Gadolinium(iii) complexes as MRI contrast agents: ligan complexes

Dalton Transactions , 3027

DOI: 10.1039/b719704g

Citation Report

#	Article	IF	CITATIONS
1	Ion-Pair Chromatography (MPIC)., 0,, 239-289.		0
2	New synthesis of a high molecular weight ligand derived from dota; thermodynamic stability of the MRI contrast agent formed with gadolinium. Contrast Media and Molecular Imaging, 2008, 3, 243-252.	0.4	4
3	An Assessment of the Potential Relationship between the Charge of Gd–DTPA Complexes and the Exchange Rate of the Water Coordinated to the Metal. European Journal of Inorganic Chemistry, 2008, 2008, 4369-4379.	1.0	21
4	Synthesis and characterization of novel natural product-Gd(III) MRI contrast agent conjugates. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 6058-6061.	1.0	16
5	The Role of Imaging in Proof of Concept for CNS Drug Discovery and Development. Neuropsychopharmacology, 2009, 34, 187-203.	2.8	161
6	1H NMR relaxivity of aqueous suspensions of titanium dioxide nanoparticles coated with a gadolinium(III) chelate of a DOTA-monoamide with a phenylphosphonate pendant arm. Journal of Materials Chemistry, 2009, 19, 1494.	6.7	17
8	Prospects of Metal Complexes Peripherally Substituted with Sugars in Biomedicinal Applications. Chemistry - A European Journal, 2009, 15, 1548-1557.	1.7	87
9	Lanthanide(III) Complexes of 2â€[4,7,10â€Tris(phosphonomethyl)â€1,4,7,10â€tetraazacyclododecanâ€1â€yl]ace (H ₇ DOA3P): Multinuclearâ€NMR and Kinetic Studies. Helvetica Chimica Acta, 2009, 92, 2398-2413.	etic Acid 1.0	11
10	Lanthanide(III) Complexes of Phosphorus Acid Analogues of H ₄ DOTA as Model Compounds for the Evaluation of the Secondâ€Sphere Hydration. European Journal of Inorganic Chemistry, 2009, 2009, 119-136.	1.0	55
11	Relaxometric, Thermodynamic and Kinetic Studies of Lanthanide(III) Complexes of DO3Aâ€Based Propylphosphonates. European Journal of Inorganic Chemistry, 2009, 2009, 3298-3306.	1.0	8
12	Metal Complexes of 4,11-Dimethyl-1,4,8,11-tetraazacyclotetradecane-1,8-bis(methylphosphonic acid) - Thermodynamic and Formation/Decomplexation Kinetic Studies. European Journal of Inorganic Chemistry, 2009, 2009, 3577-3592.	1.0	29
13	Lanthanide Complexes for Nonlinear Optics: From Fundamental Aspects to Applications. European Journal of Inorganic Chemistry, 2009, 2009, 4357-4371.	1.0	153
14	Chemical, radiochemical and biological studies of Sm and Ho complexes of H ₄ dota analogues containing one methylphosphonic/phosphinic acid pendant arm. Journal of Labelled Compounds and Radiopharmaceuticals, 2010, 53, 36-43.	0.5	13
15	Biotinylation of aminopyridine-based macrocycles and metallomacrocycles and inclusion of biotinylated iron(II) complex in avidin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2009, 64, 15-21.	1.6	6
16	Review on supermolecules as chemical drugs. Science in China Series B: Chemistry, 2009, 52, 415-458.	0.8	77
17	An efficient route to pyridine and 2,2′-bipyridine macrocycles incorporating a triethylenetetraminetetraacetic acid core as ligand for lanthanide ions. Tetrahedron Letters, 2009, 50, 6522-6525.	0.7	8
18	Syntheses and crystal structures of gadolinium and europium complexes of AAZTA analogues. Polyhedron, 2009, 28, 1525-1531.	1.0	17
19	Complexation and biodistribution study of 111In and 90Y complexes of bifunctional phosphinic acid analogs of H4dota. Applied Radiation and Isotopes, 2009, 67, 21-29.	0.7	10

#	ARTICLE	IF	CITATIONS
20	Pyridine- <i>N</i> -oxide Analogues of DOTA and Their Gadolinium(III) Complexes Endowed with a Fast Water Exchange on the Square-Antiprismatic Isomer. Inorganic Chemistry, 2009, 48, 455-465.	1.9	39
21	All-Electron Scalar Relativistic Basis Sets for the Lanthanides. Journal of Chemical Theory and Computation, 2009, 5, 2229-2238.	2.3	293
22	Lanthanide(III) Complexes of Pyridine- <i>N</i> -Oxide Analogues of DOTA in Solution and in the Solid State. A New Kind of Isomerism in Complexes of DOTA-like Ligands. Inorganic Chemistry, 2009, 48, 466-475.	1.9	43
23	PAMAM Dendrimers Conjugated with an Uncharged Gadolinium(III) Chelate with a Fast Water Exchange: The Influence of Chelate Charge on Rotational Dynamics. Bioconjugate Chemistry, 2009, 20, 2142-2153.	1.8	31
24	In Situ Imaging of Metals in Cells and Tissues. Chemical Reviews, 2009, 109, 4780-4827.	23.0	517
25	Gdâ^'Hydroxypyridinone (HOPO)-Based High-Relaxivity Magnetic Resonance Imaging (MRI) Contrast Agents. Accounts of Chemical Research, 2009, 42, 938-947.	7.6	230
26	Inorganic pharmaceuticals. Annual Reports on the Progress of Chemistry Section A, 2009, 105, 505.	0.8	3
27	Design and function of metal complexes as contrast agents in MRI. Advances in Inorganic Chemistry, 2009, 61, 63-129.	0.4	49
28	Calibrating the coordination chemistry tool chest: metrics of bi- and tridentate ligands. Dalton Transactions, 2009, , 6610.	1.6	33
29	Structural, Spectroscopic, and Thermodynamic Consequences of Anti-Chelate Effect in Nine-Coordinate Lanthanide Podates. Inorganic Chemistry, 2009, 48, 2549-2560.	1.9	10
30	Toxicity of MRI and CT contrast agents. Expert Opinion on Drug Metabolism and Toxicology, 2009, 5, 403-416.	1.5	195
31	Paramagnetic Gd-based gold glyconanoparticles as probes for MRI: tuning relaxivities with sugars. Chemical Communications, 2009, , 3922.	2.2	77
32	Scandium, yttrium, the lanthanides. Annual Reports on the Progress of Chemistry Section A, 2009, 105, 276.	0.8	2
33	Structural variability in uranyl–lanthanide heterometallic complexes with DOTA and oxalato ligands. CrystEngComm, 2009, 11, 2319.	1.3	42
34	Gd(iii) complex of a monophosphinate-bis(phosphonate) DOTA analogue with a high relaxivity; Lanthanide(iii) complexes for imaging and radiotherapy of calcified tissues. Dalton Transactions, 2009, , 3204.	1.6	37
35	Variation of water exchange dynamics with ligand structure and stereochemistry in lanthanide complexes based on 1,4-diazepine derivatives. Organic and Biomolecular Chemistry, 2009, 7, 1120.	1.5	34
37	<i>In vivo</i> small animal imaging: Current status and future prospects. Medical Physics, 2010, 37, 6421-6442.	1.6	121
38	Towards MRI contrast agents responsive to Ca(<scp>II</scp>) and Mg(<scp>II</scp>) ions: metalâ€induced oligomerization of dota–bisphosphonate conjugates. Contrast Media and Molecular Imaging, 2010, 5, 294-296.	0.4	21

3

#	Article	IF	CITATIONS
39	How to measure the transmetallation of a gadolinium complex. Contrast Media and Molecular Imaging, 2010, 5, 305-308.	0.4	83
40	A Triazacyclononaneâ€Based Bifunctional Phosphinate Ligand for the Preparation of Multimeric ⁶⁸ Ga Tracers for Positron Emission Tomography. Chemistry - A European Journal, 2010, 16, 7174-7185.	1.7	138
41	Cyclodextrinâ€Based Bimodal Fluorescence/MRI Contrast Agents: An Efficient Approach to Cellular Imaging. Chemistry - A European Journal, 2010, 16, 10094-10102.	1.7	49
42	Lanthanide(III) Complexes of 4,10â€Bis(phosphonomethyl)â€1,4,7,10â€tetraazacyclododecaneâ€1,7â€diacetic ac (<i>trans</i> \$\delta\text{H}<\sub>6 \sub do2a2p) in Solution and in the Solid State: Structural Studies Along the Series. Chemistry - A European Journal, 2010, 16, 8446-8465.	cid 1.7	44
43	A one pot multi-component CuAAC "click―approach to bidentate and tridentate pyridyl-1,2,3-triazole ligands: Synthesis, X-ray structures and copper(II) and silver(I) complexes. Polyhedron, 2010, 29, 70-83.	1.0	159
44	Polyazamacrocycles based on a tetraaminoacetate moiety and a (poly)pyridine intracyclic unit: direct synthesis and application to the photosensitization of Eu(III) and Tb(III) ions in aqueous solutions. Tetrahedron, 2010, 66, 8594-8604.	1.0	14
45	Biomedical applications of macrocyclic ligand complexes. Coordination Chemistry Reviews, 2010, 254, 1686-1712.	9.5	257
46	Synthesis and characterization of multifunctional hyperbranched polyesters as prospective contrast agents for targeted MRI. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4177-4181.	1.0	26
47	TETA analogue containing one methylenephosphonate pendant arm: Lanthanide complexes and biological evaluation of its 153Sm and 166Ho complexes. European Journal of Medicinal Chemistry, 2010, 45, 5621-5627.	2.6	10
48	Association of a terpyridine ligand with lanthanide and copper(II) nitrates. Journal of Rare Earths, 2010, 28, 61-65.	2.5	5
49	Synthesis, characterization, and biological studies of lanthanide complexes with 2,6-pyridine dicarboxylic acid and α-picolinic acid. Journal of Coordination Chemistry, 2010, 63, 2360-2369.	0.8	26
50	Paramagnetic Liposome Nanoparticles for Cellular and Tumour Imaging. International Journal of Molecular Sciences, 2010, 11, 1759-1776.	1.8	73
51	Bone-seeking probes for optical and magnetic resonance imaging. Future Medicinal Chemistry, 2010, 2, 521-531.	1.1	19
52	Chemistry of Tumour Targeted T1 Based MRI Contrast Agents. Current Topics in Medicinal Chemistry, 2010, 10, 1158-1183.	1.0	22
53	Coordination chemistry of amide-functionalised tetraazamacrocycles: structural, relaxometric and cytotoxicity studies. Dalton Transactions, 2010, 39, 10056.	1.6	17
55	Challenges for Molecular Magnetic Resonance Imaging. Chemical Reviews, 2010, 110, 3019-3042.	23.0	728
56	Polymer micelles decorated by gadolinium complexes as MRI blood contrast agents: design, synthesis and properties. Polymer Chemistry, 2010, 1, 1485.	1.9	35
57	Advantages of macromolecular to nanosized chemical-exchange saturation transfer agents for MRI applications. Future Medicinal Chemistry, 2010, 2, 351-366.	1.1	24

#	ARTICLE	IF	Citations
58	Computational Estimation of Lanthanoidâ^'Water Bond Lengths by Semiempirical Methods. Journal of Chemical Information and Modeling, 2010, 50, 217-220.	2.5	9
59	Design, Synthesis, and Evaluation of 1,4,7,10-Tetraazacyclododecane-1,4,7-triacetic Acid Derived, Redox-Sensitive Contrast Agents for Magnetic Resonance Imaging. Journal of Medicinal Chemistry, 2010, 53, 6747-6757.	2.9	34
60	Synthesis and Physicochemical Characterization of Gd-C4-Thyroxin-DTPA, a Potential MRI Contrast Agent. Evaluation of Its Affinity for Human Serum Albumin by Proton Relaxometry, NMR Diffusometry, and Electrospray Mass Spectrometry. Journal of Physical Chemistry B, 2010, 114, 3689-3697.	1.2	15
61	Lanthanide luminescence for functional materials and bio-sciences. Chemical Society Reviews, 2010, 39, 189-227.	18.7	3,065
62	Chelating phytanyl-EDTA amphiphiles: self-assembly and promise as contrast agents for medical imaging. Soft Matter, 2010, 6, 5915.	1.2	41
63	Gold nanoparticles coated with gadolinium-DTPA-bisamide conjugate of penicillamine (Au@GdL) as a T1-weighted blood pool contrast agent. Journal of Materials Chemistry, 2010, 20, 5411.	6.7	31
64	Uranyl–organic assemblies with the macrocyclic ligand 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetate (TETA). CrystEngComm, 2010, 12, 1905.	1.3	33
65	Paramagnetic, Silicon Quantum Dots for Magnetic Resonance and Two-Photon Imaging of Macrophages. Journal of the American Chemical Society, 2010, 132, 2016-2023.	6.6	148
66	First bodipy–DOTA derivatives as probes for bimodal imaging. Chemical Communications, 2010, 46, 8267.	2.2	56
67	Dual purpose Prussian blue nanoparticles for cellular imaging and drug delivery: a new generation of T1-weighted MRI contrast and small molecule delivery agents. Journal of Materials Chemistry, 2010, 20, 5251.	6.7	223
68	Synthesis, complexation and NMR relaxation properties of Gd3+ complexes of Mes(DO3A)3. Dalton Transactions, 2011, 40, 4260.	1.6	23
69	A Modular System for the Synthesis of Multiplexed Magnetic Resonance Probes. Journal of the American Chemical Society, 2011, 133, 5329-5337.	6.6	126
70	New potential bimodal imaging contrast agents based on DOTA-like and porphyrin macrocycles. MedChemComm, 2011, 2, 119-125.	3.5	49
71	Mn2+ complexes of 1-oxa-4,7-diazacyclononane based ligands with acetic, phosphonic and phosphinic acid pendant arms: Stability and relaxation studies. Dalton Transactions, 2011, 40, 10131.	1.6	44
72	Poly(para-phenylene ethynylene)s functionalized with Gd(III) chelates as potential MRI contrast agents. Canadian Journal of Chemistry, 2011, 89, 47-56.	0.6	12
73	Synthesis and Physicochemical Characterization of Carbon Backbone Modified [Gd(TTDA)(H2O)]2â^'Derivatives. Inorganic Chemistry, 2011, 50, 1275-1287.	1.9	16
74	Water Exchange of a ProHance MRI Contrast Agent: Isomer-Dependent Free-Energy Landscapes and Mechanisms. Inorganic Chemistry, 2011, 50, 4791-4797.	1.9	20
75	Highly biocompatible TiO2:Gd3+ nano-contrast agent with enhanced longitudinal relaxivity for targeted cancer imaging. Nanoscale, 2011, 3, 4150.	2.8	34

#	ARTICLE	IF	Citations
76	Influence of Calcium-Induced Aggregation on the Sensitivity of Aminobis(methylenephosphonate)-Containing Potential MRI Contrast Agents. Inorganic Chemistry, 2011, 50, 6472-6481.	1.9	16
77	Chelating oleyl-EDTA amphiphiles: self-assembly, colloidal particles, complexation with paramagnetic metal ions and promise as magnetic resonance imaging contrast agents. Soft Matter, 2011, 7, 10994.	1.2	31
78	Structure, stability and relaxivity of trinuclear triangular complexes. Dalton Transactions, 2011, 40, 4284.	1.6	7
79	Synthesis, characterization, and biological activity of some lanthanide ternary complexes. Journal of Coordination Chemistry, 2011, 64, 2342-2352.	0.8	13
80	Lanthanide complexes as imaging agents anchored on nano-sized particles of boehmite. Dalton Transactions, 2011, 40, 6451.	1.6	18
81	Dissociation kinetics of Mn2+ complexes of NOTA and DOTA. Dalton Transactions, 2011, 40, 1945.	1.6	75
82	Design and synthesis of novel DOTA(Gd3+)–polymer conjugates as potential MRI contrast agents. Journal of Materials Chemistry, 2011, 21, 12917.	6.7	29
83	An Electroneutral Macrocyclic Iron(II) Complex That Enhances MRI Contrast in Vivo. Journal of Medicinal Chemistry, 2011, 54, 4274-4278.	2.9	17
84	Mn ²⁺ Complexes with 12-Membered Pyridine Based Macrocycles Bearing Carboxylate or Phosphonate Pendant Arm: Crystallographic, Thermodynamic, Kinetic, Redox, and ¹ H/ ¹⁷ O Relaxation Studies. Inorganic Chemistry, 2011, 50, 12785-12801.	1.9	75
85	Positively Charged Lanthanide Complexes with Cyclen-Based Ligands: Synthesis, Solid-State and Solution Structure, and Fluoride Interaction. Inorganic Chemistry, 2011, 50, 12508-12521.	1.9	64
87	Dissociation kinetics of macrocyclic trivalent lanthanide complexes of 1,4,7,10-tetraazacyclododecane-1,7-diacetic acid (DO2A). Dalton Transactions, 2011, 40, 6268.	1.6	8
88	Gd-Complexes of 1,4,7,10-Tetraazacyclododecane-N,N′,N′′,N′′-1,4,7,10-tetraacetic Acid (DOTA) Tranexamates as a New Class of Blood-Pool Magnetic Resonance Imaging Contrast Agents. Journal of Medicinal Chemistry, 2011, 54, 143-152.	Conjugato	es of 21
89	Cyclen-Based Lanthanide Complexes as Luminescent Anion Receptors. Current Inorganic Chemistry, 2011, 1, 36-60.	0.2	22
90	Applications of Density Functional Theory (DFT) to Investigate the Structural, Spectroscopic and Magnetic Properties of Lanthanide(III) Complexes. Current Inorganic Chemistry, 2011, 1, 91-116.	0.2	51
91	Integrin Targeted MR Imaging. Theranostics, 2011, 1, 83-101.	4.6	45
94	Cyclenâ€Conjugated Rhodamine Hydroxamate as Pd ²⁺ â€6pecific Fluorescent Chemosensor. Chemistry - an Asian Journal, 2011, 6, 1987-1991.	1.7	45
95	Engineered nanoparticles for biomolecular imaging. Nanoscale, 2011, 3, 3007.	2.8	246
96	Layer-by-layer capsules for magnetic resonance imaging and drug delivery. Advanced Drug Delivery Reviews, 2011, 63, 772-788.	6.6	161

#	Article	IF	Citations
97	Activatable T 1 and T 2 Magnetic Resonance Imaging Contrast Agents. Annals of Biomedical Engineering, 2011, 39, 1335-1348.	1.3	68
98	A New Tris(phosphonomethyl) Monoacetic Acid Cyclam Derivative: Synthesis, Acid-Base and Metal Complexation Studies. European Journal of Inorganic Chemistry, 2011, 2011, 527-538.	1.0	5
99	Modification of Nanocrystalline TiO2 with Phosphonate- and Bis(phosphonate)-Bearing Macrocyclic Complexes: Sorption and Stability Studies. European Journal of Inorganic Chemistry, 2011, 2011, 1981-1989.	1.0	26
100	Static and Dynamic Stereochemistry of Chiral Ln DOTA Analogues. ChemPhysChem, 2011, 12, 1490-1497.	1.0	20
101	Thermodynamics, Structure and Properties of Polynuclear Lanthanide Complexes with a Tripodal Ligand: Insight into their Selfâ€Assembly. Chemistry - A European Journal, 2011, 17, 6753-6764.	1.7	35
102	Uridine-based paramagnetic supramolecular nanoaggregate with high relaxivity capable of detecting primitive liver tumor lesions. Biomaterials, 2011, 32, 6533-6540.	5.7	12
103	Strategies for the covalent conjugation of a bifunctional chelating agent to albumin: Synthesis and characterization of potential MRI contrast agents. Journal of Inorganic Biochemistry, 2011, 105, 250-255.	1.5	9
104	MRI contrast agents based on dysprosium or holmium. Progress in Nuclear Magnetic Resonance Spectroscopy, 2011, 59, 64-82.	3.9	116
105	On the synthesis of 1,4,7-tris(tert-butoxycarbonylmethyl)-1,4,7,10-tetraazacyclododecane. Tetrahedron Letters, 2011, 52, 2058-2061.	0.7	34
107	The formation stability, hydrolytic behavior, mass spectrometry, DFT study, and luminescence properties of trivalent lanthanide complexes of H2ODO2A. Dalton Transactions, 2012, 41, 14697.	1.6	10
108	Gadolinium complexes of monophosphinic acid DOTA derivatives conjugated to cyclodextrin scaffolds: efficient MRI contrast agents for higher magnetic fields. Dalton Transactions, 2012, 41, 13509.	1.6	32
109	The Solution Structure and Dynamics of MRI Probes Based on Lanthanide(III) DOTA as Investigated by DFT and NMR Spectroscopy. European Journal of Inorganic Chemistry, 2012, 2012, 2023-2033.	1.0	51
110	Characterization of nanoparticle-based contrast agents for molecular magnetic resonance imaging. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	15
111	Dynamic chiral-at-metal stability of tetrakis(d/l -hfc)Ln(iii) complexes capped with an alkali metal cation in solution. Dalton Transactions, 2012, 41, 6696.	1.6	16
112	Mixed polymeric micelles as multifunctional scaffold for combined magnetic resonance imaging contrast enhancement and targeted chemotherapeutic drug delivery. Journal of Materials Chemistry, 2012, 22, 5020.	6.7	58
113	Di-nuclear nonionic magnetic resonance contrast agents using pyrazinyl linking centers. RSC Advances, 2012, 2, 6404.	1.7	6
114	Lanthanide(III) Complexes with Ligands Derived from a Cyclen Framework Containing Pyridinecarboxylate Pendants. The Effect of Steric Hindrance on the Hydration Number. Inorganic Chemistry, 2012, 51, 2509-2521.	1.9	63
115	Analytical Methods for Characterizing Magnetic Resonance Probes. Analytical Chemistry, 2012, 84, 6278-6287.	3.2	39

#	Article	IF	CITATIONS
116	Electronic fine structure calculation of [Gd(DOTA)(H2O)]– using LF-DFT: The zero field splitting. Comptes Rendus Chimie, 2012, 15, 250-254.	0.2	13
118	Minimizing Risk of Nephrogenic systemic fibrosis in Cardiovascular Magnetic Resonance. Journal of Cardiovascular Magnetic Resonance, 2012, 14, 29.	1.6	73
119	The first structural and spectroscopic study of a paramagnetic 5f DO3A complex. Dalton Transactions, 2012, 41, 13167.	1.6	18
120	Macromolecular Ligands for Gadolinium MRI Contrast Agents. Macromolecules, 2012, 45, 4196-4204.	2.2	133
121	A new metallostar complex based on an aluminum(iii) 8-hydroxyquinoline core as a potential bimodal contrast agent. Dalton Transactions, 2012, 41, 10549.	1.6	30
122	Complexation of Metal lons with TRAP (1,4,7-Triazacyclononane Phosphinic Acid) Ligands and 1,4,7-Triazacyclononane-1,4,7-triacetic Acid: Phosphinate-Containing Ligands as Unique Chelators for Trivalent Gallium. Inorganic Chemistry, 2012, 51, 577-590.	1.9	96
123	Equilibrium studies between some transition metal ions and Me6[14]dieneN4 ligand. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2012, 143, 1357-1363.	0.9	1
124	Target binding improves relaxivity in aptamer–gadolinium conjugates. Journal of Biological Inorganic Chemistry, 2012, 17, 1159-1175.	1.1	14
125	Gd(iii) chelates for MRI contrast agents: from high relaxivity to "smartâ€, from blood pool to blood–brain barrier permeable. MedChemComm, 2012, 3, 552.	3.5	93
126	Rigid Mn(ii) chelate as efficient MRI contrast agent for vascular imaging. Dalton Transactions, 2012, 41, 14480.	1.6	51
127	Nanoformulations for molecular MRI. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2012, 4, 448-457.	3.3	22
128	Insight into the Dynamics of Lanthanide-DTPA Complexes As Revealed by Oxygen-17 NMR. Inorganic Chemistry, 2012, 51, 8455-8461.	1.9	14
129	Bloodâ€Pool and Targeting MRI Contrast Agents: From Gdâ€Chelates to Gdâ€Nanoparticles. European Journal of Inorganic Chemistry, 2012, 2012, 1924-1933.	1.0	52
130	Manganeseâ€Enhanced MRI Contrast Agents: From Small Chelates to Nanosized Hybrids. European Journal of Inorganic Chemistry, 2012, 2012, 1987-2005.	1.0	95
131	Lanthanide Loaded Zeolites, Clays, and Mesoporous Silica Materials as MRI Probes. European Journal of Inorganic Chemistry, 2012, 2012, 1961-1974.	1.0	50
132	Gdâ€Aminoethylâ€DO3A Complexes: A Novel Class of pHâ€Sensitive MRI Contrast Agents. European Journal of Inorganic Chemistry, 2012, 2012, 2035-2039.	1.0	30
133	Tris(phosphonomethyl)cyclen Derivatives: Thermodynamic Stability, Kinetics, Solution Structure, and Relaxivity of Ln ³⁺ Complexes. European Journal of Inorganic Chemistry, 2012, 2012, 2548-2559.	1.0	5
134	Manganese(II) Complexes as Potential Contrast Agents for MRI. European Journal of Inorganic Chemistry, 2012, 2012, 1975-1986.	1.0	159

#	Article	IF	CITATIONS
135	Synthesis, Characterization, and in vitro Testing of a Bacteria-Targeted MR Contrast Agent. European Journal of Inorganic Chemistry, 2012, 2012, 2099-2107.	1.0	16
136	Kinetically Stable Ln ^{III} Complexes Comprising a Trinuclear Core Sandwiched between Two Thiacalix[4]arene Ligands Selfâ€Assembled in Water (Ln ^{III} = Nd ^{III} ,) Tj ETQq1 1 0.78431	.4rgBT/C	verbock 10 T
137	Hydrogels Incorporating GdDOTA: Towards Highly Efficient Dual <i>T</i> ₁ <i>/T</i> ₂ MRI Contrast Agents. Angewandte Chemie - International Edition, 2012, 51, 9119-9122.	7.2	134
138	¹ H, ⁸⁹ Y HMQC and Further NMR Spectroscopic and Xâ€ray Diffraction Investigations on Yttriumâ€Containing Complexes Exhibiting Various Nuclearities. Chemistry - A European Journal, 2012, 18, 5325-5334.	1.7	29
139	Theranostic Gd(III)-lipid microbubbles for MRI-guided focused ultrasound surgery. Biomaterials, 2012, 33, 247-255.	5.7	51
140	Synthesis and functional evaluation of chiral dendrimer–triamine-coordinated Gd complexes as highly sensitive MRI contrast agents. Tetrahedron Letters, 2012, 53, 4580-4583.	0.7	9
141	Exploring the mechanisms of metalÂbased pharmacological agents via an integrated approach. Journal of Inorganic Biochemistry, 2012, 109, 97-106.	1.5	43
142	Mono(pyridine-N-oxide) analog of DOTA as a suitable organic reagent for a sensitive and selective fluorimetric determination of Ln(III) ions. Journal of Luminescence, 2012, 132, 2030-2035.	1.5	13
143	Homodinuclear lanthanide complexes of phenylthiopropionic acid: Synthesis, characterization, cytotoxicity, DNA cleavage, and antimicrobial activity. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 105, 532-538.	2.0	14
144	Rare earth metal complexes anchored on a new dianionic bis(phenolate)dimethylamineCyclam ligand. Journal of Organometallic Chemistry, 2013, 728, 57-67.	0.8	14
145	Fabrication of Hollow and Porous Structured GdVO4:Dy3+ Nanospheres as Anticancer Drug Carrier and MRI Contrast Agent. Langmuir, 2013, 29, 1286-1294.	1.6	78
146	Quantitative structure activity relationship of tetraaza macrocyclic vehicle DO3A with lanthanide relaxivity and hydrophobicity. Medicinal Chemistry Research, 2013, 22, 5861-5867.	1.1	0
147	Design of Porphyrinâ€dotaâ€Like Scaffolds as Allâ€inâ€One Multimodal Heterometallic Complexes for Medical Imaging. European Journal of Organic Chemistry, 2013, 2013, 6629-6643.	1.2	28
148	Bio-Inspired, Melanin-Like Nanoparticles as a Highly Efficient Contrast Agent for <i>T</i> ₁ -Weighted Magnetic Resonance Imaging. Biomacromolecules, 2013, 14, 3491-3497.	2.6	138
149	Synthesis of Eu3+-doped Gd2O3 in hollow nanoparticle structures by controlled chemical etching with poly(acrylic acid). RSC Advances, 2013, 3, 16374.	1.7	8
150	Mesoporous Europo-Gadolinosilicate Nanoparticles as Bimodal Medical Imaging Agents and a Potential Theranostic Platform. Advanced Healthcare Materials, 2013, 2, 836-845.	3.9	15
151	Synthesis and Relaxivity Studies of a DOTA-Based Nanomolecular Chelator Assembly Supported by an Icosahedral Closo-B122â^' -Core for MRI: A Click Chemistry Approach. Molecules, 2013, 18, 9034-9048.	1.7	18
152	Strategies for Optimizing Water-Exchange Rates of Lanthanide-Based Contrast Agents for Magnetic Resonance Imaging. Molecules, 2013, 18, 9352-9381.	1.7	54

#	Article	IF	CITATIONS
153	4,4′-Bis(trifluoromethyl)-2,2′-bipyridine – a multipurpose ligand scaffold for lanthanoid-based luminescence/19F NMR probes. Dalton Transactions, 2013, 42, 13882.	1.6	17
154	Lanthanide(iii) complexes of aminoethyl-DO3A as PARACEST contrast agents based on decoordination of the weakly bound amino group. Dalton Transactions, 2013, 42, 15735.	1.6	20
155	Controlled mixing of lanthanide(iii) ions in coacervate core micelles. Chemical Communications, 2013, 49, 3736.	2.2	57
156	Remarkable Inertness of Copper(II) Chelates of Cyclen-Based Macrobicycles with Two <i>trans</i> - <i>N</i> -Acetate Arms. Inorganic Chemistry, 2013, 52, 5138-5153.	1.9	27
157	Luminescent Sensor for Carbonate Ion Based on Lanthanide(III) Complexes of 1,4,7,10-Tetraazacyclododecane-1,4,7-Triacetic Acid (DO3A). Journal of Fluorescence, 2013, 23, 57-69.	1.3	28
158	Discrete Nanomolecular Polyhedral Borane Scaffold Supporting Multiple Gadolinium(III) Complexes as a High Performance MRI Contrast Agent. Inorganic Chemistry, 2013, 52, 1694-1700.	1.9	70
159	cRGD Peptide-Conjugated Icosahedral closo-B122- Core Carrying Multiple Gd3+-DOTA Chelates for $\hat{l}\pm v\hat{l}^2$ 3 Integrin-Targeted Tumor Imaging (MRI). Inorganic Chemistry, 2013, 52, 1701-1709.	1.9	31
160	Synthesis and evaluation of a polydisulfide with Gd–DOTA monoamide side chains as a biodegradable macromolecular contrast agent for MR blood pool imaging. Contrast Media and Molecular Imaging, 2013, 8, 220-228.	0.4	23
161	Synthesis, characterization, cytotoxicity, DNA cleavage and antimicrobial activity of homodinuclear lanthanide complexes of phenylthioacetic acid. Journal of Rare Earths, 2013, 31, 1009-1016.	2.5	21
162	Two multinuclear GdIII macrocyclic complexes as contrast agents with high relaxivity and stability using rigid linkers. Inorganica Chimica Acta, 2013, 406, 146-152.	1.2	10
165	Simulated annealing and density functional theoretical prediction of macrocyclic ligand conformations, protonation sites and complex metal–ligand exchange reaction directions. Dalton Transactions, 2013, 42, 6397.	1.6	8
166	Biocompatible nanoparticles and gadolinium complexes for MRI applications. Comptes Rendus Chimie, 2013, 16, 531-539.	0.2	11
167	Lanthanide(III) Complexes of Diethylenetriaminepentaacetic Acid (DTPA)–Bisamide Derivatives as Potential Agents for Bimodal (Optical/Magnetic Resonance) Imaging. European Journal of Inorganic Chemistry, 2013, 2013, 2629-2639.	1.0	28
168	Synthesis, conjugation and relaxation studies of gadolinium(iii)-4-benzothiazol-2-yl-phenylamine as a potential brain specific MR contrast agent. Dalton Transactions, 2013, 42, 4994.	1.6	25
169	Gd ³⁺ â€lonâ€Doped Upconversion Nanoprobes: Relaxivity Mechanism Probing and Sensitivity Optimization. Advanced Functional Materials, 2013, 23, 298-307.	7.8	147
170	Thiolated Gd(III) Chelate Coated Gold Nanoparticles: Synthesis, Characterization, X-Ray CT and MRI Relaxivity Studies. Materials Science Forum, 0, 754, 121-130.	0.3	2
171	Convenient Synthesis of ⁶⁸ Ga‣abeled Gadolinium(III) Complexes: Towards Bimodal Responsive Probes for Functional Imaging with PET/MRI. Chemistry - A European Journal, 2013, 19, 12602-12606.	1.7	23
172	Oxidation-responsive Eu ^{2+/3+} -liposomal contrast agent for dual-mode magnetic resonance imaging. Chemical Communications, 2014, 50, 14835-14838.	2.2	51

#	ARTICLE	IF	CITATIONS
173	Lanthanide Complexes with Heteroditopic Ligands as Fluorescent Zinc Sensors. European Journal of Inorganic Chemistry, 2014, 2014, 1072-1081.	1.0	29
174	Dual-modal imaging and photodynamic therapy using upconversion nanoparticles for tumor cells. Analyst, The, 2014, 139, 6414-6420.	1.7	14
175	Comprehensive Evaluation of the Physicochemical Properties of Ln ^{III} Complexes of Aminoethylâ€DO3A as pHâ€Responsive <i>T</i> ₁ â€MRI Contrast Agents. Chemistry - A European Journal, 2014, 20, 2933-2944.	1.7	21
176	Synthesis of 1,4,7,10â€Tetraâ€azacyclododecanâ€1,4,7,10â€tetraâ€azidoethylacetic Acid (DOTAZA) and Related "Clickable―DOTA Derivatives. Chemistry - an Asian Journal, 2014, 9, 2197-2204.	1.7	12
177	Synthesis and Biological Applications of Phosphinates and Derivatives. Topics in Current Chemistry, 2014, 360, 39-114.	4.0	27
178	Entrapment of a neutral Tm(III)â€based complex with two innerâ€sphere coordinated water molecules into PEGâ€stabilized vesicles: towards an alternative strategy to develop highâ€performance LipoCEST contrast agents for MR imaging. Contrast Media and Molecular Imaging, 2014, 9, 391-399.	0.4	12
179	Imaging Biomarkers or Biomarker Imaging?. Pharmaceuticals, 2014, 7, 765-778.	1.7	13
180	Phosphinic Acid Functionalized Polyazacycloalkane Chelators for Radiodiagnostics and Radiotherapeutics: Unique Characteristics and Applications. ChemMedChem, 2014, 9, 1107-1115.	1.6	57
183	Lanthanide Probes for Bioresponsive Imaging. Chemical Reviews, 2014, 114, 4496-4539.	23.0	965
184	Towards sensory Langmuir monolayers consisting of macrocyclic pentaaminoanthraquinone. New Journal of Chemistry, 2014, 38, 317-329.	1.4	10
185	Gadoliniumâ€Conjugated Gold Nanoshells for Multimodal Diagnostic Imaging and Photothermal Cancer Therapy. Small, 2014, 10, 556-565.	5.2	90
186	A greener approach toward gadolinium-based contrast agents. RSC Advances, 2014, 4, 9880-9884.	1.7	3
187	An oxygen-17 dynamic NMR study of the Pr–DOTA complex. Dalton Transactions, 2014, 43, 967-972.	1.6	11
188	Tuning the composition of biocompatible Gd nanohydrogels to achieve hypersensitive dual T ₁ /T ₂ MRI contrast agents. Journal of Materials Chemistry B, 2014, 2, 6397-6405.	2.9	29
189	Substitution of gadolinium ethylenediaminetetraacetate with phosphites: towards gadolinium deposit in nephrogenic systemic fibrosis. Dalton Transactions, 2014, 43, 639-645.	1.6	14
190	Towards polymetallic lanthanide complexes as dual contrast agents for magnetic resonance and optical imaging. Chemical Society Reviews, 2014, 43, 8178-8192.	18.7	141
191	Synthesis and characterization of a new lanthanide based MRI contrast agent, potential and versatile tracer for multimodal imaging. Tetrahedron, 2014, 70, 5450-5454.	1.0	12
192	Design of a Gdâ€∢scp>DOTAâ€Phthalocyanine Conjugate Combining ⟨scp>MRI⟨/scp> Contrast Imaging and Photosensitization Properties as a Potential Molecular Theranostic. Photochemistry and Photobiology, 2014, 90, 1376-1386.	1.3	43

#	Article	IF	Citations
193	Crystal Structures, Thermal Degradation, and Biological Activities of Some New Ammonium and Hydrazinium Salts of Cyclohexanediaminetetraacetic Acid. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2014, 44, 1119-1127.	0.6	2
194	The precise molecular location of gadolinium atoms has a significant influence on the efficacy of nanoparticulate MRI positive contrast agents. Polymer Chemistry, 2014, 5, 2592-2601.	1.9	44
195	An enzymatic approach to bifunctional chelating agents. Organic and Biomolecular Chemistry, 2014, 12, 6915-6921.	1.5	17
196	¹⁷ O NMR Study of Diamagnetic and Paramagnetic Lanthanide(III)–DOTA Complexes in Aqueous Solution. Inorganic Chemistry, 2014, 53, 8717-8722.	1.9	15
197	The interplay of T1- and T2-relaxation on T1-weighted MRI of hMSCs induced by Gd-DOTA-peptides. Biomaterials, 2014, 35, 4168-4174.	5.7	25
198	Thermodynamic and Kinetic Study of Scandium(III) Complexes of DTPA and DOTA: A Step Toward Scandium Radiopharmaceuticals. Chemistry - A European Journal, 2014, 20, 7944-7955.	1.7	55
199	Inflammation Targeted Gd ³⁺ -Based MRI Contrast Agents Imaging Tumor and Rheumatoid Arthritis Models. Bioconjugate Chemistry, 2014, 25, 1112-1123.	1.8	11
200	Effect of Lanthanide Complex Structure on Cell Viability and Association. Inorganic Chemistry, 2014, 53, 6013-6021.	1.9	17
201	Sequential Nitration/Hydrogenation Protocol for the Synthesis of Triaminophloroglucinol: Safe Generation and Use of an Explosive Intermediate under Continuous-Flow Conditions. Organic Process Research and Development, 2014, 18, 1360-1366.	1.3	59
202	Water Proton Relaxivity, Superoxide Dismutase-like Activity, and Cytotoxicity of a Manganese(III) Porphyrin Having Four Poly(ethylene glycol) Tails. Chemistry Letters, 2014, 43, 732-734.	0.7	9
203	A Bis(pyridine <i>N</i> â€oxide) Analogue of DOTA: Relaxometric Properties of the Gd ^{III} Complex and Efficient Sensitization of Visible and NIRâ€Emitting Lanthanide(III) Cations Including Pr ^{III} and Ho ^{III} . Chemistry - A European Journal, 2014, 20, 14834-14845.	1.7	29
204	Direct Detection of ¹⁷ 0 in [Gd(DOTA)] ^{â^'} by NMR Spectroscopy. Chemistry - A European Journal, 2015, 21, 1955-1960.	1.7	8
205	Singleâ€Molecule Magnetism, Enhanced Magnetocaloric Effect, and Toroidal Magnetic Moments in a Family of Ln ₄ Squares. Chemistry - A European Journal, 2015, 21, 15639-15650.	1.7	72
206	Importance of Outerâ€Sphere and Aggregation Phenomena in the Relaxation Properties of Phosphonated Gadolinium Complexes with Potential Applications as MRI Contrast Agents. Chemistry - A European Journal, 2015, 21, 6535-6546.	1.7	25
207	Luminescence and Relaxometric Properties of Heteropolymetallic Metallostar Complexes with Selectively Incorporated Lanthanide(III) Ions. European Journal of Inorganic Chemistry, 2015, 2015, 4207-4216.	1.0	4
208	A Tetranuclear Gadolinium(III) Macrocyclic Complex: Towards High Relaxivity with the Rigid Linkers for Magnetic Resonance Imaging Contrast Agent. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 578-585.	0.6	3
209	Gadolinium(III)-DOTA Complex Functionalized with BODIPY as a Potential Bimodal Contrast Agent for MRI and Optical Imaging. Inorganics, 2015, 3, 516-533.	1.2	13
210	Pharmacokinetics of Chiral Dendrimer-Triamine-Coordinated Gd-MRI Contrast Agents Evaluated by in Vivo MRI and Estimated by in Vitro QCM. Sensors, 2015, 15, 31973-31986.	2.1	8

#	ARTICLE	IF	CITATIONS
212	Synthesis and functional evaluation of chiral dendrimer-triamine-coordinated Gd complexes with polyaminoalcohol end groups as highly sensitive MRI contrast agents. Tetrahedron, 2015, 71, 4438-4444.	1.0	7
213	Evaluation of Gd-DTPA-Monophytanyl and Phytantriol Nanoassemblies as Potential MRI Contrast Agents. Langmuir, 2015, 31, 1556-1563.	1.6	16
214	Terpyridine-Based Heteroditopic Ligand for Ru ^{II} Ln ₃ ^{III} Metallostar Architectures (Ln = Gd, Eu, Nd, Yb) with MRI/Optical or Dual-Optical Responses. Inorganic Chemistry, 2015, 54, 1414-1425.	1.9	19
215	Characterization, Recovery Opportunities, and Valuation of Metals in Municipal Sludges from U.S. Wastewater Treatment Plants Nationwide. Environmental Science & Environmental Science & 2015, 49, 9479-9488.	4.6	199
216	Multivalent manganese complex decorated amphiphilic dextran micelles as sensitive MRI probes. Journal of Materials Chemistry B, 2015, 3, 1470-1473.	2.9	26
217	Dinuclear DOTAâ€Based Gd ^{Ill} Chelates – Revisiting a Straightforward Strategy for Relaxivity Improvement. European Journal of Inorganic Chemistry, 2015, 2015, 1579-1591.	1.0	12
218	Bifunctional Cyclamâ€Based Ligands with Phosphorus Acid Pendant Moieties for Radiocopper Separation: Thermodynamic and Kinetic Studies. Chemistry - A European Journal, 2015, 21, 4671-4687.	1.7	18
219	Metal Complexes as MRI Contrast Enhancement Agents. , 2015, , .		1
220	A water-soluble and water-coordinated Mn(<scp>ii</scp>) complex: synthesis, characterization and phantom MRI image study. Dalton Transactions, 2015, 44, 12990-12994.	1.6	24
221	Synthesis, relaxation properties and in vivo assessment of a carborane-GdDOTA-monoamide conjugate as an MRI blood pool contrast agent. Organic and Biomolecular Chemistry, 2015, 13, 8912-8918.	1.5	15
222	Synthesis and Biological Studies of Some Lanthanide Complexes of Schiff Base. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2015, 45, 1617-1626.	0.6	9
223	Analysis of Gadolinium-based contrast agents in tap water with a new hydrophilic interaction chromatography (ZIC-cHILIC) hyphenated with inductively coupled plasma mass spectrometry. Analytical and Bioanalytical Chemistry, 2015, 407, 2415-2422.	1.9	44
224	Multifunctional gold nanostar-based nanocomposite: Synthesis and application for noninvasive MR-SERS imaging-guided photothermal ablation. Biomaterials, 2015, 60, 31-41.	5.7	89
225	Synthesis of phosphonic analogues of AAZTAâ€AAZTA=6-Amino-6-methylperhydro-1,4-diazepine-N,N′,N″,N″-tetraacetic acid.†and relaxometric evaluation of the corresponding Gd(III) complexes as potential MRI contrast agents. Tetrahedron Letters, 2015, 56, 1994-1997.	0.7	13
226	170 NMR. Annual Reports on NMR Spectroscopy, 2015, 85, 143-193.	0.7	7
227	Polyhydroxylated GdDTPA-derivatives as high relaxivity magnetic resonance imaging contrast agents. RSC Advances, 2015, 5, 74734-74743.	1.7	6
228	Proton NMR of water colloidal solutions of nanosized crystalline LaF3and LaF3:Gd3+particles. Low Temperature Physics, 2015, 41, 67-69.	0.2	1
229	Synthesis, characterization and cytotoxicity of rare earth metal ion complexes of N,Nâ \in 2-bis-(2-thiophenecarboxaldimine)-3,3â \in 2-diaminobenzidene, Schiff base ligand. Journal of Molecular Structure, 2015, 1102, 108-116.	1.8	21

#	Article	IF	CITATIONS
230	Cyclam Derivatives with a Bis(phosphinate) or a Phosphinato–Phosphonate Pendant Arm: Ligands for Fast and Efficient Copper(II) Complexation for Nuclear Medical Applications. Inorganic Chemistry, 2015, 54, 11751-11766.	1.9	33
231	Complex formation equilibria between aluminum(III), gadolinium(III) and yttrium(III) ions and some fluoroquinolone ligands. Potentiometric and spectroscopic study. Journal of Coordination Chemistry, 2015, 68, 4272-4295.	0.8	3
232	Gd(<scp>iii</scp>) complexes intercalated into hydroxy double salts as potential MRI contrast agents. Dalton Transactions, 2015, 44, 20728-20734.	1.6	11
233	Lanthanide-Dipicolinic Acid Coordination Driven Micelles with Enhanced Stability and Tunable Function. Langmuir, 2015, 31, 12251-12259.	1.6	26
234	Nanoparticles Based on Star Polymers as Theranostic Vectors: Endosomalâ€Triggered Drug Release Combined with MRI Sensitivity. Advanced Healthcare Materials, 2015, 4, 148-156.	3.9	52
235	Turning an Aptamer into a Light-Switch Probe with a Single Bioconjugation. Bioconjugate Chemistry, 2015, 26, 63-70.	1.8	8
236	<i>In vitro</i> antimicrobial and antioxidant evaluation of rare earth metal Schiff base complexes derived from threonine. Applied Organometallic Chemistry, 2015, 29, 90-95.	1.7	18
237	Supramolecular aggregates from polyacrylates and Gd(<scp>iii</scp>)-containing cationic surfactants as high-relaxivity MRI contrast agents. Polymer Chemistry, 2015, 6, 1521-1526.	1.9	24
238	Lanthanide-Based Polymers with Charged Ligand Backbones: Triple-Stranded Chain Structures and their DNA Cleavage Studies. Australian Journal of Chemistry, 2015, 68, 493.	0.5	5
239	Native and Synthetic G-quartet-based DNAzyme Systems – Artificial Enzymes for Biotechnological Applications. , 2016, , .		1
240	Multiwalled carbon nanotube hybrids as MRI contrast agents. Beilstein Journal of Nanotechnology, 2016, 7, 1086-1103.	1.5	17
241	A Practical Guide on the Synthesis of Metal Chelates for Molecular Imaging and Therapy by Means of Click Chemistry. Chemistry - A European Journal, 2016, 22, 11500-11508.	1.7	38
242	Dynamic contrastâ€enhanced MRI for oncology drug development. Journal of Magnetic Resonance Imaging, 2016, 44, 251-264.	1.9	31
243	Gdâ€₹EMDO: Design, Synthesis, and MRI Application. Chemistry - A European Journal, 2016, 22, 7352-7356.	1.7	10
245	Functional Hyperbranched Polylysine as Potential Contrast Agent Probes for Magnetic Resonance Imaging. Biomacromolecules, 2016, 17, 2302-2308.	2.6	25
246	Optical and relaxometric properties of monometallic (Eulll, Tblll, Gdlll) and heterobimetallic (Rel/Gdlll) systems based on a functionalized bipyridine-containing acyclic ligand. Dalton Transactions, 2016, 45, 8379-8393.	1.6	5
247	Four Gadolinium(III) Complexes Appended to a Porphyrin: A Water-Soluble Molecular Theranostic Agent with Remarkable Relaxivity Suited for MRI Tracking of the Photosensitizer. Inorganic Chemistry, 2016, 55, 4545-4554.	1.9	49
248	Water Exchange on [Ln(DO3A)(H ₂ O) ₂] and [Ln(DTTA–Me)(H ₂ O) ₂] ^{â"} Studied by Variable Temperature, Pressure, and Magnetic Field NMR. Inorganic Chemistry, 2016, 55, 4555-4563.	1.9	7

#	Article	IF	CITATIONS
249	The evolution of gadolinium based contrast agents: from single-modality to multi-modality. Nanoscale, 2016, 8, 10491-10510.	2.8	66
250	Aqueous Lanthanide Chemistry in Asymmetric Catalysis and Magnetic Resonance Imaging. Synlett, 2016, 27, 1310-1317.	1.0	17
251	Synthesis and Relaxometric Characterization of a New Mn(II)â€EDTAâ€Deoxycholic Acid Conjugate Complex as a Potential MRI Blood Pool Agent. ChemistrySelect, 2016, 1, 1607-1612.	0.7	6
253	Physico-chemical properties of MnII complexes formed with cis- and trans-DO2A: thermodynamic, electrochemical and kinetic studies. Journal of Inorganic Biochemistry, 2016, 163, 206-213.	1.5	36
254	A neutral polydisulfide containing Gd(III) DOTA monoamide as a redoxâ€sensitive biodegradable macromolecular MRI contrast agent. Contrast Media and Molecular Imaging, 2016, 11, 32-40.	0.4	11
255	A simple approach to a new T ₈ -POSS based MRI contrast agent. Dalton Transactions, 2016, 45, 15104-15113.	1.6	7
256	Gd(<scp>iii</scp>) and Mn(<scp>ii</scp>) complexes for dynamic nuclear polarization: small molecular chelate polarizing agents and applications with site-directed spin labeling of proteins. Physical Chemistry Chemical Physics, 2016, 18, 27205-27218.	1.3	76
257	Shape-Dependent Relaxivity of Nanoparticle-Based <i>T</i> ₁ Magnetic Resonance Imaging Contrast Agents. Journal of Physical Chemistry C, 2016, 120, 22103-22109.	1.5	33
258	Formation and decomplexation kinetics of copper(<scp>ii</scp>) complexes with cyclen derivatives having mixed carboxylate and phosphonate pendant arms. Dalton Transactions, 2016, 45, 12723-12733.	1.6	13
259	Impact of biopolymer matrices on relaxometric properties of contrast agents. Interface Focus, 2016, 6, 20160061.	1.5	22
260	High sensitivity of gold nanoparticles co-doped with Gd2O3 mesoporous silica nanocomposite to nasopharyngeal carcinoma cells. Scientific Reports, 2016, 6, 34367.	1.6	18
261	Difference in the intratumoral distributions of extracellularâ€fluid and intravascular MR contrast agents in glioblastoma growth. NMR in Biomedicine, 2016, 29, 1688-1699.	1.6	3
262	HP-DO3A-based amphiphilic MRI contrast agents and relaxation enhancement through their assembly with polyelectrolytes. Journal of Materials Chemistry B, 2016, 4, 7241-7248.	2.9	9
263	Gadolinium(<scp>iii</scp>) based nanoparticles for T ₁ -weighted magnetic resonance imaging probes. RSC Advances, 2016, 6, 60945-60966.	1.7	36
264	Complexation of [Gd(DTTA–Me)(H ₂ O) ₂] ^{â^'} by Fluoride and Its Consequences to Water Exchange. Inorganic Chemistry, 2016, 55, 6231-6239.	1.9	9
265	Dual carbonate sensor based on Eu(III) complex of DO3A ligand. Monatshefte Fýr Chemie, 2016, 147, 925-934.	0.9	15
266	Ln(<scp>iii</scp>)-complexes of a DOTA analogue with an ethylenediamine pendant arm as pH-responsive PARACEST contrast agents. Dalton Transactions, 2016, 45, 3486-3496.	1.6	13
267	A bimodal molecular imaging probe based on chitosan encapsulated magneto-fluorescent nanocomposite offers biocompatibility, visualization of specific cancer cells in vitro and lung tissues in vivo. International Journal of Pharmaceutics, 2016, 498, 110-118.	2.6	20

#	Article	IF	CITATIONS
268	Assessment of Treatment Response With Diffusion-Weighted MRI and Dynamic Contrast-Enhanced MRI in Patients With Early-Stage Breast Cancer Treated With Single-Dose Preoperative Radiotherapy. Technology in Cancer Research and Treatment, 2016, 15, 651-660.	0.8	17
269	Facile synthesis of Gd(<scp>iii</scp>) metallosurfactant-functionalized carbon nanodots with high relaxivity as bimodal imaging probes. RSC Advances, 2016, 6, 29441-29447.	1.7	15
270	Sample Shuttling Relaxometry of Contrast Agents: NMRD Profiles above 1 T with a Single Device. Applied Magnetic Resonance, 2016, 47, 237-246.	0.6	12
271	Interaction of Gd-DTPA with phosphate and phosphite: toward the reaction intermediate in nephrogenic systemic fibrosis. Dalton Transactions, 2016, 45, 5388-5394.	1.6	9
272	Synthesis and Evaluation of Neutral Gd(III), Mn(II) Complexes From DTPA-Bisamide Derivative as Potential MRI Contrast Agents. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 653-658.	0.6	1
273	Nickel(<scp>ii</scp>) complexes of N-CH ₂ CF ₃ cyclam derivatives as contrast agents for ¹⁹ F magnetic resonance imaging. Dalton Transactions, 2016, 45, 474-478.	1.6	24
274	Annulated Mesoporous Silica as Potent Lanthanide Ion Adsorbents and Magnetic Resonance Contrast Enhancing Agents. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 165-171.	1.9	0
275	Removal of gadolinium-based contrast agents: adsorption on activated carbon. Environmental Science and Pollution Research, 2017, 24, 8164-8175.	2.7	19
276	New polyaminocarboxylate macrocycles containing phenolate binding units: synthesis, luminescent and relaxometric properties of their lanthanide complexes. Dalton Transactions, 2017, 46, 4654-4668.	1.6	9
277	Eu(III) Complex with DO3A-amino-phosphonate Ligand as a Concentration-Independent pH-Responsive Contrast Agent for Magnetic Resonance Spectroscopy (MRS). Inorganic Chemistry, 2017, 56, 2078-2091.	1.9	13
278	Intramolecular Hydrogen Bonding Restricts Gd–Aqua‣igand Dynamics. Angewandte Chemie - International Edition, 2017, 56, 5603-5606.	7.2	19
279	Preparation of MRI-visible gadolinium methacrylate nanoparticles with low cytotoxicity and high magnetic relaxivity. Journal of Materials Science, 2017, 52, 7625-7636.	1.7	10
280	Polymeric ¹ H MRI Probes for Visualizing Tumor <i>In Vivo</i> . Chemical Record, 2017, 17, 555-568.	2.9	2
281	1,4,7‶riazacyclononaneâ€Based Bifunctional Picolinate Ligands for Efficient Copper Complexation. European Journal of Inorganic Chemistry, 2017, 2017, 2435-2443.	1.0	23
282	Intramolecular Hydrogen Bonding Restricts Gd–Aqua‣igand Dynamics. Angewandte Chemie, 2017, 129, 5695-5698.	1.6	2
283	Synthesis and characterization of monophosphinic acid DOTA derivative: A smart tool with functionalities for multimodal imaging. Bioorganic and Medicinal Chemistry, 2017, 25, 4297-4303.	1.4	3
284	Recent Advances in Bifunctional Paramagnetic Chelates for MRI. Israel Journal of Chemistry, 2017, 57, 825-832.	1.0	6
286	Spherical Polyelectrolyte Brushes as a Novel Platform for Paramagnetic Relaxation Enhancement and Passive Tumor Targeting. Advanced Healthcare Materials, 2017, 6, 1700071.	3.9	2

#	Article	IF	CITATIONS
287	Proton Exchange in a Paramagnetic Chemical Exchange Saturation Transfer Agent from Experimental Studies and <i>ab Initio</i> Metadynamics Simulation. Inorganic Chemistry, 2017, 56, 4317-4323.	1.9	15
288	Metal complexes targeting the Translocator Protein 18 kDa (TSPO). Coordination Chemistry Reviews, 2017, 341, 1-18.	9.5	23
289	Pentanuclear Lanthanide Mono-organophosphates: Synthesis, Structure, and Magnetism. Inorganic Chemistry, 2017, 56, 3946-3960.	1.9	41
290	Characterization of Gd loaded chitosan-TPP nanohydrogels by a multi-technique approach combining dynamic light scattering (DLS), asymetrical flow-field-flow-fractionation (AF4) and atomic force microscopy (AFM) and design of positive contrast agents for molecular resonance imaging (MRI). Nanotechnology, 2017, 28, 055705.	1.3	17
291	Synthesis and Evaluation of a Biocompatible Macromolecular Gadolinium Compound as a Liver-Specific Contrast Agent for MRI. Australian Journal of Chemistry, 2017, 70, 307.	0.5	3
292	Cu2+-Complex of hydrophilic nitrogen-rich polymer dots applied as a new MRI contrast agent. Biomaterials Science, 2017, 5, 2319-2327.	2.6	11
293	Ternary Eu($\langle scp \rangle iii \langle scp$	1.7	30
294	The urea biosensor based on luminescence of Eu(III) ternary complex of DO3A ligand. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2017, 148, 1945-1952.	0.9	2
295	A highly stable l-alanine-based mono(aquated) Mn(ii) complex as a T1-weighted MRI contrast agent. Dalton Transactions, 2017, 46, 10426-10432.	1.6	19
296	Review: electrochemical studies on some metal complexes having anti-cancer activities. Journal of Coordination Chemistry, 2017, 70, 2551-2588.	0.8	6
297	Macrocyclic paramagnetic agents for MRI: Determinants of relaxivity and strategies for their improvement. Magnetic Resonance in Medicine, 2017, 78, 1523-1532.	1.9	21
299	Electrostatic self-assembled nanoparticles based on spherical polyelectrolyte brushes for magnetic resonance imaging. Dalton Transactions, 2018, 47, 7663-7668.	1.6	8
300	A monoanionic NNNN-type macrocyclic ligand for electropositive metal centers. Chemical Communications, 2018, 54, 2701-2714.	2.2	18
301	Ultrafast Ligand Self-Exchanging Gadolinium Complexes in Ionic Liquids for NMR Field Probes. Inorganic Chemistry, 2018, 57, 2314-2319.	1.9	5
302	A New Bis(aquated) High Relaxivity Mn(II) Complex as an Alternative to Gd(III)-Based MRI Contrast Agent. Inorganic Chemistry, 2018, 57, 2631-2638.	1.9	34
304	Synthesis, Characterization, and Biodistribution of a Dinuclear Gadolinium Complex with Improved Properties as a Blood Pool MRI Agent. ChemMedChem, 2018, 13, 824-834.	1.6	7
305	Optimizing Water Exchange Rates and Rotational Mobility for Highâ∈Relaxivity of a Novel Gdâ∈xscp>DO3A Derivative Complex Conjugated to Inulin as Macromolecular Contrast Agents for <scp>MRI</scp> . Chemistry and Biodiversity, 2018, 15, e1700487.	1.0	11
306	Synthesis, characterization, and antimicrobial studies of some palladium complexes with an octamethyl tetraazacyclotetradecadiene ligand and isomers of its reduced form. Journal of the Iranian Chemical Society, 2018, 15, 1947-1959.	1.2	0

#	Article	IF	CITATIONS
307	Controlling the Structures of Lanthanide Complexes in Selfâ€Assemblies with Tripodal Ligands. European Journal of Inorganic Chemistry, 2018, 2018, 1155-1166.	1.0	14
308	Interactions of Alkali and Alkaline-Earth Metals in Water-Soluble Heterometallic Fe ^{III} /M (M = Na ⁺ , K ⁺ , Ca ²⁺)-Type Coordination Complex. Crystal Growth and Design, 2018, 18, 531-539.	1.4	6
309	Mesoporous 3D carbon framework encapsulated manganese oxide nanoparticles as biocompatible T1 MR imaging probe. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 539, 229-236.	2.3	11
310	A new heptadentate picolinate-based ligand and its corresponding Gd(iii) complex: the effect of pendant picolinate versus acetate on complex properties. Dalton Transactions, 2018, 47, 135-142.	1.6	11
311	DOTA Functionalized Cross-Linked Small-Molecule Micelles for Theranostics Combining Magnetic Resonance Imaging and Chemotherapy. Bioconjugate Chemistry, 2018, 29, 3402-3410.	1.8	10
312	Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity. Coordination Chemistry Reviews, 2018, 370, 42-54.	9.5	215
313	Synthesis and Unprecedented Complexation Properties of \hat{l}^2 -Cyclodextrin-Based Ligand for Lanthanide lons. Inorganic Chemistry, 2018, 57, 8964-8977.	1.9	9
314	A Bishydrated, Eight–Coordinate Gd(III) Complex with Very Fast Water Exchange: Synthesis, Characterization, and Phantom MR Imaging. ChemistrySelect, 2018, 3, 7668-7673.	0.7	5
315	Fe-T ₁ Sensor Based on Coordination Chemistry for Sensitive and Versatile Bioanalysis. Analytical Chemistry, 2018, 90, 9148-9155.	3.2	22
317	pH-responsive theranostic nanocomposites as synergistically enhancing positive and negative magnetic resonance imaging contrast agents. Journal of Nanobiotechnology, 2018, 16, 30.	4.2	26
318	Lanthanide(<scp>iii</scp>) complexes of monophosphinate/monophosphonate DOTA-analogues: effects of the substituents on the formation rate and radiolabelling yield. Dalton Transactions, 2018, 47, 13006-13015.	1.6	11
319	Dendrimer-based magnetic resonance imaging agents for brain cancer. Science China Materials, 2018, 61, 1420-1443.	3.5	9
320	Structure and properties of DOTA-chelated radiopharmaceuticals within the ²²⁵ Ac decay pathway. MedChemComm, 2018, 9, 1155-1163.	3.5	11
321	Estimation of the magnitude of quadrupole relaxation enhancement in the context of magnetic resonance imaging contrast. Journal of Chemical Physics, 2019, 150, 184306.	1.2	11
322	Fast and Quantitative NMR Metabolite Analysis Afforded by a Paramagnetic Coâ€Solute. Angewandte Chemie - International Edition, 2019, 58, 15283-15286.	7.2	22
323	A light-responsive liposomal agent for MRI contrast enhancement and monitoring of cargo delivery. Chemical Communications, 2019, 55, 10784-10787.	2.2	18
324	Trapping of Gd(III) lons by Keplerate Polyanionic Nanocapsules in Water: A ¹ H Fast Field Cycling NMR Relaxometry Study. Journal of Physical Chemistry C, 2019, 123, 18095-18102.	1.5	7
325	Organic nanoparticles and gadolinium chelates: seeking hypersensitive probes for T1 magnetic resonance imaging., 2019,, 425-476.		0

#	Article	IF	CITATIONS
326	Coordination Behavior of 1,4-Disubstituted Cyclen Endowed with Phosphonate, Phosphonate Monoethylester, and H-Phosphinate Pendant Arms. Molecules, 2019, 24, 3324.	1.7	5
327	Synthesis and Relaxometric Characterization of New Poly[<i>N</i> , <i>N</i> , <i>N</i> ,6i>3ê€bis(3â€aminopropyl)glycine] (PAPGly) Dendrons Gdâ€Based Contrast Agents and Their <i>in Vivo</i> Study by Using the Dynamic Contrastâ€Enhanced MRI Technique at Low Field (1 T). Chemistry and Biodiversity, 2019, 16, e1900322.	1.0	3
328	Gadolinium complexes of diethylenetriamine- <i>N</i> -oxide pentaacetic acid-bisamide: a new class of highly stable MRI contrast agents with a hydration number of 3. Dalton Transactions, 2019, 48, 1693-1699.	1.6	17
329	A Factor Two Improvement in High-Field Dynamic Nuclear Polarization from Gd(III) Complexes by Design. Journal of the American Chemical Society, 2019, 141, 8746-8751.	6.6	28
330	Water exchange in lanthanide complexes for MRI applications. Lessons learned over the last 25 years. Dalton Transactions, 2019, 48, 11161-11180.	1.6	41
331	Functionalized Gold Nanoparticles as Contrast Agents for Proton and Dual Proton/Fluorine MRI. Nanomaterials, 2019, 9, 879.	1.9	21
332	A high-sensitivity and low dose energy-dispersive X-ray fluorescence system for identification of gadolium accumulations in planar X-ray fluorescence images. Applied Radiation and Isotopes, 2019, 151, 46-51.	0.7	2
333	Effect of Ligand Chirality and Hyperconjugation on the Thermodynamic Stability of a Tris(aquated) GdIII Complex: Synthesis, Characterization, and T 1 -Weighted Phantom MR Image Study. European Journal of Inorganic Chemistry, 2019, 2019, 2518-2523.	1.0	2
334	Tracking Conformational Changes in Calmodulin in vitro, in Cell Extract, and in Cells by Electron Paramagnetic Resonance Distance Measurements. ChemPhysChem, 2019, 20, 1860-1868.	1.0	31
335	A Gadolinium(III) Zeolite-like Metal-Organic-Framework-Based Magnetic Resonance Thermometer. CheM, 2019, 5, 1609-1618.	5.8	38
336	First synthesis of orthogonally 1,7-diprotected cyclens. Organic Chemistry Frontiers, 2019, 6, 1387-1390.	2.3	1
338	Ligand design strategies to increase stability of gadolinium-based magnetic resonance imaging contrast agents. Nature Communications, 2019, 10, 1420.	5.8	211
339	Lanthanide Complexes of DO3A–(Dibenzylamino)methylphosphinate: Effect of Protonation of the Dibenzylamino Group on the Water-Exchange Rate and the Binding of Human Serum Albumin. Inorganic Chemistry, 2019, 58, 5196-5210.	1.9	11
340	Cumulative administrations of gadolinium-based contrast agents: risks of accumulation and toxicity of linear vs macrocyclic agents. Critical Reviews in Toxicology, 2019, 49, 262-279.	1.9	33
341	Hydrophilic Quantum Dots Functionalized with Gd(III)-DO3A Monoamide Chelates as Bright and Effective T1-weighted Bimodal Nanoprobes. Scientific Reports, 2019, 9, 2341.	1.6	13
342	Advances in Contrast Agents for Contrast-Enhanced Magnetic Resonance Imaging. Journal of Medical Imaging and Radiation Sciences, 2019, 50, 575-589.	0.2	15
343	Fast and Quantitative NMR Metabolite Analysis Afforded by a Paramagnetic Coâ€Solute. Angewandte Chemie, 2019, 131, 15427-15430.	1.6	7
344	Dendronised Ni(<scp>ii</scp>) porphyrins as photoswitchable contrast agents for MRI. Physical Chemistry Chemical Physics, 2019, 21, 24296-24299.	1.3	12

#	Article	IF	CITATIONS
345	Radioactive Main Group and Rare Earth Metals for Imaging and Therapy. Chemical Reviews, 2019, 119, 902-956.	23.0	293
346	Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chemical Reviews, 2019, 119, 957-1057.	23.0	977
347	Amino-phenol complexes of Fe(III) as promising T1 accelerators. Arabian Journal of Chemistry, 2019, 12, 1424-1435.	2.3	10
348	Multifunctional Gadolinium-Based Coordination Polymer Hollow Submicrospheres: Synthesis, Characterization and Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 1419-1424.	1.9	1
349	The solid-state structures and ligand cavity evaluation of lanthanide(<scp>iii</scp>) complexes of a DOTA analogue with a (dibenzylamino)methylphosphinate pendant arm. Dalton Transactions, 2020, 49, 1555-1569.	1.6	4
350	The chemical consequences of the gradual decrease of the ionic radius along the Ln-series. Coordination Chemistry Reviews, 2020, 406, 213146.	9.5	64
351	Metallostar Assemblies Based on Dithiocarbamates for Use as MRI Contrast Agents. Inorganic Chemistry, 2020, 59, 10813-10823.	1.9	4
352	Facile Fabrication of Fe ₃ O ₄ @poly(acrylic) Acid Based Ferrofluid with Magnetic Resonance Imaging Contrast Effect. ChemistrySelect, 2020, 5, 12915-12923.	0.7	5
353	Rare-Earth Metal Complexes of the Antibacterial Drug Oxolinic Acid: Synthesis, Characterization, DNA/Protein Binding and Cytotoxicity Studies. Molecules, 2020, 25, 5418.	1.7	10
354	Solid phase synthesis in the development of magnetic resonance imaging probes. Organic Chemistry Frontiers, 2020, 7, 4121-4141.	2.3	5
355	Gadolinium Complexes Attached to Poly Ethoxy Ethyl Glycinamide (PEEâ€G) Dendrons: Magnetic Resonance Imaging Contrast Agents with Increased Relaxivity. ChemPlusChem, 2020, 85, 1881-1892.	1.3	3
356	Synthesis and In Vitro Studies of a Gd(DOTA)–Porphyrin Conjugate for Combined MRI and Photodynamic Treatment. Inorganic Chemistry, 2020, 59, 14389-14398.	1.9	20
357	Luminescent Sensor Based on Ln(III) Ternary Complexes for NAD(P)H Detection. Molecules, 2020, 25, 4164.	1.7	2
358	Maximizing Magnetic Resonance Contrast in Gd(III) Nanoconjugates: Investigation of Proton Relaxation in Zirconium Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 41157-41166.	4.0	20
359	Tetrahalocatecholate Rare Earth Complexes: Dinuclear Motifs with Intramolecular REÂ-Â-Â-XC(Ar) Interactions. Crystal Growth and Design, 2020, 20, 3396-3405.	1.4	5
360	Effect of Structure and Intramolecular Distances on Photoswitchable Magnetic Resonance Imaging Contrast Agents. Journal of Organic Chemistry, 2020, 85, 7333-7341.	1.7	2
361	Flash nanoprecipitation with Gd(III)â€based metallosurfactants to fabricate polylactic acid nanoparticles as highly efficient contrast agents for magnetic resonance imaging. Chemistry - an Asian Journal, 2020, 15, 2475-2479.	1.7	10
362	Gadolinium complexes of macrocyclic diethylenetriamine-N-oxide pentaacetic acid-bisamide as highly stable MRI contrast agents with high relaxivity. Dalton Transactions, 2020, 49, 8927-8932.	1.6	16

#	Article	IF	CITATIONS
363	Quinolone Complexes with Lanthanide Ions: An Insight into their Analytical Applications and Biological Activity. Molecules, 2020, 25, 1347.	1.7	25
364	Neuron labeling with rhodamine-conjugated Gd-based MRI contrast agents delivered to the brain via focused ultrasound. Theranostics, 2020, 10, 2659-2674.	4.6	15
365	Gold nanomaterials functionalised with gadolinium chelates and their application in multimodal imaging and therapy. Chemical Communications, 2020, 56, 4037-4046.	2.2	19
366	Coâ€Assembly of Gd(III)â€Based Metallosurfactant and Conjugated Polymer Nanoparticles in Organosilica Crossâ€Linked Block Copolymer Micelles for Highly Efficient MRI and Fluorescent Bimodal Imaging. Particle and Particle Systems Characterization, 2020, 37, 2000044.	1.2	8
367	Paramagnetic Cobalt(II) Complexes with Cyclam Derivatives: Toward ¹⁹ F MRI Contrast Agents. Inorganic Chemistry, 2020, 59, 10071-10082.	1.9	15
368	Formation of nanosized Gd(III) coordination networks with tripodal amine-N-oxide type ligand through microemulsions to achieve high relaxivity and exceptional stability for MRI applications. Journal of Materials Science, 2020, 55, 13206-13215.	1.7	1
369	Supramolecular and biomacromolecular enhancement of metal-free magnetic resonance imaging contrast agents. Chemical Science, 2020, 11, 2045-2050.	3.7	34
370	Paramagnetic Relaxation Enhancement in Hydrophilic Colloids Based on Gd(III) Complexes with Tetrathia- and Calix[4]arenes. Journal of Physical Chemistry C, 2020, 124, 4320-4329.	1.5	17
371	Computational prediction of interaction and pharmacokinetics profile study for polyamino-polycarboxylic ligands on binding with human serum albumin. New Journal of Chemistry, 2020, 44, 2907-2918.	1.4	19
372	On the Aqueous Chemistry of the U ^{IV} –DOTA Complex. Chemistry - A European Journal, 2020, 26, 3390-3403.	1.7	12
373	Limited Utility of Gadolinium Contrast Administration in Routine Multiple Sclerosis Surveillance. Journal of Neuroimaging, 2021, 31, 103-107.	1.0	4
374	Supramolecular adducts between macrocyclic Gd(<scp>iii</scp>) complexes and polyaromatic systems: a route to enhance the relaxivity through the formation of hydrophobic interactions. Chemical Science, 2021, 12, 1368-1377.	3.7	7
375	Albumin-based nanoparticles as contrast medium for MRI: vascular imaging, tissue and cell interactions, and pharmacokinetics of second-generation nanoparticles. Histochemistry and Cell Biology, 2021, 155, 19-73.	0.8	1
376	Sorption of rare-earth elements onto a ligand-associated media for pH-dependent extraction and recovery of critical materials. Separation and Purification Technology, 2021, 258, 118061.	3.9	18
377	Stimulusâ€Responsive Nanoparticle Magnetic Resonance Imaging Contrast Agents: Design Considerations and Applications. Advanced Healthcare Materials, 2021, 10, e2001091.	3.9	51
378	Structural dynamism of chiral sodium peraza-macrocycle complexes derived from cyclic peptoids. Organic and Biomolecular Chemistry, 2021, 19, 7420-7431.	1.5	O
379	Synthesis and Relaxivity of One Macrocyclic Binuclear Nonionic Magnetic Resonance Contrast Agent. Chinese Journal of Organic Chemistry, 2021, 41, 2767.	0.6	0
380	Gd3+ Complexes Conjugated to Cyclodextrins: Hydroxyl Functions Influence the Relaxation Properties. Processes, 2021, 9, 269.	1.3	1

#	Article	IF	Citations
381	Crystal structure of [3,10-bis(4-fluorophenethyl)-1,3,5,8,10,12-hexaazacyclotetradecane]nickel(II) diperchlorate. Acta Crystallographica Section E: Crystallographic Communications, 2021, 77, 148-152.	0.2	0
382	Towards ²¹³ Bi alpha-therapeutics and beyond: unravelling the foundations of efficient Bi ^{III} complexation by DOTP. Inorganic Chemistry Frontiers, 2021, 8, 3893-3904.	3.0	11
383	Small iron oxide nanoparticles as MRI $<$ i> $>$ T $<$ /i> $<$ sub>1 $<$ /sub> contrast agent: scalable inexpensive water-based synthesis using a flow reactor. Nanoscale, 2021, 13, 8795-8805.	2.8	32
384	Ten-Membered Rings or Lager With One or More Nitrogen Atoms. , 2022, , 591-683.		1
386	Pyclen-Based Ligands Bearing Pendant Picolinate Arms for Gadolinium Complexation. Inorganic Chemistry, 2021, 60, 2390-2405.	1.9	12
387	Enhanced relaxivity of Gd ^{III} -complexes with HP-DO3A-like ligands upon the activation of the intramolecular catalysis of the prototropic exchange. Inorganic Chemistry Frontiers, 2021, 8, 1500-1510.	3.0	9
388	Recent advances in polymer-coated iron oxide nanoparticles as magnetic resonance imaging contrast agents. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	38
389	Nickel(II), copper(II) and zinc(II) complexes with an N-pendent dimethyl derivative of an octamethyl macrocyclic ligand: synthesis, characterization and antimicrobial studies. Journal of Chemical Sciences, 2021, 133, 1.	0.7	5
390	Complexes of cyclen side-bridged with a methylene-bis(phosphinate) group. Polyhedron, 2021, 196, 114994.	1.0	3
391	The Influence of Co-Precipitation Technique on the Structure, Morphology and Dual-Modal Proton Relaxivity of GdFeO3 Nanoparticles. Inorganics, 2021, 9, 39.	1.2	13
392	1,4,7â€Triazacyclononane (tacn) with N,N ′â€bridging methyleneâ€bis(phosphinic acid) group and its complexes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1261-1268.	0.6	1
393	Macrocyclic Ligands for Molecular Hydrides of s-Block Metals. Bulletin of Japan Society of Coordination Chemistry, 2021, 77, 37-45.	0.1	1
394	Luminescent lanthanide(III) complexes of DTPA-bis(amido-phenyl-terpyridine) for bioimaging and phototherapeutic applications. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 256, 119709.	2.0	16
395	Bifunctional Paramagnetic and Luminescent Clays Obtained by Incorporation of Gd ³⁺ and Eu ³⁺ lons in the Saponite Framework. Inorganic Chemistry, 2021, 60, 10749-10756.	1.9	4
396	AAZTA: The rise of mesocyclic chelating agents for metal coordination in medicine. Coordination Chemistry Reviews, 2021, 438, 213908.	9.5	7
397	H4HBEDpa: Octadentate Chelate after A. E. Martell. Inorganic Chemistry, 2021, 60, 12855-12869.	1.9	5
398	Syntheses, characterization, and antimicrobial studies of Ni(II), Cu(II), and Co(III) complexes with an N-pendant azamacrocyclic chelator. Journal of Molecular Structure, 2021, 1240, 130579.	1.8	15
399	Enhancement of the Luminescence Properties of Eu (III) Containing Paramagnetic Saponite Clays. Applied Sciences (Switzerland), 2021, 11, 8903.	1.3	3

#	Article	IF	CITATIONS
400	Advancement of metal compounds as therapeutic and diagnostic metallodrugs: Current frontiers and future perspectives. Coordination Chemistry Reviews, 2021, 445, 214104.	9.5	59
401	Cyclodextrins: promising scaffolds for MRI contrast agents. RSC Advances, 2021, 11, 29762-29785.	1.7	7
402	Magnets, Magnetism, and Magnetic Resonance Imaging: History, Basics, Clinical Aspects, and Future Directions. Studies in Systems, Decision and Control, 2021, , 135-161.	0.8	1
403	Diagnostic Applications. , 2010, , 185-206.		9
404	Heterometallic Complexes as Anticancer Agents. 2-Oxoglutarate-Dependent Oxygenases, 2019, , 143-168.	0.8	7
405	Crystal structure and Hirshfeld surface analysis of the 1:3 adduct of tetraaquatrinitratoneodymium(III) with 3-amino-1,2,4-triazine. Acta Crystallographica Section E: Crystallographic Communications, 2018, 74, 1309-1313.	0.2	2
406	An overview on ligands of therapeutically interest. Pharmacy & Pharmacology International Journal, 2018, 6, .	0.1	4
407	Strategies for the Preparation of Bifunctional Gadolinium(III) Chelators. Current Organic Synthesis, 2011, 8, 535-565.	0.7	51
408	CHAPTER 10. Supramolecular Metal Complexes for Imaging and Radiotherapy. Monographs in Supramolecular Chemistry, 2013, , 300-330.	0.2	0
409	Fâ€block Elements Recovery. RSC Green Chemistry, 2013, , 140-184.	0.0	0
410	Zinc(II) complexes of 3,10-C-meso-2,5,5,7,9,12,12,14- octamethyl-1,8-diaza-4,11-diazoniacyclotetradecane as its bis(acetate) trihydrate, [LBH2][CH3COO]2.3H2O: Synthesis, Characterization and antimicrobial studies. European Scientific Journal, 2018, 14, 330.	0.0	1
411	Recent Progress of Lung Cancer Diagnosis Using Nanomaterials. Crystals, 2021, 11, 24.	1.0	1
412	Functionalized Lanthanide Oxide Nanoparticles for Tumor Targeting, Medical Imaging, and Therapy. Pharmaceutics, 2021, 13, 1890.	2.0	13
413	Lanthanide complexes with polyaminopolycarboxylates as prospective NMR/MRI diagnostic probes: peculiarities of molecular structure, dynamics and paramagnetic properties. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2022, 102, 1-33.	0.9	21
414	Porous Silica Nanospheres with a Confined Mono(aquated) Mn(II)-Complex: A Potential <i>T</i> ₁ â€" <i>T</i> ₂ Dual Contrast Agent for Magnetic Resonance Imaging. ACS Applied Bio Materials, 2021, 4, 8356-8367.	2.3	9
415	Mn(II) complexes of phenylenediamine based macrocyclic ligands as T1-MRI contrast agents. Journal of Inorganic Biochemistry, 2022, 228, 111684.	1.5	7
416	High-field magnetic resonance imaging: Challenges, advantages, and opportunities for novel contrast agents. Chemical Physics Reviews, 2022, 3, .	2.6	6
417	Responsive gadolinium(III) complex-based small molecule magnetic resonance imaging probes: Design, mechanism and application. Coordination Chemistry Reviews, 2022, 457, 214398.	9.5	19

#	Article	IF	CITATIONS
418	Ultrasound Assisted New Imines of 3E-3-(4-Substituted benzylidene)-4-(substituted-1,3,4-) Tj ETQq0 0 0 rgBT /Ove Medicinal Chemistry, 2022, 7, 75-78.	erlock 10 T 0.1	rf 50 747 Td 0
419	Rigidified Derivative of the Non-macrocyclic Ligand H ₄ OCTAPA for Stable Lanthanide(III) Complexation. Inorganic Chemistry, 2022, 61, 5157-5171.	1.9	11
420	Interaction of the Fungal Metabolite Harzianic Acid with Rare-Earth Cations (La3+, Nd3+, Sm3+, Gd3+). Molecules, 2022, 27, 1959.	1.7	3
422	Chelation of gadolinium with carbonized citric and folic acids. , 2022, , .		0
423	Hybrid polyphenolic Network/SPIONs aggregates with potential synergistic effects in MRI applications. Results in Chemistry, 2022, 4, 100387.	0.9	0
424	Multimodal Imaging Contrast Property of Nano Hybrid Fe ₃ O ₄ @Ag Fabricated by Seedâ€Growth for Medicinal Diagnosis. ChemistrySelect, 2022, 7, .	0.7	2
425	Gadolinium-based contrast agents built of DO3A-pyridine scaffold: Precisely tuning carboxylate group for enhanced magnetic resonance imaging. Chinese Chemical Letters, 2023, 34, 107685.	4.8	4
426	Mn(II) & Deferrioxamine complex contrast agents & Defense on Foundation of Complex Contrast agents & Defense on Folic acid targeted graphene/polyacrylic acid nanocarrier: MRI efficiency, drug stability & Defense on Foundations with cancer cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022, 652, 129797.	2.3	7
427	Ultrasound-assisted co-precipitation synthesis of GdFeO ₃ nanoparticles: structure, magnetic and MRI contrast properties. Physical Chemistry Chemical Physics, 2022, 24, 29014-29023.	1.3	3
428	$Copper(\ \ < \ \ < \ \) is \ \ / \ \) complexes of cyclams with \ \ < \ \) N < \ \ / \ \) - (2,2,2-trifluoroethyl)-aminoalkyl pendant arms as potential probes for \ \ < \ \) sup > F magnetic resonance imaging. Dalton Transactions, 0, , .$	1.6	2
429	Computational insight into a mechanistic overview of water exchange kinetics and thermodynamic stabilities of bis and tris-aquated complexes of lanthanides. RSC Advances, 2023, 13, 1516-1529.	1.7	3
430	Iron–polyphenol dendritic complexes for regulating amplification of phenolic hydroxyl groups to improve magnetic resonance imaging. Chemical Engineering Journal, 2023, 458, 141322.	6.6	1
431	Gadolinium-loaded LTL nanosized zeolite for efficient oxygen delivery and magnetic resonance imaging. Inorganic Chemistry Frontiers, 2023, 10, 2665-2676.	3.0	1
432	Redox ferrocenylseleno compounds modulate longitudinal and transverse relaxation times of FNPs-Gd MRI contrast agents for multimodal imaging and photo-Fenton therapy. Acta Biomaterialia, 2023, 164, 496-510.	4.1	1
433	Heavily Gd-Doped Non-Toxic Cerium Oxide Nanoparticles for MRI Labelling of Stem Cells. Molecules, 2023, 28, 1165.	1.7	4
435	Designing Smart Iron Oxide Nanoparticles for MR Imaging of Tumors. , 2023, 1, 315-339.		2
436	Role of Surface Curvature in Gold Nanostar Properties and Applications. ACS Biomaterials Science and Engineering, 2024, 10, 38-50.	2.6	2
437	Synthesis of New Phosphate Nanomaterials "Pyrophosphates of Cerium―Application in Biomedicine. Lecture Notes in Networks and Systems, 2023, , 816-828.	0.5	0

Article IF Citations