Liver X receptor in cooperation with SREBPâ€ic is a manonalcoholic fatty liver disease

Hepatology Research 38, 1122-1129 DOI: 10.1111/j.1872-034x.2008.00382.x

Citation Report

#	Article	IF	CITATIONS
1	The role of the lipogenic pathway in the development of hepatic steatosis. Diabetes and Metabolism, 2008, 34, 643-648.	1.4	234
2	Hepatitis C Virus Nonstructural 4B Protein Modulates Sterol Regulatory Element-binding Protein Signaling via the AKT Pathway. Journal of Biological Chemistry, 2009, 284, 9237-9246.	1.6	119
3	Salt-inducible Kinase Regulates Hepatic Lipogenesis by Controlling SREBP-1c Phosphorylation. Journal of Biological Chemistry, 2009, 284, 10446-10452.	1.6	53
4	Impact of cholesterol metabolism and the LXRα-SREBP-1c pathway on nonalcoholic fatty liver disease. International Journal of Molecular Medicine, 2009, 23, 603-8.	1.8	66
5	Suppression of Long Chain Acyl-CoA Synthetase 3 Decreases Hepatic de Novo Fatty Acid Synthesis through Decreased Transcriptional Activity. Journal of Biological Chemistry, 2009, 284, 30474-30483.	1.6	85
6	Role of adenosine monophosphate-activated protein kinase-p70 ribosomal S6 kinase-1 pathway in repression of liver X receptor-alpha-dependent lipogenic gene induction and hepatic steatosis by a novel class of dithiolethiones. Hepatology, 2009, 49, 1913-1925.	3.6	110
7	Heritability of Nonalcoholic Fatty Liver Disease. Gastroenterology, 2009, 136, 1585-1592.	0.6	419
8	Serum concentration of 27â€hydroxycholesterol predicts the effects of highâ€cholesterol diet on plasma LDL cholesterol level. Hepatology Research, 2009, 39, 149-156.	1.8	26
9	Nutritional related liver disease: targeting the endoplasmic reticulum stress. Current Opinion in Clinical Nutrition and Metabolic Care, 2009, 12, 575-582.	1.3	32
10	Maternal diets deficient in folic acid and related methyl donors modify mechanisms associated with lipid metabolism in the fetal liver of the rat. British Journal of Nutrition, 2009, 102, 1445-1452.	1.2	18
11	1Chapter 5 Intestinal Failure and Liver Disease Related to Parenteral Nutrition and Intestinal Transplantation. , 2010, , 251-270.		0
12	Endoplasmic reticulum stress: a new actor in the development of hepatic steatosis. Current Opinion in Lipidology, 2010, 21, 239-246.	1.2	56
13	Interaction of the hepatitis C virus (HCV) core with cellular genes in the development of HCV-induced steatosis. Archives of Virology, 2010, 155, 1735-1753.	0.9	25
14	Hepatic steatosis: a role for <i>de novo</i> lipogenesis and the transcription factor SREBPâ€I c. Diabetes, Obesity and Metabolism, 2010, 12, 83-92.	2.2	584
15	AMPK-associated signaling to bridge the gap between fuel metabolism and hepatocyte viability. World Journal of Gastroenterology, 2010, 16, 3731.	1.4	41
16	From the metabolic syndrome to NAFLD or vice versa?. Digestive and Liver Disease, 2010, 42, 320-330.	0.4	406
17	Down-regulation of SREBP-1c is associated with the development of burned-out NASH. Journal of Hepatology, 2010, 53, 724-731.	1.8	89
18	Splanchnic Balance of Free Fatty Acids, Endocannabinoids, and Lipids in Subjects With Nonalcoholic Fatty Liver Disease. Gastroenterology, 2010, 139, 1961-1971.e1.	0.6	61

#	Article	IF	CITATIONS
19	NPC1L1 inhibitor ezetimibe is a reliable therapeutic agent for non-obese patients with nonalcoholic fatty liver disease. Lipids in Health and Disease, 2010, 9, 29.	1.2	57
20	The importance of the long-chain polyunsaturated fatty acid n-6/n-3 ratio in development of non-alcoholic fatty liver associated with obesity. Food and Function, 2011, 2, 644.	2.1	146
21	Advances in Pediatric Nonalcoholic Fatty Liver Disease. Pediatric Clinics of North America, 2011, 58, 1375-1392.	0.9	46
22	Redox Balance in the Pathogenesis of Nonalcoholic Fatty Liver Disease: Mechanisms and Therapeutic Opportunities. Antioxidants and Redox Signaling, 2011, 15, 1325-1365.	2.5	128
23	Role of S6K1 in regulation of SREBP1c expression in the liver. Biochemical and Biophysical Research Communications, 2011, 412, 197-202.	1.0	67
24	Synergy Analysis Reveals Association between Insulin Signaling and Desmoplakin Expression in Palmitate Treated HepG2 Cells. PLoS ONE, 2011, 6, e28138.	1.1	6
25	Enhanced expression of pro-inflammatory mediators and liver X-receptor-regulated lipogenic genes in non-alcoholic fatty liver disease and hepatitis C. Clinical Science, 2011, 120, 239-250.	1.8	118
26	Effects of insulin resistance and hepatic lipid accumulation on hepatic mRNA expression levels of apoB, MTP and L-FABP in non-alcoholic fatty liver disease. Experimental and Therapeutic Medicine, 2011, 2, 1077-1081.	0.8	78
27	Alcohol drinking patterns and the risk of fatty liver in Japanese men. Journal of Gastroenterology, 2011, 46, 519-528.	2.3	47
28	Increased hepatic expression of dipeptidyl peptidase-4 in non-alcoholic fatty liver disease and its association with insulin resistance and glucose metabolism. Molecular Medicine Reports, 2012, 5, 729-33.	1.1	110
29	Up-Regulation of PPAR-Î ³ mRNA Expression in the Liver of Obese Patients: an Additional Reinforcing Lipogenic Mechanism to SREBP-1c Induction. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 1424-1430.	1.8	288
30	Obesity, diabetes mellitus, and liver fibrosis. American Journal of Physiology - Renal Physiology, 2011, 300, G697-G702.	1.6	164
31	Nutrition Therapy for Liver Diseases Based on the Status of Nutritional Intake. Gastroenterology Research and Practice, 2012, 2012, 1-8.	0.7	21
32	Endoplasmic Reticulum Stress and Lipid Metabolism: Mechanisms and Therapeutic Potential. Biochemistry Research International, 2012, 2012, 1-13.	1.5	169
33	Nutrition and Nonalcoholic Fatty Liver Disease: The Significance of Cholesterol. International Journal of Hepatology, 2012, 2012, 1-6.	0.4	59
34	Hepatic Steatosis and Peroxisomal Fatty Acid Beta-oxidation. Current Drug Metabolism, 2012, 13, 1412-1421.	0.7	55
35	Increased serum liver X receptor ligand oxysterols in patients with non-alcoholic fatty liver disease. Journal of Gastroenterology, 2012, 47, 1257-1266.	2.3	54
36	The Scap/SREBP Pathway Is Essential for Developing Diabetic Fatty Liver and Carbohydrate-Induced Hypertriglyceridemia in Animals. Cell Metabolism, 2012, 15, 240-246.	7.2	263

#	Article	IF	CITATIONS
37	Nuclear Receptors Reverse McGarry's Vicious Cycle to Insulin Resistance. Cell Metabolism, 2012, 15, 615-622.	7.2	33
38	Nonalcoholic fatty liver disease: from lipid profile to treatment. Clinical Journal of Gastroenterology, 2012, 5, 313-321.	0.4	9
39	Adenosine A1 receptors do not play a major role in the regulation of lipogenic gene expression in hepatocytes. European Journal of Pharmacology, 2012, 683, 332-339.	1.7	8
40	Liver X receptors bridge hepatic lipid metabolism and inflammation. Journal of Digestive Diseases, 2012, 13, 69-74.	0.7	36
41	Sulfated oxysterols as candidates for the treatment of nonalcoholic fatty liver disease. Metabolism: Clinical and Experimental, 2012, 61, 755-758.	1,5	4
42	Activation of Liver X Receptors Attenuates Endotoxin-Induced Liver Injury in Mice with Nonalcoholic Fatty Liver Disease. Digestive Diseases and Sciences, 2012, 57, 390-398.	1.1	31
43	Beneficial effects of flaxseed oil and fish oil diet are through modulation of different hepatic genes involved in lipid metabolism in streptozotocin–nicotinamide induced diabetic rats. Genes and Nutrition, 2013, 8, 329-342.	1.2	48
44	Free radical biology for medicine: learning from nonalcoholic fatty liver disease. Free Radical Biology and Medicine, 2013, 65, 952-968.	1.3	210
45	Oxysterols and redox signaling in the pathogenesis of non-alcoholic fatty liver disease. Free Radical Research, 2013, 47, 881-893.	1.5	26
46	High fat diets and pathology in the guinea pig. Atherosclerosis or liver damage?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 355-364.	1.8	32
47	Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis. Progress in Lipid Research, 2013, 52, 175-191.	5.3	326
48	Role of microRNAs in the regulation of drug metabolism and disposition genes in diabetes and liver disease. Expert Opinion on Drug Metabolism and Toxicology, 2013, 9, 713-724.	1.5	10
49	Resveratrol Suppresses T0901317-Induced Hepatic Fat Accumulation in Mice. AAPS Journal, 2013, 15, 744-752.	2.2	27
50	Resveratrol inhibits LXRα-dependent hepatic lipogenesis through novel antioxidant Sestrin2 gene induction. Toxicology and Applied Pharmacology, 2013, 271, 95-105.	1.3	73
51	Hepatic Fatty Acid Trafficking: Multiple Forks in the Road. Advances in Nutrition, 2013, 4, 697-710.	2.9	115
52	Inhibition of LXR <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="M1"><mml:mrow><mml:mi mathvariant="bold-italic">î±</mml:mi </mml:mrow></mml:math> /SREBP-1c-Mediated Hepatic Steatosis bv <i>liang-Zhi</i> Granule. Evidence-based Complementary and Alternative Medicine. 2013. 2013. 1-10.	0.5	12
53	Identification of Combined Genetic Determinants of Liver Stiffness within the SREBP1c-PNPLA3 Pathway. International Journal of Molecular Sciences, 2013, 14, 21153-21166.	1.8	13
54	Dietary habits and behaviors associated with nonalcoholic fatty liver disease. World Journal of Gastroenterology, 2014, 20, 1756.	1.4	91

#	Article	IF	CITATIONS
55	Nonalcoholic Fatty Liver Disease: Pathogenesis and Therapeutics from a Mitochondria-Centric Perspective. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1-20.	1.9	120
56	Molecular pathways in non-alcoholic fatty liver disease. Clinical and Experimental Gastroenterology, 2014, 7, 221.	1.0	279
57	The Role of Dietary Sugars and De novo Lipogenesis in Non-Alcoholic Fatty Liver Disease. Nutrients, 2014, 6, 5679-5703.	1.7	113
58	Steatosis and Steatohepatitis: Complex Disorders. International Journal of Molecular Sciences, 2014, 15, 9924-9944.	1.8	31
59	Activating Transcription Factor 6 Is Necessary and Sufficient for Alcoholic Fatty Liver Disease in Zebrafish. PLoS Genetics, 2014, 10, e1004335.	1.5	64
60	Altered Fatty Acid Metabolism-Related Gene Expression in Liver from Morbidly Obese Women with Non-Alcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 2014, 15, 22173-22187.	1.8	47
61	Effects of Soothing Liver and Invigorating Spleen Recipe on Lipid Metabolism Disorders in Kupffer Cells of NAFLD Rats by LXRα/SREBP-1c Signal Pathway. Chinese Herbal Medicines, 2014, 6, 297-304.	1.2	4
62	Hypoxia Induces Dysregulation of Lipid Metabolism in HepG2 Cells via Activation of HIF-2a. Cellular Physiology and Biochemistry, 2014, 34, 1427-1441.	1.1	33
63	LXRα-mediated downregulation of FOXM1 suppresses the proliferation of hepatocellular carcinoma cells. Oncogene, 2014, 33, 2888-2897.	2.6	53
64	SREBP-1c overexpression induces triglycerides accumulation through increasing lipid synthesis and decreasing lipid oxidation and VLDL assembly in bovine hepatocytes. Journal of Steroid Biochemistry and Molecular Biology, 2014, 143, 174-182.	1.2	78
65	The Dipeptidyl Peptidase-4 Inhibitor Teneligliptin Attenuates Hepatic Lipogenesis via AMPK Activation in Non-Alcoholic Fatty Liver Disease Model Mice. International Journal of Molecular Sciences, 2015, 16, 29207-29218.	1.8	41
66	The nuclear receptor FXR, but not LXR, up-regulates bile acid transporter expression in non-alcoholic fatty liver disease. Annals of Hepatology, 2015, 14, 487-493.	0.6	65
67	DJ-1 deficiency alleviates steatosis in cultured hepatocytes. Biotechnology and Bioprocess Engineering, 2015, 20, 1152-1161.	1.4	0
68	Flaxseed oil containing flaxseed oil ester of plant sterol attenuates high-fat diet-induced hepatic steatosis in apolipoprotein-E knockout mice. Journal of Functional Foods, 2015, 13, 169-182.	1.6	12
69	Zonation of hepatic fatty acid metabolism — The diversity of its regulation and the benefit of modeling. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 641-656.	1.2	55
70	MicroRNAs in Fatty Liver Disease. Seminars in Liver Disease, 2015, 35, 012-025.	1.8	35
71	Activation of liver X receptors inhibits cadmium-induced apoptosis of human renal proximal tubular cells. Toxicology Letters, 2015, 236, 145-153.	0.4	15
72	Gomisin J Inhibits Oleic Acid-Induced Hepatic Lipogenesis by Activation of the AMPK-Dependent Pathway and Inhibition of the Hepatokine Fetuin-A in HepG2 Cells. Journal of Agricultural and Food Chemistry, 2015, 63, 9729-9739.	2.4	26

#	Article	IF	CITATIONS
73	Cinnamamides, Novel Liver X Receptor Antagonists that Inhibit Ligand-Induced Lipogenesis and Fatty Liver. Journal of Pharmacology and Experimental Therapeutics, 2015, 355, 362-369.	1.3	13
74	The Hexane Fraction of Cyperus rotundus Prevents Non-Alcoholic Fatty Liver Disease Through the Inhibition of Liver X Receptor α-Mediated Activation of Sterol Regulatory Element Binding Protein-1c. The American Journal of Chinese Medicine, 2015, 43, 477-494.	1.5	12
75	LXRα gene downregulation by lentiviral-based RNA interference enhances liver function after fatty liver transplantation in rats. Hepatobiliary and Pancreatic Diseases International, 2015, 14, 386-393.	0.6	4
76	Effects of the new thiazolidine derivative LPSF/GQ-02 on hepatic lipid metabolism pathways in non-alcoholic fatty liver disease (NAFLD). European Journal of Pharmacology, 2016, 788, 306-314.	1.7	6
77	Dietary licorice root supplementation reduces dietâ€induced weight gain, lipid deposition, and hepatic steatosis in ovariectomized mice without stimulating reproductive tissues and mammary gland. Molecular Nutrition and Food Research, 2016, 60, 369-380.	1.5	51
78	Design of pathway preferential estrogens that provide beneficial metabolic and vascular effects without stimulating reproductive tissues. Science Signaling, 2016, 9, ra53.	1.6	81
79	The chloroform extract of Cyclocarya paliurus attenuates high-fat diet induced non-alcoholic hepatic steatosis in Sprague Dawley rats. Phytomedicine, 2016, 23, 1475-1483.	2.3	43
80	Nogoâ€B receptor deficiency increases liver X receptor alpha nuclear translocation and hepatic lipogenesis through an adenosine monophosphate–activated protein kinase alpha–dependent pathway. Hepatology, 2016, 64, 1559-1576.	3.6	26
81	<i>De novo</i> lipogenesis in the liver in health and disease: more than just a shunting yard for glucose. Biological Reviews, 2016, 91, 452-468.	4.7	323
82	Emodin ameliorates hepatic steatosis through endoplasmic reticulum–stress sterol regulatory elementâ€binding protein 1c pathway in liquid fructoseâ€feeding rats. Hepatology Research, 2016, 46, E105-17.	1.8	36
83	Role of Lipogenesis and Lipid Desaturases in Non-alcoholic Fatty Liver Disease. , 2016, , 143-164.		0
84	The effect of dietary curcumin and capsaicin on hepatic fetuin-A expression and fat accumulation in rats fed on a high-fat diet. Archives of Physiology and Biochemistry, 2016, 122, 94-102.	1.0	15
85	Hepatic De Novo Lipogenesis and Regulation of Metabolism. , 2016, , .		7
87	The potential of flavonoids in the treatment of non-alcoholic fatty liver disease. Critical Reviews in Food Science and Nutrition, 2017, 57, 834-855.	5.4	126
88	Lipid oxidation products in the pathogenesis of non-alcoholic steatohepatitis. Free Radical Biology and Medicine, 2017, 111, 173-185.	1.3	101
89	Chronic maternal calcium and 25-hydroxyvitamin D deficiency in Wistar rats programs abnormal hepatic gene expression leading to hepatic steatosis in female offspring. Journal of Nutritional Biochemistry, 2017, 43, 36-46.	1.9	15
90	Is Withaferin A, a magic bullet for metabolic syndrome?. Biomedicine and Pharmacotherapy, 2017, 92, 1135-1137.	2.5	6
91	Luteolin improves non-alcoholic fatty liver disease in db/db mice by inhibition of liver X receptor activation to down-regulate expression of sterol regulatory element binding protein 1c. Biochemical and Biophysical Research Communications, 2017, 482, 720-726.	1.0	48

ARTICLE IF CITATIONS Serum bile acid level and fatty acid composition in Chinese children with nonâ€alcoholic fatty liver 92 0.7 19 disease. Journal of Digestive Diseases, 2017, 18, 461-471. Valproate induced hepatic steatosis by enhanced fatty acid uptake and triglyceride synthesis. 1.3 Toxicology and Applied Pharmacology, 2017, 324, 12-25. Liver X receptor α induces 17Î2-hydroxysteroid dehydrogenase-13 expression through SREBP-1c. American 94 1.8 22 Journal of Physiology - Endocrinology and Metabolism, 2017, 312, E357-E367. Fatty acid binding profile of the liver X receptor \hat{I}_{\pm} . Journal of Lipid Research, 2017, 58, 393-402. 95 2.0 Hepatic chemerin <scp>mRNA</scp> expression is reduced in human nonalcoholic steatohepatitis. 96 1.7 33 European Journal of Clinical Investigation, 2017, 47, 7-18. Apelin protects against liver X receptor-mediated steatosis through AMPK and PPAR $\hat{I}\pm$ in human and 1.7 mouse hepatocytes. Cellular Signalling, 2017, 39, 84-94. Triglyceride Metabolism in the Liver., 2017, 8, 1-22. 440 98 Dietaryl±-lactalbumin induced fatty liver by enhancing nuclear liver X receptori±I²/sterol regulatory element-binding protein-1c/PPARl³ expression and minimising PPARl±/carnitine palmitoyltransferase-1 expression and AMP-activated protein kinasel±phosphorylation associated with atherogenic 99 dyslipidaemia, insulin resistance and oxidative stress in Balb/c mice. British Journal of Nutrition, 2017, Increased lipogenesis in spite of upregulated hepatic 5'AMPâ€activated protein kinase in human 100 22 1.8 nonâ€alcoholic fatty liver. Hepatology Research, 2017, 47, 890-901. Does the enterolactone (ENL) affect fatty acid transporters and lipid metabolism in liver?. Nutrition 1.3 and Metabolism, 2017, 14, 69. Bile Acids in Nonalcoholic Fatty Liver Disease: New Concepts and Therapeutic Advances. Annals of 102 21 0.6 Hepatology, 2017, 16, S58-S67. Alpinetin improved high fat diet-induced non-alcoholic fatty liver disease (NAFLD) through improving oxidative stress, inflammatory response and lipid metabolism. Biomedicine and Pharmacotherapy, 2018, 97, 1397-1408. Andrographolide Inhibits Oxidized LDL-Induced Cholesterol Accumulation and Foam Cell Formation in 104 1.5 33 Macrophages. The American Journal of Chinese Medicine, 2018, 46, 87-106. Selective insulin resistance with differential expressions of IRS-1 and IRS-2 in human NAFLD livers. 1.6 International Journal of Obesity, 2018, 42, 1544-1555. Oxyresveratrol ameliorates nonalcoholic fatty liver disease by regulating hepatic lipogenesis and fatty acid oxidation through liver kinase B1 and AMP-activated protein kinase. Chemico-Biological 106 1.7 31 Interactions, 2018, 289, 68-74. Dioscin alleviates non-alcoholic fatty liver disease through adjusting lipid metabolism via SIRT1/AMPK 3.1 79 signaling pathway. Pharmacological Research, 2018, 131, 51-60. Mori Cortex extract ameliorates nonalcoholic fatty liver disease (NAFLD) and insulin resistance in 108 high-fat-diet/streptozotocin-induced type 2 diabetes in rats. Chinese Journal of Natural Medicines, 0.7 8 2018, 16, 411-417. Dietary calcium status during maternal pregnancy and lactation affects lipid metabolism in mouse offspring. Scientific Reports, 2018, 8, 16542.

#	Article	IF	CITATIONS
110	Oleiferasaponin A2, a Novel Saponin from Camellia oleifera Abel. Seeds, Inhibits Lipid Accumulation of HepG2 Cells Through Regulating Fatty Acid Metabolism. Molecules, 2018, 23, 3296.	1.7	16
111	Ursolic Acid, a Novel Liver X Receptor α (LXRα) Antagonist Inhibiting Ligand-Induced Nonalcoholic Fatty Liver and Drug-Induced Lipogenesis. Journal of Agricultural and Food Chemistry, 2018, 66, 11647-11662.	2.4	32
112	Oleanolic Acid Inhibits Liver X Receptor Alpha and Pregnane X Receptor to Attenuate Ligand-Induced Lipogenesis. Journal of Agricultural and Food Chemistry, 2018, 66, 10964-10976.	2.4	28
113	Human-based systems: Mechanistic NASH modelling just around the corner?. Pharmacological Research, 2018, 134, 257-267.	3.1	38
114	Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cellular and Molecular Life Sciences, 2018, 75, 3313-3327.	2.4	777
115	The Human Gut Microbiome $\hat{a} \in$ " A Potential Controller of Wellness and Disease. Frontiers in Microbiology, 2018, 9, 1835.	1.5	681
116	Effects of antiepileptic drugs on lipogenic gene regulation and hyperlipidemia risk in Taiwan: a nationwide population-based cohort study and supporting in vitro studies. Archives of Toxicology, 2018, 92, 2829-2844.	1.9	8
117	Bioactive Lipid Species and Metabolic Pathways in Progression and Resolution of Nonalcoholic Steatohepatitis. Gastroenterology, 2018, 155, 282-302.e8.	0.6	216
118	Deoxypodophyllotoxin in Anthriscus sylvestris alleviates fat accumulation in the liver via AMP-activated protein kinase, impeding SREBP-1c signal. Chemico-Biological Interactions, 2018, 294, 151-157.	1.7	5
119	Anti-hepatic steatosis activity of Sicyos angulatus extract in high-fat diet-fed mice and chemical profiling study using UHPLC-qTOF-MS/MS spectrometry. Phytomedicine, 2019, 63, 152999.	2.3	14
120	Hepatic stearoyl CoA desaturase 1 deficiency increases glucose uptake in adipose tissue partially through the PGC-1α–FGF21 axis in mice. Journal of Biological Chemistry, 2019, 294, 19475-19485.	1.6	24
121	LncRNA NEAT1 promotes hepatic lipid accumulation via regulating miR-146a-5p/ROCK1 in nonalcoholic fatty liver disease. Life Sciences, 2019, 235, 116829.	2.0	65
122	Liver X Receptors and Their Implications in the Physiology and Pathology of the Peripheral Nervous System. International Journal of Molecular Sciences, 2019, 20, 4192.	1.8	6
123	The regulation of hepatic fatty acid synthesis and partitioning: the effect of nutritional state. Nature Reviews Endocrinology, 2019, 15, 689-700.	4.3	138
124	High Energy Intake Induced Overexpression of Transcription Factors and Its Regulatory Genes Involved in Acceleration of Hepatic Lipogenesis: A Rat Model for Type 2 Diabetes. Biomedicines, 2019, 7, 76.	1.4	8
125	LncRNA NEAT1-MicroRNA-140 axis exacerbates nonalcoholic fatty liver through interrupting AMPK/SREBP-1 signaling. Biochemical and Biophysical Research Communications, 2019, 516, 584-590.	1.0	40
126	Hepatic transcriptomic signatures of statin treatment are associated with impaired glucose homeostasis in severely obese patients. BMC Medical Genomics, 2019, 12, 80.	0.7	22
127	Impact of SchisandraChinensis Bee Pollen on Nonalcoholic Fatty Liver Disease and Gut Microbiota in HighFat Diet Induced Obese Mice. Nutrients, 2019, 11, 346.	1.7	32

#	Article	IF	CITATIONS
128	The Role of Carbohydrate Response Element–Binding Protein in the Development of Liver Diseases. , 2019, , 263-274.		2
129	Molecular drivers of non-alcoholic steatohepatitis are sustained in mild-to-late fibrosis progression in a guinea pig model. Molecular Genetics and Genomics, 2019, 294, 649-661.	1.0	13
130	Dansameum regulates hepatic lipogenesis and inflammation in vitro and in vivo. Food Science and Biotechnology, 2019, 28, 1543-1551.	1.2	4
131	Sesamin, a Naturally Occurring Lignan, Inhibits Ligand-Induced Lipogenesis through Interaction with Liver X Receptor Alpha (LXR <i>î±</i>) and Pregnane X Receptor (PXR). Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-17.	0.5	16
132	Fat and Sugar—A Dangerous Duet. A Comparative Review on Metabolic Remodeling in Rodent Models of Nonalcoholic Fatty Liver Disease. Nutrients, 2019, 11, 2871.	1.7	14
133	Role of HSD17B13 in the liver physiology and pathophysiology. Molecular and Cellular Endocrinology, 2019, 489, 119-125.	1.6	41
134	Protective effect of lodoxamide on hepatic steatosis through GPR35. Cellular Signalling, 2019, 53, 190-200.	1.7	11
135	HESA-A Attenuates Hepatic Steatosis in NAFLD Rat Model Through the Suppression of SREBP-1c and NF-kβ. International Journal of Peptide Research and Therapeutics, 2020, 26, 1283-1290.	0.9	1
136	Cynandione A from Cynanchum wilfordii inhibits hepatic de novo lipogenesis by activating the LKB1/AMPK pathway in HepG2 cells. Journal of Natural Medicines, 2020, 74, 142-152.	1.1	11
137	3,4-Dichloroaniline promotes fatty liver in zebrafish larvae. Molecular and Cellular Toxicology, 2020, 16, 159-165.	0.8	3
138	Circular RNA HIPK3 contributes to hyperglycemia and insulin homeostasis by sponging miR-192-5p and upregulating transcription factor forkhead box O1. Endocrine Journal, 2020, 67, 397-408.	0.7	39
139	Didymin ameliorates dexamethasone-induced non-alcoholic fatty liver disease by inhibiting TLR4/NF-κB and PI3K/Akt pathways in C57BL/6J mice. International Immunopharmacology, 2020, 88, 107003.	1.7	23
140	Comprehensive lipidomics in apoM mice reveals an overall state of metabolic distress and attenuated hepatic lipid secretion into the circulation. Journal of Genetics and Genomics, 2020, 47, 523-534.	1.7	6
141	Oxymatrine alleviated hepatic lipid metabolism via regulating miR-182 in non-alcoholic fatty liver disease. Life Sciences, 2020, 257, 118090.	2.0	17
142	Nonalcoholic fatty liver disease (NAFLD) from pathogenesis to treatment concepts in humans. Molecular Metabolism, 2021, 50, 101122.	3.0	135
143	Synergistic Effect of Omega-3 Fatty Acids and Oral-Hypoglycemic Drug on Lipid Normalization through Modulation of Hepatic Gene Expression in High Fat Diet with Low Streptozotocin-Induced Diabetic Rats. Nutrients, 2020, 12, 3652.	1.7	12
144	Effects of Urate-Lowering Therapy on Risk of Hyperlipidemia in Gout by a Population-Based Cohort Study and on In Vitro Hepatic Lipogenesis-Related Gene Expression. Mediators of Inflammation, 2020, 2020, 1-13.	1.4	7
145	Chinese Medicinal Herbs Targeting the Gut–Liver Axis and Adipose Tissue–Liver Axis for Non-Alcoholic Fatty Liver Disease Treatments: The Ancient Wisdom and Modern Science. Frontiers in Endocrinology, 2020, 11, 572729.	1.5	15

<u> </u>			<u> </u>	
(15	ГАТ	ON	REPC	TDT
			NLFC	ואנ

#	Article	IF	CITATIONS
146	Non-alcoholic Fatty Liver Disease and Alcohol-Related Liver Disease: Two Intertwined Entities. Frontiers in Medicine, 2020, 7, 448.	1.2	75
147	7 <i>α</i> ,25-Dihydroxycholesterol Suppresses Hepatocellular Steatosis through GPR183/EBI2 in Mouse and Human Hepatocytes. Journal of Pharmacology and Experimental Therapeutics, 2020, 374, 142-150.	1.3	10
148	Antiobese properties of carotenoids: An overview of underlying molecular mechanisms. , 2020, , 75-105.		2
149	Lipocalin-type prostaglandin D2 synthase deletion induces dyslipidemia and non-alcoholic fatty liver disease. Prostaglandins and Other Lipid Mediators, 2020, 149, 106429.	1.0	10
150	Diseases of the digestive system. , 2020, , 443-491.		1
151	Nuclear receptors and non-alcoholic fatty liver disease: An update. Liver Research, 2020, 4, 88-93.	0.5	15
152	Targeting the alternative bile acid synthetic pathway for metabolic diseases. Protein and Cell, 2021, 12, 411-425.	4.8	146
153	4β-Hydroxycholesterol is a prolipogenic factor that promotes SREBP1c expression and activity through the liver X receptor. Journal of Lipid Research, 2021, 62, 100051.	2.0	10
154	Influence of Genistein on Hepatic Lipid Metabolism in an In Vitro Model of Hepatic Steatosis. Molecules, 2021, 26, 1156.	1.7	12
155	Tanshinone IIA Downregulates Lipogenic Gene Expression and Attenuates Lipid Accumulation through the Modulation of LXRI±/SREBP1 Pathway in HepG2 Cells. Biomedicines, 2021, 9, 326.	1.4	13
156	Viburnum opulus L. fruit phenolic compounds protect against FFA-induced steatosis of HepG2 cells via AMPK pathway. Journal of Functional Foods, 2021, 80, 104437.	1.6	16
157	Mitochondria, oxidative stress and nonalcoholic fatty liver disease: A complex relationship. European Journal of Clinical Investigation, 2022, 52, e13622.	1.7	63
158	Pirfenidone modifies hepatic miRNAs expression in a model of MAFLD/NASH. Scientific Reports, 2021, 11, 11709.	1.6	12
159	Metabolic Changes of Hepatocytes in NAFLD. Frontiers in Physiology, 2021, 12, 710420.	1.3	46
160	Regulation of cholesterol biosynthesis and lipid metabolism: A microRNA management perspective. Steroids, 2021, 173, 108878.	0.8	22
161	The alleviating effect of sphingosine kinases 2 inhibitor K145 on nonalcoholic fatty liver. Biochemical and Biophysical Research Communications, 2021, 580, 1-6.	1.0	4
162	Bile acid activated receptors: Integrating immune and metabolic regulation in non-alcoholic fatty liver disease. Liver Research, 2021, 5, 119-141.	0.5	15
163	Influences of antidepressant medications on the risk of developing hyperlipidemia in patients with depression by a population-based cohort study and on in vitro hepatic lipogenic-related gene expression. Journal of Affective Disorders, 2021, 295, 271-283.	2.0	0

#	Article	IF	CITATIONS
164	Diosmetin Ameliorates Nonalcoholic Steatohepatitis through Modulating Lipogenesis and Inflammatory Response in a STAT1/CXCL10-Dependent Manner. Journal of Agricultural and Food Chemistry, 2021, 69, 655-667.	2.4	15
165	Therapeutic opportunities for alcoholic steatohepatitis and nonalcoholic steatohepatitis: exploiting similarities and differences in pathogenesis. JCI Insight, 2017, 2, .	2.3	49
166	Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease. Journal of Clinical Investigation, 2020, 130, 1453-1460.	3.9	362
167	Methyl donor deficient diets cause distinct alterations in lipid metabolism but are poorly representative of human NAFLD. Wellcome Open Research, 2017, 2, 67.	0.9	15
168	The Glucose Metabolism in Metabolic Syndrome Patients with Non-Alcoholic Fatty Liver Disease. Global Journal of Gastroenterology & Hepatology, 2014, 2, 19-28.	0.1	1
169	Liver-Specific Expression of Transcriptionally Active SREBP-1c Is Associated with Fatty Liver and Increased Visceral Fat Mass. PLoS ONE, 2012, 7, e31812.	1.1	141
170	Green tea polyphenols alter lipid metabolism in the livers of broiler chickens through increased phosphorylation of AMP-activated protein kinase. PLoS ONE, 2017, 12, e0187061.	1.1	21
171	Hyperinsulinaemia: does it tip the balance toward intrahepatic fat accumulation?. Endocrine Connections, 2019, 8, R157-R168.	0.8	12
172	Molecular mechanisms of steatosis in nonalcoholic fatty liver disease. Nutricion Hospitalaria, 2011, 26, 441-50.	0.2	55
173	MiR-542-5p Inhibits Hyperglycemia and Hyperlipoidemia by Targeting FOXO1 in the Liver. Yonsei Medical Journal, 2020, 61, 780.	0.9	7
174	Gallic Acid Inhibits Lipid Accumulation via AMPK Pathway and Suppresses Apoptosis and Macrophage-Mediated Inflammation in Hepatocytes. Nutrients, 2020, 12, 1479.	1.7	38
176	Is the control of dietary cholesterol intake sufficiently effective to ameliorate nonalcoholic fatty liver disease?. World Journal of Gastroenterology, 2010, 16, 800-3.	1.4	28
177	Incretin based therapies: A novel treatment approach for non-alcoholic fatty liver disease. World Journal of Gastroenterology, 2014, 20, 7356.	1.4	33
178	Mechanisms of intrahepatic triglyceride accumulation. World Journal of Gastroenterology, 2016, 22, 1664.	1.4	87
179	The Rho-guanine nucleotide exchange factor PDZ-RhoGEF governs susceptibility to diet-induced obesity and type 2 diabetes. ELife, 2015, 4, .	2.8	20
180	Mechanism on hepatitis B virus X gene-induced hepatic steatosis. Academic Journal of Second Military Medical University, 2012, 32, 26-31.	0.0	0
181	Nutrition and Alcoholic and Nonalcoholic Fatty Liver Disease: The Significance of Cholesterol. , 2013, , 523-532.		0
182	The Liver in Metabolic Syndrome. , 2014, , 27-61.		1

#	Article	IF	CITATIONS
184	Apple pomace and rosemary extract ameliorates hepatic steatosis in fructose-fed rats: Association with enhancing fatty acid oxidation and suppressing inflammation. Experimental and Therapeutic Medicine, 2020, 20, 1975-1986.	0.8	5
186	Lipid Metabolism Disorders in the Comorbid Course of Nonalcoholic Fatty Liver Disease and Chronic Obstructive Pulmonary Disease. Cells, 2021, 10, 2978.	1.8	14
187	Roles of lκB kinases and TANK-binding kinase 1 in hepatic lipid metabolism and nonalcoholic fatty liver disease. Experimental and Molecular Medicine, 2021, 53, 1697-1705.	3.2	13
188	Lipogenesis inhibitors: therapeutic opportunities and challenges. Nature Reviews Drug Discovery, 2022, 21, 283-305.	21.5	124
189	Responsiveness of PNPLA3 and lipid-related transcription factors is dependent upon fatty acid profile in primary bovine hepatocytes. Scientific Reports, 2022, 12, 888.	1.6	1
190	A biologically based model to quantitatively assess the role of the nuclear receptors liver X (LXR), and pregnane X (PXR) on chemically induced hepatic steatosis. Toxicology Letters, 2022, 359, 46-54.	0.4	3
192	Chitosan oligosaccharide attenuates hepatic steatosis in HepG2 cells via the activation of AMPâ€activated protein kinase. Journal of Food Biochemistry, 2022, 46, e14045.	1.2	2
193	Menin regulates lipid deposition in mouse hepatocytes via interacting with transcription factor FoxO1. Molecular and Cellular Biochemistry, 2022, 477, 1555-1568.	1.4	3
194	AAA-ATPase valosin-containing protein binds the transcription factor SREBP1 and promotes its proteolytic activation by rhomboid protease RHBDL4. Journal of Biological Chemistry, 2022, 298, 101936.	1.6	4
195	Salvia miltiorrhiza Bge. (Danshen) in the Treating Non-alcoholic Fatty Liver Disease Based on the Regulator of Metabolic Targets. Frontiers in Cardiovascular Medicine, 2022, 9, 842980.	1.1	2
196	Impact of Inflammatory Bowel Disease (IBD) and IBD Medications on Risk of Hyperlipidemia and in vitro Hepatic Lipogenic-Related Gene Expression: A Population-Based Cohort Study. Frontiers in Medicine, 0, 9, .	1.2	2
197	Effects of Amino Acids Supplementation on Lipid and Glucose Metabolism in HepG2 Cells. Nutrients, 2022, 14, 3050.	1.7	6
198	Cholesterol-lowering activity of 10-gingerol in HepG2 cells is associated with enhancing LDL cholesterol uptake, cholesterol efflux and bile acid excretion. Journal of Functional Foods, 2022, 95, 105174.	1.6	4
199	Endocytosis of LXRs: Signaling in liver and disease. Progress in Molecular Biology and Translational Science, 2023, , 347-375.	0.9	2
200	Asparagus cochinchinensis alleviates disturbances of lipid metabolism and gut microbiota in high-fat diet-induced obesity mice. Frontiers in Pharmacology, 0, 13, .	1.6	2
201	Lactobacillus sakei MJM60958 as a Potential Probiotic Alleviated Non-Alcoholic Fatty Liver Disease in Mice Fed a High-Fat Diet by Modulating Lipid Metabolism, Inflammation, and Gut Microbiota. International Journal of Molecular Sciences, 2022, 23, 13436.	1.8	15
202	Review article: the role of <scp>HSD17B13</scp> on global epidemiology, natural history, pathogenesis and treatment of <scp>NAFLD</scp> . Alimentary Pharmacology and Therapeutics, 2023, 57, 37-51.	1.9	17
203	Growth-Promoting Effects of Zhenqi Granules on Finishing Pigs. Animals, 2022, 12, 3521.	1.0	0

#	Article	IF	CITATIONS
204	Investigating dual inhibition of ACC and CD36 for the treatment of nonalcoholic fatty liver disease in mice. American Journal of Physiology - Endocrinology and Metabolism, 2023, 324, E187-E198.	1.8	3
205	NOD1 activation in 3T3-L1 adipocytes confers lipid accumulation in HepG2 cells. Life Sciences, 2023, 316, 121400.	2.0	1
206	Tilianin Protects against Nonalcoholic Fatty Liver Disease in Early Obesity Mice. Biological and Pharmaceutical Bulletin, 2023, 46, 419-426.	0.6	1
207	The diverse roles of macrophages in metabolic inflammation and its resolution. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	2
209	Probiotics as Potential Therapy in the Management of Non-Alcoholic Fatty Liver Disease (NAFLD). Fermentation, 2023, 9, 395.	1.4	0
213	Liver insulinization as a driver of triglyceride dysmetabolism. Nature Metabolism, 2023, 5, 1101-1110.	5.1	1
218	Dyslipidemia in Metabolic Syndrome. , 2023, , 1-18.		0
226	Dyslipidemia in Metabolic Syndrome. , 2023, , 529-546.		0