3087-3094.	1.5	160
676	Theoretical insight into phosphoric acid-catalyzed asymmetric conjugate addition of indolizines to \hat{l}_{\pm}, \hat{l}^2 -unsaturated ketones. Chinese Chemical Letters, 2018, 29, 1237-1241.	4.8	26
677	Dynamic kinetic resolution of biaryl atropisomers by chiral dialkylaminopyridine catalysts. Organic and Biomolecular Chemistry, 2018, 16, 3121-3126.	1.5	18
678	Enantioselective BrÃ,nsted Acid Catalysis as a Tool for the Synthesis of Natural Products and Pharmaceuticals. Chemistry - A European Journal, 2018, 24, 3925-3943.	1.7	139
679	Catalytic Enantioselective Tautomerization of Metastable Enamines. Organic Letters, 2018, 20, 244-247.	2.4	30
680	Design of C3â€Alkenylâ€Substituted 2â€Indolylmethanols for Catalytic Asymmetric Interrupted Nazarovâ€Type Cyclization. Advanced Synthesis and Catalysis, 2018, 360, 846-851.	2.1	36
681	A BrÃ,nsted acid-promoted asymmetric intramolecular allylic amination of alcohols. Organic and Biomolecular Chemistry, 2018, 16, 380-383.	1.5	15
682	Enantioselective Synthesis of βâ€Aminotetralins via Chiral Phosphoric Acidâ€catalyzed Reductive Amination of βâ€Tetralones. Advanced Synthesis and Catalysis, 2018, 360, 462-467.	2.1	16
683	Phosphor-doped hexagonal boron nitride nanosheets as effective acid–base bifunctional catalysts for one-pot deacetalization–Knoevenagel cascade reactions. Catalysis Science and Technology, 2018, 8, 5900-5905.	2.1	24

#	Article	IF	CITATIONS
684	Phosphoric Acid Catalyzed $[4+1]$ -Cycloannulation Reaction of <i>ortho</i> -Quinone Methides and Diazoketones: Catalytic, Enantioselective Access toward <i>cis</i> -2,3-Dihydrobenzofurans. Organic Letters, 2018, 20, 7576-7580.	2.4	74
685	Enantioselective Allenylation of Aldehydes via Brønsted Acid Catalysis. Advanced Synthesis and Catalysis, 2018, 360, 4634-4639.	2.1	47
686	A Highly Enantio―and Diastereoselective Synthesis of Spirocyclic Dihydroquinolones via Domino Michael Additionâ€Lactamization of ortho â€Quinone Methide Imines. Chemistry - A European Journal, 2018, 24, 18082-18088.	1.7	21
687	Enantioselective Synthesis of Tetrahydroquinolines from 2-Aminochalcones via a Consecutive One-Pot Reaction Catalyzed by Chiral Phosphoric Acid. Journal of Organic Chemistry, 2018, 83, 12486-12495.	1.7	25
688	Diastereoselective synthesis of 1,3-disubstituted isoindolines and sultams <i>via</i> bronsted acid catalysis. Chemical Communications, 2018, 54, 11292-11295.	2.2	13
689	Enantioselective Intramolecular Nicholas Reaction Catalyzed by Chiral Phosphoric Acid: Enantioconvergent Synthesis of Sevenâ€Membered Cyclic Ethers from Racemic Diols. Angewandte Chemie, 2018, 130, 14113-14117.	1.6	6
690	Enantioselective Intramolecular Nicholas Reaction Catalyzed by Chiral Phosphoric Acid: Enantioconvergent Synthesis of Sevenâ€Membered Cyclic Ethers from Racemic Diols. Angewandte Chemie - International Edition, 2018, 57, 13917-13921.	7.2	24
691	Protonated Bis-1,2,3-triazole as an Anion-Binding Chiral BrÃ,nsted Acid for Catalytic Asymmetric Friedel–Crafts Reaction of Indoles with Imines. Bulletin of the Chemical Society of Japan, 2018, 91, 1252-1257.	2.0	6
692	Synergisticâ€Catalysisâ€Enabled Reaction of 2â€Indolymethanols with Oxonium Ylides for the Construction of 3â€Indolylâ€3â€Alkoxy Oxindole Frameworks. Chemistry - an Asian Journal, 2018, 13, 2549-2558.	1.7	62
693	Development and application of chiral spirocyclic phosphoric acids in asymmetric catalysis. Organic and Biomolecular Chemistry, 2018, 16, 4753-4777.	1.5	121
694	Catalytic Enantioselective Cloke–Wilson Rearrangement. Angewandte Chemie, 2018, 130, 8357-8361.	1.6	36
695	Asymmetric organocatalytic synthesis of chiral 3,3-disubstituted oxindoles <i>via</i> a 1,6-conjugate addition reaction. Organic and Biomolecular Chemistry, 2018, 16, 5301-5309.	1.5	17
696	Catalytic Glycosylations in Oligosaccharide Synthesis. Chemical Reviews, 2018, 118, 8285-8358.	23.0	199
697	Catalytic Stereoselective S _N 1‶ype Reactions Promoted by Chiral Phosphoric Acids as Brønsted Acid Catalysts. Asian Journal of Organic Chemistry, 2018, 7, 1957-1981.	1.3	42
698	Phosphoric Acid Catalyzed Aldehyde Addition to in Situ Generated <i>o</i> -Quinone Methides: An Enantio- and Diastereoselective Entry toward <i>cis</i> -3,4-Diaryl Dihydrocoumarins. Organic Letters, 2018, 20, 4769-4772.	2.4	58
699	lon-pairing catalysis in the enantioselective addition of hydrazones to <i>N</i> -acyldihydropyrrole derivatives. Chemical Communications, 2018, 54, 8905-8908.	2.2	18
700	A catalytic asymmetric interrupted Nazarov-type cyclization of 2-indolylmethanols with cyclic enaminones. Organic and Biomolecular Chemistry, 2018, 16, 5457-5464.	1.5	14
701	Highly Diastereo―and Enantioselective Synthesis of Cyclohepta[<i>b</i>]indoles by Chiralâ€Phosphoricâ€Acidâ€Catalyzed (4+3) Cycloaddition. Angewandte Chemie, 2018, 130, 12297-12301.	1.6	18

#	Article	IF	CITATIONS
702	A Continuously Regenerable Chiral Ammonia Borane for Asymmetric Transfer Hydrogenations. Angewandte Chemie, 2018, 130, 12287-12291.	1.6	16
703	A Continuously Regenerable Chiral Ammonia Borane for Asymmetric Transfer Hydrogenations. Angewandte Chemie - International Edition, 2018, 57, 12111-12115.	7.2	47
704	Highly Diastereo―and Enantioselective Synthesis of Cyclohepta[<i>b</i>]indoles by Chiralâ€Phosphoricâ€Acidâ€Catalyzed (4+3) Cycloaddition. Angewandte Chemie - International Edition, 2018, 57, 12121-12125.	7.2	71
705	Diastereo- and Enantioselective Construction of Dihydrobenzo[<i>e</i>) indole Scaffolds via Catalytic Asymmetric [3 + 2] Cycloannulations. Journal of Organic Chemistry, 2018, 83, 9190-9200.	1.7	31
706	Chemodivergent Tandem Cyclizations of 2-Indolylmethanols with Tryptophols: C–N versus C–C Bond Formation. Journal of Organic Chemistry, 2018, 83, 5931-5946.	1.7	20
707	Catalytic Enantioselective Cloke–Wilson Rearrangement. Angewandte Chemie - International Edition, 2018, 57, 8225-8229.	7.2	86
708	Chiral Magnesium Bisphosphate-Catalyzed Asymmetric Double C(sp ³)–H Bond Functionalization Based on Sequential Hydride Shift/Cyclization Process. Journal of the American Chemical Society, 2018, 140, 6203-6207.	6.6	114
709	Synthesis of Enantioenriched Bromohydrins via Divergent Reactions of Racemic Intermediates from Anchimeric Oxygen Borrowing. Journal of the American Chemical Society, 2018, 140, 10677-10681.	6.6	26
710	Catalytic Asymmetric [4+2] Cyclization of <i>para</i> â€Quinone Methide Derivatives with 3â€Alkylâ€2â€vinylindoles. Advanced Synthesis and Catalysis, 2018, 360, 4225-4235.	2.1	80
711	Catalytic enantioselective and regioselective substitution of 2,3-indolyldimethanols with enaminones. Organic Chemistry Frontiers, 2018, 5, 2657-2667.	2.3	18
712	Chiral BrÃ,nsted acid-catalyzed intramolecular S $<$ sub $>$ N $<$ /sub $>$ 2â \in 2 reaction for enantioselective construction of a quaternary stereogenic center. Chemical Science, 2018, 9, 5747-5757.	3.7	23
713	Electrostatically Enhanced Phosphoric Acids and Their Applications in Asymmetric Friedel–Crafts Alkylations. Journal of Organic Chemistry, 2019, 84, 11125-11134.	1.7	10
714	Double-Fold Ortho and Remote C–H Bond Activation/Borylation of BINOL: A Unified Strategy for Arylation of BINOL. Organic Letters, 2019, 21, 6476-6480.	2.4	19
715	Cooperativity and serial ligand catalysis in an allylic amination reaction by Pd(<scp>ii</scp>)-bis-sulfoxide and Brønsted acids. Organic and Biomolecular Chemistry, 2019, 17, 7723-7734.	1.5	2
716	A Strategy for Synthesizing Axially Chiral Naphthylâ€Indoles: Catalytic Asymmetric Addition Reactions of Racemic Substrates. Angewandte Chemie - International Edition, 2019, 58, 15104-15110.	7.2	148
717	Chiral phosphoric acid catalyzed aminative dearomatization of \hat{l} ±-naphthols/Michael addition sequence. Nature Communications, 2019, 10, 3150.	5.8	46
718	Tandem Organocatalytic Cycloaromatization/Intramolecular Friedel–Crafts Alkylation Sequence for the Synthesis of Indolizinones and Pyrrolo-azepinone Derivatives. Journal of Organic Chemistry, 2019, 84, 10785-10795.	1.7	7
719	Asymmetric Ring-Opening of Donor–Acceptor Cyclopropanes with Primary Arylamines Catalyzed by a Chiral Heterobimetallic Catalyst. ACS Catalysis, 2019, 9, 8285-8293.	5. 5	40

#	Article	lF	Citations
720	Chiral Br \tilde{A} ,nsted Acid-Catalyzed Formal $\hat{I}\pm$ -Vinylation of Cyclopentanones for the Enantioselective Construction of Quaternary Carbon Centers. ACS Catalysis, 2019, 9, 6846-6850.	5 . 5	21
721	Catalytic Asymmetric Dearomative [3+2] Cyclisation of 1,4â€Quinone with 2,3â€Disubstituted Indoles. Advanced Synthesis and Catalysis, 2019, 361, 5449-5457.	2.1	23
722	Lil/TBHP Mediated Oxidative Crossâ€Coupling of P(O)–H Compounds with Phenols and Various Nucleophiles: Direct Access to the Synthesis of Organophosphates. European Journal of Organic Chemistry, 2019, 2019, 7463-7474.	1,2	14
723	Asymmetric Dearomatization of Indole Derivatives with Nâ€Hydroxycarbamates Enabled by Photoredox Catalysis. Angewandte Chemie, 2019, 131, 18237-18242.	1.6	60
724	A Strategy for Synthesizing Axially Chiral Naphthylâ€Indoles: Catalytic Asymmetric Addition Reactions of Racemic Substrates. Angewandte Chemie, 2019, 131, 15248-15254.	1.6	33
725	Asymmetric Dearomatization of Indole Derivatives with Nâ€Hydroxycarbamates Enabled by Photoredox Catalysis. Angewandte Chemie - International Edition, 2019, 58, 18069-18074.	7.2	95
726	Formal Asymmetric Cycloaddition of Activated $\hat{l}\pm,\hat{l}^2$ -Unsaturated Ketones with $\hat{l}\pm$ -Diazomethylphosphonate Mediated by a Chiral Silver SPINOL Phosphate Catalyst. Organic Letters, 2019, 21, 593-597.	2.4	22
727	Remote C6-Enantioselective C–H Functionalization of 2,3-Disubstituted Indoles through the Dual H-Bonds and π–π Interaction Strategy Enabled by CPAs. Organic Letters, 2019, 21, 8662-8666.	2.4	39
728	Atroposelective Phosphoric Acid Catalyzed Threeâ€Component Cascade Reaction: Enantioselective Synthesis of Axially Chiral Nâ€Arylindoles. Angewandte Chemie - International Edition, 2019, 58, 15824-15828.	7.2	131
729	Combining Organocatalysis and Photoredox Catalysis: An Asymmetric Synthesis of Chiral β―Amino α― Substituted Tryptamines. ChemCatChem, 2019, 11, 5723-5727.	1.8	8
730	Cu/chiral phosphoric acid-catalyzed radical-initiated asymmetric aminosilylation of alkene with hydrosilane. Science China Chemistry, 2019, 62, 1529-1536.	4.2	26
731	Recent Advances in First-Row Transition Metal/Chiral Phosphoric Acid Combined Catalysis. Topics in Current Chemistry, 2019, 377, 23.	3.0	22
732	Organocatalytic atroposelective construction of axially chiral arylquinones. Nature Communications, 2019, 10, 4268.	5.8	92
733	BINOL-phosphoric acid catalyzed asymmetric Mannich addition of \hat{l}^2 -ketoesters to indolenines generated in situ by DDQ. Tetrahedron, 2019, 75, 130620.	1.0	7
734	Manipulation of Spiroindolenine Intermediates for Enantioselective Synthesis of 3â€(Indolâ€3â€yl)â€Pyrrolidines. Angewandte Chemie, 2019, 131, 1170-1174.	1.6	1
735	Catalytic Asymmetric Conjugate Addition of Indoles to <i>para</i> -Quinone Methide Derivatives. Journal of Organic Chemistry, 2019, 84, 7829-7839.	1.7	55
736	Pd-Catalyzed Asymmetric Câ€"H Bond Activation for the Synthesis of P-Stereogenic Dibenzophospholes. Organometallics, 2019, 38, 3916-3920.	1.1	54
737	Parallel Kinetic Resolution of Unsymmetrical Acyclic Aliphatic syn-1,3-Diols. Organic Letters, 2019, 21, 5197-5200.	2.4	11

#	Article	IF	CITATIONS
738	Organocatalytic Atroposelective FriedlĤder Quinoline Heteroannulation. Organic Letters, 2019, 21, 4831-4836.	2.4	53
739	Chiral Spiro Phosphoric Acid-Catalyzed Friedel–Crafts Conjugate Addition/Enantioselective Protonation Reactions. ACS Catalysis, 2019, 9, 6522-6529.	5.5	58
740	Rational design, enantioselective synthesis and catalytic applications of axially chiral EBINOLs. Nature Catalysis, 2019, 2, 504-513.	16.1	145
741	Switchable Skeletal Rearrangement of Dihydroisobenzofuran Acetals with Indoles. Organic Letters, 2019, 21, 4313-4317.	2.4	9
742	Tandem Chiral Cu(II) Phosphate atalyzed Deoxygenation of Nitrones/Enantioselective Povarov Reaction with Enecarbamates. European Journal of Organic Chemistry, 2019, 2019, 5151-5155.	1.2	15
743	Enantioselective Addition Reaction of Azlactones with Styrene Derivatives Catalyzed by Strong Chiral BrÃ,nsted Acids. Angewandte Chemie - International Edition, 2019, 58, 8458-8462.	7.2	36
744	Design of Planar Chiral Phosphoric Acids with a [2.2]Paracyclophanyl Backbone as Organocatalysts for the Highly Enantioselective Aza-Friedel–Crafts Reaction. Organic Letters, 2019, 21, 3682-3686.	2.4	24
745	Enantioselective Addition Reaction of Azlactones with Styrene Derivatives Catalyzed by Strong Chiral BrÃ,nsted Acids. Angewandte Chemie, 2019, 131, 8546-8550.	1.6	7
746	Enantioselective Friedel–Crafts Alkylation Reaction of Heteroarenes with Nâ€Unprotected Trifluoromethyl Ketimines by Means of Chiral Phosphoric Acid. Chemistry - A European Journal, 2019, 25, 5677-5681.	1.7	31
747	Chiral BrÃ, nsted Acid Catalyzed Dynamic Kinetic Asymmetric Hydroamination of Racemic Allenes and Asymmetric Hydroamination of Dienes. Angewandte Chemie - International Edition, 2019, 58, 7092-7096.	7.2	40
748	Catalytic Asymmetric Synthesis of Isoindolinones. Chemistry - an Asian Journal, 2019, 14, 1306-1322.	1.7	45
749	Unusual Formation of Cyclopenta[<i>b</i>]indoles from 3-Indolylmethanols and Alkynes. Journal of Organic Chemistry, 2019, 84, 3904-3918.	1.7	23
750	A chemo- and regioselective C6-functionalization of 2,3-disubstituted indoles: highly efficient synthesis of diarylindol-6-ylmethanes. Organic and Biomolecular Chemistry, 2019, 17, 3462-3470.	1.5	21
751	Catalytic Asymmetric (4+3) Cyclizations of In Situ Generated <i>ortho</i> â€Quinone Methides with 2â€Indolylmethanols. Angewandte Chemie, 2019, 131, 8795-8800.	1.6	38
752	Catalytic Asymmetric (4+3) Cyclizations of In Situ Generated <i>ortho</i> êQuinone Methides with 2â€Indolylmethanols. Angewandte Chemie - International Edition, 2019, 58, 8703-8708.	7.2	174
7 53	Asymmetric syn â€1,3â€Dioxane Construction via Kinetic Resolution of Secondary Alcohols Using Chiral Phosphoric Acid Catalysts. Asian Journal of Organic Chemistry, 2019, 8, 814-818.	1.3	7
754	Chiral BrÃ, nsted Acid Catalyzed Dynamic Kinetic Asymmetric Hydroamination of Racemic Allenes and Asymmetric Hydroamination of Dienes. Angewandte Chemie, 2019, 131, 7166-7170.	1.6	8
7 55	Organocatalytic Asymmetric Synthesis of Cyclic Compounds Bearing a Trifluoromethylated Stereogenic Center: Recent Developments. Advanced Synthesis and Catalysis, 2019, 361, 1923-1957.	2.1	71

#	Article	IF	CITATIONS
756	Catalytic Enantioselective Flow Processes with Solidâ€Supported Chiral Catalysts. Chemical Record, 2019, 19, 1872-1890.	2.9	53
757	Chiral phosphoric acid-catalyzed enantioselective construction of structurally diverse benzothiazolopyrimidines. Chemical Science, 2019, 10, 3765-3769.	3.7	38
758	Design and Catalytic Asymmetric Construction of Axially Chiral 3,3′â€Bisindole Skeletons. Angewandte Chemie, 2019, 131, 3046-3052.	1.6	51
7 59	Atroposelective Phosphoric Acid Catalyzed Threeâ€Component Cascade Reaction: Enantioselective Synthesis of Axially Chiral Nâ€Arylindoles. Angewandte Chemie, 2019, 131, 15971-15975.	1.6	30
760	The control effects of different scaffolds in chiral phosphoric acids: a case study of enantioselective asymmetric arylation. Catalysis Science and Technology, 2019, 9, 6482-6491.	2.1	7
761	A sustainable catalytic enantioselective synthesis of norstatine derivatives. Organic and Biomolecular Chemistry, 2019, 17, 9792-9798.	1.5	4
762	Intramolecular Hydrogen Bond Activation of Azaâ€Methylene Imines in Hydrogen Bond Bifunctional Catalysis – A Density Functional Theory Study. European Journal of Organic Chemistry, 2019, 2019, 574-581.	1.2	10
763	Organocatalyzed Intermolecular Asymmetric Allylic Dearomatization of Both \hat{l}_{\pm} - and \hat{l}^{2} -Naphthols. Organic Letters, 2019, 21, 330-334.	2.4	49
764	Cu/Chiral Phosphoric Acid-Catalyzed Asymmetric Three-Component Radical-Initiated 1,2-Dicarbofunctionalization of Alkenes. Journal of the American Chemical Society, 2019, 141, 1074-1083.	6.6	151
765	Organocatalytic double arylation of 3-isothiocyanato oxindoles: Stereocontrolled synthesis of complex spirooxindoles. Tetrahedron, 2019, 75, 1689-1696.	1.0	7
766	Design and Catalytic Asymmetric Construction of Axially Chiral 3,3′â€Bisindole Skeletons. Angewandte Chemie - International Edition, 2019, 58, 3014-3020.	7.2	244
767	NMR Quantification of Hydrogen-Bond-Activating Effects for Organocatalysts including Boronic Acids. Journal of Organic Chemistry, 2019, 84, 1126-1138.	1.7	47
768	Manipulation of Spiroindolenine Intermediates for Enantioselective Synthesis of 3â€(Indolâ€3â€yl)â€Pyrrolidines. Angewandte Chemie - International Edition, 2019, 58, 1158-1162.	7.2	12
769	A DFT Perspective on Diels-Alder Organocatalysts Based on Substituted Phosphoramides. European Journal of Organic Chemistry, 2019, 2019, 442-450.	1.2	4
770	Enantioselective Dearomatization of Indoles by an Azoalkeneâ€Enabled (3+2) Reaction: Access to Pyrroloindolines. Angewandte Chemie - International Edition, 2020, 59, 648-652.	7.2	64
771	Chiral phosphoric acid catalyzed asymmetric transfer hydrogenation of bulky aryl ketones with ammonia borane. Tetrahedron Letters, 2020, 61, 151394.	0.7	10
772	Organocatalytic Enantioselective Synthesis of Tetrasubstituted αâ€Amino Allenoates by Dearomative γâ€Addition of 2,3â€Disubstituted Indoles to β,γâ€Alkynylâ€Î±â€imino Esters. Angewandte Chemie - Internatior Edition, 2020, 59, 642-647.	na t. 2	71
773	Hydrogen Bonding and Internal or External Lewis or BrÃ,nsted Acid Assisted (Thio)urea Catalysts. European Journal of Organic Chemistry, 2020, 2020, 1057-1068.	1.2	32

#	Article	IF	Citations
774	Organocatalytic Enantioselective Synthesis of Tetrasubstituted αâ€Amino Allenoates by Dearomative γâ€Addition of 2,3â€Disubstituted Indoles to β,γâ€Alkynylâ€Î±â€imino Esters. Angewandte Chemie, 2020, 132,	6 5 2-657.	20
775	Enantioselective Dearomatization of Indoles by an Azoalkeneâ€Enabled (3+2) Reaction: Access to Pyrroloindolines. Angewandte Chemie, 2020, 132, 658-662.	1.6	13
776	Chiral phosphoric acid-catalyzed asymmetric dearomatization reactions. Chemical Society Reviews, 2020, 49, 286-300.	18.7	247
777	Triflic Acid-Catalyzed Cycloisomerization of 1,6-Enynes: Facile Access to Carbo- and Azaheterocycles. Journal of Organic Chemistry, 2020, 85, 2406-2414.	1.7	3
778	Enantioselective Syntheses of 1,4-Pentadien-3-yl Carbinols via BrÃ,nsted Acid Catalysis. Organic Letters, 2020, 22, 400-404.	2.4	28
779	Diastereoselective Synthesis of Functionalized Indoline <i>N</i> , <i>O</i> ,â€Aminals: Unexpected Waterâ€Involved Cascade Reaction of 3 <i>H</i> ,â€Indoles and Oxazolâ€5â€(4 <i>H</i>)ones. European Journal of Organic Chemistry, 2020, 2020, 496-500.	1.2	0
780	Chiral BrÃ, nsted Acid from Chiral Phosphoric Acid Boron Complex and Water: Asymmetric Reduction of Indoles. Angewandte Chemie, 2020, 132, 3320-3325.	1.6	8
781	Chiral BrÃ, nsted Acid from Chiral Phosphoric Acid Boron Complex and Water: Asymmetric Reduction of Indoles. Angewandte Chemie - International Edition, 2020, 59, 3294-3299.	7.2	37
782	Half-sandwich complexes of osmium containing guanidine-derived ligands. Dalton Transactions, 2020, 49, 13601-13617.	1.6	10
783	Development of $\hat{l}\pm,\hat{l}\pm$ -Disubstituted Crotylboronate Reagents and Stereoselective Crotylation via Br \hat{A}_i nsted or Lewis Acid Catalysis. Journal of the American Chemical Society, 2020, 142, 18355-18368.	6.6	50
784	Progresses in organocatalytic asymmetric dearomatization reactions of indole derivatives. Organic Chemistry Frontiers, 2020, 7, 3967-3998.	2.3	175
785	Chiral Phosphoric Acid-Catalyzed Enantioselective Phospha-Michael-Type Addition Reaction of Diarylphosphine Oxides with Alkenyl Benzimidazoles. Journal of Organic Chemistry, 2020, 85, 14802-14809.	1.7	15
786	Direct Asymmetric Three-Component Mannich Reaction Catalyzed by Chiral Counteranion-Assisted Silver. Journal of Organic Chemistry, 2020, 85, 10369-10377.	1.7	16
787	Chiral phosphoric acid catalyzed atroposelective and diastereoselective synthesis of 9-aryltetrahydroacridines. Organic Chemistry Frontiers, 2020, 7, 2255-2262.	2.3	12
788	Catalytic Asymmetric Synthesis of 3,3′-Bisindoles Bearing Single Axial Chirality. Journal of Organic Chemistry, 2020, 85, 10152-10166.	1.7	31
789	Enantioselective Synthesis of Pyrrolizidinone Scaffolds through Multiple-Relay Catalysis. Organic Letters, 2020, 22, 9433-9438.	2.4	7
790	Development of Immobilized SPINOL-Derived Chiral Phosphoric Acids for Catalytic Continuous Flow Processes. Use in the Catalytic Desymmetrization of 3,3-Disubstituted Oxetanes. ACS Catalysis, 2020, 10, 14971-14983.	5.5	19
791	Ln(III)/Chiral Brønsted Acid Catalyzed Asymmetric Cascade Ring Opening/Aza-Piancatelli Rearrangement of D–A Cyclopropanes. Organic Letters, 2020, 22, 9016-9021.	2.4	23

#	Article	IF	Citations
792	Enantioselective Synthesis of 2‧ubstituted Indoles Bearing Trifluoromethyl Moiety by the Friedelâ€Crafts Alkylation Reaction of 4,7â€Ðihydroindole with N â^'H Trifluoromethyl Ketimines. ChemCatChem, 2020, 12, 4784-4787.	1.8	13
793	Chiral BrÃ,nsted Acidâ€Catalyzed Asymmetric 1,4â€Addition of Benzofuranâ€Derived Azadienes with 3â€Substituted indoles. ChemCatChem, 2020, 12, 4862-4870.	1.8	20
794	Enantioselective <i>anti</i> - and <i>syn</i> -(Borylmethyl)allylation of Aldehydes via Brønsted Acid Catalysis. Organic Letters, 2020, 22, 8967-8972.	2.4	22
795	Chiral Calcium Phosphate Catalyzed Enantioselective Amination of 3-Aryl-2-benzofuranones. Organic Letters, 2020, 22, 8101-8105.	2.4	9
796	Asymmetric Fluorination Reactions promoted by Chiral Hydrogen Bondingâ€based Organocatalysts. Advanced Synthesis and Catalysis, 2020, 362, 5275-5300.	2.1	21
797	Brønsted Acidâ€Catalyzed Enantioselective Cycloisomerization of Arylalkynes. Chemistry - A European Journal, 2020, 26, 16266-16271.	1.7	13
798	Atroposelective Access to Oxindole-Based Axially Chiral Styrenes via the Strategy of Catalytic Kinetic Resolution. Journal of the American Chemical Society, 2020, 142, 15686-15696.	6.6	115
799	Enantioselective Syntheses of (<i>Z</i>)-6′-Boryl- <i>anti</i> -1,2-oxaborinan-3-enes via a Dienylboronate Protoboration and Asymmetric Allylation Reaction Sequence. Organic Letters, 2020, 22, 7321-7326.	2.4	26
800	Enantioselective Dehydrative \hat{I}^3 -Arylation of \hat{I}_{\pm} -Indolyl Propargylic Alcohols with Phenols: Access to Chiral Tetrasubstituted Allenes and Naphthopyrans. Organic Letters, 2020, 22, 6873-6878.	2.4	39
801	Insights into 2-Indolylmethanol-Involved Cycloadditions: Origins of Regioselectivity and Enantioselectivity. Journal of Organic Chemistry, 2020, 85, 11641-11653.	1.7	20
802	Oneâ€Pot Synthesis of Enantioenriched βâ€Amino Secondary Amides via an Enantioselective [4+2] Cycloaddition Reaction of Vinyl Azides with <i>N</i> â€Acyl Imines Catalyzed by a Chiral Brønsted Acid. Chemistry - A European Journal, 2020, 26, 8230-8234.	1.7	11
803	Desymmetrization of unactivated bis-alkenes <i>via</i> chiral Brønsted acid-catalysed hydroamination. Chemical Science, 2020, 11, 5987-5993.	3.7	19
804	Asymmetric $\langle i \rangle N \langle i \rangle$ -aminoalkylation of 3-substituted indoles by N-protected $\langle i \rangle N \langle i \rangle$, $\langle i \rangle O \langle i \rangle$ -acetals: an access to chiral propargyl aminals. Organic and Biomolecular Chemistry, 2020, 18, 4169-4173.	1.5	8
805	Metalâ€Catalyzed Regiospecific (4+3) Cyclization of 2â€Indolylmethanols with <i>ortho</i> â€Quinone Methides. European Journal of Organic Chemistry, 2020, 2020, 4301-4308.	1.2	21
806	Metal-organic frameworks as solid BrÃ,nsted acid catalysts for advanced organic transformations. Coordination Chemistry Reviews, 2020, 420, 213400.	9.5	59
807	Axially Chiral <scp>Arylâ€Alkeneâ€Indole</scp> Framework: A Nascent Member of the Atropisomeric Family and Its Catalytic Asymmetric Construction. Chinese Journal of Chemistry, 2020, 38, 543-552.	2.6	121
808	Diastereo- and Enantioselective Construction of Biologically Important Chiral 1,3-Dioxolochroman Frameworks via Catalytic Asymmetric [4+2] Cycloaddition. Journal of Organic Chemistry, 2020, 85, 5403-5415.	1.7	24
809	Chiral Phosphoric Acid Dualâ€Function Catalysis: Asymmetric Allylation with αâ€Vinyl Allylboron Reagents. Angewandte Chemie - International Edition, 2020, 59, 10540-10548.	7.2	42

#	Article	IF	Citations
810	Highly Chemo-, Site-, and Enantioseletive <i>para</i> Câ€"H Aminoalkylation of <i>N</i> -Monosubstituted Aniline Derivatives Affording 3-Amino-2-oxindoles. Organic Letters, 2020, 22, 2173-2177.	2.4	32
811	DFT-Guided Phosphoric-Acid-Catalyzed Atroposelective Arene Functionalization of Nitrosonaphthalene. CheM, 2020, 6, 2046-2059.	5.8	83
812	Construction of chiral chroman scaffolds <i>via</i> catalytic asymmetric (4 + 2) cyclizations of <i>para</i> -quinone methide derivatives with 3-vinylindoles. Organic and Biomolecular Chemistry, 2020, 18, 5388-5399.	1.5	21
813	Enantioselective Synthesis of Tropanes: Brønsted Acid Catalyzed Pseudotransannular Desymmetrization. Angewandte Chemie - International Edition, 2020, 59, 6780-6784.	7.2	15
814	Atroposelective Synthesis of 3,3'â€Bisindoles Bearing Axial and Central Chirality: Using <scp>Isatinâ€Derived</scp> Imines as Electrophiles. Chinese Journal of Chemistry, 2020, 38, 583-589.	2.6	65
815	Access to Chiral Bisphenol Ligands (BPOL) through Desymmetrizing Asymmetric Ortho-Selective Halogenation. CheM, 2020, 6, 919-932.	5.8	28
816	Isothiourea and BrÃ,nsted Acid Cooperative Catalysis: Enantioselective Construction of Dihydropyridinones. Organic Letters, 2020, 22, 2261-2265.	2.4	20
817	Enantioselective Synthesis of Tropanes: BrÃ, nsted Acid Catalyzed Pseudotransannular Desymmetrization. Angewandte Chemie, 2020, 132, 6846-6850.	1.6	5
818	Enantioselective Synthesis of Spiroindolines via Cascade Isomerization/Spirocyclization/Dearomatization Reaction. Organic Letters, 2020, 22, 1589-1593.	2.4	18
819	Catalytic Asymmetric Formal [3+2] Cycloaddition of Azoalkenes with 3-Vinylindoles: Synthesis of 2,3-Dihydropyrroles. IScience, 2020, 23, 100873.	1.9	30
820	Chiral Phosphoric Acid Dualâ€Function Catalysis: Asymmetric Allylation with αâ€Vinyl Allylboron Reagents. Angewandte Chemie, 2020, 132, 10627-10635.	1.6	10
821	Organocatalytic Enantioselective Synthesis of Atropisomeric Aryl―p â€Quinones: Platform Molecules for Diversityâ€Oriented Synthesis of Biaryldiols. Angewandte Chemie, 2020, 132, 11470-11474.	1.6	23
822	Organocatalytic Enantioselective Synthesis of Atropisomeric Arylâ€ <i>p</i> àê€Quinones: Platform Molecules for Diversityâ€Oriented Synthesis of Biaryldiols. Angewandte Chemie - International Edition, 2020, 59, 11374-11378.	7.2	85
823	Chiral Brønsted Acid Catalyzed Enantioconvergent Propargylic Substitution Reaction of Racemic Secondary Propargylic Alcohols with Thiols. Chemistry - A European Journal, 2020, 26, 11124-11128.	1.7	21
824	Michael Reaction Inspired Atroposelective Construction of Axially Chiral Biaryls. Journal of the American Chemical Society, 2020, 142, 7322-7327.	6.6	57
825	Regio―and Enantioselective (3+3) Cycloaddition of Nitrones with 2â€Indolylmethanols Enabled by Cooperative Organocatalysis. Angewandte Chemie - International Edition, 2021, 60, 2355-2363.	7.2	81
826	Chiral Spirocyclic Phosphoric Acids and Their Growing Applications. Chinese Journal of Chemistry, 2021, 39, 802-824.	2.6	46
827	Enantioselective Threeâ€Component Coupling of Heteroarenes, Cycloalkenes and Propargylic Acetates. Angewandte Chemie, 2021, 133, 4541-4545.	1.6	2

#	Article	IF	CITATIONS
828	Enantioselective Threeâ€Component Coupling of Heteroarenes, Cycloalkenes and Propargylic Acetates. Angewandte Chemie - International Edition, 2021, 60, 4491-4495.	7.2	25
829	Chiral Phosphoric Acid: A Powerful Organocatalyst for the Asymmetric Synthesis of Heterocycles with Chiral Atropisomerism. ChemCatChem, 2021, 13, 1271-1289.	1.8	45
830	Asymmetric synthesis of 9-alkyl tetrahydroxanthenones <i>via</i> tandem asymmetric Michael/cyclization promoted by chiral phosphoric acid. Organic and Biomolecular Chemistry, 2021, 19, 348-354.	1.5	8
831	Regio―and Enantioselective (3+3) Cycloaddition of Nitrones with 2â€Indolylmethanols Enabled by Cooperative Organocatalysis. Angewandte Chemie, 2021, 133, 2385-2393.	1.6	13
832	Applications of Pictet–Spengler reaction in the total synthesis of alkaloids. , 2021, , 227-294.		1
833	Recent progress on the construction of axial chirality through transition-metal-catalyzed benzannulation. Organic Chemistry Frontiers, 2021, 8, 2772-2785.	2.3	35
834	Catalytic asymmetric transformations of racemic \hat{l}_{\pm} -borylmethyl-(E)-crotylboronate via kinetic resolution or enantioconvergent reaction pathways. Chemical Science, 2021, 12, 13398-13403.	3.7	11
835	Advances in organocatalytic asymmetric reactions of vinylindoles: powerful access to enantioenriched indole derivatives. Organic Chemistry Frontiers, 2021, 8, 2643-2672.	2.3	82
836	Insights into the Chiral Phosphoric Acid-Catalyzed Dynamic Kinetic Asymmetric Hydroamination of Racemic Allenes: An Allyl Carbocation/Phosphate Pair Mechanism. Journal of Organic Chemistry, 2021, 86, 4121-4130.	1.7	8
837	An efficient multifunctional catalyst for one-pot synthesis of methyl isobutyl ketone: Phosphor-doped h-BN with adjustable acid-base property as support. Catalysis Communications, 2021, 150, 106276.	1.6	1
838	Enantioselective Reductive Cyanation and Phosphonylation of Secondary Amides by Iridium and Chiral Thiourea Sequential Catalysis. Angewandte Chemie - International Edition, 2021, 60, 8827-8831.	7.2	55
839	Diaryliodonium Salts in Transitionâ€Metal atalyzed Chelationâ€Induced C(sp 2 /sp 3)â^'H Arylations. European Journal of Organic Chemistry, 2021, 2021, 1837-1858.	1.2	9
840	Enantioselective Reductive Cyanation and Phosphonylation of Secondary Amides by Iridium and Chiral Thiourea Sequential Catalysis. Angewandte Chemie, 2021, 133, 8909-8913.	1.6	15
841	Recent Applications of Asymmetric Organocatalytic Methods in Total Synthesis. ChemistrySelect, 2021, 6, 2252-2280.	0.7	8
842	Desymmetrization of 1,3-Diones by Catalytic Enantioselective Condensation with Hydrazine. Journal of the American Chemical Society, 2021, 143, 4179-4186.	6.6	39
843	Catalytic Asymmetric Synthesis of Unprotected \hat{l}^2 (sup>2-Amino Acids. Journal of the American Chemical Society, 2021, 143, 3312-3317.	6.6	33
845	Rhodomentosones A and B: Two Pairs of Enantiomeric Phloroglucinol Trimers from <i>Rhodomyrtus tomentosa</i> and Their Asymmetric Biomimetic Synthesis. Organic Letters, 2021, 23, 4499-4504.	2.4	21
846	Asymmetric Counteranion Directed Catalytic Heck/Tsuji–Trost Annulation of Aryl Iodides and 1,3-Dienes. Organic Letters, 2021, 23, 3834-3838.	2.4	10

#	Article	IF	CITATIONS
847	Chiral Phosphoric Acid Catalyzed Asymmetric Synthesis of Axially Chiral Compounds ⟨sup⟩â€⟨ sup⟩. Chinese Journal of Chemistry, 2021, 39, 1787-1796.	2.6	111
848	Organocatalytic Enantioselective Friedelâ€Crafts Alkylation Reactions of Pyrroles. Advanced Synthesis and Catalysis, 2021, 363, 3439-3470.	2.1	30
849	Atroposelective Construction of Axially Chiral <scp>Alkeneâ€Indole</scp> Scaffolds <i>via</i> Catalytic Enantioselective Addition Reaction of <scp>3â€Alkynyl</scp> â€2â€Indolylmethanols ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2163-2171.	2.6	69
850	Construction of Axially Chiral Arylborons via Atroposelective Miyaura Borylation. Journal of the American Chemical Society, 2021, 143, 10048-10053.	6.6	48
851	Enantioconvergent Substitution Reactions of Racemic Electrophiles by Organocatalysis. Chemistry - A European Journal, 2021, 27, 10215-10225.	1.7	25
852	Catalytic Atroposelective Dynamic Kinetic Resolution of Biaryl Lactones with Activated Isocyanides. Organic Letters, 2021, 23, 5086-5091.	2.4	22
853	Bioinspired Ether Cyclizations within a Ï€â€Basic Capsule Compared to Autocatalysis on Ï€â€Acidic Surfaces and Pnictogenâ€Bonding Catalysts. Chemistry - A European Journal, 2021, 27, 12215-12223.	1.7	22
854	Application of 3-Alkyl-2-vinylindoles in Catalytic Asymmetric Dearomative (2+3) Cycloadditions. Journal of Organic Chemistry, 2021, 86, 10427-10439.	1.7	16
855	Catalytic Asymmetric Radical-Mediated Three-Component Piancatelli-Type Rearrangement of Furylalkenes. ACS Catalysis, 2021, 11, 10198-10207.	5.5	15
856	Chiral Phosphoric Acid-Catalyzed Remote Control of Axial Chirality at Boron–Carbon Bond. Journal of the American Chemical Society, 2021, 143, 12924-12929.	6.6	51
857	Regiodivergent Organocatalytic Reactions. Catalysts, 2021, 11, 1013.	1.6	21
858	Organocatalytic Asymmetric Dearomatization Reaction for the Synthesis of Axial Chiral Allene-Derived Naphthalenones Bearing Quaternary Stereocenters. Organic Letters, 2021, 23, 6606-6611.	2.4	29
859	Development of chiral bisphosphoric acid/boronic acid co-catalyst system for enantioselective SN2' reaction. Tetrahedron, 2021, 98, 132412.	1.0	5
860	Emerging computational approaches for the study of regio- and stereoselectivity in organic synthesis. Organic Chemistry Frontiers, 2021, 8, 5165-5181.	2.3	11
861	Chalcogen-Based Organocatalysis. , 2011, , 209-314.		1
862	Catalytic asymmetric total syntheses of myrtucommuacetalone, myrtucommuacetalone B, and callistrilones A, C, D and E. Chemical Science, 2018, 9, 1488-1495.	3.7	57
863	Asymmetric Syntheses Using Heteroarenesulfonyl Groups as a Highly Functional Protecting-activating Group. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2010, 68, 1017-1027.	0.0	12
864	Development of Chiral Bronsted Acid and its Application to Asymmetric Synthesis. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2011, 69, 913-925.	0.0	14

#	ARTICLE	IF	CITATIONS
865	Development of Catalytic Asymmetric Reactions Based on Chirally Flexible (Tropos) Ligands. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2012, 70, 1281-1294.	0.0	1
866	Enantioselective Transformations Catalyzed by Chiral Br^ ^oslash;nsted Acids. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2013, 71, 480-490.	0.0	3
867	Theoretical Studies on Mechanisms and Origins of Stereocontrol in Chiral Phosphoric Acid Catalyzed Asymmetric Reactions. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2014, 72, 580-595.	0.0	1
868	Bifunctional Catalysts for the CO ₂ Fixation: Structural Optimization to Maximize the Synergetic Effect. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2016, 74, 814-823.	0.0	2
869	<i>N</i> -Triflylphosphoramides: highly acidic catalysts for asymmetric transformations. Organic and Biomolecular Chemistry, 2021, 19, 9565-9618.	1.5	16
870	Stereochemical Control via Chirality Pairing: Stereodivergent Syntheses of Enantioenriched Homoallylic Alcohols. Angewandte Chemie, 2021, 133, 24298-24308.	1.6	8
871	Chiral Phosphoric Acid atalyzed Enantioselective Synthesis of Pyrazoleâ€Based Unnatural αâ€Amino Acid Derivatives. Advanced Synthesis and Catalysis, 2022, 364, 274-280.	2.1	12
872	Stereochemical Control via Chirality Pairing: Stereodivergent Syntheses of Enantioenriched Homoallylic Alcohols. Angewandte Chemie - International Edition, 2021, 60, 24096-24106.	7.2	28
873	Organocatalytic Direct Asymmetric Indolization from Anilines by Enantioselective [3 + 2] Annulation. Organic Letters, 2021, 23, 8434-8438.	2.4	15
875	Development of Highly Functionalized Metal Nanocluster Catalysts for Fine Organic Synthesis. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2017, 75, 1238-1252.	0.0	0
876	Chapter 2. Ring-opening Polymerization Promoted by BrÃ,nsted Acid Catalysts. RSC Polymer Chemistry Series, 2018, , 37-86.	0.1	2
877	Chiral spiro phosphoric acid-catalysed enantioselective reaction of ketenes with N–H pyrroles. Chemical Communications, 2021, 57, 11992-11995.	2.2	5
878	Organocatalytic cycloaddition–elimination cascade for atroposelective construction of heterobiaryls. Chemical Science, 2021, 12, 14920-14926.	3.7	36
879	CHAPTER 12. P: Asymmetric Acid Catalysis. RSC Catalysis Series, 2020, , 334-347.	0.1	0
881	Transannular Enantioselective $(3 + 2)$ Cycloaddition of Cycloalkenone Hydrazones under Br \tilde{A} ,nsted Acid Catalysis. Organic Letters, 2021, 23, 8738-8743.	2.4	10
882	Organocatalytic Asymmetric [2 + 4] Cycloadditions of 3-Vinylindoles with ortho-Quinone Methides. Molecules, 2021, 26, 6751.	1.7	6
883	Organocatalytic enantioselective S _N 1-type dehydrative nucleophilic substitution: access to bis(indolyl)methanes bearing quaternary carbon stereocenters. Chemical Science, 2021, 13, 170-177.	3.7	28
884	Recent advances in the asymmetric phosphoric acid-catalyzed synthesis of axially chiral compounds. Beilstein Journal of Organic Chemistry, 2021, 17, 2729-2764.	1.3	18

#	Article	IF	CITATIONS
885	The Catalytic Asymmetric Intermolecular Prins Reaction. Journal of the American Chemical Society, 2021, 143, 20598-20604.	6.6	19
886	Rational Design of Axially Chiral Styreneâ€Based Organocatalysts and Their Application in Catalytic Asymmetric (2+4) Cyclizations. Angewandte Chemie, 0, , e202112226.	1.6	9
887	Enantioselective Cooperative Catalysis within Frustrated Lewis Pair Complexes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2021, 79, 1065-1072.	0.0	2
888	Rational Design of Axially Chiral Styreneâ€Based Organocatalysts and Their Application in Catalytic Asymmetric (2+4) Cyclizations. Angewandte Chemie - International Edition, 2022, 61, e202112226.	7.2	49
889	C(sp3)–H Bond Functionalization Mediated by Hydride a Shift/Cyclization System. Bulletin of the Chemical Society of Japan, 2022, 95, 296-305.	2.0	17
890	Chiral Phosphoric Acid Catalyzed Conversion of Epoxides into Thiiranes: Mechanism, Stereochemical Model, and New Catalyst Design. Angewandte Chemie - International Edition, 2022, 61, .	7.2	19
891	Chiral Phosphoric Acid Catalyzed Conversion of Epoxides into Thiiranes: Mechanism, Stereochemical Model, and New Catalyst Design. Angewandte Chemie, 0, , .	1.6	6
892	Chiral Brønsted Acid Catalyzed Enantioconvergent Synthesis of Chiral Tetrahydrocarbazoles with Allenylsilanes from Racemic Indolylmethanols. Chemistry Letters, 2022, 51, 391-394.	0.7	5
893	H-Bonded Counterion-Directed Enantioselective Au(I) Catalysis. Journal of the American Chemical Society, 2022, 144, 3497-3509.	6.6	34
894	A Powerful Chiral Super BrÃ,nsted C–H Acid for Asymmetric Catalysis. Journal of the American Chemical Society, 2022, 144, 2853-2860.	6.6	21
895	Organocatalytic asymmetric synthesis of bioactive hexahydropyrrolo[2,3-b]indole-containing tetrasubstituted allenes bearing multiple chiral elements., 2022, 1, 100007.		27
896	Synthesis of 4-Aryl-1,2-naphthoquinones via a conjugate addition-oxidation reaction catalyzed by p-toluenesulfonic acid. Results in Chemistry, 2022, 4, 100319.	0.9	0
897	Atroposelective Synthesis of 1,1′â€Bipyrroles Bearing a Chiral Nâ^'N Axis: Chiral Phosphoric Acid Catalysis with Lewis Acid Induced Enantiodivergence. Angewandte Chemie - International Edition, 2022, 61, .	7.2	54
898	Atroposelective Synthesis of 1,1′â€Bipyrroles Bearing a Chiral Nâ^'N Axis: Chiral Phosphoric Acid Catalysis with Lewis Acid Induced Enantiodivergence. Angewandte Chemie, 2022, 134, .	1.6	10
899	PFOAâ€Catalyzed Regioselective Alkylation of Indolylmethanols with 2â€Alkylazaarenes**. ChemistrySelect, 2022, 7, .	0.7	4
900	Phosphorus-Based Organocatalysis for the Dehydrative Cyclization of <i>N</i> -(2-Hydroxyethyl)amides into 2-Oxazolines. Journal of Organic Chemistry, 2022, 87, 243-257.	1.7	6
901	Organocatalytic, Stereoselective, Cationic Reversible Addition–Fragmentation Chain-Transfer Polymerization of Vinyl Ethers. Journal of the American Chemical Society, 2022, 144, 679-684.	6.6	28
902	Rhodium-Catalyzed Atroposelective C–H Arylation of (Hetero)Arenes Using Carbene Precursors as Arylating Reagents. Organic Letters, 2022, 24, 3189-3193.	2.4	25

#	Article	IF	CITATIONS
903	Asymmetric [3 + 3] Annulation to Construct Trifluoromethylated Pyrazolo[3,4- <i>b</i> pyridin-6-ones via Chiral Phosphoric Acid and MgSO ₄ Synergistic Catalysis. Organic Letters, 2022, 24, 4058-4063.	2.4	11
904	Catalytic Asymmetric Synthesis of Axially Chiral 3,3'â€Bisindoles by Direct Coupling of Indole Rings. Chinese Journal of Chemistry, 2022, 40, 2151-2160.	2.6	77
906	Construction of Axially Chiral Indoles by Cycloaddition–Isomerization via Atroposelective Phosphoric Acid and Silver Sequential Catalysis. ACS Catalysis, 2022, 12, 8094-8103.	5.5	30
907	Enantioselective Friedel–Crafts Alkylation Reaction of Pyrroles with <i>N</i> -Unprotected Alkynyl Trifluoromethyl Ketimines. Organic Letters, 2022, 24, 4699-4703.	2.4	10
908	Br \tilde{A}_{j} nsted acid catalyzed enantioselective addition of hydrazones to 3-indolylmethanols. Organic Chemistry Frontiers, $0, , .$	2.3	1
909	Enantioselective synthesis of α-tetrasubstituted (3-indolizinyl) (diaryl)methanamines <i>via</i> chiral phosphoric acid catalysis. RSC Advances, 2022, 12, 20499-20506.	1.7	4
910	Chiral Phosphoric Acid-Catalyzed Enantioselective Dearomative Electrophilic Hydrazination: Access to Chiral Aza-Quaternary Carbon Indolenines. ACS Catalysis, 2022, 12, 7511-7516.	5.5	17
911	Highlights of the Recent Patent Literature: Focus on Asymmetric Organocatalysis. Organic Process Research and Development, 2022, 26, 2224-2239.	1.3	8
912	Asymmetric Cycloaddition/Annulation Reactions by Chiral Phosphoric Acid Catalysis: Recent Advances. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
913	Torsional Strainâ€Independent Catalytic Enantioselective Synthesis of Biaryl Atropisomers. Angewandte Chemie - International Edition, 2022, 61, .	7.2	12
914	Torsional Strainâ€Independent Catalytic Enantioselective Synthesis of Biaryl Atropisomers. Angewandte Chemie, 2022, 134, .	1.6	2
915	Unusual Enantiodivergence in Chiral BrÃ,nsted Acid atalyzed Asymmetric Allylation with βâ€Alkenyl Allylic Boronates. Angewandte Chemie, Ó, , .	1.6	0
916	Kinetic resolution of racemic tertiary allylic alcohols through S _N 2′ reaction using a chiral bisphosphoric acid/silver(<scp>i</scp>) salt co-catalyst system. Chemical Science, 2022, 13, 9607-9613.	3.7	4
917	Unusual Enantiodivergence in Chiral Brønsted Acid atalyzed Asymmetric Allylation with βâ€Alkenyl Allylic Boronates. Angewandte Chemie - Înternational Edition, 2022, 61, .	7.2	9
918	Design and Application of <scp><i>m</i>â∈Hydroxybenzyl</scp> Alcohols in Regioselective (3 + 3) Cycloadditions of <scp>2â€Indolymethanols</scp> ^{â€} . Chinese Journal of Chemistry, 2023, 41, 27-36.	2.6	33
920	Advances in Catalytic Asymmetric Reactions Using 2-Indolylmethanols as Platform Molecules. Chinese Journal of Organic Chemistry, 2022, 42, 3351.	0.6	38
921	Atroposelective Synthesis of Nâ€Arylated Quinoids by Organocatalytic Tandem Nâ€Arylation/Oxidation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
922	Atroposelective Synthesis of Nâ€Arylated Quinoids by Organocatalytic Tandem Nâ€Arylation/Oxidation. Angewandte Chemie, 2022, 134, .	1.6	2

#	Article	IF	CITATIONS
924	[4+2] Cycloadditions (carbo-Diels–Alder reaction). , 2022, , .		0
925	Design and Organocatalytic Asymmetric Synthesis of Indolyl-Pyrroloindoles Bearing Both Axial and Central Chirality. Journal of Organic Chemistry, 2023, 88, 7684-7702.	1.7	22
926	Enantioselective Construction of Triaryl-Substituted All-Carbon Quaternary Stereocenter via Organocatalytic Arylation of Oxindoles with Azonaphthalenes. Chemical Science, 0, , .	3.7	1
927	Organocatalytic Enantioselective Synthesis of Axially Chiral <i>N</i> , <i>N′</i> â€Bisindoles. Angewandte Chemie, 2023, 135, .	1.6	1
928	Organocatalytic Enantioselective Synthesis of Axially Chiral <i>N</i> N′â€Bisindoles. Angewandte Chemie - International Edition, 2023, 62, .	7.2	54
929	Asymmetric Construction of α,αâ€Disubstituted Piperazinones Enabled by Benzilic Amide Rearrangement. Angewandte Chemie - International Edition, 2023, 62, .	7.2	12
930	Asymmetric Construction of α,αâ€Disubstituted Piperazinones Enabled by Benzilic Amide Rearrangement. Angewandte Chemie, 2023, 135, .	1.6	0
931	Organocatalytic (<i>Z</i> / <i>E</i>)-Selective Synthesis of 3-Vinylnaphthofurans via a Formal (3 + 2) Cycloaddition. Journal of Organic Chemistry, 2023, 88, 3474-3486.	1.7	5
932	Catalytic Asymmetric α-Functionalization of α-Branched Aldehydes. Molecules, 2023, 28, 2694.	1.7	9
949	Carbon–Carbon Bond Formation by Asymmetric Iron- and Cobalt-Catalyzed Reactions. , 2023, , .		0
961	Catalytic, regioselective Friedel–Crafts alkylation of beta-naphthol. New Journal of Chemistry, 2024, 48, 4224-4228.	1.4	0