Formation of Branched ZnO Nanowires from Solvother Solar Cells Applications

Journal of Physical Chemistry C 112, 16359-16364 DOI: 10.1021/jp805239k

Citation Report

#	Article	IF	CITATIONS
1	Enhanced Electron Transport in Dye-Sensitized Solar Cells Using Short ZnO Nanotips on A Mirco-textured Metal Anode. Materials Research Society Symposia Proceedings, 2009, 1211, 1.	0.1	1
2	TiO2-B narrow nanobelt/TiO2 nanoparticle composite photoelectrode for dye-sensitized solar cells. Electrochimica Acta, 2009, 54, 7350-7356.	2.6	81
3	Photovoltaics literature survey (No. 68). Progress in Photovoltaics: Research and Applications, 2009, 17, 151-154.	4.4	0
4	Solvent-free ZnO dye-sensitised solar cells. Solar Energy Materials and Solar Cells, 2009, 93, 1846-1852.	3.0	49
5	Enhanced Electron Transport in Dye-Sensitized Solar Cells Using Short ZnO Nanotips on A Rough Metal Anode. Journal of Physical Chemistry C, 2009, 113, 20521-20526.	1.5	68
6	Dye-sensitized solar cells based on nanoparticle-decorated ZnO/TiO2core/shell nanorod arrays. Journal Physics D: Applied Physics, 2009, 42, 155104.	1.3	68
7	White-light electroluminescence from ZnO nanorods/polyfluorene by solution-based growth. Nanotechnology, 2009, 20, 425202.	1.3	32
8	Efficient electron transport in tetrapod-like ZnO metal-free dye-sensitized solar cells. Energy and Environmental Science, 2009, 2, 694.	15.6	77
9	Shape tuning of ZnO with ammonium molybdate and their morphology-dependent photoluminescence properties. Journal of Physics: Conference Series, 2009, 188, 012034.	0.3	3
10	Hierarchical ZnO Nanowireâ^'Nanosheet Architectures for High Power Conversion Efficiency in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 2776-2782.	1.5	220
11	ZnO hierarchical nanostructures and application on high-efficiency dye-sensitized solar cells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 166, 196-202.	1.7	27
12	Microstructured ZnO photoelectrode grown on the sputter-deposited ZnO passivating-layer for improving the photovoltaic performances. Materials Chemistry and Physics, 2010, 124, 940-945.	2.0	18
13	Perpendicular rutile nanosheets on anatase nanofibers: Heterostructured TiO2 nanocomposites via a mild solvothermal method. Solid State Sciences, 2010, 12, 1274-1277.	1.5	13
14	Improvement of the performance of dye-sensitized solar cells using Sn-doped ZnO nanoparticles. Journal of Power Sources, 2010, 195, 5806-5809.	4.0	73
15	Room-temperature deposition of crystalline patterned ZnO films by confined dewetting lithography. Applied Surface Science, 2010, 256, 3386-3389.	3.1	12
16	ZnO nanoparticles and nanowire array hybrid photoanodes for dye-sensitized solar cells. Applied Physics Letters, 2010, 96, 073115.	1.5	119
17	FABRICATION OF ZINC OXIDE-BASED DYE-SENSITIZED SOLAR CELL BY CHEMICAL BATH DEPOSITION. Functional Materials Letters, 2010, 03, 303-307.	0.7	24
18	Electron transfer properties of organic dye-sensitized solar cells based on indoline sensitizers with ZnO nanoparticles. Nanotechnology, 2010, 21, 485202.	1.3	71

#	Article	IF	CITATIONS
19	Comparison of Dye Photodegradation and its Coupling with Light-to-Electricity Conversion over TiO ₂ and ZnO. Langmuir, 2010, 26, 591-597.	1.6	254
20	High-efficiency metal-free organic-dye-sensitized solar cells with hierarchical ZnO photoelectrode. Energy and Environmental Science, 2010, 3, 442.	15.6	101
21	Complex ZnO nanotree arrays with tunable top, stem and branch structures. Nanoscale, 2010, 2, 1674.	2.8	56
22	Six-Fold-Symmetrical Hierarchical ZnO Nanostructure Arrays: Synthesis, Characterization, and Field Emission Properties. Crystal Growth and Design, 2010, 10, 2455-2459.	1.4	61
23	Fluorine-Ion-Mediated Electrodeposition of Rhombus-Like ZnFOH Nanorod Arrays: An Intermediate Route to Novel ZnO Nanoarchitectures. Journal of Physical Chemistry C, 2010, 114, 15377-15382.	1.5	36
24	Solution-derived 40 µm vertically aligned ZnO nanowire arrays as photoelectrodes in dye-sensitized solar cells. Nanotechnology, 2010, 21, 195602.	1.3	134
25	Three-dimensional ZnO nanodendrite/nanoparticle composite solar cells. Journal of Materials Chemistry, 2011, 21, 2871.	6.7	82
26	Hiearchical ZnO rod-in-tube nano-architecture arrays produced via a two-step hydrothermal and ultrasonication process. Journal of Materials Chemistry, 2011, 21, 8709.	6.7	43
27	Help nanorods "stand―on microsubstrate to form hierarchical ZnO nanorod-nanosheet architectures. CrystEngComm, 2011, 13, 4861.	1.3	7
28	Wet chemical route to hierarchical TiO2 nanodendrite/nanoparticle composite anodes for dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 9255.	6.7	53
29	ZnO solar cells with an indoline sensitizer: a comparison between nanoparticulate films and electrodeposited nanowire arrays. Energy and Environmental Science, 2011, 4, 3400.	15.6	67
30	High Efficiency Dye-Sensitized Solar Cells Based on Hierarchically Structured Nanotubes. Nano Letters, 2011, 11, 3214-3220.	4.5	337
31	Fabrication of 3D interconnected porous TiO2nanotubes templated by poly(vinyl chloride-g-4-vinyl) Tj ETQq0 0 C) rgBT /Ove 1.3	erlock 10 Tf 5 10
32	Nanoarchitectured Electrodes for Enhanced Electron Transport in Dye-Sensitized Solar Cells. Green Energy and Technology, 2011, , 271-298.	0.4	1
33	Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowires for a High Efficiency Dye-Sensitized Solar Cell. Nano Letters, 2011, 11, 666-671.	4.5	960
34	Enhanced gas sensing properties of ZnO/SnO ₂ hierarchical architectures by glucose-induced attachment. CrystEngComm, 2011, 13, 1557-1563.	1.3	105
35	Solution-derived ZnOnanostructures for photoanodes of dye-sensitized solar cells. Energy and Environmental Science, 2011, 4, 818-841.	15.6	243
36	ZnO and Al-doped ZnO thin films prepared by spray pyrolysis for ethanol gas sensing. EPJ Applied Physics, 2011, 55, 30103.	0.3	8

#	Article	IF	CITATIONS
37	From nanowires to hierarchical structures of template-free electrodeposited ZnO for efficient dye-sensitized solar cells. Energy and Environmental Science, 2011, 4, 2971.	15.6	69
38	TiO2 thin film encapsulated ZnO nanorod and nanoflower dye sensitized solar cells. Materials Chemistry and Physics, 2011, 125, 12-14.	2.0	38
39	Large-Scale Growth of a Novel Hierarchical ZnO Three-Dimensional Nanostructure with Preformed Patterned Substrate. Crystal Growth and Design, 2011, 11, 3837-3843.	1.4	21
40	ZnO-based dye solar cell with pure ionic-liquid electrolyte and organic sensitizer: the relevance of the dye–oxide interaction in an ionic-liquid medium. Physical Chemistry Chemical Physics, 2011, 13, 207-213.	1.3	38
41	Morphology dependent dye-sensitized solar cell properties of nanocrystalline zinc oxide thin films. Journal of Alloys and Compounds, 2011, 509, 2127-2131.	2.8	34
42	Metal Oxides and Their Composites for the Photoelectrode of Dye Sensitized Solar Cells. , 0, , .		9
43	Comparison of structural, optical properties and photocatalytic activity of ZnO with different morphologies: Effect of synthesis methods and reaction media. Materials Chemistry and Physics, 2011, 129, 249-255.	2.0	94
44	Facile synthesis of highly branched jacks-like ZnO nanorods and their applications in dye-sensitized solar cells. Materials Research Bulletin, 2011, 46, 1473-1479.	2.7	58
45	Electrochemical preparation and characterization of three-dimensional nanostructured Sn2S3 semiconductor films with nanorod network. Materials Letters, 2011, 65, 400-402.	1.3	18
46	Enhanced efficiency in dye-sensitised solar cells using a TiO2-based sandwiched film as photoanode. Micro and Nano Letters, 2011, 6, 579.	0.6	8
47	Electrodeposition of Hierarchical ZnO Nanorod-Nanosheet Structures and Their Applications in Dye-Sensitized Solar Cells. ACS Applied Materials & amp; Interfaces, 2011, 3, 2358-2367.	4.0	158
48	Two novel hierarchical homogeneous nanoarchitectures of TiO2 nanorods branched and P25-coated TiO2 nanotube arrays and their photocurrent performances. Nanoscale Research Letters, 2011, 6, 91.	3.1	34
49	Topochemical Synthesis of Cobalt Oxideâ€Based Porous Nanostructures for Highâ€Performance Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2011, 17, 1596-1604.	1.7	48
50	Electrochemical deposition of branched hierarchical ZnO nanowire arrays and its photoelectrochemical properties. Electrochimica Acta, 2011, 56, 5776-5782.	2.6	68
51	High efficiency flexible dye-sensitized solar cells by multiple electrophoretic depositions. Journal of Power Sources, 2011, 196, 3683-3687.	4.0	70
52	Nanostructured photoelectrodes for dye-sensitized solar cells. Nano Today, 2011, 6, 91-109.	6.2	601
53	Direct growth of tellurium nanorod arrays on Pt/FTO/glass through a surfactant-assisted chemical reduction. Nanotechnology, 2011, 22, 305608.	1.3	7
54	Sol-modified ZnO photoanode for dye-sensitized solar cells. Semiconductor Science and Technology, 2011, 26, 125008.	1.0	1

#	Article	IF	CITATIONS
55	Synthesis, Characterization, and Applications of ZnO Nanowires. Journal of Nanomaterials, 2012, 2012, 1-22.	1.5	216
56	Fabrication of hierarchical ZnO/TiO <inf>2</inf> core-shell nanostructures for advanced photovoltaic devices. , 2012, , .		1
57	Hierarchical ZnO Nanostructures Growth by Aqueous Solution Process for Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2012, 159, H638-H643.	1.3	7
58	Solution-growth and optoelectronic performance of ZnO : Cl/TiO ₂ and ZnO : Cl/Zn _x TiO _y /TiO ₂ core–shell nanowires with tunable shell thickness. Journal Physics D: Applied Physics, 2012, 45, 415301.	1.3	27
59	TiO ₂ nanoparticle/nanotube multilayer composite film as photoanode applied in dye sensitised solar cells. Materials Research Innovations, 2012, 16, 150-153.	1.0	3
60	Hierarchically micro/nanostructured photoanode materials for dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 15475.	6.7	141
61	Branched nanowires: Synthesis and energy applications. Nano Today, 2012, 7, 327-343.	6.2	309
62	Influence of Reaction Temperature on Crystal Structure and Band Gap of ZnO Nanoparticles. Materials and Manufacturing Processes, 2012, 27, 1334-1342.	2.7	16
63	Branched double-shelled TiO2 nanotube networks on transparent conducting oxide substrates for dye sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 23411.	6.7	17
64	Novel growth of CuO-functionalized, branched SnO ₂ nanowires and their application to H ₂ S sensors. Journal Physics D: Applied Physics, 2012, 45, 205301.	1.3	36
65	One-Step Hydrothermal Synthesis of Comb-Like ZnO Nanostructures. Crystal Growth and Design, 2012, 12, 4829-4833.	1.4	42
66	High efficiency dye-sensitized solar cells exploiting sponge-like ZnO nanostructures. Physical Chemistry Chemical Physics, 2012, 14, 16203.	1.3	75
67	Nanomaterials and nanostructures for efficient light absorption and photovoltaics. Nano Energy, 2012, 1, 57-72.	8.2	270
68	Electrochemical and structural analysis of Al-doped ZnO nanorod arrays inÂdye-sensitized solar cells. Journal of Power Sources, 2012, 214, 159-165.	4.0	47
69	Ionic liquid diffusion properties in tetrapod-like ZnO photoanode for dye-sensitized solar cells. Journal of Power Sources, 2012, 216, 330-336.	4.0	13
70	ZnO nano-tree growth study for high efficiency solar cell. Energy Procedia, 2012, 14, 1093-1098.	1.8	11
71	Dye-sensitized solar cells based on ZnO nanoneedle/TiO ₂ nanoparticle composite photoelectrodes with controllable weight ratio. Journal of Materials Research, 2012, 27, 2982-2987.	1.2	4
72	Controllable growth of dendritic ZnO nanowire arrays on a stainless steel mesh towards the fabrication of large area, flexible dye-sensitized solar cells. Nanoscale, 2012, 4, 5454.	2.8	39

#	Article	IF	CITATIONS
73	Chemical Conversion Synthesis of ZnS Shell on ZnO Nanowire Arrays: Morphology Evolution and Its Effect on Dye-Sensitized Solar Cell. ACS Applied Materials & Interfaces, 2012, 4, 17-23.	4.0	55
74	Hierarchical weeping willow nano-tree growth and effect of branching on dye-sensitized solar cell efficiency. Nanotechnology, 2012, 23, 194005.	1.3	69
75	Recent advances in solar cells based on one-dimensional nanostructure arrays. Nanoscale, 2012, 4, 2783.	2.8	211
76	ZnO-Based Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2012, 116, 11413-11425.	1.5	520
77	Nanoscale Chemical Imaging of Zinc Oxide Nanowire Corrosion. Journal of Physical Chemistry C, 2012, 116, 10405-10414.	1.5	19
78	Charge transporting enhancement of NiO photocathodes for p-type dye-sensitized solar cells. Electrochimica Acta, 2012, 66, 210-215.	2.6	30
79	Enhancing the solar cell efficiency through pristine 1-dimentional SnO2 nanostructures: Comparison of charge transport and carrier lifetime of SnO2 particles vs. nanorods. Electrochimica Acta, 2012, 72, 192-198.	2.6	54
80	Hybrid structure of polyaniline/ZnO nanograss and its application in dye-sensitized solar cell with performance improvement. Journal of Solid State Chemistry, 2012, 190, 174-179.	1.4	52
81	Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Progress in Materials Science, 2012, 57, 724-803.	16.0	892
82	Nanostructured ZnO thin films by SDS-assisted electrodeposition for dye-sensitized solar cell applications. Ceramics International, 2013, 39, 5049-5052.	2.3	13
83	Dendritic Au/TiO2 nanorod arrays for visible-light driven photoelectrochemical water splitting. Nanoscale, 2013, 5, 9001.	2.8	243
84	Dye-sensitized solar cells containing plasma jet deposited hierarchically nanostructured TiO2 thin photoanodes. Journal of Materials Chemistry A, 2013, 1, 11665.	5.2	16
85	Microstructure, growth process and enhanced photocatalytic activity of immobilized hierarchical ZnO nanostructures. RSC Advances, 2013, 3, 21666.	1.7	24
86	Comparison between ZnO nanowires grown by chemical vapor deposition and hydrothermal synthesis. Applied Physics A: Materials Science and Processing, 2013, 113, 623-632.	1.1	85
87	Controlled growth, properties, and application of CdS branched nanorod arrays on transparent conducting oxide substrate. Solar Energy Materials and Solar Cells, 2013, 115, 100-107.	3.0	39
88	Effect of Al3+ on the growth of ZnO nanograss film and its application in dye-sensitized solar cells. Ceramics International, 2013, 39, 9637-9644.	2.3	18
89	Silicon-based Nanomaterials. Springer Series in Materials Science, 2013, , .	0.4	12
90	Soft processing of hierarchical oxide nanostructures for dye-sensitized solar cell applications. Nano Energy, 2013, 2, 1354-1372.	8.2	25

#	Article	IF	CITATIONS
91	Bifunctionalization of cotton textiles by ZnO nanostructures: antimicrobial activity and ultraviolet protection. Textile Reseach Journal, 2013, 83, 993-1004.	1.1	88
92	Effects of the morphology of nanostructured ZnO and interface modification on the device configuration and charge transport of ZnO/polymer hybrid solar cells. Physical Chemistry Chemical Physics, 2013, 15, 9516.	1.3	32
93	Improving the efficiency of ZnO-based dye-sensitized solar cells by Pr and N co-doping. Journal of Materials Chemistry A, 2013, 1, 12066.	5.2	34
94	Study on CaCO3-coated ZnO nanoparticles based dye sensitized solar cell. Journal of Materials Science: Materials in Electronics, 2013, 24, 4980-4986.	1.1	7
95	3D Branched Nanowire Photoelectrochemical Electrodes for Efficient Solar Water Splitting. ACS Nano, 2013, 7, 9407-9415.	7.3	132
96	One-dimensional hierarchical composite materials based on ZnO nanowires and electrospun blend nanofibers. RSC Advances, 2013, 3, 21431.	1.7	25
97	Millimeter-sized single crystalline ZnO networks composed of nanostructures. CrystEngComm, 2013, 15, 5398.	1.3	1
98	A highly efficient light capturing 2D (nanosheet)–1D (nanorod) combined hierarchical ZnO nanostructure for efficient quantum dot sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 2109.	1.3	68
99	Decoration of Pd nanoparticles on ZnO-branched nanowires and their application to chemical sensors. Microelectronic Engineering, 2013, 105, 1-7.	1.1	10
100	Recent advances in multistep solution nanosynthesis of nanostructured three-dimensional complexes of semiconductive materials. Progress in Natural Science: Materials International, 2013, 23, 273-285.	1.8	11
101	Enhanced efficiency of bifacial and back-illuminated Ti foil based flexible dye-sensitized solar cells by decoration of mesoporous SiO2 layer on TiO2 anode. Journal of Power Sources, 2013, 232, 1-6.	4.0	14
102	Highly efficient dye-sensitized solar cell with an electrostatic spray deposited upright-standing boron-doped ZnO (BZO) nanoporous nanosheet-based photoanode. Journal of Materials Chemistry A, 2013, 1, 4826.	5.2	50
103	Synthesis and gas sensing performance of ZnO–SnO2 nanofiber–nanowire stem-branch heterostructure. Sensors and Actuators B: Chemical, 2013, 181, 787-794.	4.0	83
104	Enhanced photovoltaic performance of a dye-sensitized solar cell using graphene–TiO2 photoanode prepared by a novel in situ simultaneous reduction-hydrolysis technique. Nanoscale, 2013, 5, 3481.	2.8	89
105	Photoelectrochemical Properties of Cadmium Chalcogenide-Sensitized Textured Porous Zinc Oxide Plate Electrodes. ACS Applied Materials & Interfaces, 2013, 5, 1113-1121.	4.0	57
106	Efficient and stable back-illuminated sub-module dye-sensitized solar cells by decorating SiO2 porous layer with TiO2 electrode. RSC Advances, 2013, 3, 9994.	1.7	16
107	From function-guided assembly of a lotus leaf-like ZnO nanostructure to a formaldehyde gas-sensing application. Sensors and Actuators B: Chemical, 2013, 184, 143-149.	4.0	29
108	Hierarchically Structured Nanotubes for Highly Efficient Dyeâ€Sensitized Solar Cells. Advanced Materials, 2013, 25, 3039-3044.	11.1	182

ARTICLE IF CITATIONS # Efficient electron transport in ZnO nanowire/nanoparticle dye-sensitized solar cells via continuous 109 1.7 20 flow injection process. RSC Advances, 2013, 3, 8480. Dye-sensitized solar cells based on ZnO nanowire array/TiO2 nanoparticle composite photoelectrodes with controllable nanowire aspect ratio. Applied Physics A: Materials Science and Processing, 2013, 111, 1.1 279-284. Hierarchical ZnO architectures consisting of nanorods and nanosheets prepared via a solution route 111 1.7 50 for photovoltaic enhancement in dye-sensitized solar cells. RSC Advances, 2013, 3, 2910. ZnO/ZnO Coreâ€"Shell Nanowire Array Electrodes: Blocking of Recombination and Impressive Enhancement of Photovoltage in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117, 13365-13373. Hierarchical nanostructures of ZnO obtained by spray pyrolysis. Materials Chemistry and Physics, 113 2.0 21 2013, 141, 69-75. Performance of Eu2O3 coated ZnO nanoparticles-based DSSC. Journal of Materials Science: Materials in Electronics, 2013, 24, 3617-3623. 1.1 Surface passivation: The effects of CDCA co-adsorbent and dye bath solvent on the durability of 115 3.0 33 dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2013, 108, 70-77. Synthesis, characterization and photocatalytic recital of nest-like zinc oxide photocatalyst. Korean 1.2 9 Journal of Chemical Engineering, 2013, 30, 2001-2006. Preparation and hydrophobicities of biomorphic ZnO based on carbon derived from indicalamus leaf 117 2 0.6 template. Advancés in Applied Ceramics, 2013, 112, 419-423. Understanding the Factors That Control the Formation and Morphology 118 1.5 ofZn5(OH)8(ŇO3)2·2H2Othrough Hydrothermal Route. Journal of Nanomaterials, 2013, 2013, 1-10. Developing Semiconductive Catalysts with Three-Dimensional Nanobranches via Solution Routes., 119 0 2013, , 451-472. Hydrothermal growth of ZnO nanorods on electrospun polyamide nanofibers. MRS Communications, 0.8 2013, 3, 51-55. Enhanced Performance of Dye-Sensitized Solar Cells with Graphene/ZnO Nanoparticles Bilayer 122 1.5 11 Structure. Journal of Nanomaterials, 2014, 2014, 1-6. Branched nanostructures for photoelectrochemical water splitting. Nanomaterials and Energy, 2014, 0.1 3, 103-128. Investigation of Porous Zn Growth Mechanism during Zn Reactive Sputter Deposition. Acta Physica 124 0.2 4 Polonica A, 2014, 125, 1144-1148. Chemically grown ZnO nanorods for dye-sensitized solar cells., 2014, , . Electrochemically Controlled Growth of Auï£;Pt Alloy Nanowires and Nanodendrites. Chemistry - an 126 1.7 7 Asian Journal, 2014, 9, 2612-2620. Fabrication of dye-sensitized solar cell using nanocomposited aligned ZnO nanorod/TiO<inf>2</inf>., 2014,,.

ARTICLE IF CITATIONS # Coral-shaped ZnO nanostructures for dye-sensitized solar cell photoanodes. Progress in 128 4.4 34 Photovoltaics: Research and Applications, 2014, 22, 189-197. Hydrothermal synthesis of oriented ZnO nanorod–nanosheets hierarchical architecture on zinc foil 129 2.3 aś flexible photóanodes for dye-sensitized solar cells. Ceramics International, 2014, 40, 11663-11670. Zinc oxide films and nanomaterials for photovoltaic applications. Physica Status Solidi - Rapid 130 1.2 37 Research Letters, 2014, 8, 123-132. In situ hydrothermal growth of hierarchical ZnO nanourchin for high-efficiency dye-sensitized solar cells. Journal of Power Sources, 2014, 254, 153-160. Preparation of High Transmittance Platinum Counter Electrode at an Ambient Temperature for Flexible 133 2.6 25 Dye-Sensitized Solar Cells. Electrochimica Acta, 2014, 135, 578-584. Surface Engineering of ZnO Nanostructures for Semiconductorâ€Sensitized Solar Cells. Advanced Materials, 2014, 26, 5337-5367. 11.1 149 25th Anniversary Article: Scalable Multiscale Patterned Structures Inspired by Nature: the Role of 135 11.1 212 Hierarchy. Advanced Materials, 2014, 26, 675-700. Synthesis and investigation of Indium doping and surfactant on the morphological, optical and UV/Vis 2.3 36 photocatalytic properties of ZnO nanostructure. Ceramics International, 2014, 40, 3453-3460. Dye-sensitized solar cell using aligned ZnO nanorod grown on SZO films at different solution 137 1 molarities. , 2014, , . Hierarchical Nanostructures for Solar Cells. RSC Nanoscience and Nanotechnology, 2014, , 59-83. 0.2 Three-dimensional self-branching anatase TiO₂ nanorods: morphology control, growth mechanism and dye-sensitized solar cell application. Journal of Materials Chemistry A, 2014, 2, 139 21 5.2 16030-16038. Dye-sensitized solar cell from polyaniline–ZnS nanotubes and its characterization through impedance 1.3 spectroscopy. Physical Chemistry Chemical Physics, 2014, 16, 20079-20088. Synthesis of micrometer-sized hierarchical rutile TiO₂flowers and their application in 141 1.7 32 dye sensitized solar cells. RSC Advances, 2014, 4, 36791-36799. Three-dimensional branched single-crystal Î²-Co(OH)2 nanowire array and its application for 142 8.2 supercapacitor with excellent electrochemical property. Nano Energy, 2014, 10, 153-162. Novel fabrication of TiO2/ZnO nanotube array heterojunction for dye-sensitized solar cells. RSC 143 23 1.7 Advances, 2014, 4, 7454. Recent Developments in Dyeâ€Sensitized Solar Cells. ChemPhysChem, 2014, 15, 3902-3927. 144 79 Observation of negative differential resistance and electrical bi-stability in chemically synthesized 145 1.1 17 ZnO nanorods. Journal of Applied Physics, 2014, 115, . Hydrothermal Synthesis of Novel ZnO Nanomushrooms for Improving the Solar Cells Performance. 146 1.1 IEEE Nanotechnology Magazine, 2014, 13, 755-759.

#	Article	IF	CITATIONS
147	Preparation and hydrophobicity of biomorphic ZnO/carbon based on a lotus-leaf template. Materials Science and Engineering C, 2014, 43, 310-316.	3.8	26
148	Hierarchically Nanostructured One-Dimensional Metal Oxide Arrays for Solar Cells. , 2014, , 27-74.		1
149	3D Branched ZnO Nanowire Arrays Decorated with Plasmonic Au Nanoparticles for High-Performance Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2014, 6, 4480-4489.	4.0	294
150	Improved dye-sensitized solar cell with a ZnO nanotree photoanode by hydrothermal method. Nanoscale Research Letters, 2014, 9, 206.	3.1	19
151	Hierarchical multilayer-structured TiO2 electrode for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 279, 32-37.	2.0	9
152	Efficiency enhancement of ZnO-based dye-sensitized solar cell by hollow TiO2 nanofibers. Journal of Alloys and Compounds, 2014, 611, 19-23.	2.8	37
153	Review of the Multi-scale Nano-structure Approach to the Development of High Efficiency Solar Cells. Smart Science, 2014, 2, 54-62.	1.9	20
154	Palladium Nanotubes Formed by Lipid Tubule Templating and Their Application in Ethanol Electrocatalysis. Chemistry - A European Journal, 2015, 21, 6084-6089.	1.7	14
155	Decoration of Co nanoparticles on ZnO-branched SnO2 nanowires to enhance gas sensing. Sensors and Actuators B: Chemical, 2015, 219, 22-29.	4.0	42
156	Green engineered ZnO nanopowders by <i>Banyan Tree</i> and <i>E. tirucalli</i> plant latex: auto ignition route, photoluminescent and photocatalytic properties. Materials Research Express, 2015, 2, 035011.	0.8	30
157	Photoelectrocatalytic activity of a hydrothermally grown branched Zno nanorod-array electrode for paracetamol degradation. Journal of Hazardous Materials, 2015, 291, 9-17.	6.5	40
158	Investigation of TiO 2 nanotubes/nanoparticles stacking sequences to improve power conversion efficiency of dye-sensitized solar cells. Electrochimica Acta, 2015, 173, 665-671.	2.6	20
159	Photoelectrochemical property study of the urchin-like Zn/ZnO/TiO _{2 in dye-sensitised solar cells. International Journal of Nanomanufacturing, 2015, 11, 122.}	0.3	0
160	Recent progress in solar cells based on one-dimensional nanomaterials. Energy and Environmental Science, 2015, 8, 1139-1159.	15.6	164
161	N-type SnO ₂ nanosheets standing on p-type carbon nanofibers: a novel hierarchical nanostructures based hydrogen sensor. RSC Advances, 2015, 5, 64582-64587.	1.7	16
162	Review of TiO2 nanowires in dye sensitized solar cell. Applied Solar Energy (English Translation of) Tj ETQq1 1 0.7	′84314 rg 0.2	BT ₁ Overlock
163	Branched zinc oxide nanorods arrays modified paper electrode for electrochemical immunosensing by combining biocatalytic precipitation reaction and competitive immunoassay mode. Biosensors and Bioelectronics, 2015, 74, 823-829.	5.3	15
164	Growth kinetics and wettability conversion of vertically-aligned ZnO nanowires synthesized by a hydrothermal method. RSC Advances, 2015, 5, 67752-67758.	1.7	12

#	ARTICLE ZnO@Ag2S core–shell nanowire arrays for environmentally friendly solid-state quantum	IF	Citations
165	dot-sensitized solar cells with panchromatic light capture and enhanced electron collection. Physical Chemistry Chemical Physics, 2015, 17, 12786-12795.	1.3	35
166	Growth of ZnO nanorods and nanosheets by electrodeposition and their applications in dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2015, 26, 3868-3873.	1.1	6
167	ZnO@TiO 2 Architectures for a High Efficiency Dye-Sensitized Solar Cell. Electrochimica Acta, 2015, 171, 66-71.	2.6	18
168	Intense electroluminescence from ZnO nanowires. Journal of Materials Chemistry C, 2015, 3, 5292-5296.	2.7	14
169	Facile Conversion Synthesis of Densely-Formed Branched ZnO-Nanowire Arrays for Quantum-Dot-Sensitized Solar Cells. Electrochimica Acta, 2015, 167, 194-200.	2.6	25
170	One-dimension-based spatially ordered architectures for solar energy conversion. Chemical Society Reviews, 2015, 44, 5053-5075.	18.7	367
171	Recent advances in low temperature, solution processed morphology tailored ZnO nanoarchitectures for electron emission and photocatalysis applications. CrystEngComm, 2015, 17, 9264-9295.	1.3	93
172	Energy-efficient, microwave-assisted hydro/solvothermal synthesis of hierarchical flowers and rice grain-like ZnO nanocrystals as photoanodes for high performance dye-sensitized solar cells. CrystEngComm, 2015, 17, 8353-8367.	1.3	54
173	Facile fabrication of ZnO nanorods/ ZnO nanosheet–spheres hybrid photoanode for dye-sensitized solar cells. Functional Materials Letters, 2015, 08, 1550012.	0.7	5
174	Branched ZnO nanotrees on flexible fiber-paper substrates for self-powered energy-harvesting systems. RSC Advances, 2015, 5, 5941-5945.	1.7	15
175	A Review on the Fabrication of Hierarchical ZnO Nanostructures for Photocatalysis Application. Crystals, 2016, 6, 148.	1.0	91
176	Morphology-dependent space charge polarization and dielectric relaxation of CdO nanomorphotypes. Journal of Advanced Dielectrics, 2016, 06, 1650030.	1.5	5
177	Amino acids assisted hydrothermal synthesis of hierarchically structured ZnO with enhanced photocatalytic activities. Applied Surface Science, 2016, 384, 83-91.	3.1	58
178	Thin Film ZnO Coated on FTO/TiO2 as an Anti Reflection Coatingfor EnhancingVisible Light Harversting in Dye Sensitized Solar Cells System. Procedia Chemistry, 2016, 19, 632-637.	0.7	15
179	Solvothermal synthesis of Ag/ZnO and Pt/ZnO nanocomposites and comparison of their photocatalytic behaviors on dyes degradation. Advanced Powder Technology, 2016, 27, 983-993.	2.0	71
180	CdS/CdSe co-sensitized hierarchical TiO ₂ nanofiber/ZnO nanosheet heterojunction photoanode for quantum dot-sensitized solar cells. RSC Advances, 2016, 6, 78202-78209.	1.7	16
181	In situ chemical etching of tunable 3D Ni ₃ S ₂ superstructures for bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2016, 4, 13916-13922.	5.2	117
182	Synthesis and improved dye-sensitized solar cells performance of TiO2 nanowires/nanospheres composites. Journal of Materials Science: Materials in Electronics, 2016, 27, 12591-12598.	1.1	2

#	Article	IF	CITATIONS
183	Ordered RTiO2@ATiO2 architecture for dye-sensitized solar cell applications. RSC Advances, 2016, 6, 106762-106768.	1.7	7
184	Hierarchical ZnO nanorod-on-nanosheet arrays electrodes for efficient CdSe quantum dot-sensitized solar cells. Science China Materials, 2016, 59, 807-816.	3.5	21
185	The growth and photovoltaic properties of Si nanowires and ZnO nanowires hetero-branched structures. Integrated Ferroelectrics, 2016, 172, 32-39.	0.3	2
186	Hierarchical growth of TiO2 nanosheets on anodic ZnO nanowires for high efficiency dye-sensitized solar cells. Journal of Power Sources, 2016, 325, 365-374.	4.0	19
187	Hollow Platinum Nanospheres and Nanotubes Templated by Shear Flow-Induced Lipid Vesicles and Tubules and Their Applications on Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2016, 4, 3773-3779.	3.2	22
189	Advances in nanostructured thin film materials for solar cell applications. Renewable and Sustainable Energy Reviews, 2016, 59, 726-737.	8.2	133
190	Rational Synthesis of Three-Dimensional Nanosuperstructures for Applications in Energy Storage and Conversion. IEEE Transactions on Device and Materials Reliability, 2016, 16, 475-482.	1.5	2
191	3D periodic multiscale TiO ₂ architecture: a platform decorated with graphene quantum dots for enhanced photoelectrochemical water splitting. Nanotechnology, 2016, 27, 115401.	1.3	52
192	Preparation of ZnO nanorods on conductive PET-ITO-Ag fibers. Applied Surface Science, 2016, 388, 331-338.	3.1	5
193	The growth of AZO nanostructures with high doping concentration using vertical reaction layer synthesizing method and their applications. Sensors and Actuators B: Chemical, 2016, 225, 327-333.	4.0	8
194	Hierarchical nanostructures of metal oxides for enhancing charge separation and transport in photoelectrochemical solar energy conversion systems. Nanoscale Horizons, 2016, 1, 96-108.	4.1	73
195	Enhancement of the benzene-sensing performance of Si nanowires through the incorporation of TeO2 heterointerfaces and Pd-sensitization. Sensors and Actuators B: Chemical, 2017, 244, 1085-1097.	4.0	35
196	Growth of Dual-Layer Nanorods and Nanowalls Using Al Reaction Layer For Cholesterol Biosensor. IEEE Sensors Journal, 2017, 17, 1584-1589.	2.4	3
197	Gold Electroplating as a Tool for Assessing the Conductivity of InP Nanostructures Fabricated by Anodic Etching of Crystalline Substrates. Journal of the Electrochemical Society, 2017, 164, D179-D183.	1.3	11
198	Recent advances in photo-anode for dye-sensitized solar cells: a review. International Journal of Energy Research, 2017, 41, 2446-2467.	2.2	141
199	Growth and characterization of ZnO nanostructure on TiO2-ZnO films as a light scattering layer for dye sensitized solar cells. Materials Research Bulletin, 2017, 95, 616-624.	2.7	17
200	Choosing the right nanoparticle size – designing novel ZnO electrode architectures for efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2017, 5, 7516-7522.	5.2	8
201	Hierarchical rutile TiO 2 heterostructures and plasmon impregnated TiO 2 /SnO 2 -Ag bilayer nanocomposites as proficient photoanode systems. Surface and Coatings Technology, 2017, 310, 113-121.	2.2	15

#	Article	IF	CITATIONS
202	Oneâ€dimensional TiO ₂ Nanotube Photocatalysts for Solar Water Splitting. Advanced Science, 2017, 4, 1600152.	5.6	405
203	An efficient and low-cost photoanode for backside illuminated dye-sensitized solar cell using 3D porous alumina. Materials Letters, 2018, 222, 126-130.	1.3	12
204	Enhanced performance of ZnO-based dye-sensitized solar cells by glucose treatment. Journal of Alloys and Compounds, 2018, 748, 382-389.	2.8	13
205	Investigation of the growth parameters of hydrothermal ZnO nanowires for scale up applications. Journal of Saudi Chemical Society, 2018, 22, 538-545.	2.4	53
206	Optical and magnetic properties of Co-doped ZnO synthesized by magnetic assisted hydrothermal method. Materials Science in Semiconductor Processing, 2018, 74, 303-308.	1.9	23
207	Bimodally Porous WO ₃ Microbelts Functionalized with Pt Catalysts for Selective H ₂ S Sensors. ACS Applied Materials & Interfaces, 2018, 10, 20643-20651.	4.0	87
208	2.6 Dye-Sensitized Materials. , 2018, , 150-181.		1
209	Factors Affecting the Power Conversion Efficiency in ZnO DSSCs: Nanowire vs. Nanoparticles. Materials, 2018, 11, 411.	1.3	38
210	Highly efficient dye-sensitized solar cells by TiCl4 surface modification of ZnO nano-flower thin film. Journal of Solid State Electrochemistry, 2018, 22, 3621-3630.	1.2	9
211	Nanowire Electronics: From Nanoscale to Macroscale. Chemical Reviews, 2019, 119, 9074-9135.	23.0	210
212	Effect of Al Doping on the Structural, Electrical, Gas Sensing Properties of ZnO Nanorods Synthesized by Hydrothermal Growth. International Journal of Nanoscience, 2019, 18, 1940056.	0.4	0
213	Irradiation-induced structural changes in ZnO nanowires. Nuclear Instruments & Methods in Physics Research B, 2019, 458, 61-71.	0.6	29
214	ZnO-based dye-sensitized solar cells. , 2019, , 145-204.		4
215	A review on ZnO nanostructured materials: energy, environmental and biological applications. Nanotechnology, 2019, 30, 392001.	1.3	365
216	Prussian Blue-Viologen Inorganic–Organic Hybrid Blend for Improved Electrochromic Performance. ACS Applied Electronic Materials, 2019, 1, 892-899.	2.0	56
217	Doping Efficiency in Cobalt-Doped ZnO Nanostructured Materials. Journal of Nanomaterials, 2019, 2019, 1-13.	1.5	47
218	Omnidirectional lightâ€harvesting enhancement of dyeâ€sensitized solar cells with ZnO nanorods. International Journal of Energy Research, 2019, 43, 3413-3420.	2.2	11
219	Rational Design of Photoelectrodes with Rapid Charge Transport for Photoelectrochemical Applications. Advanced Materials, 2019, 31, e1805132.	11.1	71

#	Article	IF	CITATIONS
220	Effect of ZnO Nanoparticles Coating Layers on Top of ZnO Nanowires for Morphological, Optical, and Photovoltaic Properties of Dye-Sensitized Solar Cells. Micromachines, 2019, 10, 819.	1.4	11
221	Zinc oxide superstructures: Recent synthesis approaches and application for hydrogen production via photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2019, 44, 2091-2127.	3.8	82
222	Photocatalytic Nanoheterostructures and Chemically Bonded Junctions Made by Solution-Based Approaches. Critical Reviews in Solid State and Materials Sciences, 2019, 44, 239-263.	6.8	13
223	Material and Interface Engineering for Highâ€Performance Perovskite Solar Cells: A Personal Journey and Perspective. Chemical Record, 2020, 20, 209-229.	2.9	9
224	Development of agri-biomass based lignin derived zinc oxide nanocomposites as promising UV protectant-cum-antimicrobial agents. Journal of Materials Chemistry B, 2020, 8, 260-269.	2.9	67
225	Application of bifunctional photoanode materials in DSSCs: A review. Renewable and Sustainable Energy Reviews, 2020, 134, 110249.	8.2	32
226	Galvanostatic electrodeposition of ZnO nanosheet: effect of different applied current densities and deposition times on the nanosheet morphology. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2020, 11, 025005.	0.7	6
227	Low-Dimensional ZnO Nanostructures: Fabrication, Optical Properties, and Applications for Dye-Sensitized Solar Cells. , 0, , .		1
228	Access to nanocrystalline, uniform, and fine-grained Ni-P coating with improved anticorrosive action through the growth of ZnO nanostructures before the plating process. Corrosion Science, 2020, 172, 108743.	3.0	8
229	Fabrication and characterization of dye sensitized solar cell with ZnO nanoflowers as photoelectrode. Materials Today: Proceedings, 2021, 42, 637-641.	0.9	4
230	Investigations on the Growth Mechanism of Nanostructured ZnO: Shedding Light on the Effect of Al3+ Doping. Surface Engineering and Applied Electrochemistry, 2021, 57, 1-9.	0.3	3
231	Improved ionic solid/viologen hybrid electrochromic device using preâ€bleached Prussianâ€blue electrode. IET Nanodielectrics, 2021, 4, 193-200.	2.0	2
232	Custom Synthesis of ZnO Nanowires for Efficient Ambient Air-Processed Solar Cells. ACS Omega, 2021, 6, 32365-32378.	1.6	7
233	Catalyst-Free Chemical Vapor Deposition for Synthesis of SiC Nanowires with Controlled Morphology. Springer Series in Materials Science, 2013, , 179-213.	0.4	2
234	Porous semiconductor compounds. Semiconductor Science and Technology, 2020, 35, 103001.	1.0	33
235	Investigations on the Properties of Nanostructured Mg-Doped Sn ₂ S ₃ Thin Films towards Photovoltaic Applications. Acta Physica Polonica A, 2018, 133, 15-19.	0.2	4
236	A novel photoelectrode of NiO@ZnO nanocomposite prepared by Pechini method coupled with PLD for efficiency enhancement in DSSCs. Materials Science-Poland, 2018, 36, 327-336.	0.4	8
237	Progress on the Photoanode for Dye-Sensitized Solar Cells. , 2012, , 513-564.		0

CITATION	DEDODT
CITATION	KFF()KI
011/11/01	

#	Article	IF	CITATIONS
240	Effect of Al Doping on the Properties of ZnO Nanorods Synthesized by Hydrothermal Growth for Gas Sensor Applications. Korean Journal of Materials Research, 2020, 30, 399-405.	0.1	1
241	Design strategies of ZnO heterojunction arrays towards effective photovoltaic applications. , 2022, 1,		29
242	Fabrication and Photoanode Performance of Zno Nanoflowers in Zno-Based Dye-Sensitized Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
243	Branches of ZnO nanostructure grown on sub-microrod template with seed layer coated by ultrasonic-assisted immersion technique: effect of surface energy on the growth of branches. Materials Research Express, 0, , .	0.8	0
244	Zinc Oxide: A Fascinating Material for Photovoltaic Applications. Materials Horizons, 2022, , 173-241.	0.3	2
245	Fabrication and photoanode performance of ZnO nanoflowers in ZnO-based dye-sensitized solar cells. Optical Materials, 2022, 131, 112691.	1.7	7
246	Fabrication of robust and highly stable Al2O3 passivated CdS anchored ZnO-Si nanowires: A new paradigm for hierarchical structure and sustainable solar fuel generation. Journal of Alloys and Compounds, 2022, 923, 166448.	2.8	6
247	Solar Energy Conversion Efficiency, Growth Mechanism and Design of Ill–V Nanowire-Based Solar Cells: Review. , 0, , .		0
248	Conductivity Modification of ZnO NRs Films via Gold Coating for Temperature Sensor Application. Key Engineering Materials, 0, 936, 105-114.	0.4	4
249	Critical review on experimental and theoretical studies of elastic properties of wurtzite-structured ZnO nanowires. Nanotechnology Reviews, 2023, 12, .	2.6	6