Inorganic Materials as Catalysts for Photochemical Spli

Chemistry of Materials 20, 35-54 DOI: 10.1021/cm7024203

Citation Report

#	Article	IF	CITATIONS
2	Electronic structure of layered titanate Nd2Ti2O7. Surface Science, 2008, 602, 3095-3099.	0.8	97
4	The [Ti ₁₂ Nb ₆ O ₄₄] ^{10â^'} lon—A New Type of Polyoxometalate Structure. Angewandte Chemie - International Edition, 2008, 47, 5634-5636.	7.2	104
5	Distinctly Different Reactivities of Two Similar Polyoxoniobates with Hydrogen Peroxide. Angewandte Chemie - International Edition, 2008, 47, 8251-8254.	7.2	67
6	Nanostructured ZnS:Ni ²⁺ Photocatalysts Prepared by Ultrasonic Spray Pyrolysis. Advanced Materials, 2008, 20, 2599-2603.	11.1	143
9	Solar Energy Conversion. , 0, , 171-207.		2
10	Photoelectrochemical properties of nanocrystalline Aurivillius phase Bi2MoO6 film under visible light irradiation. Chemical Physics Letters, 2008, 461, 102-105.	1.2	76
11	Synthesis and photocatalytic characterization of a new photocatalyst BaZrO3. International Journal of Hydrogen Energy, 2008, 33, 5941-5946.	3.8	130
12	Photocatalytic water splitting by means of undoped and doped La2CuO4 photocathodes. International Journal of Hydrogen Energy, 2008, 33, 6414-6419.	3.8	19
13	Challenges and opportunities for photochemists on the verge of solar energy conversion. Photochemical and Photobiological Sciences, 2008, 7, 521.	1.6	26
14	Vibrational Studies and Microwave Dielectric Properties of A-Site-Substituted Tellurium-Based Double Perovskites. Chemistry of Materials, 2008, 20, 4347-4355.	3.2	73
15	Raman Scattering and Infrared Spectroscopy of Chemically Substituted Sr ₂ LnTaO ₆ (Ln = Lanthanides, Y, and In) Double Perovskites. Chemistry of Materials, 2008, 20, 5253-5259.	3.2	49
16	First demonstration of CdSe as a photocatalyst for hydrogen evolution from water under UV and visible light. Chemical Communications, 2008, , 2206.	2.2	127
17	Synthesis of Coupled Semiconductor by Filling 1D TiO ₂ Nanotubes with CdS. Chemistry of Materials, 2008, 20, 6784-6791.	3.2	323
18	One-Size Adjustable-Gap Cluster Anions: Systematic Approach to Multinary, Water-Soluble Chalcogenidometalate Compounds. Inorganic Chemistry, 2008, 47, 5561-5563.	1.9	31
19	Three-Dimensional Open Framework Built from Cuâ^'S Icosahedral Clusters and Its Photocatalytic Property. Journal of the American Chemical Society, 2008, 130, 15238-15239.	6.6	120
20	Ion Pair Charge-Transfer Salts Based on Metal Chalcogenide Clusters and Methyl Viologen Cations. Chemistry of Materials, 2008, 20, 4170-4172.	3.2	85
21	A Building Block Approach to Photochemical Water-Splitting Catalysts Based on Layered Niobate Nanosheets. Journal of Physical Chemistry C, 2008, 112, 6202-6208.	1.5	82
22	Doped Solid Solution: (Zn _{0.95} Cu _{0.05}) _{1â^'<i>x</i>} Cd _{<i>x</i>} S Nanocrystals with High Activity for H ₂ Evolution from Aqueous Solutions under Visible Light. Journal of Physical Chemistry C. 2008. 112. 17635-17642.	1.5	155

#	Article	IF	CITATIONS
23	Toward a Facile One-Step Construction of Quantum Dots Containing Zn ₈ S Cores. Inorganic Chemistry, 2008, 47, 5564-5566.	1.9	11
24	A Heterometallic, Heterovalent CuI/SnII/IV/S Cluster with an Unprecedented Cu4Sn Core and Stannacyclopentane Units. Inorganic Chemistry, 2008, 47, 9146-9148.	1.9	21
26	Photooxidation of Water Using Vertically Aligned Nanotube Arrays: A comparative study of TiO2, Fe2O3 and TaON nanotubes. Materials Research Society Symposia Proceedings, 2009, 1171, 52.	0.1	0
27	New Titanium Oxide Compound for Photocatalytic Water Splitting, Hydrous Na ₁₆ Ti ₁₀ O ₂₈ . Key Engineering Materials, 2009, 421-422, 546-549.	0.4	0
28	Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst. Journal of Catalysis, 2009, 266, 165-168.	3.1	1,039
29	Water Splitting on Semiconductor Catalysts under Visible‣ight Irradiation. ChemSusChem, 2009, 2, 471-485.	3.6	504
31	Lightâ€Driven Hydrogen Generation: Efficient Ironâ€Based Water Reduction Catalysts. Angewandte Chemie - International Edition, 2009, 48, 9962-9965.	7.2	176
32	Photocatalytic activities for water splitting of La-doped-NaTaO3 fabricated by microwave synthesis. Solid State Ionics, 2009, 180, 1539-1542.	1.3	33
33	NaNbO3 Nanostructures: Facile Synthesis, Characterization, and Their Photocatalytic Properties. Catalysis Letters, 2009, 132, 205-212.	1.4	96
34	An overview on water splitting photocatalysts. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2009, 4, 343-351.	0.4	14
35	Theoretical studies on redox properties, protonation sites, and electronic spectrum of a new type of polyoxometalate [Ti ₁₂ Nb ₆ O ₄₄] ^{10â^'} by DFT. International Journal of Quantum Chemistry, 2009, 109, 1560-1565.	1.0	5
36	Highly ordered mesoporous titania–zirconia photocatalyst for applications in degradation of rhodamine-B and hydrogen evolution. Microporous and Mesoporous Materials, 2009, 124, 169-178.	2.2	72
37	Surface engineered active photocatalysts without noble metals: CuS–Zn Cd1â^'S nanospheres by one-step synthesis. International Journal of Hydrogen Energy, 2009, 34, 8495-8503.	3.8	102
38	Preparation, characterization and visible-light activity of carbon modified TiO2 with two kinds of carbonaceous species. Journal of Molecular Catalysis A, 2009, 314, 35-41.	4.8	92
39	Growth of single-crystalline sodium titanate and sodium tungstate one-dimensional nanostructures: Bio-inspired approach using oyster shell. Journal of Crystal Growth, 2009, 311, 4365-4370.	0.7	14
40	Photoelectrochromic properties of NiO film deposited on an N-doped TiO2 photocatalytical layer. Journal of Physics and Chemistry of Solids, 2009, 70, 745-749.	1.9	19
41	Hydrothermal synthesis, characterization, and photocatalytic properties of Zn2SnO4. Journal of Solid State Chemistry, 2009, 182, 517-524.	1.4	108
42	Influence of Zn concentration in the activity of Cd1â^'xZnxS solid solutions for water splitting under visible light. Catalysis Today, 2009, 143, 51-56.	2.2	107

#	Article	IF	CITATIONS
43	Core level photoemission spectroscopy and chemical bonding in Sr2Ta2O7. Chemical Physics, 2009, 360, 74-78.	0.9	51
44	Efficient and stable photocatalytic H2 evolution from water splitting by (Cd0.8Zn0.2)S nanorods. Electrochemistry Communications, 2009, 11, 1174-1178.	2.3	60
45	A new titanoniobate ion—completing the series [Nb10O28]6â^', [TiNb9O28]7â^' and [Ti2Nb8O28]8â^'. Dalton Transactions, 2009, , 2677.	1.6	55
46	Photodegradation Performance of g-C ₃ N ₄ Fabricated by Directly Heating Melamine. Langmuir, 2009, 25, 10397-10401.	1.6	2,435
47	Ordered Mesoporous SBA-15 Type Graphitic Carbon Nitride: A Semiconductor Host Structure for Photocatalytic Hydrogen Evolution with Visible Light. Chemistry of Materials, 2009, 21, 4093-4095.	3.2	392
48	Molecular water-oxidation catalysts for photoelectrochemical cells. Dalton Transactions, 2009, , 9374.	1.6	124
49	Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures. Chemical Communications, 2009, , 3452.	2.2	476
50	Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009, 38, 253-278.	18.7	9,155
51	Facile Synthesis and Assemblies of Flowerlike SnS ₂ and In ³⁺ -Doped SnS ₂ : Hierarchical Structures and Their Enhanced Photocatalytic Property. Journal of Physical Chemistry C, 2009, 113, 1280-1285.	1.5	201
52	Role and Function of Noble-Metal/Cr-Layer Core/Shell Structure Cocatalysts for Photocatalytic Overall Water Splitting Studied by Model Electrodes. Journal of Physical Chemistry C, 2009, 113, 10151-10157.	1.5	238
53	Niobate Nanosheets as Catalysts for Photochemical Water Splitting into Hydrogen and Hydrogen Peroxide. Journal of Physical Chemistry C, 2009, 113, 479-485.	1.5	129
54	Vibrational Spectroscopy and Electronâ^'Phonon Interactions in Microwave-Hydrothermal Synthesized Ba(Mn _{1/3} Nb _{2/3})O ₃ Complex Perovskites. Journal of Physical Chemistry B, 2009, 113, 9749-9755.	1.2	14
55	Double-Wall Anodic Titania Nanotube Arrays for Water Photooxidation. Langmuir, 2009, 25, 8240-8247.	1.6	90
56	Nearly Monodisperse CuInS ₂ Hierarchical Microarchitectures for Photocatalytic H ₂ Evolution under Visible Light. Inorganic Chemistry, 2009, 48, 4003-4009.	1.9	153
57	Preparation and photocatalytic property of LiCr(WO4)2. Journal of Alloys and Compounds, 2009, 485, 346-350.	2.8	14
58	Highly Versatile Rare Earth Tantalate Pyrochlore Nanophosphors. Journal of the American Chemical Society, 2009, 131, 11652-11653.	6.6	76
59	Development of alternative photocatalysts to TiO2: Challenges and opportunities. Energy and Environmental Science, 2009, 2, 1231.	15.6	1,150
60	Efficient Photocatalytic Degradation of Organic Compounds by Ilmenite AgSbO ₃ under Visible and UV Light Irradiation. Journal of Physical Chemistry C, 2009, 113, 12483-12488.	1.5	78

#	Article	IF	Citations
61	Ligand-Based Modification of the Structures and Optical Properties of New Silver(I)-Rhenate(VII) Oxide/Organic Hybrid Solids. Inorganic Chemistry, 2009, 48, 11265-11276.	1.9	20
62	Unique LaTaO4 Polymorph for Multiple Energy Applications. Chemistry of Materials, 2009, 21, 4731-4737.	3.2	56
63	Band Edge Electronic Structure of BiVO ₄ : Elucidating the Role of the Bi s and V d Orbitals. Chemistry of Materials, 2009, 21, 547-551.	3.2	624
64	Facile Hydrothermal Synthesis of Sodium Tantalate (NaTaO ₃) Nanocubes and High Photocatalytic Properties. Journal of Physical Chemistry C, 2009, 113, 19411-19418.	1.5	120
65	Water Photooxidation by Smooth and Ultrathin α-Fe ₂ O ₃ Nanotube Arrays. Chemistry of Materials, 2009, 21, 3048-3055.	3.2	467
66	Solar Water Splitting Using Powdered Photocatalysts Driven by Z-Schematic Interparticle Electron Transfer without an Electron Mediator. Journal of Physical Chemistry C, 2009, 113, 17536-17542.	1.5	432
67	Liquid Crystalline Behavior and Related Properties of Colloidal Systems of Inorganic Oxide Nanosheets. Materials, 2009, 2, 1734-1761.	1.3	57
68	TiO ₂ â^'Catalyzed Photodegradation of Porphyrins: Mechanistic Studies and Application in Monolayer Photolithography. Langmuir, 2009, 25, 5398-5403.	1.6	10
69	Photodegradation of BiNbO ₄ Powder during Photocatalytic Reactions. Journal of Physical Chemistry C, 2009, 113, 10341-10345.	1.5	64
70	Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques. Journal of the American Chemical Society, 2009, 131, 16589-16605.	6.6	494
71	Aspects of the Water Splitting Mechanism on (Ga _{1â^`<i>x</i>} Zn _{<i>x</i>})(N _{1â^`<i>x</i>} O _{<i>x</i>}) Photocatalyst Modified with Rh _{2â^`<i>y</i>} Cr _{<i>y</i>} O ₃ Cocatalyst. Journal of Physical Chemistry C, 2009, 113, 21458-21466.	1.5	143
72	Nanostructured α-Fe ₂ O ₃ Thin Films for Photoelectrochemical Hydrogen Generation. Chemistry of Materials, 2009, 21, 3763-3772.	3.2	317
73	Aqueous Synthesis and Structural Comparison of Rare Earth Niobates and Tantalates: (La,K,â—»)2Nb2O7â^'x(OH)2 and Ln2Ta2O7(OH)2(â—» = vacancy; Ln = Laâ^'Sm). Chemistry of Materials, 2009, 2 2201-2208.	213.2	31
74	BiVO ₄ as a Visible-Light Photocatalyst Prepared by Ultrasonic Spray Pyrolysis. Journal of Physical Chemistry C, 2009, 113, 11980-11983.	1.5	202
75	Photo-electrochemical Properties of Thin-Film InVO ₄ Photoanodes: the Role of Deep Donor States. Journal of Physical Chemistry C, 2009, 113, 19351-19360.	1.5	48
76	Photoelectric conversion switch based on quantum dots with i-motif DNA scaffolds. Chemical Communications, 2009, , 2293.	2.2	43
77	Improved photoelectrochemical performance of Ti-doped $\hat{I}\pm$ -Fe2O3 thin films by surface modification with fluoride. Chemical Communications, 2009, , 2652.	2.2	150
78	Enhanced photocatalytic activity of La-doped AgNbO3 under visible light irradiation. Dalton Transactions, 2009, , 2423.	1.6	48

ARTICLE IF CITATIONS Colloidal Polymerization of Polymer-Coated Ferromagnetic Nanoparticles into Cobalt Oxide 79 7.3 164 Nanowires. ÁCS Nano, 2009, 3, 3143-3157. Biomimetic photocatalyst system derived from the natural prototype in leaves for efficient visible-light-driven catalysis. Journal of Materials Chemistry, 2009, 19, 2695. 6.7 44 Polymer Semiconductors for Artificial Photosynthesis: Hydrogen Evolution by Mesoporous Graphitic 81 6.6 1.618 Carbon Nitride with Visible Light. Journal of the American Chemical Society, 2009, 131, 1680-1681. Layered niobate nanosheets: building blocks for advanced materials assembly. Journal of Materials 190 Chemistry, 2009, 19, 2512. Photoelectrocatalytic materials for environmental applications. Journal of Materials Chemistry, 83 6.7 880 2009, 19, 5089. Synthesis, characterization and assembly of BiOCl nanostructure and their photocatalytic properties. 1.3 CrystEngComm, 2009, 11, 1857. Hydrogen production from renewable sources: biomass and photocatalytic opportunities. Energy and 85 15.6 378 Environmental Science, 2009, 2, 35-54. Photoelectrochemical Properties of Crystalline Perovskite Lanthanum Titanium Oxynitride Films 1.5 86 122 under Visible Light. Journal of Physical Chemistry C, 2009, 113, 6156-6162. ATR-SEIRAS Investigation of the Fermi Level of Pt Cocatalyst on a GaN Photocatalyst for Hydrogen 87 6.6 145 Evolution under Irradiation. Journal of the American Chemical Society, 2009, 131, 13218-13219. Photocatalysis in Environmental Protection., 0, , 359-376. Assembly of Coreâ[^]Shell Structures for Photocatalytic Hydrogen Evolution from Aqueous Methanol. 90 3.2 32 Chemistry of Materials, 2010, 22, 3362-3368. Excellent Visible-Light Photocatalysis of Fluorinated Polymeric Carbon Nitride Solids. Chemistry of 3.2 516 Materials, 2010, 22, 5119-5121. Making Metali£;Carbon Nitride Heterojunctions for Improved Photocatalytic Hydrogen Evolution with 92 1.8 287 Visible Light. ChemCatChem, 2010, 2, 834-838. Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energy 15.6 488 and Environmental Science, 2010, 3, 1018. Structure and Valency of a Cobaltâ[~]Phosphate Water Oxidation Catalyst Determined by in Situ X-ray 94 649 6.6 Spectroscopy. Journal of the American Chemical Society, 2010, 132, 13692-13701. Photocatalytic Water Splitting: Recent Progress and Future Challenges. Journal of Physical Chemistry Letters, 2010, 1, 2655-2661. Importance of characterising the cocatalyst structure in the development of photocatalysts for the 96 0.3 1 splitting of water. Journal of Physics: Conference Series, 2010, 241, 012036. Synergistic Effect of CdSe Quantum Dot Sensitization and Nitrogen Doping of TiO₂ 4.5 474 Nanostructures for Photoelectrochemical Solar Hydrogen Generation. Nano Letters, 2010, 10, 478-483.

#	ARTICLE <i>C</i> â€oriented and {010} Facets Exposed BiVO ₄ Nanowall Films: Templateâ€Free Fabrication and their Enhanced Photoelectrochemical Properties. Chemistry - an Asian Journal, 2010, 5,	IF 1.7	CITATIONS
99	2515-2523. Composite photoanodes for photoelectrochemical solar water splitting. Energy and Environmental	15.6	259
100	Science, 2010, 3, 1252. Solar Water Splitting Cells. Chemical Reviews, 2010, 110, 6446-6473.	23.0	8,307
101	Syntheses, optical properties and electronic structures of copper(I) tantalates: Cu5Ta11O30 and Cu3Ta7O19. Journal of Solid State Chemistry, 2010, 183, 814-822.	1.4	40
102	Hydrothermal preparation and photocatalytic water splitting properties of ZrW2O8. Journal Wuhan University of Technology, Materials Science Edition, 2010, 25, 919-923.	0.4	13
103	Artificial Photosynthesis. Topics in Catalysis, 2010, 53, 130-140.	1.3	40
104	Photocatalytic properties of NaNbO3 and Na0.6Ag0.4NbO3 synthesized by polymerized complex method. Materials Chemistry and Physics, 2010, 121, 42-46.	2.0	23
105	Composition dependence of surface photoelectric and photodegradation activities of silver antimonates with pyrochlore-like structure. Materials Chemistry and Physics, 2010, 123, 322-325.	2.0	10
106	The Role of Chemistry in the Energy Challenge. ChemSusChem, 2010, 3, 209-222.	3.6	222
107	Renewable H ₂ from Glycerol Steam Reforming: Effect of La ₂ O ₃ and CeO ₂ Addition to Pt/Al ₂ O ₃ catalysts ChemSusChem, 2010, 3, 619-628.	3.6	53
108	Hydrogen Production over Titaniaâ€Based Photocatalysts. ChemSusChem, 2010, 3, 681-694.	3.6	404
109	Hydrothermal Synthesis of a Doped Mn dâ€S Solid Solution as a Visibleâ€Lightâ€Driven Photocatalyst for H ₂ Evolution. ChemSusChem, 2011, 4, 269-273.	3.6	53
110	Photoreduction of Water by using Modified CuInS ₂ Electrodes. ChemSusChem, 2011, 4, 262-268.	3.6	78
111	A Tandem Waterâ€Splitting Device Based on a Bioâ€inspired Manganese Catalyst. ChemSusChem, 2010, 3, 1146-1150.	3.6	30
112	Hydrothermal Synthesis of a CaNb ₂ O ₆ Hierarchical Micro/Nanostructure and Its Enhanced Photocatalytic Activity. European Journal of Inorganic Chemistry, 2010, 2010, 1275-1282.	1.0	37
113	Building Niobate Nanoparticles with Hexaniobate Lindqvist Ions. European Journal of Inorganic Chemistry, 2010, 2010, 1473-1480.	1.0	18
114	Microwave-Hydrothermal Synthesis of Nanostructured Zinc-Copper Gallates. European Journal of Inorganic Chemistry, 2010, 2010, 2036-2043.	1.0	24
115	Graphite Oxide as a Photocatalyst for Hydrogen Production from Water. Advanced Functional Materials, 2010, 20, 2255-2262.	7.8	746

ARTICLE IF CITATIONS # Heterointegration of Pt/Si/Ag Nanowire Photodiodes and Their Photocatalytic Properties. Advanced 7.8 28 116 Functional Materials, 2010, 20, 3005-3011. Artificial Inorganic Leafs for Efficient Photochemical Hydrogen Production Inspired by Natural 11.1 244 Photosynthesis. Advanced Materials, 2010, 22, 951-956. 118 Nanoparticle-Assembled Catalysts for Photochemical Water Splitting., 0, , 507-521. 2 Quantum-Confined Visible-Light-Active Metal-Oxide Nanostructures for Direct Solar-to-Hydrogen Generation., 0, , 523-558. From an Organicâ€Functionalized Ge₄S₆ Cage to a Chalcogenidometallate Organic Coordination Framework with Antiferromagnetic Chain Behavior. Chemistry - A European 120 1.7 20 Journal, 2010, 16, 2050-2053. Synthesis of Hierarchical Macroâ€/Mesoporous Solidâ€Solution Photocatalysts by a Pólymerization–Carbonization–Oxidation Route: The Case of Ce_{0.49}Zr_{0.37}Bi_{0.14}O_{1.93}. Chemistry - A European 1.7 Iournal. 2010. 16. 8719-8725 An Investigation into the Optimum Thickness of Titanium Dioxide Thin Films Synthesized by Using 122 Atmospheric Pressure Chemical Vapour Deposition for Use in Photocatalytic Water Oxidation. 1.7 18 Chemistry - A European Journal, 2010, 16, 10546-10552. Preparation of Coreâ€"Shellâ€Structured Nanoparticles (with a Nobleâ€Metal or Metal Oxide Core and a) Tj ETQq1 1 0.784314 rgBT 156 European Journal, 2010, 16, 7750-7759. Synthesis of a Carbon Nitride Structure for Visibleâ€Light Catalysis by Copolymerization. Angewandte 127 7.2 1,312 Chemie - International Edition, 2010, 49, 441-444. Catalytic Aspects of Lightâ€Induced Hydrogen Generation in Water with TiO₂ and Other Photocatalysts: A Simple and Practical Way Towards a Normalization?. Angewandte Chemie -International Edition, 2010, 49, 1536-1539. Photocatalytic Overall Water Splitting Promoted by Two Different Cocatalysts for Hydrogen and 129 7.2 356 Oxygen Evolution under Visible Light. Angewandte Chemie - International Édition, 2010, 49, 4096-4099. Nanoscale calcium bismuth mixed oxide with enhanced photocatalytic performance under visible 2.2 light. Applied Catalysis A: General, 2010, 382, 190-196. Synthesis, characterization and visible-light photocatalytic properties of Bi2WO6 and Bi2W2O9 131 2.2 91 obtained by co-precipitation method. Applied Catalysis A: General, 2010, 383, 128-133. The energetics of lanthanum tantalate materials. Journal of Solid State Chemistry, 2010, 183, 2516-2521. 1.4 Flux synthesis of AgNbO3: Effect of particle surfaces and sizes on photocatalytic activity. Journal of 133 2.0 59 Photochemistry and Photobiology A: Chemistry, 2010, 214, 54-60. Synthesis and characterisation of Fe–V–O thin film photoanodes. Journal of Photochemistry and 134 46 Photobiology A: Chemistry, 2010, 216, 209-214. The first peroxotitanoniobate cluster –. Inorganica Chimica Acta, 2010, 363, 4405-4407. 135 1.2 6 Synthesis, characterization, and photoelectrochemical study of Cd1â°'xZnxS solid solution thin films deposited by spray pyrolysis for water splitting. International Journal of Hydrogen Energy, 2010, 35, 3.8 7036-7042.

#	Article	IF	CITATIONS
137	Stable photocatalytic hydrogen evolution from water over ZnO–CdS core–shell nanorods. International Journal of Hydrogen Energy, 2010, 35, 8199-8205.	3.8	229
138	ZrW2O8 photocatalyst and its visible-light sensitization via sulfur anion doping for water splitting. International Journal of Hydrogen Energy, 2010, 35, 7043-7050.	3.8	37
139	TiO2 nanotubes incorporated with CdS for photocatalytic hydrogen production from splitting water under visible light irradiation. International Journal of Hydrogen Energy, 2010, 35, 7073-7079.	3.8	206
140	Water electrolysis enhanced by super gravity field for hydrogen production. International Journal of Hydrogen Energy, 2010, 35, 3198-3205.	3.8	111
141	Critical role of particle size and interfacial properties in the visible light induced splitting of water over the nanocrystallites of supported cadmium sulphide. International Journal of Hydrogen Energy, 2010, 35, 3287-3296.	3.8	34
142	Effect of Ag2S on solar-driven photocatalytic hydrogen evolution of nanostructured CdS. International Journal of Hydrogen Energy, 2010, 35, 7110-7115.	3.8	126
143	Synthesis of Zn–Cu–Cd sulfide nanospheres with controlled copper locations and their effects on photocatalytic activities for H2 production. International Journal of Hydrogen Energy, 2010, 35, 5245-5253.	3.8	26
144	Rapid and facile synthesis of Ti-MCM-48 mesoporous material and the photocatalytic performance for hydrogen evolution. International Journal of Hydrogen Energy, 2010, 35, 5276-5283.	3.8	68
145	Photoelectrochemical hydrogen production from water/methanol decomposition using Ag/TiO2 nanocomposite thin films. International Journal of Hydrogen Energy, 2010, 35, 11768-11775.	3.8	114
146	Photocatalytic degradation of polycyclic aromatic hydrocarbons in GaN:ZnO solid solution-assisted process: Direct hole oxidation mechanism. Journal of Molecular Catalysis A, 2010, 325, 48-54.	4.8	57
147	Density functional characterization of C-doped anatase TiO2 with different oxidation state. Computational and Theoretical Chemistry, 2010, 944, 156-162.	1.5	37
148	Flame-assisted synthesis of nanoscale, amorphous and crystalline, spherical BiVO4 with visible-light photocatalytic activity. Applied Catalysis B: Environmental, 2010, 95, 335-347.	10.8	116
149	Photocatalytic performance of tetragonal and cubic β-In2S3 for the water splitting under visible light irradiation. Applied Catalysis B: Environmental, 2010, 95, 393-399.	10.8	175
150	Tailoring the morphology of WO3 films with substitutional cation doping: Effect on the photoelectrochemical properties. Electrochimica Acta, 2010, 55, 7780-7787.	2.6	65
151	Energy Transfer in Ionicâ€Liquidâ€Functionalized Inorganic Nanorods for Highly Efficient Photocatalytic Applications. Small, 2010, 6, 290-295.	5.2	20
152	Formation Kinetics of a Bi ₃ Nb _{1â^'<i>x</i>} Ta <i>_x</i> O ₇ Fluoriteâ€Type Solid Solution and Thermodynamic Stability of the Bi ₃ TaO ₇ End Member. Journal of the American Ceramic Society, 2010, 93, 2909-2914.	1.9	6
153	Enhanced Photochemical Reactivity at the Ferroelectric Phase Transition in Ba _{1â^'<i>x</i>} Sr <i>_x</i> TiO ₃ . Journal of the American Ceramic Society, 2010, 93, 4129-4134.	1.9	29
154	Photocatalysed (Meth)acrylate Polymerization by (Antimony-Doped) Tin Oxide Nanoparticles and Photoconduction of Their Crosslinked Polymer Nanoparticle Composites. Journal of Nanotechnology, 2010, 2010, 1-16.	1.5	3

#	Article	IF	CITATIONS
155	Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction. Applied Physics Letters, 2010, 96, .	1.5	185
156	Amorphous copper tungsten oxide with tunable band gaps. Journal of Applied Physics, 2010, 108, 043502.	1.1	14
157	Electronic, structural, and magnetic effects of 3d transition metals in hematite. Journal of Applied Physics, 2010, 107, .	1.1	135
158	Morphology-dependent optical absorption and conduction properties of photoelectrochemical photocatalysts for H2 production: A case study. Journal of Applied Physics, 2010, 107, .	1.1	29
159	A study on preparation coated-CdS photocatalyst and continuous reaction system. , 2010, , .		0
160	Image states at the interface with a dipolar organic semiconductor. Journal of Chemical Physics, 2010, 133, 124701.	1.2	17
161	Enhanced N-doping efficiency and photocatalytic H ₂ evolution rate of InNbO ₄ by mechanochemical activation. Journal of Materials Research, 2010, 25, 159-166.	1.2	10
162	New Photocatalyst Electrodes and Their Photocatalytic Degradation Properties of Organics. Current Organic Chemistry, 2010, 14, 709-727.	0.9	4
163	Synergistic effect of crystal and electronic structures on the visible-light-driven photocatalytic performances of Bi2O3 polymorphs. Physical Chemistry Chemical Physics, 2010, 12, 15468.	1.3	261
164	Self-Doped Ti ³⁺ Enhanced Photocatalyst for Hydrogen Production under Visible Light. Journal of the American Chemical Society, 2010, 132, 11856-11857.	6.6	1,157
165	Photocatalytic H ₂ Evolution over TiO ₂ Nanoparticles. The Synergistic Effect of Anatase and Rutile. Journal of Physical Chemistry C, 2010, 114, 2821-2829.	1.5	335
166	Highly efficient and noble metal-free NiS/CdS photocatalysts for H2 evolution from lactic acid sacrificial solution under visible light. Chemical Communications, 2010, 46, 7631.	2.2	450
167	Semiconducting Oxides to Facilitate the Conversion of Solar Energy to Chemical Fuels. Journal of Physical Chemistry Letters, 2010, 1, 2719-2726.	2.1	96
168	Facile Synthesis of N- and S-Incorporated Nanocrystalline TiO ₂ and Direct Solar-Light-Driven Photocatalytic Activity. Journal of Physical Chemistry C, 2010, 114, 19473-19482.	1.5	166
169	Efficient Visible-Light-Induced Photocatalytic Activity on Gold-Nanoparticle-Supported Layered Titanate. Journal of the American Chemical Society, 2010, 132, 16762-16764.	6.6	229
170	Band-Engineered Bismuth Titanate Pyrochlores for Visible Light Photocatalysis. Journal of Physical Chemistry C, 2010, 114, 10598-10605.	1.5	126
171	Hard template synthesis of crystalline mesoporous anatase TiO2 for photocatalytic hydrogen evolution. Journal of Materials Chemistry, 2010, 20, 2206.	6.7	144
172	The Origin of Visible Light Absorption in Chalcogen Element (S, Se, and Te)-Doped Anatase TiO ₂ Photocatalysts. Journal of Physical Chemistry C, 2010, 114, 7063-7069.	1.5	61

#	Article	IF	CITATIONS
173	On the photoluminescence behavior of samarium-doped strontium titanate nanostructures under UV light. A structural and electronic understanding. Physical Chemistry Chemical Physics, 2010, 12, 7566.	1.3	68
174	Turning carbon dioxide into fuel. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 3343-3364.	1.6	369
175	Charge Separation in a Niobate Nanosheet Photocatalyst Studied with Photochemical Labeling. Langmuir, 2010, 26, 7254-7261.	1.6	44
176	Rapid Screening of BiVO ₄ -Based Photocatalysts by Scanning Electrochemical Microscopy (SECM) and Studies of Their Photoelectrochemical Properties. Journal of Physical Chemistry C, 2010, 114, 13322-13328.	1.5	192
177	Light-induced formation of porous TiO2 with superior electron-storing capacity. Chemical Communications, 2010, 46, 2112.	2.2	46
178	Composition Dependence of the Photochemical reduction of Ag by Ba _{1â^'<i>x</i>} Sr _{<i>x</i>} TiO ₃ . Chemistry of Materials, 2010, 22, 3527-3534.	3.2	63
179	Photocatalytic Hydrogen Evolution from Water Using Copper Gallium Sulfide under Visible-Light Irradiation. Journal of Physical Chemistry C, 2010, 114, 11215-11220.	1.5	126
180	v: The Role of Ion Migration and Alloy Formation on the Stability of Core Shell Cocatalysts for Photoinduced Water Splitting. Journal of Physical Chemistry C, 2010, 114, 22758-22762.	1.5	9
181	Photoluminescence Spectroscopic and Computational Investigation of the Origin of the Visible Light Response of (Ga _{1â^`<i>x</i>} Zn _{<i>x</i>})(N _{1â^`<i>x</i>} O _{<i>x</i>}) Photocatalyst for Overall Water Splitting, Journal of Physical Chemistry C, 2010, 114, 15510-15515.	1.5	68
182	Photoelectrochemical Response of TlVO ₄ and InVO ₄ :TlVO ₄ Composite. Chemistry of Materials, 2010, 22, 2555-2562.	3.2	21
183	Relationship between Cation Arrangement and Photocatalytic Activity for Srâ^'Alâ^'Nbâ^'O Double Perovskite. Inorganic Chemistry, 2010, 49, 11362-11369.	1.9	21
184	Nanosheet-Based Bi ₂ Mo _{<i>x</i>} W _{1â^'<i>x</i>} O ₆ Solid Solutions with Adjustable Band Gaps and Enhanced Visible-Light-Driven Photocatalytic Activities. Journal of Physical Chemistry C, 2010, 114, 18812-18818.	1.5	83
185	Electrosynthesis of Bismuth Vanadate Photoelectrodes. Electrochemical and Solid-State Letters, 2010, 13, D29.	2.2	36
186	Structure, Electronic Structure, Optical, and Dehydrogenation Catalytic Study of (Zn _{1â~`<i>z</i>} In _{<i>z</i>})(O _{1â~`<i>x</i>} N _{<i>x</i>}) Solid Solution. Chemistry of Materials, 2010, 22, 565-578.	3.2	57
187	Novel Stannite-type Complex Sulfide Photocatalysts A ^I ₂ -Zn-A ^{IV} -S ₄ (A ^I = Cu and Ag;) Tj ETQq0 0 0 rg	gBT3.20verle	ock 10 Tf 50
	Materials, 2010, 22, 1402-1409.		
188	Titania-based photocatalysts—crystal growth, doping and heterostructuring. Journal of Materials Chemistry, 2010, 20, 831-843.	6.7	1,028
189	Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity. Chemical Communications, 2010, 46, 755-757.	2.2	403
190	Enhanced photocatalytic water splitting hydrogen production on RuO2/La:NaTaO3 prepared by sol–gel method. Catalysis Communications, 2010, 12, 268-272.	1.6	67

#	Article	IF	CITATIONS
191	Titania nanowires as substrates for sensing and photocatalysis of common textile industry effluents. Talanta, 2010, 82, 876-884.	2.9	17
192	Photocatalytic hydrogen evolution through fully conjugated poly(azomethine) networks. Chemical Communications, 2010, 46, 8932.	2.2	235
193	Solar Driven Water Oxidation by a Bioinspired Manganese Molecular Catalyst. Journal of the American Chemical Society, 2010, 132, 2892-2894.	6.6	414
194	Photochemical Reactivity of Titania Films on BaTiO ₃ Substrates: Influence of Titania Phase and Orientation. Chemistry of Materials, 2010, 22, 5831-5837.	3.2	60
195	Efficient Nonsacrificial Water Splitting through Two-Step Photoexcitation by Visible Light using a Modified Oxynitride as a Hydrogen Evolution Photocatalyst. Journal of the American Chemical Society, 2010, 132, 5858-5868.	6.6	660
196	In Situ XRD Studies of ZnO/GaN Mixtures at High Pressure and High Temperature: Synthesis of Zn-Rich (Ga _{1â^'<i>x</i>} Zn _{<i>x</i>})(N _{1â^'<i>x</i>} O _{<i>x</i>}) Photocatalysts. Journal of Physical Chemistry C, 2010, 114, 1809-1814.	1.5	71
197	A framework for visible-light water splitting. Energy and Environmental Science, 2010, 3, 1865.	15.6	181
198	Reactive and Organosoluble Anatase Nanoparticles by a Surfactant-Free Nonhydrolytic Synthesis. Chemistry of Materials, 2010, 22, 4519-4521.	3.2	27
199	Semiconductor-based Photocatalytic Hydrogen Generation. Chemical Reviews, 2010, 110, 6503-6570.	23.0	6,836
200	Fabrication of Rattle-Type TiO ₂ /SiO ₂ Core/Shell Particles with Both High Photoactivity and UV-Shielding Property. Langmuir, 2010, 26, 11391-11396.	1.6	88
201	Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. Journal of Materials Chemistry, 2010, 20, 2801.	6.7	999
202	Photocatalytic activity of CuO towards HER in catalyst from oxalic acid solution under simulated sunlight irradiation. Transactions of Nonferrous Metals Society of China, 2010, 20, 1944-1949.	1.7	35
203	A Unique Three-Dimensional Photocatalytic Structure Consisting of Highly Crystalline Na ₂ Ti ₃ O ₇ Whiskers Grown from a NaCl Flux. Crystal Growth and Design, 2010, 10, 2533-2540.	1.4	14
204	Photoelectrochemical Study of the Ilmenite Polymorph of CdSnO ₃ and Its Photoanodic Application in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 6802-6807.	1.5	42
205	One-step hydrothermal coating approach to photocatalytically active oxide composites. Dalton Transactions, 2010, 39, 6043.	1.6	31
206	Photocatalytic Hydrogen Production on Cd _{1â^'<i>x</i>} Zn _{<i>x</i>} S Solid Solutions under Visible Light: Influence of Thermal Treatment. Industrial & Engineering Chemistry Research, 2010, 49, 6854-6861.	1.8	45
207	Electron Diffusion Length in Mesoporous Nanocrystalline TiO ₂ Photoelectrodes during Water Oxidation. Journal of Physical Chemistry Letters, 2010, 1, 967-972.	2.1	125
208	Organic–inorganic composite photocatalyst of g-C ₃ N ₄ and TaON with improved visible light photocatalytic activities. Dalton Transactions, 2010, 39, 1488-1491.	1.6	550

#	Article	IF	CITATIONS
209	Visible light-driven water oxidation catalyzed by a highly efficient dinuclear ruthenium complex. Chemical Communications, 2010, 46, 6506.	2.2	115
210	Solar hydrogen production over novel metal sulfide photocatalysts of AGa2In3S8 (A = Cu or Ag) with layered structures. Chemical Communications, 2010, 46, 3779.	2.2	61
211	Structural characterization of a new acentric Ruddlesden–Popper layered perovskite compound: LiHSrTa2O7. Dalton Transactions, 2010, 39, 3212.	1.6	13
212	Hydrophilic TiO2 porous spheres anchored on hydrophobic polypropylene membrane for wettability induced high photodegrading activities. Nanoscale, 2010, 2, 1480.	2.8	30
213	Polymerizable complex synthesis of BaZr1â^'xSnxO3 photocatalysts: Role of Sn4+ in the band structure and their photocatalytic water splitting activities. Journal of Materials Chemistry, 2010, 20, 6772.	6.7	52
214	Site-Differentiated Solid Solution in (Na _{1â^'<i>x</i>} Cu _{<i>x</i>}) ₂ Ta ₄ O ₁₁ and Its Electronic Structure and Optical Properties. Inorganic Chemistry, 2010, 49, 10571-10578.	1.9	39
215	Evolution of Physical and Photocatalytic Properties in the Layered Titanates A ₂ Ti ₄ O ₉ (A = K, H) and in Nanosheets Derived by Chemical Exfoliation. Chemistry of Materials, 2010, 22, 1220-1228.	3.2	160
216	Growth of well-developed sodium tantalate crystals from a sodium chloride flux. CrystEngComm, 2010, 12, 2871.	1.3	33
217	Room temperature oxidation of methyl orange and methanol over Pt–HCa ₂ Nb ₃ O ₁₀ and Pt–WO ₃ catalysts without light. Chemical Communications, 2011, 47, 881-883.	2.2	30
218	Highly active ZnxCd1â^'xS photocatalysts containing earth abundant elements only for H2 production from water under visible light. Catalysis Science and Technology, 2011, 1, 940.	2.1	80
219	Facile synthesis of cuprous oxide using ultrasound, microwave and electric heating: effect of heating methods on synthesis kinetics, morphology and yield. CrystEngComm, 2011, 13, 4060.	1.3	20
220	Morphology-controlled synthesis and efficient photocatalytic performances of a new promising photocatalyst Sr0.25H1.5Ta2O6·H2O. RSC Advances, 2011, 1, 458.	1.7	35
221	Synthesis, structural and vibrational properties of rare-earth molybdates MNd(MoO <inf>4</inf>) <inf>2</inf> (M=Rb, Tl) and TlPr(MoO <inf>4</inf>) <inf>2</inf> . , 2011, , .		0
222	Remarkable enhancement in photocurrent of In0.20Ga0.80N photoanode by using an electrochemical surface treatment. Applied Physics Letters, 2011, 99, .	1.5	27
223	Polar interface-induced improvement in high photocatalytic hydrogen evolution over ZnO–CdS heterostructures. Energy and Environmental Science, 2011, 4, 3976.	15.6	147
224	Efficient water splitting over Na1â^'xKxTaO3 photocatalysts with cubic perovskite structure. Journal of Materials Chemistry, 2011, 21, 3824.	6.7	69
225	Self-assembled dye–layered double hydroxide–Pt nanoparticles: a novel H2 evolution system with remarkably enhanced stability. Nanoscale, 2011, 3, 4655.	2.8	32
226	An unprecedented vanadoniobate cluster with â€~trans-vanadium' bicapped Keggin-type {VNb12O40(VO)2}. Chemical Communications, 2011, 47, 9411.	2.2	103

#	Article	IF	CITATIONS
227	Influence of the processing conditions and chemical environment on the crystal structures and phonon modes of lanthanide orthotantalates. Dalton Transactions, 2011, 40, 9454.	1.6	46
228	Theoretical insight into the electronic, optical and photocatalytic properties of InMO4(M = V, Nb, Ta) photocatalysts. Physical Chemistry Chemical Physics, 2011, 13, 2824-2833.	1.3	41
229	A novel sandwich-type polyoxometalate compound with visible-light photocatalytic H2 evolution activity. Chemical Communications, 2011, 47, 3918.	2.2	81
230	Preparation of new sulfur-doped and sulfur/nitrogen co-doped CsTaWO6 photocatalysts for hydrogen production from water under visible light. Journal of Materials Chemistry, 2011, 21, 8871.	6.7	66
231	Site Specific Optical and Photocatalytic Properties of Bi-Doped NaTaO ₃ . Journal of Physical Chemistry C, 2011, 115, 11846-11853.	1.5	71
232	Electrooptic Response of Colloidal Liquid Crystals of Inorganic Oxide Nanosheets Prepared by Exfoliation of a Layered Niobate. Journal of Physical Chemistry C, 2011, 115, 8934-8939.	1.5	37
233	Photocatalytic activity of La–N-codoped NaTaO ₃ for H ₂ evolution from water under visible-light irradiation. Journal Physics D: Applied Physics, 2011, 44, 165401.	1.3	23
234	Role and Function of Ruthenium Species as Promoters with TaON-Based Photocatalysts for Oxygen Evolution in Two-Step Water Splitting under Visible Light. Journal of Physical Chemistry C, 2011, 115, 3057-3064.	1.5	174
235	Infrared Spectroscopic Study of the Potential Change at Cocatalyst Particles on Oxynitride Photocatalysts for Water Splitting by Visible Light Irradiation. Journal of Physical Chemistry C, 2011, 115, 23902-23907.	1.5	30
236	Enhanced Photoelectrochemical Response of BaTiO ₃ with Fe Doping: Experiments and First-Principles Analysis. Journal of Physical Chemistry C, 2011, 115, 24373-24380.	1.5	75
237	Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution. Journal of Materials Chemistry, 2011, 21, 13032.	6.7	426
238	Study of Native Defects and Transition-Metal (Mn, Fe, Co, and Ni) Doping in a Zinc-Blende CdS Photocatalyst by DFT and Hybrid DFT Calculations. Journal of Physical Chemistry C, 2011, 115, 5675-5682.	1.5	95
239	Reactivity of Rutile with Oxygen and Hydrogen and Related Charge Transfer. Journal of Physical Chemistry C, 2011, 115, 15345-15354.	1.5	9
240	Conversion of Solar Energy to Fuels by Inorganic Heterogeneous Systems. Chinese Journal of Catalysis, 2011, 32, 879-890.	6.9	46
241	Graphite Oxide with Different Oxygenated Levels for Hydrogen and Oxygen Production from Water under Illumination: The Band Positions of Graphite Oxide. Journal of Physical Chemistry C, 2011, 115, 22587-22597.	1.5	260
242	Advanced Photocatalytic Nanomaterials for Degrading Pollutants and Generating Fuels by Sunlight. Green Energy and Technology, 2011, , 679-716.	0.4	6
243	Dye-sensitized photovoltaic properties of hydrothermally prepared TiO2 nanotubes. Energy and Environmental Science, 2011, 4, 998.	15.6	49
244	Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications. Journal of Materials Chemistry, 2011, 21, 40-56.	6.7	151

#	Article	IF	CITATIONS
245	Nanostructured Materials for Photolytic Hydrogen Production. Green Energy and Technology, 2011, , 441-486.	0.4	4
246	Effect of Metal Doping on Electronic Structure and Visible Light Absorption of SrTiO ₃ and NaTaO ₃ (Metal = Mn, Fe, and Co). Journal of Physical Chemistry C, 2011, 115, 8305-8311.	1.5	181
247	Synthesis and characterization of titanium-alloyed hematite thin films for photoelectrochemical water splitting. Journal of Applied Physics, 2011, 110, .	1.1	28
248	Vibrational Spectroscopy of Ca ₂ LnTaO ₆ (Ln = lanthanides, Y, and In) and Ca ₂ InNbO ₆ Double Perovskites. Chemistry of Materials, 2011, 23, 14-20.	3.2	42
249	Sunlight-induced efficient and selective photocatalytic benzene oxidation on TiO2-supported gold nanoparticles under CO2 atmosphere. Chemical Communications, 2011, 47, 11531.	2.2	55
250	Metal Oxide Photoanodes for Water Splitting. Topics in Current Chemistry, 2011, 303, 1-38.	4.0	47
251	Oxynitride materials for solar water splitting. MRS Bulletin, 2011, 36, 25-31.	1.7	100
252	Inorganic Photochemical Synthesis. , 2011, , 129-150.		2
253	Reduced Graphene Oxide as a Solid-State Electron Mediator in Z-Scheme Photocatalytic Water Splitting under Visible Light. Journal of the American Chemical Society, 2011, 133, 11054-11057.	6.6	952
255	Low-Temperature Synthesis and HRTEM Analysis of Ordered Mesoporous Anatase with Tunable Crystallite Size and Pore Shape. Chemistry of Materials, 2011, 23, 2781-2785.	3.2	32
256	Colloidal Polymerization of Polymer-Coated Ferromagnetic Cobalt Nanoparticles into Pt-Co ₃ O ₄ Nanowires. Chemistry of Materials, 2011, 23, 1120-1129.	3.2	47
257	Charge Carrier Dynamics on Mesoporous WO ₃ during Water Splitting. Journal of Physical Chemistry Letters, 2011, 2, 1900-1903.	2.1	142
258	Ab Initio Study on a Novel Photocatalyst: Functionalized Graphitic Carbon Nitride Nanotube. ACS Catalysis, 2011, 1, 99-104.	5.5	118
259	Fabrication of efficient TaON and Ta3N5 photoanodes for water splitting under visible light irradiation. Energy and Environmental Science, 2011, 4, 4138.	15.6	312
261	Sulfur-mediated synthesis of carbon nitride: Band-gap engineering and improved functions for photocatalysis. Energy and Environmental Science, 2011, 4, 675-678.	15.6	704
262	The Role of Hole Localization in Sacrificial Hydrogen Production by Semiconductor–Metal Heterostructured Nanocrystals. Nano Letters, 2011, 11, 2919-2926.	4.5	187
263	Nanocomposites of TiO ₂ and Reduced Graphene Oxide as Efficient Photocatalysts for Hydrogen Evolution. Journal of Physical Chemistry C, 2011, 115, 10694-10701.	1.5	582
264	Computational Study of the Hydrolysis Reactions of the Ground and First Excited Triplet States of Small TiO ₂ Nanoclusters. Journal of Physical Chemistry C, 2011, 115, 9344-9360.	1.5	61

#	Article	IF	CITATIONS
265	Energy Conversion in Photosynthesis: A Paradigm for Solar Fuel Production. Annual Review of Condensed Matter Physics, 2011, 2, 303-327.	5.2	129
266	Chemical Bonding in Photocatalytic Niobates and Tantalates. Applied Mechanics and Materials, 0, 110-116, 534-539.	0.2	2
267	<i>S</i> _T = 22 [Mn ₁₀] Supertetrahedral Building-Block to Design Extended Magnetic Networks. Inorganic Chemistry, 2011, 50, 8580-8587.	1.9	30
268	Nitrogen Doped Sr ₂ Ta ₂ O ₇ Coupled with Graphene Sheets as Photocatalysts for Increased Photocatalytic Hydrogen Production. ACS Nano, 2011, 5, 3483-3492.	7.3	315
269	Hybrid density functional theory description of N- and C-doping of NiO. Journal of Chemical Physics, 2011, 134, 224703.	1.2	34
270	Photoelectrochemical Oxidation of Water Using Nanostructured BiVO ₄ Films. Journal of Physical Chemistry C, 2011, 115, 3794-3802.	1.5	230
271	Visible Light Photo-oxidation of Model Pollutants Using CaCu ₃ Ti ₄ O ₁₂ : An Experimental and Theoretical Study of Optical Properties, Electronic Structure, and Selectivity. Journal of the American Chemical Society, 2011, 133, 1016-1032.	6.6	130
272	Photocatalytic Reduction of Carbon Dioxide over Ag Cocatalyst-Loaded ALa ₄ Ti ₄ O ₁₅ (A = Ca, Sr, and Ba) Using Water as a Reducing Reagent. Journal of the American Chemical Society, 2011, 133, 20863-20868.	6.6	561
273	Visible-light-driven photocatalytic water splitting on nanostructured semiconducting materials. International Journal of Nanotechnology, 2011, 8, 523.	0.1	82
274	A Combination of Two Visible-Light Responsive Photocatalysts for Achieving the Z-Scheme in the Solid State. ACS Nano, 2011, 5, 4084-4090.	7.3	203
275	Combinatorial Atmospheric Pressure Chemical Vapor Deposition (cAPCVD): A Route to Functional Property Optimization. Journal of the American Chemical Society, 2011, 133, 20458-20467.	6.6	54
276	Synthesis and Characterization of Boron Azadipyrromethene Single-Wall Carbon Nanotube Electron Donorâ [~] Acceptor Conjugates. ACS Nano, 2011, 5, 1198-1206.	7.3	70
277	Organic semiconductor for artificial photosynthesis: water splitting into hydrogen by a bioinspired C ₃ N ₃ S ₃ polymer under visible light irradiation. Chemical Science, 2011, 2, 1826-1830.	3.7	167
278	Visible-light photocurrent response of TiO2–polyheptazine hybrids: evidence for interfacial charge-transfer absorption. Physical Chemistry Chemical Physics, 2011, 13, 21511.	1.3	146
279	Spontaneous Phase and Morphology Transformations of Anodized Titania Nanotubes Induced by Water at Room Temperature. Nano Letters, 2011, 11, 3649-3655.	4.5	188
280	Photocatalysis. Topics in Current Chemistry, 2011, , .	4.0	13
281	Preparation of heterostructured mesoporous In2O3/Ta2O5 nanocomposites with enhanced photocatalytic activity for hydrogen evolution. Catalysis Communications, 2011, 12, 548-552.	1.6	48
282	Photosystem II–Gold Nanoparticle Conjugate as a Nanodevice for the Development of Artificial Light-Driven Water-Splitting Systems. Journal of Physical Chemistry Letters, 2011, 2, 2448-2452.	2.1	52

ARTICLE IF CITATIONS Graphene-based photocatalytic composites. RSC Advances, 2011, 1, 1426. 283 1.7 499 Growth of a Plate-Shaped SrTiO₃â€"TiO₂ Eutectic. Crystal Growth and Design, 284 1.4 2011, 11, 3935-3940. Hybrid Functionals Study of Band Bowing, Band Edges and Electronic Structures of 285 Cd_{1â€"<i>x</i>}Zn_{<i>x</i>}S Solid Solution. Journal of Physical Chemistry C, 2011, 1.5 88 115, 19741-19748. Synthesis and Photocatalytic Properties of a New Heteropolyoxoniobate Compound: K₁₀[Nb₂O₂(H₂O)₂[SiNb₁₂O<subs40</sub>] 286 Effect of heat treatment on the generation of structural defects in LaTaO4 ceramics and their 287 2.8 6 correlation with photoluminescent properties. Journal of Alloys and Compounds, 2011, 509, 9076-9078. New photocatalyst BiOCl/BiOl composites with highly enhanced visible light photocatalytic 288 1.6 performances. Dalton Transactions, 2011, 40, 6751. Rh-Doped SrTiO₃ Photocatalyst Electrode Showing Cathodic Photocurrent for Water 289 6.6 400 Splitting under Visible-Light Irradiation. Journal of the American Chemical Society, 2011, 133, 13272-13275. Spatially selective visible light photocatalytic activity of TiO2/BiFeO3 heterostructures. Journal of 290 6.7 124 Materials Chemistry, 2011, 21, 4168. 291 Solar fuels. , 0, , 656-674. 2 The current state of engineered nanomaterials in consumer goods and waste streams: the need to develop nanoproperty-quantifiable sensors for monitoring engineered nanomaterials. 4.6 Nanotechnology, Science and Applications, 2011, 4, 73. Photocatalytic Properties of Tin Oxide and Antimony-Doped Tin Oxide Nanoparticles. Journal of 293 1.5 11 Nanotechnology, 2011, 2011, 1-15. Epitaxy of Porous and Photocatalytically Active TiO2 Films at 50ŰC. Australian Journal of Chemistry, 295 2011, 64, 1235. Visible-light-induced electron transfer in intercalation-type composites organized on 297 0.5 1 photocatalytically active layered niobate. Journal of the Ceramic Society of Japan, 2011, 119, 528-531. Fabrication of Sr0.5Ba0.5Nb2O6-precipitated microstructured ceramics for photocatalytic application. 298 Journal of the Ceramic Society of Japan, 2011, 119, 731-735. Quasi-Aligned Ag-Nb2O5 Nanobelt Arrays with Enhanced Photocatalytic and Antibacterial Activities. 300 1.9 37 Journal of the American Ceramic Society, 2011, 94, 2330-2338. Preparation of Hierarchically Porous Nanocrystalline <scp>CaTiO₃</scp>, <scp>SrTiO₃</scp> and <scp>BaTiO₃</scp> Perovskite Monoliths. Journal of 1.9 the American Ceramic Society, 2011, 94, 3335-3339. 302 On the right path. Nature Chemistry, 2011, 3, 269-270. 6.6 5 Towards an artificial leaf?. Nature Chemistry, 2011, 3, 268-269. 6.6

#	ARTICLE	IF	CITATIONS
304	Photocatalytic water splitting using semiconductor particles: History and recent developments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2011, 12, 237-268.	5.6	1,027
305	A novel approach for synthesis of TiO2–graphene nanocomposites and their photoelectrical properties. Scripta Materialia, 2011, 64, 621-624.	2.6	44
306	Dielectric properties of Ba3â^'xKxCaNb2O9â^'δ (0.5 <x<1.25) (kbcn)="" double="" materials<br="" perovskites.="">Research Bulletin, 2011, 46, 668-674.</x<1.25)>	2.7	0
307	Enhancement of photocatalytic H2 evolution on hexagonal CdS by a simple calcination method under visible light irradiation. Materials Research Bulletin, 2011, 46, 2338-2341.	2.7	19
308	Hydrothermal synthesis and phase stability of CoNb2O6 with a rutile structure. Materials Letters, 2011, 65, 2880-2882.	1.3	9
309	Preparation of Au-loaded niobate nanosheets and their plasmon-driven photochemical reaction. Materials Letters, 2011, 65, 3402-3404.	1.3	6
310	Improvement of the photocatalytic hydrogen evolution activity of Sm2Ti2S2O5 under visible light by metal ion additives. Journal of Catalysis, 2011, 280, 1-7.	3.1	31
311	Photocatalytic hydrogen production under visible light over Cd0.1SnxZn0.9â^'2xS solid solution photocatalysts. International Journal of Hydrogen Energy, 2011, 36, 9453-9461.	3.8	47
312	Mesoporous nanocomposite Fe/Al2O3–MCM-41: An efficient photocatalyst for hydrogen production under visible light. International Journal of Hydrogen Energy, 2011, 36, 12753-12760.	3.8	28
313	Efficient hydrogen production by composite photocatalyst CdS–ZnS/Zirconium–titanium phosphate (ZTP) under visible light illumination. International Journal of Hydrogen Energy, 2011, 36, 13452-13460.	3.8	72
314	Impact of three different TiO2 morphologies on hydrogen evolution by methanol assisted water splitting: Nanoparticles, nanotubes and aerogels. International Journal of Hydrogen Energy, 2011, 36, 14360-14373.	3.8	84
315	Semiconductor/biomolecular composites for solar energy applications. Energy and Environmental Science, 2011, 4, 100-113.	15.6	75
316	Hydrogen evolution via sunlight water splitting on an artificial butterfly wing architecture. Physical Chemistry Chemical Physics, 2011, 13, 10872.	1.3	38
317	Prediction of semiconductor band edge positions in aqueous environments from first principles. Physical Review B, 2011, 83, .	1.1	101
318	Effect of Crystal Imperfections on Reactivity and Photoreactivity of TiO ₂ (Rutile) with Oxygen, Water, and Bacteria. Journal of Physical Chemistry C, 2011, 115, 15711-15738.	1.5	82
319	An Insight into Artificial Leaves for Sustainable Energy Inspired by Natural Photosynthesis. ChemCatChem, 2011, 3, 513-528.	1.8	65
320	Electron Microscopy of Cocatalyst Nanostructures on Semiconductor Photocatalysts. ChemCatChem, 2011, 3, 990-998.	1.8	7
321	Inorganic semiconductor compounds as photocatalysts for direct water decomposition and analysis methods of their energy-band structures. Inorganic Materials: Applied Research, 2011, 2, 301-306.	0.1	Ο

#	Article	IF	CITATIONS
322	Dependence of Photocatalytic Activity on Aspect Ratio of Shape-Controlled Rutile Titanium(IV) Oxide Nanorods. Journal of Physical Chemistry C, 2011, 115, 419-424.	1.5	59
323	The Role of Cobalt Phosphate in Enhancing the Photocatalytic Activity of α-Fe ₂ O ₃ toward Water Oxidation. Journal of the American Chemical Society, 2011, 133, 14868-14871.	6.6	533
324	Z-scheme photocatalyst systems for water splitting under visible light irradiation. MRS Bulletin, 2011, 36, 32-38.	1.7	183
325	Water Photooxidation by TiSi ₂ –TiO ₂ Nanotubes. Journal of Physical Chemistry C, 2011, 115, 12643-12649.	1.5	35
326	Dynamics of photogenerated holes in nanocrystalline α-Fe ₂ O ₃ electrodes for water oxidation probed by transient absorption spectroscopy. Chemical Communications, 2011, 47, 716-718.	2.2	261
327	Photo-assisted electrodeposition of cobalt–phosphate (Co–Pi) catalyst on hematite photoanodes for solar water oxidation. Energy and Environmental Science, 2011, 4, 1759.	15.6	620
328	Activation Energies for the Rate-Limiting Step in Water Photooxidation by Nanostructured α-Fe ₂ O ₃ and TiO ₂ . Journal of the American Chemical Society, 2011, 133, 10134-10140.	6.6	247
329	Photocatalytic Hydrogen Production from Water Using N-Doped Ba ₅ Ta ₄ O ₁₅ under Solar Irradiation. Journal of Physical Chemistry C, 2011, 115, 15674-15678.	1.5	88
330	Condensed Graphitic Carbon Nitride Nanorods by Nanoconfinement: Promotion of Crystallinity on Photocatalytic Conversion. Chemistry of Materials, 2011, 23, 4344-4348.	3.2	393
331	Catalytic mechanisms of hydrogen evolution with homogeneous and heterogeneous catalysts. Energy and Environmental Science, 2011, 4, 2754.	15.6	169
332	Pulsed laser deposition and characterisation of perovskite-type LaTiO3â^'xNx thin films. Acta Materialia, 2011, 59, 7145-7154.	3.8	26
333	Role of doping-induced photochemical and microstructural properties in the photocatalytic activity of InVO4 for splitting of water. Journal of Materials Science, 2011, 46, 5466-5476.	1.7	18
334	Synthesis, characterization and photocatalytic properties of novel zinc germanate nano-materials. Journal of Solid State Chemistry, 2011, 184, 1054-1062.	1.4	52
335	Photocatalytic property of partially substituted Pt-intercalated layered perovskite, ASr2TaxNb3â^xO10 (A=K, H; x=0, 1, 1.5, 2 and 3). Solar Energy Materials and Solar Cells, 2011, 95, 1019-1027.	3.0	25
336	Hydrogen Generation from Photocatalytic Silver Zinc Oxide Nanowires: Towards Multifunctional Multisegmented Nanowire Devices. Small, 2011, 7, 2709-2713.	5.2	24
337	Nâ€Doped CsTaWO ₆ as a New Photocatalyst for Hydrogen Production from Water Splitting Under Solar Irradiation. Advanced Functional Materials, 2011, 21, 126-132.	7.8	135
338	Supported Metal Oxide Nanosystems for Hydrogen Photogeneration: Quo Vadis?. Advanced Functional Materials, 2011, 21, 2611-2623.	7.8	126
339	Photocatalytic H ₂ and Addedâ€Value Byâ€Products – The Role of Metal Oxide Systems in Their Synthesis from Oxygenates. European Journal of Inorganic Chemistry, 2011, 2011, 4309-4323.	1.0	134

#	Article	IF	CITATIONS
340	Thermal Stability of (K <i>_x</i> Na <i>_y</i> H _{1–<i>x</i>–<i>y</i>}) ₂ Ti _{6 Nanofibers. European Journal of Inorganic Chemistry, 2011, 2011, 5087-5095.}	<td>uba13</td>	ub a 13
341	Designing Dye–Nanochannel Antenna Hybrid Materials for Light Harvesting, Transport and Trapping. ChemPhysChem, 2011, 12, 580-594.	1.0	90
342	Heterogeneous Photocatalytic Reactions of Sulfur Aromatic Compounds. ChemPhysChem, 2011, 12, 2870-2885.	1.0	30
343	Nanoscale Effects on Thermodynamics and Phase Equilibria in Oxide Systems. ChemPhysChem, 2011, 12, 2207-2215.	1.0	163
344	Chemical Technologies for Exploiting and Recycling Carbon Dioxide into the Value Chain . ChemSusChem, 2011, 4, 1216-1240.	3.6	639
345	Biotemplated Materials for Sustainable Energy and Environment: Current Status and Challenges. ChemSusChem, 2011, 4, 1344-1387.	3.6	157
347	Insights into the Mechanism of Photocatalytic Water Reduction by DFTâ€Supported In Situ EPR/Raman Spectroscopy. Angewandte Chemie - International Edition, 2011, 50, 10246-10250.	7.2	59
348	Platinum(II)â€Based Hydrogenâ€Evolving Catalysts Linked to Multipendant Viologen Acceptors: Experimental and DFT Indications for Bimolecular Pathways. Chemistry - A European Journal, 2011, 17, 1148-1162.	1.7	56
349	Photocatalytic Hydrogen Generation from Water with Iron Carbonyl Phosphine Complexes: Improved Water Reduction Catalysts and Mechanistic Insights. Chemistry - A European Journal, 2011, 17, 6425-6436.	1.7	105
350	Hydrothermal Synthesis of Na _{0.5} La _{0.5} TiO ₃ –LaCrO ₃ Solidâ€Solution Singleâ€Crystal Nanocubes for Visibleâ€Lightâ€Driven Photocatalytic H ₂ Evolution. Chemistry - A European Journal, 2011, 17, 7858-7867.	1.7	43
351	Synthesis, Characterisation and Application of Iridium(III) Photosensitisers for Catalytic Water Reduction. Chemistry - A European Journal, 2011, 17, 6998-7006.	1.7	118
352	Chemical Compounds for Energy Storage. Chemie-Ingenieur-Technik, 2011, 83, 1984-1993.	0.4	82
353	Crystalline titania nanoparticles synthesized in nonpolar Lα lecithin liquid-crystalline media in one stage at ambient conditions. Colloids and Surfaces B: Biointerfaces, 2011, 87, 203-208.	2.5	5
354	Semiconductor nanostructure-based photoelectrochemical water splitting: A brief review. Chemical Physics Letters, 2011, 507, 209-215.	1.2	235
355	Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon, 2011, 49, 741-772.	5.4	1,069
356	Delaminated titanate and peroxotitanate photocatalysts. Applied Catalysis B: Environmental, 2011, 105, 69-76.	10.8	8
357	Preparation, characterization and photocatalytic activity of metal-loaded NaNbO3. Journal of Physics and Chemistry of Solids, 2011, 72, 117-123.	1.9	41
358	Synthesis and structural analysis of Bi2â~'ySrylr2O7, a new pyrochlore solid solution. Journal of Solid State Chemistry, 2011, 184, 1251-1256.	1.4	7

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
359	Investigation of cation (Sn2+) and anion (N3â^') substitution in favor of visible light photocatalytic activity in the layered perovskite K2La2Ti3O10. Journal of Hazardous Materials, 2011, 189, 502-508.	6.5	59
360	Photoinduced electron accumulation in colloidally dispersed wide band-gap semiconductor nanosheets. Journal of Colloid and Interface Science, 2011, 354, 38-44.	5.0	6
361	Self-cleaning smart nanocoatings. , 2011, , 397-413.		12
362	Band-gap narrowing in <i>α</i> -(Cr <i>x</i> Fe1- <i>x</i>)2O3 solid-solution films. Applied Physics Letters, 2011, 99, .	1.5	59
363	Spectroscopic ellipsometry and x-ray photoelectron spectroscopy of La2O3 thin films deposited by reactive magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2011, 29, .	0.9	44
364	Preparation of N-Doped TiO ₂ /NiO Composite Electrode and its Photoelectrochemcal Characteristics. Advanced Materials Research, 0, 306-307, 344-347.	0.3	0
365	Electronic Structure of <i>h</i> -WO ₃ and CuWO ₄ Nanocrystals, Harvesting Materials for Renewable Energy Systems and Functional Devices. Applied Mechanics and Materials, 0, 110-116, 2188-2193.	0.2	9
366	Synthesis Mechanism and Microstructure Characterization of Baln ₂ O ₄ . Advanced Materials Research, 0, 347-353, 1342-1347.	0.3	1
367	Synthesis and Characterization of K-Ta Mixed Oxides for Hydrogen Generation in Photocatalysis. International Journal of Photoenergy, 2012, 2012, 1-7.	1.4	7
368	Bacteria-directed construction of hollow TiO_2 micro/nanostructures with enhanced photocatalytic hydrogen evolution activity. Optics Express, 2012, 20, A340.	1.7	30
369	One-Dimensional Core/Shell Structured TiO2/ZnO Heterojunction for Improved Photoelectrochemical Performance. Bulletin of the Korean Chemical Society, 2012, 33, 2200-2206.	1.0	36
370	Broom-like Bi ₂ Mo _{0·5} W _{0·5} O ₆ solid solution synthesised via one step template-free hydrothermal process and enhanced visible light driven photocatalytic activities. Materials Research Innovations, 2012, 16, 38-46.	1.0	2
371	The photoreaction of TiO _{2 and Au/TiO_{2 single crystal and powder with organic adsorbates. International Journal of Nanotechnology, 2012, 9, 121.}}	0.1	21
372	Structural and photocatalytic properties of perovskite-type (La,Ca)Ti(O,N)3 prepared from A-site deficient precursors. Journal of Materials Chemistry, 2012, 22, 17906.	6.7	42
373	Quantum confinement controlled photocatalytic water splitting by suspended CdSe nanocrystals. Chemical Communications, 2012, 48, 371-373.	2.2	200
374	Controlled Synthesis of Heterogeneous Metal–Titania Nanostructures and Their Applications. Journal of the American Chemical Society, 2012, 134, 17505-17512.	6.6	67
375	Doping of WO ₃ for Photocatalytic Water Splitting: Hints from Density Functional Theory. Journal of Physical Chemistry C, 2012, 116, 8901-8909.	1.5	241
376	Theoretical Investigation of the Metal-Doped SrTiO ₃ Photocatalysts for Water Splitting. Journal of Physical Chemistry C, 2012, 116, 7897-7903.	1.5	134

#	Article	IF	CITATIONS
377	Geometric Effect of Single or Double Metal-Tipped CdSe Nanorods on Photocatalytic H ₂ Generation. Journal of Physical Chemistry Letters, 2012, 3, 3781-3785.	2.1	83
378	An efficient ZnS-UV photocatalysts generated in situ from ZnS(en)0.5 hybrid during the H2 production in methanol–water solution. International Journal of Hydrogen Energy, 2012, 37, 17002-17008.	3.8	38
379	Anisotropy in photocatalytic oxidization activity of NaNbO3 photocatalyst. Dalton Transactions, 2012, 41, 10194.	1.6	57
380	Synthesis and Characterization of Magnesium-Alloyed Hematite Thin Films. Journal of Electronic Materials, 2012, 41, 3100-3106.	1.0	7
381	Epitaxial Rh-doped SrTiO3 thin film photocathode for water splitting under visible light irradiation. Applied Physics Letters, 2012, 101, .	1.5	71
382	Elucidation of Rh-Induced In-Gap States of Rh:SrTiO ₃ Visible-Light-Driven Photocatalyst by Soft X-ray Spectroscopy and First-Principles Calculations. Journal of Physical Chemistry C, 2012, 116, 24445-24448.	1.5	89
383	Hydrogen in oxide semiconductors. Journal of Materials Research, 2012, 27, 2190-2198.	1.2	72
384	CdS–graphene and CdS–CNT nanocomposites as visible-light photocatalysts for hydrogen evolution and organic dye degradation. Catalysis Science and Technology, 2012, 2, 969.	2.1	261
385	Photocatalytic Water Splitting with Suspended Calcium Niobium Oxides: Why Nanoscale is Better than Bulk – A Kinetic Analysis. Journal of Physical Chemistry C, 2012, 116, 3161-3170.	1.5	88
386	Photo-electrochemical water splitting system with three-layer n-type organic semiconductor film as photoanode under visible irradiation. Science China Chemistry, 2012, 55, 1953-1958.	4.2	10
387	Recent Progress in Photocatalysis Mediated by Colloidal IIâ€VI Nanocrystals. Israel Journal of Chemistry, 2012, 52, 1002-1015.	1.0	113
388	Formation of 1D Hierarchical Structures Composed of Ni ₃ S ₂ Nanosheets on CNTs Backbone for Supercapacitors and Photocatalytic H ₂ Production. Advanced Energy Materials, 2012, 2, 1497-1502.	10.2	321
390	Photocatalytic Overall Water Splitting Promoted by an α–β phase Junction on Ga ₂ O ₃ . Angewandte Chemie - International Edition, 2012, 51, 13089-13092.	7.2	574
391	Electron Transfer in Dye ensitised Semiconductors Modified with Molecular Cobalt Catalysts: Photoreduction of Aqueous Protons. Chemistry - A European Journal, 2012, 18, 15464-15475.	1.7	112
392	Tantalum doped BaZrO3 for efficient photocatalytic hydrogen generation by water splitting. Catalysis Communications, 2012, 28, 82-85.	1.6	38
393	A photoactive titanate with a stereochemically active Sn lone pair: Electronic and crystal structure of Sn2TiO4 from computational chemistry. Journal of Solid State Chemistry, 2012, 196, 157-160.	1.4	24
394	Atomic layer deposition of anatase TiO2 coating on silica particles: growth, characterization and evaluation as photocatalysts for methyl orange degradation and hydrogen production. Journal of Materials Chemistry, 2012, 22, 20203.	6.7	25
395	Photocatalytic Activity for Hydrogen Evolution over Well-Dispersed Heterostructured In2O3/Ta2O5 Composites. Chinese Journal of Catalysis, 2012, 33, 1101-1108.	6.9	10

#	Article	IF	CITATIONS
396	Using a Ni2+ complex as a structure-directing molecule: solvothermal synthesis and properties of [Ni(en)(tren)]4Sb14S25 featuring an unprecedented three-dimensional network architecture. CrystEngComm, 2012, 14, 5441.	1.3	24
397	Visible light driven photocatalytic evolution of hydrogen from water over CdS encapsulated MCM-48 materials. RSC Advances, 2012, 2, 5754.	1.7	53
398	Photochromic hybrid materials of cucurbituril and polyoxometalates as photocatalysts under visible light. Chemical Communications, 2012, 48, 669-671.	2.2	209
399	Photoelectrochemical cells for hydrogen generation. , 2012, , 91-146e.		4
400	A titanium-based oxysulfide photocatalyst: La5Ti2MS5O7 (M = Ag, Cu) for water reduction and oxidation. Physical Chemistry Chemical Physics, 2012, 14, 15475.	1.3	55
401	Different catalytic behavior of amorphous and crystalline cobalt tungstate for electrochemical water oxidation. RSC Advances, 2012, 2, 10874.	1.7	77
402	Photocatalytic and Photoelectro-Chemical Study of Ferrites for Water Splitting Applications: A Comparative Study. Materials Science Forum, 2012, 734, 334-348.	0.3	3
403	Incorporation of Mo and W into nanostructured BiVO4 films for efficient photoelectrochemical water oxidation. Physical Chemistry Chemical Physics, 2012, 14, 7065.	1.3	211
404	Theoretical Study of Structure, Stability, and the Hydrolysis Reactions of Small Iridium Oxide Nanoclusters. Journal of Physical Chemistry A, 2012, 116, 9985-9995.	1.1	19
405	Self-Assembly and Photocatalytic Properties of Polyoxoniobates: {Nb ₂₄ O ₇₂ }, {Nb ₃₂ O ₉₆ }, and {K ₁₂ Nb ₉₆ O ₂₈₈ } Clusters. Journal of the American Chemical Society, 2012, 134, 14004-14010.	6.6	241
406	Towards better photocatalysts: first-principles studies of the alloying effects on the photocatalytic activities of bismuth oxyhalides under visible light. Physical Chemistry Chemical Physics, 2012, 14, 1286-1292.	1.3	216
407	New spinel oxide catalysts for visible-light-driven water oxidation. RSC Advances, 2012, 2, 3076.	1.7	27
408	Bi ₂ O ₂ CO ₃ /BiOI Photocatalysts with Heterojunctions Highly Efficient for Visible-Light Treatment of Dye-Containing Wastewater. Industrial & Engineering Chemistry Research, 2012, 51, 6760-6768.	1.8	214
409	Solid-State Charge-Based Device for Control of Catalytic Carbon Monoxide Oxidation on Platinum Nanofilms Using External Bias and Light. Nano Letters, 2012, 12, 2554-2558.	4.5	29
410	Electronic structures and effective masses of photogenerated carriers of CaZrTi2O7 photocatalyst: First-principles calculations. Solid State Communications, 2012, 152, 1650-1654.	0.9	10
411	Room Temperature Synthesis of Ti–MCM-48 and Ti–MCM-41 Mesoporous Materials and Their Performance on Photocatalytic Splitting of Water. Journal of Physical Chemistry C, 2012, 116, 1605-1613.	1.5	90
412	Nanomaterials for renewable energy production and storage. Chemical Society Reviews, 2012, 41, 7909.	18.7	856
413	Production and Enhancement of Hydrogen From Water: A Review. Journal of Energy Resources Technology, Transactions of the ASME, 2012, 134, .	1.4	14

#	Article	IF	Citations
414	Effect of Platelet-Shaped Surfaces and Silver-Cation Exchange on the Photocatalytic Hydrogen Production of RbLaNb ₂ O ₇ . ACS Catalysis, 2012, 2, 1711-1717.	5.5	41
415	Synthesis of Carbon Nitride Semiconductors in Sulfur Flux for Water Photoredox Catalysis. ACS Catalysis, 2012, 2, 940-948.	5.5	397
416	NaCu(Ta1â^'yNby)4O11 solid solution: A tunable band gap spanning the visible-light wavelengths. Journal of Solid State Chemistry, 2012, 191, 263-270.	1.4	17
417	Theoretical study of the origin of the enhanced visible light photocatalytic activity of N-doped CsTaWO6: Charge compensation effects modulated by N and other defects. Journal of Solid State Chemistry, 2012, 194, 352-360.	1.4	14
418	Photocatalytic hydrogen generation through water splitting on nano-crystalline LaFeO3 perovskite. International Journal of Hydrogen Energy, 2012, 37, 10451-10456.	3.8	194
419	Cd1â^'xZnxS solid solutions supported on ordered mesoporous silica (SBA-15): Structural features and photocatalytic activity under visible light. International Journal of Hydrogen Energy, 2012, 37, 9948-9958.	3.8	34
420	Toward the design of asymmetric photocatalytic membranes for hydrogen production: Preparation of TiO2-based membranes and their properties. International Journal of Hydrogen Energy, 2012, 37, 11046-11060.	3.8	27
421	Multiple cation and anion substitutions into the structures of Bi2WO6 and PbBi3WO8Cl. Journal of Alloys and Compounds, 2012, 536, 155-160.	2.8	13
422	Photocatalytic degradation of toluene using sprayed N-doped ZnO thin films in aqueous suspension. Journal of Photochemistry and Photobiology B: Biology, 2012, 113, 70-77.	1.7	102
423	Preparation of crystallized mesoporous CdS/Ta2O5 composite assisted by silica reinforcement for visible light photocatalytic hydrogen evolution. Catalysis Communications, 2012, 25, 54-58.	1.6	57
424	Effect of deposition of Ag nanoparticles on photoelectrocatalytic activity of vertically aligned TiO2 nanotubes. Catalysis Today, 2012, 189, 93-100.	2.2	26
425	PbS-sensitized K2Ti4O9 composite: Preparation and photocatalytic properties for hydrogen evolution under visible light irradiation. Chemical Engineering Journal, 2012, 204-206, 1-7.	6.6	25
426	Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles. Nature Communications, 2012, 3, .	5.8	846
427	Titania and Silica Materials Derived from Chemically Dehydrated Porous Botanical Templates. Chemistry of Materials, 2012, 24, 4301-4310.	3.2	14
428	Aerosolâ€Assisted Molten Salt Synthesis of NaInS ₂ Nanoplates for Use as a New Photoanode Material. Advanced Materials, 2012, 24, 6186-6191.	11.1	30
431	pâ€₹ype InP Nanopillar Photocathodes for Efficient Solarâ€Driven Hydrogen Production. Angewandte Chemie - International Edition, 2012, 51, 10760-10764.	7.2	245
432	A Facile Band Alignment of Polymeric Carbon Nitride Semiconductors to Construct Isotype Heterojunctions. Angewandte Chemie - International Edition, 2012, 51, 10145-10149.	7.2	632
433	Highly Dispersed TiO ₆ Units in a Layered Double Hydroxide for Water Splitting. Chemistry - A European Journal, 2012, 18, 11949-11958.	1.7	132

#	Article	IF	CITATIONS
434	Water Oxidation with Molecularly Defined Iridium Complexes: Insights into Homogeneous versus Heterogeneous Catalysis. Chemistry - A European Journal, 2012, 18, 12749-12758.	1.7	82
435	Does a Photocatalytic Synergy in an Anatase–Rutile TiO ₂ Composite Thinâ€Film Exist?. Chemistry - A European Journal, 2012, 18, 13048-13058.	1.7	45
436	Photocatalytic and Photoelectrochemical Water Oxidation over Metalâ€Doped Monoclinic BiVO ₄ Photoanodes. ChemSusChem, 2012, 5, 1926-1934.	3.6	311
437	Overall photocatalytic water splitting with NiOx–SrTiO3 – a revised mechanism. Energy and Environmental Science, 2012, 5, 9543.	15.6	199
438	Polymeric Graphitic Carbon Nitride for Heterogeneous Photocatalysis. ACS Catalysis, 2012, 2, 1596-1606.	5.5	1,541
439	Single-site photocatalysts with a porous structure. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 2099-2112.	1.0	16
440	Highly efficient and selective sunlight-induced photocatalytic oxidation of cyclohexane on an eco-catalyst under a CO2 atmosphere. Green Chemistry, 2012, 14, 1264.	4.6	27
441	Desulfurization of Real and Model Liquid Fuels Using Light: Photocatalysis and Photochemistry. Catalysis Reviews - Science and Engineering, 2012, 54, 281-343.	5.7	47
442	Synthesis and In Situ X-ray Diffraction Characterization of Two-Dimensional Perovskite-Type Oxide Colloids with a Controlled Molecular Thickness. Chemistry of Materials, 2012, 24, 4201-4208.	3.2	76
443	Direct Observation of Two Electron Holes in a Hematite Photoanode during Photoelectrochemical Water Splitting. Journal of Physical Chemistry C, 2012, 116, 16870-16875.	1.5	137
444	Band-engineered SrTiO3 nanowires for visible light photocatalysis. Journal of Applied Physics, 2012, 112, .	1.1	33
445	Surface effect on electronic and optical properties of Bi2Ti2O7 nanowires for visible light photocatalysis. Journal of Applied Physics, 2012, 111, 124306.	1.1	15
446	Photocatalytic water splitting into hydrogen and research on synergistic of Bi/Sm with solid solution of Bi–Sm–V photocatalyst. International Journal of Hydrogen Energy, 2012, 37, 12886-12892.	3.8	32
447	TiO2–SiO2 mixed oxides: Organic ligand templated controlled deposition of titania and their photocatalytic activities for hydrogen production. International Journal of Hydrogen Energy, 2012, 37, 17009-17018.	3.8	23
448	The stability of illuminated p-GaInP2 semiconductor photoelectrode. International Journal of Hydrogen Energy, 2012, 37, 14009-14014.	3.8	14
449	Photophysical and photocatalytic water splitting performance of stibiotantalite type-structure compounds, SbMO4 (MÂ=ÂNb, Ta). International Journal of Hydrogen Energy, 2012, 37, 16895-16902.	3.8	28
450	Preparation and photocatalytic activities of two new Zn-doped SrTiO3 and BaTiO3 photocatalysts for hydrogen production from water without cocatalysts loading. International Journal of Hydrogen Energy, 2012, 37, 17068-17077.	3.8	88
451	Hybrid photocatalytic H2 evolution systems containing xanthene dyes and inorganic nickel based catalysts. International Journal of Hydrogen Energy, 2012, 37, 17899-17909.	3.8	47

#	Article	IF	CITATIONS
452	Hybrid functionals studies of structural and electronic properties of ZnxCd(1â^'x)S and (ZnxCd1â^'x)(SexS1âr'x) solid solution photocatalysts. International Journal of Hydrogen Energy, 2012, 37, 17870-17881.	3.8	27
453	Highly Efficient Hydrogen Evolution Using TiO2/Graphene Composite Photocatalysts. Procedia Engineering, 2012, 27, 570-576.	1.2	16
454	Morphology control of BiVO4 photocatalysts: pH optimization vs. self-organization. Materials Chemistry and Physics, 2012, 135, 457-466.	2.0	42
455	Difference in valence band top of BiVO4 with different crystal structure. Materials Chemistry and Physics, 2012, 136, 930-934.	2.0	79
456	Novel CdPdS/PVAc core–shell nanofibers as an effective photocatalyst for organic pollutants degradation. Journal of Molecular Catalysis A, 2012, 363-364, 186-194.	4.8	20
457	In situ synthesis of CdS modified CdWO4 nanorods and their application in photocatalytic H2 evolution. CrystEngComm, 2012, 14, 3315.	1.3	49
458	Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting. Physical Chemistry Chemical Physics, 2012, 14, 7894.	1.3	409
459	Dynamics of photogenerated holes in surface modified α-Fe ₂ O ₃ photoanodes for solar water splitting. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15640-15645.	3.3	413
460	Growth of p-Type Hematite by Atomic Layer Deposition and Its Utilization for Improved Solar Water Splitting. Journal of the American Chemical Society, 2012, 134, 5508-5511.	6.6	368
461	Photocatalytic Hydrogen Generation Efficiencies in One-Dimensional CdSe Heterostructures. Journal of Physical Chemistry Letters, 2012, 3, 3234-3240.	2.1	83
462	Achieving Synergy with a Potential Photocatalytic Z-Scheme: Synthesis and Evaluation of Nitrogen-Doped TiO ₂ /SnO ₂ Composites. Journal of Physical Chemistry C, 2012, 116, 871-877.	1.5	90
463	Transformation of Indium Nanoparticles to \hat{l}^2 -Indium Sulfide: Digestive Ripening and Visible Light-Induced Photocatalytic Properties. Langmuir, 2012, 28, 3569-3575.	1.6	43
464	The study of preparation and photoelectrical properties of chemical bath deposited Zn, Sb and Ni-doped CuInS2 films for hydrogen production. Solar Energy, 2012, 86, 2584-2591.	2.9	23
465	Hydrothermal synthesis of CdS/CdLa2S4 heterostructures for efficient visible-light-driven photocatalytic hydrogen production. RSC Advances, 2012, 2, 10330.	1.7	48
466	Fabrication of composite photocatalyst g-C3N4–ZnO and enhancement of photocatalytic activity under visible light. Dalton Transactions, 2012, 41, 6756.	1.6	553
467	Enhanced photochemical activity of α-Fe2O3 films supported on SrTiO3 substrates under visible light illumination. Chemical Communications, 2012, 48, 2012.	2.2	37
468	Enhanced Water Splitting on Thin-film Hematite Photoanodes Functionalized with Lithographically Fabricated Au Nanoparticles. Australian Journal of Chemistry, 2012, 65, 633.	0.5	21
469	Synergetic effect of Cu and graphene as cocatalyst on TiO2 for enhanced photocatalytic hydrogen evolution from solar water splitting. Journal of Materials Chemistry, 2012, 22, 18542.	6.7	177

#	Article	IF	CITATIONS
470	BiOBr–carbon nitride heterojunctions: synthesis, enhanced activity and photocatalytic mechanism. Journal of Materials Chemistry, 2012, 22, 21159.	6.7	365
471	Efficient visible-light-driven photocatalytic hydrogen production using CdS@TaON core–shell composites coupled with graphene oxide nanosheets. Journal of Materials Chemistry, 2012, 22, 7291.	6.7	157
472	Synthesis and Structural Investigation of a Unique Columnar Phase in the Bi ₂ O ₃ –TeO ₂ –V ₂ O ₅ System. Inorganic Chemistry, 2012, 51, 1462-1470.	1.9	6
473	Improving Hematite's Solar Water Splitting Efficiency by Incorporating Rare-Earth Upconversion Nanomaterials. Journal of Physical Chemistry Letters, 2012, 3, 3188-3192.	2.1	98
474	Hydrogen evolution from water using semiconductor nanoparticle/graphene composite photocatalysts without noble metals. Journal of Materials Chemistry, 2012, 22, 1539-1546.	6.7	195
475	Dynamics of photogenerated charges in the phosphate modified TiO2 and the enhanced activity for photoelectrochemical water splitting. Energy and Environmental Science, 2012, 5, 6552.	15.6	143
476	Enhancing the Stability of CuO Thin-Film Photoelectrodes by Ti Alloying. Journal of Electronic Materials, 2012, 41, 3062-3067.	1.0	30
477	A novel Sn2Sb2O7 nanophotocatalyst for visible-light-driven H2 evolution. Nano Research, 2012, 5, 576-583.	5.8	22
478	On photoluminescence properties of gallium-exchanged ZSM-5 zeolite. Chemical Physics Letters, 2012, 554, 159-162.	1.2	8
479	A facile way to prepare visible light driven tin oxide based photoanode and its photoelectrochemical water splitting properties. Science Bulletin, 2012, 57, 4229-4232.	1.7	0
480	Synthesis and Characterization of High-Photoactivity Electrodeposited Cu ₂ O Solar Absorber by Photoelectrochemistry and Ultrafast Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 7341-7350.	1.5	305
481	ABO3-based photocatalysts for water splitting. Progress in Natural Science: Materials International, 2012, 22, 592-615.	1.8	243
482	Titanium and magnesium Co-alloyed hematite thin films for photoelectrochemical water splitting. Journal of Applied Physics, 2012, 111, 073502.	1.1	30
483	Photocatalytic Water Splitting and Carbon Dioxide Reduction. , 2012, , 1755-1780.		2
484	Microwave-assisted hydrothermal synthesis of perovskite NaTaO3 nanocrystals and their photocatalytic properties. Journal of Materials Chemistry, 2012, 22, 18808.	6.7	82
485	Exploring the Structural and Electronic Properties of Pt/Ceria-Modified TiO ₂ and Its Photocatalytic Activity for Water Splitting under Visible Light. Journal of Physical Chemistry C, 2012, 116, 14062-14070.	1.5	69
486	Vertically Oriented Iron Oxide Films Produced by Hydrothermal Process: Effect of Thermal Treatment on the Physical Chemical Properties. ACS Applied Materials & Interfaces, 2012, 4, 5515-5523.	4.0	51
487	Visible light assisted photocatalytic hydrogen generation and organic dye degradation by CdS–metal oxide hybrids in presence of graphene oxide. RSC Advances, 2012, 2, 12122.	1.7	151

#	Article	IF	CITATIONS
488	Nanomaterials for renewable hydrogen production, storage and utilization. Progress in Natural Science: Materials International, 2012, 22, 522-534.	1.8	111
489	Three hybrid networks based on octamolybdate: Ionothermal synthesis, structure and photocatalytic properties. Dalton Transactions, 2012, 41, 4084.	1.6	46
490	Photoelectrochemical Hydrogen Production. Kluwer International Series in Electronic Materials: Science and Technology, 2012, , .	0.3	383
491	Development, characterization, sintering, dielectric and optical properties of NdBa2ZrO5·5 nanocrystals. Bulletin of Materials Science, 2012, 35, 1039-1045.	0.8	2
492	Principles of Photoelectrochemical Cells. Kluwer International Series in Electronic Materials: Science and Technology, 2012, , 13-67.	0.3	59
494	Hydrogen Production by Photoreforming of Renewable Substrates. ISRN Chemical Engineering, 2012, 2012, 1-21.	1.2	57
495	Graphene/Semiconductor Nanocomposites: Preparation and Application for Photocatalytic Hydrogen Evolution. , 0, , .		6
497	Controlled Sn-Doping in TiO ₂ Nanowire Photoanodes with Enhanced Photoelectrochemical Conversion. Nano Letters, 2012, 12, 1503-1508.	4.5	390
498	Photocatalytic Water Splitting Using Modified GaN:ZnO Solid Solution under Visible Light: Long-Time Operation and Regeneration of Activity. Journal of the American Chemical Society, 2012, 134, 8254-8259.	6.6	296
499	Electrical power and hydrogen production from a photo-fuel cell using formic acid and other single-carbon organics. Journal of Materials Chemistry, 2012, 22, 10709.	6.7	47
500	A red metallic oxide photocatalyst. Nature Materials, 2012, 11, 595-598.	13.3	430
501	Hydrogen Evolution from Water/Alcohol Mixtures: Effective Inâ€Situ Generation of an Active Au/TiO ₂ catalyst. ChemSusChem, 2012, 5, 530-533.	3.6	66
502	Enzymes and bio-inspired electrocatalysts in solar fuel devices. Energy and Environmental Science, 2012, 5, 7470.	15.6	127
503	Advanced Nanoarchitectures for Solar Photocatalytic Applications. Chemical Reviews, 2012, 112, 1555-1614.	23.0	2,107
504	Nanostructure designs for effective solar-to-hydrogen conversion. Nanophotonics, 2012, 1, 31-50.	2.9	51
505	Non-equilibrium partial oxidation of TiN surface for efficient visible-light-driven hydrogen production. Journal of Materials Chemistry, 2012, 22, 12116.	6.7	26
506	BiOCl Sub-Microcrystals Induced by Citric Acid and Their High Photocatalytic Activities. Crystal Growth and Design, 2012, 12, 793-803.	1.4	229
507	Conjugated porous polymers for energy applications. Energy and Environmental Science, 2012, 5, 7819.	15.6	381

#	Article	IF	CITATIONS
508	On the Stability of Water Oxidation Catalysts: Challenges and Prospects. Australian Journal of Chemistry, 2012, 65, 638.	0.5	30
509	Nonaqueous Synthesis of TiO ₂ Nanocrystals Using TiF ₄ to Engineer Morphology, Oxygen Vacancy Concentration, and Photocatalytic Activity. Journal of the American Chemical Society, 2012, 134, 6751-6761.	6.6	854
510	Efficient and Selective Photocatalytic Cyclohexane Oxidation on a Layered Titanate Modified with Iron Oxide under Sunlight and CO ₂ Atmosphere. ACS Catalysis, 2012, 2, 1910-1915.	5.5	61
511	Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. Journal of Materials Chemistry, 2012, 22, 8083.	6.7	876
512	In Situ Electrochemical Electron Microscopy Study of Oxygen Evolution Activity of Doped Manganite Perovskites. Advanced Functional Materials, 2012, 22, 3378-3388.	7.8	79
513	Hierarchically Structured Porous Materials for Energy Conversion and Storage. Advanced Functional Materials, 2012, 22, 4634-4667.	7.8	796
514	Graphene‣ike Carbon Nitride Nanosheets for Improved Photocatalytic Activities. Advanced Functional Materials, 2012, 22, 4763-4770.	7.8	3,009
515	Enhanced Photocatalytic Hydrogen Generation Using Polymorphic Macroporous TaON. Advanced Materials, 2012, 24, 3406-3409.	11.1	72
516	A multichannel system for rapid determination of the activity for photocatalytic H ₂ production. AICHE Journal, 2012, 58, 3593-3596.	1.8	7
520	Hydrogenolysis Goes Bio: From Carbohydrates and Sugar Alcohols to Platform Chemicals. Angewandte Chemie - International Edition, 2012, 51, 2564-2601.	7.2	746
521	Coâ€Monomer Control of Carbon Nitride Semiconductors to Optimize Hydrogen Evolution with Visible Light. Angewandte Chemie - International Edition, 2012, 51, 3183-3187.	7.2	744
522	Inorganic Photocatalysts for Overall Water Splitting. Chemistry - an Asian Journal, 2012, 7, 642-657.	1.7	160
523	Nanostructured Manganese Oxide Supported on Carbon Nanotubes for Electrocatalytic Water Splitting. ChemCatChem, 2012, 4, 851-862.	1.8	141
524	Controlled Photocatalytic Oxidation of Benzene in Aqueous Clay Suspension. ChemCatChem, 2012, 4, 628-630.	1.8	17
525	Tin(II) Antimonates with Adjustable Compositions: Effects of Bandâ€Gaps and Nanostructures on Visibleâ€Lightâ€Driven Photocatalytic H ₂ Evolution. ChemCatChem, 2012, 4, 1389-1396.	1.8	13
526	Enhanced Interfacial Charge Transfer and Visible Photocatalytic Activity for Hydrogen Evolution from a Ta ₂ O ₅ â€based Mesoporous Composite by the Incorporation of Quantum‣ized CdS. ChemCatChem, 2012, 4, 1353-1359.	1.8	46
527	Photocatalytic Hydrogen Evolution Based on Efficient Energy and Electron Transfers in Donor–Bridge–Acceptor Multibranchedâ€Porphyrinâ€Functionalized Platinum Nanocomposites. Chemistry - A European Journal, 2012, 18, 4367-4374.	1.7	49
528	Siteâ€Selected Doping of Upconversion Luminescent Er ³⁺ into SrTiO ₃ for Visibleâ€Lightâ€Driven Photocatalytic H ₂ or O ₂ Evolution. Chemistry - A European Journal, 2012, 18, 7543-7551.	1.7	87

ARTICLE IF CITATIONS Production of Predominantly Anatase Thin Films on Various Grades of Steel and Other Metallic Substrates From TiCl₄ and Ethyl Acetate by Atmospheric Pressure CVD. Chemical Vapor 15 1.4 Deposition, 2012, 18, 133-139. Effect of AACVD Processing Parameters on the Growth of Greenockite (CdS) Thin Films using a Singleâ€Source Cadmium Precursor. Chemical Vapor Deposition, 2012, 18, 191-200. 1.4 Solar hydrogen production with semiconductor metal oxides: new directions in experiment and 1.3 198 theory. Physical Chemistry Chemical Physics, 2012, 14, 49-70. Visible-Light-Induced Photosplitting of Water over γâ€2-Fe4N and γâ€2-Fe4N/α-Fe2O3 Nanocatalysts. Journal of 1.5 33 Physical Chemistry C, 2012, 116, 12156-12164. Cobalt Phosphateâ€"ZnO Composite Photocatalysts for Oxygen Evolution from Photocatalytic Water 1.8 71 Oxidation. Industrial & amp; Engineering Chemistry Research, 2012, 51, 9945-9951. Electronic Structure of F-Doped Bulk Rutile, Anatase, and Brookite Polymorphs of TiO₂. Journal of Physical Chemistry C, 2012, 116, 12738-12746. 1.5 Heterostructured Ceramic Powders for Photocatalytic Hydrogen Production: Nanostructured <scp><scp>TiO</scp></scp>₂ Shells Surrounding Microcrystalline 1.9 70 (<scp><scp>Ba</scp></scp>,<scp>Sr</scp>)<scp><scp>TiO</scp></scp></scp>3</sub> Cores. Journal of the American Ceramic Society, 2012, 95, 1414-1420. Preparation of ZnS-AgIn5S8/fluoropolymer fiber composites and its photocatalytic H2 evolution from 9 1.6 splitting of water under similar sunlight irradiation. Catalysis Communications, 2012, 22, 89-93. Nitrogen modified metal oxide surfaces. Catalysis Today, 2012, 181, 95-101. 2.2 15 Investigation of cocatalysts on silver-modified Sm2Ti2S2O5 photocatalyst for water reduction and 2.2 oxidation under visible light irradiation. Catalysis Today, 2012, 185, 253-258. CuO/WO3 and Pt/WO3 nanocatalysts for efficient pollutant degradation using visible light 6.6 104 irradiation. Chemical Engineering Journal, 2012, 180, 323-329. V2O5/Al2O3 composite photocatalyst: Preparation, characterization, and the role of Al2O3. Chemical 6.6 Engineering Journal, 2012, 180, 170-177. Manganese doped cadmium sulfide nanocrystal for hydrogen production from water under visible 3.8 66 light. International Journal of Hydrogen Energy, 2012, 37, 730-736. Bimetallic complexes in artificial photosynthesis for hydrogen production: A review. International Journal of Hydrogen Energy, 2012, 37, 3066-3087. 3.8 Composite proton-conducting polymer membranes for clean hydrogen production with solar light in a simple photoelectrochemical compartment cell. International Journal of Hydrogen Energy, 2012, 37, 3.8 27 4012-4017. Visible light driven photocatalytic hydrogen evolution and photophysical properties of Bi3+ doped 64 NaTaO3. International Journal of Hydrogen Energy, 2012, 37, 4889-4896. Factors affecting the production of H2 by water splitting over a novel visible-light-driven 3.8 71 photocatalyst GaFeO3. International Journal of Hydrogen Energy, 2012, 37, 4897-4907. Red phosphorus: An elemental photocatalyst for hydrogen formation from water. Applied Catalysis B: 265

CITATION REPORT

Environmental, 2012, 111-112, 409-414.

#

529

531

533

534

535

537

539

541

542

543

544

545

#	Article	IF	Citations
	Gold nanoparticles on titanium oxide effective for photocatalytic hydrogen formation under visible		
547	light. Applied Catalysis B: Environmental, 2012, 115-116, 294-302.	10.8	87
548	Ag-doped Mn–Cd sulfide as a visible-light-driven photocatalyst for H2 evolution. Applied Catalysis B: Environmental, 2012, 123-124, 84-88.	10.8	66
549	Photocatalytic H2 evolution property of Zr-doped sodium titanate nanobelts prepared by dealloying of Ti-based metallic glassy powders. International Journal of Hydrogen Energy, 2012, 37, 8240-8248.	3.8	8
550	Towards hydrogen production using a breathable electrode structure to directly separate gases in the water splitting reaction. International Journal of Hydrogen Energy, 2012, 37, 8185-8189.	3.8	23
551	Roles of cocatalysts in Pt–PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production. Journal of Catalysis, 2012, 290, 151-157.	3.1	324
552	Controllable synthesis and visible-light-responsive photocatalytic activity of Bi2WO6 fluffy microsphere with hierarchical architecture. Journal of Colloid and Interface Science, 2012, 370, 132-138.	5.0	58
553	Heterostructured mesoporous In2O3/Ta2O5 composite photocatalysts for hydrogen evolution: Impacts of In2O3 content and calcination temperature. Journal of Colloid and Interface Science, 2012, 377, 160-168.	5.0	36
554	Anodic growth of titanium oxide: Electrochemical behaviour and morphological evolution. Electrochimica Acta, 2012, 75, 288-295.	2.6	109
555	Synthesis, characterization and photocatalytic properties of lithium tantalate. Materials Characterization, 2012, 68, 71-76.	1.9	21
556	Preparation, characterization and activity evaluation of CaZrTi2O7 photocatalyst. Materials Chemistry and Physics, 2012, 134, 951-957.	2.0	14
557	Effects of grain morphology, microstructure and dispersed metal cocatalyst on the photoreduction of water over impurity-doped LaInO3. Materials Research Bulletin, 2012, 47, 1217-1228.	2.7	9
558	CdS-sensitized K2Ti4O9 composite for photocatalytic hydrogen evolution under visible light irradiation. Journal of Molecular Catalysis A, 2012, 359, 35-41.	4.8	28
559	ZnGaNO solid solution–C3N4 composite for improved visible light photocatalytic performance. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 600-605.	1.7	35
560	Fe and Ni co-doped TiO2 nanoparticles prepared by alcohol-thermal method: Application in hydrogen evolution by water splitting under visible light irradiation. Powder Technology, 2012, 228, 210-218.	2.1	132
561	Stable and Efficient Homogeneous Photocatalytic H ₂ Evolution Based on Water Soluble Pyrenetetrasulfonic Acid Functionalized Platinum Nanocomposites. ChemCatChem, 2012, 4, 112-117.	1.8	29
562	Singleâ€Crystal Nanosheetâ€Based Hierarchical AgSbO ₃ with Exposed {001} Facets: Topotactic Synthesis and Enhanced Photocatalytic Activity. Chemistry - A European Journal, 2012, 18, 3157-3162.	1.7	51
563	Synthesis and Characterization of New Iridium Photosensitizers for Catalytic Hydrogen Generation from Water. Chemistry - A European Journal, 2012, 18, 3220-3225.	1.7	90
564	In Situ Xâ€ray Absorption Spectroscopy/Energyâ€Dispersive Xâ€ray Diffraction Studies on the Hydrothermal Formation of Bi ₂ W _{1–<i>x</i>} Mo <i>_x</i> O ₆ Nanomaterials. European Journal of Inorganic Chemistry, 2012, 2012, 783-789.	1.0	29

	CITATION RE	CITATION REPORT	
#	Article	IF	Citations
565	Nanoâ€photocatalytic Materials: Possibilities and Challenges. Advanced Materials, 2012, 24, 229-251.	11.1	3,375
566	ZnO–CdS@Cd Heterostructure for Effective Photocatalytic Hydrogen Generation. Advanced Energy Materials, 2012, 2, 42-46.	10.2	191
568	Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry. Angewandte Chemie - International Edition, 2012, 51, 68-89.	7.2	2,897
569	Nanoporous Singleâ€Crystalâ€Like Cd _{<i>x</i>} Zn _{1â^'<i>x</i>} S Nanosheets Fabricated by the Cationâ€Exchange Reaction of Inorganic–Organic Hybrid ZnS–Amine with Cadmium Ions. Angewandte Chemie - International Edition, 2012, 51, 897-900.	7.2	212
570	Solar hydrogen production via pulse electrolysis of aqueous ammonium sulfite solution. Solar Energy, 2013, 91, 394-401.	2.9	18
571	Enhancement Effects of Cobalt Phosphate Modification on Activity for Photoelectrochemical Water Oxidation of TiO ₂ and Mechanism Insights. ACS Applied Materials & Interfaces, 2013, 5, 4046-4052.	4.0	56
572	H ₂ and O ₂ Evolution from Water Half-Splitting Reactions by Graphitic Carbon Nitride Materials. Journal of Physical Chemistry C, 2013, 117, 7178-7185.	1.5	406
573	Room-temperature spontaneous crystallization of porous amorphous titania into a high-surface-area anatase photocatalyst. Chemical Communications, 2013, 49, 8217.	2.2	37
574	Design of Medium Band Gap Ag–Bi–Nb–O and Ag–Bi–Ta–O Semiconductors for Driving Direct Wat Splitting with Visible Light. Inorganic Chemistry, 2013, 52, 9192-9205.	^{er} 1.9	9
575	Design of Advanced Photocatalytic Materials for Energy and Environmental Applications. Green Energy and Technology, 2013, , .	0.4	102
576	Novel bismuth oxophosphate halides [Bi8O8][BiO2](PO4)2X (X=Cl, Br) based on oxocentered 2D blocks and their relationships to the Aurivillius phases. Journal of Solid State Chemistry, 2013, 199, 56-61.	1.4	10
577	Synthesis of nitrogen-doped KNbO3 nanocubes with high photocatalytic activity for water splitting and degradation of organic pollutants under visible light. Chemical Engineering Journal, 2013, 226, 123-130.	6.6	86
578	Photocatalytic water splitting under visible light utilizing I3â^'/Iâ^' and IO3â^'/Iâ^' redox mediators by Z-scheme system using surface treated PtOx/WO3 as O2 evolution photocatalyst. Catalysis Science and Technology, 2013, 3, 1750.	2.1	112
579	Preparation-method-dependent morphological, band structural, microstructural, and photocatalytic properties of noble metal–GaNbO4 nanocomposites. RSC Advances, 2013, 3, 16817.	1.7	10
580	Correlating the excited state relaxation dynamics as measured by photoluminescence and transient absorption with the photocatalytic activity of Au@TiO ₂ core–shell nanostructures. Physical Chemistry Chemical Physics, 2013, 15, 1488-1496.	1.3	65
581	Piezoelectric Bimorph Cantilever for Vibration-Producing-Hydrogen. Sensors, 2013, 13, 367-374.	2.1	27
582	In situ ATR-IR study on aqueous phase reforming reactions of glycerol over a Pt/γ-Al2O3 catalyst. Catalysis Today, 2013, 205, 49-59.	2.2	34
583	Surface-Modified Anisotropic TiO2 Nanocrystals Immobilized in Membranes: A Biologically Inspired Solar Fuel Catalyst. , 2013, , 263-278.		1

ARTICLE IF CITATIONS Nanocrystal Assembly of Hierarchical Porous Architecture for Photocatalysis., 2013, , 417-441. 1 584 Photocatalysts for Solar Hydrogen Conversion., 2013, , 191-217. 586 Metal Oxide Nanotube, Nanorod, and Quantum Dot Photocatalysis., 2013, , 213-244. 8 Photocatalytic activities of Cu3xLa1–xTa7O19 solid solutions for H2 evolution under visible light 587 irradiation. Catalysis Science and Technology, 2013, 3, 3147. Preparation and photocatalytic properties of Aglâ€"SnO2 nano-composites. Materials Research Bulletin, 588 2.7 6 2013, 48, 1806-1810. One-step molten-salt synthesis of BaTi4O9 nanowires with oxygen deficiency-enhanced dielectric 589 1.7 performance. RSC Advances, 2013, 3, 7093. Butterfly wing architecture assisted CdS/Au/TiO2 Z-scheme type photocatalytic water splitting. 590 3.8 89 International Journal of Hydrogen Energy, 2013, 38, 8244-8253. Synthesis of CdS/CNTs photocatalysts and study of hydrogen production by photocatalytic water splitting. International Journal of Hydrogen Energy, 2013, 38, 13091-13096. 3.8 49 The role of ball milled h-BN in the enhanced photocatalytic activity: A study based on the model of 592 3.1 60 ZnO. Applied Surface Science, 2013, 280, 828-835. CuInxGa1â''xSe2 as an efficient photocathode for solar hydrogen generation. International Journal of 3.8 Hydrogen Energy, 2013, 38, 15027-15035. Photocatalytic water splitting of surfactant-free fabricated high surface area NaTaO3 nanocrystals. 594 3.8 36 International Journal of Hydrogen Energy, 2013, 38, 12739-12746. Heterostructured (Ba,Sr)TiO3/TiO2 core/shell photocatalysts: Influence of processing and structure 3.8 on hydrogen production. International Journal of Hydrogen Energy, 2013, 38, 6948-6959. Between photocatalysis and photosynthesis: Synchrotron spectroscopy methods on molecules and materials for solar hydrogen generation. Journal of Electron Spectroscopy and Related Phenomena, 596 0.8 18 2013, 190, 93-105. Facile preparation of NiS/CdS-t composite photocatalyst for hydrogen evolution from aqueous solution of sulphide/sulphite under visible light. Materials Research Bulletin, 2013, 48, 2111-2116. 2.7 Flowerlike C-doped BiOCI nanostructures: Facile wet chemical fabrication and enhanced UV 598 3.180 photocatalytic properties. Applied Surface Science, 2013, 284, 497-502. Synthesis and Characterization of a Soluble Vanadium-Containing Keggin Polyoxoniobate by ESI-MS and51V NMR: (TMA)9[V3Nb12O42]·18H2O. European Journal of Inorganic Chemistry, 2013, 2013, 1748-1753. 599 Predicting a new photocatalyst and its electronic properties by density functional theory. Journal of 600 1.1 24 Applied Physics, 2013, 114, . Sol–gel synthesis of defect-pyrochlore structured CsTaWO6 and the trib<u>ochemical influences on</u> 34 photocatalytic activity. RSC Advances, 2013, 3, 18908.

#	Article	IF	CITATIONS
602	Ab initio design of GaN-based photocatalyst: ZnO-codoped GaN nanotubes. Journal of Power Sources, 2013, 232, 323-331.	4.0	22
603	An EXAFS study on the photo-assisted growth of silver nanoparticles on titanium dioxide thin-films and the identification of their photochromic states. Physical Chemistry Chemical Physics, 2013, 15, 8254.	1.3	16
604	Anion-Doped NaTaO ₃ for Visible Light Photocatalysis. Journal of Physical Chemistry C, 2013, 117, 22518-22524.	1.5	71
605	Visible-Light-Induced Water Splitting Based on Two-Step Photoexcitation between Dye-Sensitized Layered Niobate and Tungsten Oxide Photocatalysts in the Presence of a Triiodide/Iodide Shuttle Redox Mediator. Journal of the American Chemical Society, 2013, 135, 16872-16884.	6.6	233
606	Soft processing of hierarchical oxide nanostructures for dye-sensitized solar cell applications. Nano Energy, 2013, 2, 1354-1372.	8.2	25
607	Influence of synthesis conditions on the shape and size characteristics of TiO2 nanocrystals. Nanotechnologies in Russia, 2013, 8, 751-755.	0.7	3
608	Preparation of amorphous and nanocrystalline sodium tantalum oxide photocatalysts with porous matrix structure for overall water splitting. Nano Energy, 2013, 2, 116-123.	8.2	69
609	Exciton-Free, Nonsensitized Degradation of 2-Naphthol by Facet-Dependent BiOCl under Visible Light: Novel Evidence of Surface-State Photocatalysis. ACS Applied Materials & Interfaces, 2013, 5, 12380-12386.	4.0	104
610	Ba ₄ Ta ₂ O ₉ Oxide Prepared from an Oxalate-Based Molecular Precursor—Characterization and Properties. Inorganic Chemistry, 2013, 52, 14299-14308.	1.9	25
611	Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy and Environmental Science, 2013, 6, 3112.	15.6	1,475
612	Efficient photocatalytic hydrogen production from waterÂoverÂaÂCuO and carbon fiber comodified TiO2 nanocompositeÂphotocatalyst. International Journal of Hydrogen Energy, 2013, 38, 16649-16655.	3.8	44
613	Heterostructured Fe3O4/Bi2O2CO3 photocatalyst: Synthesis, characterization and application in recyclable photodegradation of organic dyes under visible light irradiation. Materials Chemistry and Physics, 2013, 142, 95-105.	2.0	46
614	ZnO/ZnS–PdS core/shell nanorods: Synthesis, characterization and application for photocatalytic hydrogen production from a glycerol/water solution. Applied Surface Science, 2013, 283, 732-739.	3.1	38
616	TiO2-based transparent conducting oxides; the search for optimum electrical conductivity using a combinatorial approach. Journal of Materials Chemistry C, 2013, 1, 6335.	2.7	32
617	Potassium niobate nanostructures: controllable morphology, growth mechanism, and photocatalytic activity. Journal of Materials Chemistry A, 2013, 1, 2878.	5.2	49
618	Synthesis of an <i>S</i> _T = 7 [Mn ₃] Mixed-Valence Complex Based on 1,3-Propanediol Ligand Derivatives and Its One-Dimensional Assemblies. Inorganic Chemistry, 2013, 52, 11051-11059.	1.9	11
619	A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency. Energy and Environmental Science, 2013, 6, 3676.	15.6	211
620	Nobleâ€Metalâ€Free NiS/C ₃ N ₄ for Efficient Photocatalytic Hydrogen Evolution from Water. ChemSusChem, 2013, 6, 2263-2268.	3.6	289

#	Article	IF	CITATIONS
621	Flux growth of Sr2Ta2O7 crystals and subsequent nitridation to form SrTaO2N crystals. CrystEngComm, 2013, 15, 8133.	1.3	34
622	Enhanced photocatalytic hydrogen generation from water by Ni(OH)2 loaded on Ni-doped δ-FeOOH nanoparticles obtained by one-step synthesis. RSC Advances, 2013, 3, 20308.	1.7	24
623	Non-aqueous thermolytic route to oxynitride photomaterials using molecular precursors Ti(OtBu)4 and Ni€,Mo(OtBu)3. Journal of Materials Chemistry A, 2013, 1, 14066.	5.2	2
624	Selfâ€Assembly and Visibleâ€Light Photocatalytic Properties of W/Nb Mixedâ€Addendum Polyoxometalate and Transitionâ€Metal Cations. ChemPlusChem, 2013, 78, 775-779.	1.3	20
625	Highly effective IrxSn1â^'xO2 electrocatalysts for oxygen evolution reaction in the solid polymer electrolyte water electrolyser. Physical Chemistry Chemical Physics, 2013, 15, 2858.	1.3	73
626	Pyrochlore-like K2Ta2O6 synthesized from different methods as efficient photocatalysts for water splitting. Catalysis Science and Technology, 2013, 3, 1798.	2.1	22
627	CHAPTER 1. The Potential Contribution of Photoelectrochemistry in the Global Energy Future. RSC Energy and Environment Series, 0, , 1-18.	0.2	8
628	Synthesis of highly active rhodium-doped SrTiO3 powders in Z-scheme systems for visible-light-driven photocatalytic overall water splitting. Journal of Materials Chemistry A, 2013, 1, 12327.	5.2	214
629	Titanium–indium oxy(nitride) with and without RuO2 loading as photocatalysts for hydrogen production under visible light from water. Catalysis Today, 2013, 199, 15-21.	2.2	15
630	Photocatalytic H2 generation from spinels ZnFe2O4, ZnFeGaO4 and ZnGa2O4. Catalysis Today, 2013, 199, 22-26.	2.2	87
631	Tungsten-based oxide semiconductors for solar hydrogen generation. Catalysis Today, 2013, 199, 53-64.	2.2	123
632	Characterization of NaTaO3 synthesized by ultrasonic method. Ultrasonics Sonochemistry, 2013, 20, 498-501.	3.8	27
633	Formation energy and photoelectrochemical properties of BiVO ₄ after doping at Bi ³⁺ or V ⁵⁺ sites with higher valence metal ions. Physical Chemistry Chemical Physics, 2013, 15, 1006-1013.	1.3	138
634	Zinc Gallogermanate Solid Solution: A Novel Photocatalyst for Efficiently Converting CO ₂ into Solar Fuels. Advanced Functional Materials, 2013, 23, 1839-1845.	7.8	89
635	Transition metal oxide alloys as potential solar energy conversion materials. Journal of Materials Chemistry A, 2013, 1, 2474.	5.2	63
636	"ln rust we trust― Hematite – the prospective inorganic backbone for artificial photosynthesis. Energy and Environmental Science, 2013, 6, 407-425.	15.6	216
637	New concepts and modeling strategies to design and evaluate photo-electro-catalysts based on transition metal oxides. Chemical Society Reviews, 2013, 42, 2401-2422.	18.7	225
638	Investigation and Enhancement of the Stability and Performance of Water Reduction Systems based on Cyclometalated Iridium(III) Complexes. ChemSusChem, 2013, 6, 92-101.	3.6	23

ARTICLE IF CITATIONS The Agâ€"BiOBrxI1â^x composite photocatalyst: Preparation, characterization and their novel pollutants 639 3.1 40 removal property. Applied Surface Science, 2013, 279, 374-379. Improving photocatalytic hydrogen evolution over CuO/Al2O3 by platinum-depositing and 640 3.1 CuS-loading. Applied Śurfaće Science, 2013, 282, 531-537. Structural and thermal evolution studies of LaSbO4 ceramics prepared by solid-state reaction 641 2.0 9 method. Materials Chemistry and Physics, 2013, 140, 255-259. Photosensitization of SiW11O398â⁻⁻-modified TiO2 by Eosin Y for stable visible-light H2 generation. 642 International Journal of Hydrogen Energy, 2013, 38, 11709-11719. Heterostructured SnO2-pillared Co-doped tantalotungstate with high photocatalytic activity under 643 2.0 5 visible-light irradiation. Materials Chemistry and Physics, 2013, 142, 651-658. Effect of valence band energy on the photocatalytic performance of N-doped TiO2 for the production of O2 via the oxidation of water by visible light. Journal of Molecular Catalysis A, 2013, 378, 221-226. 644 4.8 Highly uniform YF3:Ln3+ (Ln=Ce3+, Tb3+) walnut-like microcrystals: Hydrothermal synthesis and 645 2.7 12 luminescent properties. Materials Research Bulletin, 2013, 48, 2143-2148. The effect of Au cocatalyst loaded on La-doped NaTaO3 on photocatalytic water splitting and O2 646 10.8 88 photoreduction. Applied Catalysis B: Environmental, 2013, 136-137, 89-93. Synthesis of visible-light absorbing CoFe2O4 sensitized TiO2 nanotube arrays electrode with enhanced 647 2.7 9 photoelectrochemical performance. Materials Research Bulletin, 2013, 48, 3625-3629. Remarkable promotion of photocatalytic hydrogen evolution from water on TiO2-pillared 648 3.8 titanoniobate. International Journal of Hydrogen Energy, 2013, 38, 832-839. New Insights on Photocatalytic H₂ Liberation from Water Using Transition-Metal Oxides: Lessons from Cluster Models of Molybdenum and Tungsten Oxides. Journal of the American Chemical 649 6.6 41 Society, 2013, 135, 17039-17051. Photochemical Deposition of Pt on CdS for H₂ Evolution from Water: Markedly Enhanced 1.5 178 Activity by Controlling Pt Reduction Environment. Journal of Physical Chemistry C, 2013, 117, 783-790. Synthesis of La-doped Ag1.4K0.6Ta4O11 nanocomposites as efficient photocatalysts for hydrogen 651 2.2 4 production and organic pollutants degradation. Applied Catalysis A: General, 2013, 467, 335-341. Improving water splitting using RuO2-Zr/Na2Ti6O13 as a photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 266, 6-11. Effect of physical chemistry parameters in photocatalytic properties of TiO2 nanocrystals. Comptes 653 0.2 8 Rendus Chimie, 2013, 16, 651-659. Synthesis of UV/NIR photocatalysts by coating TiO2 shell on peanut-like YF3:Yb,Tm upconversion nanocrystals. Materials Letters, 2013, 106, 238-241. 654 Bacterial cellulose-assisted hydrothermal synthesis and catalytic performance of La2CuO4 nanofiber 655 3.8 13 for methanol steam reforming. International Journal of Hydrogen Energy, 2013, 38, 10813-10818. Enhanced visible light photocatalytic properties of AgNbO3/AgSbO3 composites. Materials Chemistry and Physics, 2013, 139, 1009-1013.

#	Article	IF	CITATIONS
657	Synergistic effects of codopants on photocatalytic O2 evolution in BiVO4. Solid State Sciences, 2013, 24, 79-84.	1.5	20
658	Quantum efficiency modeling and system scaling-up analysis of water splitting with Cd1â^xZnxS solid-solution photocatalyst. Chemical Engineering Science, 2013, 97, 235-255.	1.9	31
659	Na adsorption on SrTiO3 (0 0 1) surface and its interaction with water: A DFT calculation. Applied Surface Science, 2013, 270, 359-363.	3.1	6
660	Soft X-ray and electron spectroscopy to determine the electronic structure of materials for photoelectrochemical hydrogen production. Journal of Electron Spectroscopy and Related Phenomena, 2013, 190, 106-112.	0.8	9
661	Surfactant Assistance in Improvement of Photocatalytic Hydrogen Production with the Porphyrin Noncovalently Functionalized Graphene Nanocomposite. ACS Applied Materials & Interfaces, 2013, 5, 1732-1740.	4.0	184
662	Synthesis of bismuth vanadate: its application in H ₂ evolution and sunlight-driven photodegradation. Journal of Materials Chemistry A, 2013, 1, 388-394.	5.2	104
663	Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion. Physical Chemistry Chemical Physics, 2013, 15, 2632.	1.3	364
664	Metastable Cu(I)-Niobate Semiconductor with a Low-Temperature, Nanoparticle-Mediated Synthesis. ACS Nano, 2013, 7, 1699-1708.	7.3	43
665	The influence of carbon content on the structure and properties of MoS _x C _y photocatalysts for light-driven hydrogen generation. Dalton Transactions, 2013, 42, 1287-1292.	1.6	22
666	Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chemical Society Reviews, 2013, 42, 2294-2320.	18.7	1,846
667	Formation of an electron hole doped film in the α-Fe ₂ O ₃ photoanode upon electrochemical oxidation. Physical Chemistry Chemical Physics, 2013, 15, 1443-1451.	1.3	40
668	Photocatalytic activity of Cd1â^'xZnxS/K2Ti4O9 for Rhodamine B degradation under visible light irradiation. Applied Surface Science, 2013, 271, 171-181.	3.1	32
669	Facile Synthesis of Thermal―and Photostable Titania with Paramagnetic Oxygen Vacancies for Visibleâ€Light Photocatalysis. Chemistry - A European Journal, 2013, 19, 2866-2873.	1.7	133
670	Crystal Chemistry, Band Engineering, and Photocatalytic Activity of the LiNb ₃ O ₈ –CuNb ₃ O ₈ Solid Solution. Inorganic Chemistry, 2013, 52, 4443-4450.	1.9	62
671	Direct Water Splitting into Hydrogen and Oxygen under Visible Light by using Modified TaON Photocatalysts with d ⁰ Electronic Configuration. Chemistry - A European Journal, 2013, 19, 4986-4991.	1.7	160
672	Nitrogen-doped layered oxide Sr5Ta4O15â^'xNx for water reduction and oxidation under visible light irradiation. Journal of Materials Chemistry A, 2013, 1, 5651.	5.2	89
673	Efficiency Limit of Molecular Solar Thermal Energy Collecting Devices. ACS Sustainable Chemistry and Engineering, 2013, 1, 585-590.	3.2	90
674	Band gaps from the Tran-Blaha modified Becke-Johnson approach: A systematic investigation. Journal of Chemical Physics, 2013, 138, 134115.	1.2	176

#	Article	IF	CITATIONS
675	Photoelectrochemical reduction of nitrates at the illuminated p-GaInP ₂ photoelectrode. Energy and Environmental Science, 2013, 6, 1802-1805.	15.6	18
676	Facile in situ synthesis of a Bi/BiOCl nanocomposite with high photocatalytic activity. Journal of Materials Chemistry A, 2013, 1, 3068.	5.2	325
677	Optical Properties of (Oxy)Nitride Materials: A Review. Journal of the American Ceramic Society, 2013, 96, 665-687.	1.9	293
678	[Co(bpy) ₃] ^{3+/2+} and [Co(phen) ₃] ^{3+/2+} Electron Mediators for Overall Water Splitting under Sunlight Irradiation Using Z-Scheme Photocatalyst System. Journal of the American Chemical Society, 2013, 135, 5441-5449.	6.6	327
679	Polymer Electrolyte Membrane Fuel Cells (PEM-FC) and Non-noble Metal Catalysts for Oxygen Reduction. , 2013, , 519-575.		1
680	Charge carrier separation in nanostructured TiO2 photoelectrodes for water splitting. Physical Chemistry Chemical Physics, 2013, 15, 8772.	1.3	58
681	Visible-light-responsive copper(<scp>ii</scp>) borate photocatalysts with intrinsic midgap states for water splitting. Journal of Materials Chemistry A, 2013, 1, 1553-1556.	5.2	38
682	RuO2/TiSi2/graphene composite for enhanced photocatalytic hydrogen generation under visible light irradiation. Physical Chemistry Chemical Physics, 2013, 15, 2793.	1.3	36
683	Quantum Confinement Controls Photocatalysis: A Free Energy Analysis for Photocatalytic Proton Reduction at CdSe Nanocrystals. ACS Nano, 2013, 7, 4316-4325.	7.3	234
684	Optical properties of tungsten trioxide from first-principles calculations. Physical Review B, 2013, 87, .	1.1	71
685	Hydrogen evolution by templated cadmium indate nanoparticles under natural sunlight illumination. International Journal of Hydrogen Energy, 2013, 38, 7741-7749.	3.8	5
686	Silicon nanowire array/Cu ₂ O crystalline core–shell nanosystem for solar-driven photocatalytic water splitting. Nanotechnology, 2013, 24, 265402.	1.3	45
687	Crystalline phase-dependent photocatalytic water splitting for hydrogen generation on KNbO3 submicro-crystals. International Journal of Hydrogen Energy, 2013, 38, 3554-3561.	3.8	75
688	Charge carrier trapping, recombination and transfer in hematite (α-Fe2O3) water splitting photoanodes. Chemical Science, 2013, 4, 2724.	3.7	419
689	CO ₂ chemical conversion to useful products: An engineering insight to the latest advances toward sustainability. International Journal of Energy Research, 2013, 37, 485-499.	2.2	139
690	Integrated microfluidic test-bed for energy conversion devices. Physical Chemistry Chemical Physics, 2013, 15, 7050.	1.3	20
691	Solar Energy Conversion. , 2013, , 267-304.		2
692	Oxidation of Water under Visibleâ€Light Irradiation over Modified BaTaO ₂ N Photocatalysts Promoted by Tungsten Species. Angewandte Chemie - International Edition, 2013, 52, 6488-6491.	7.2	91

#	Article	IF	CITATIONS
693	A (3 + 3)-Dimensional "Hypercubic―Oxide-Ionic Conductor: Type II Bi ₂ O ₃ –Nb ₂ O ₅ . Journal of the American Chemical Society, 2013, 135, 6477-6484.	6.6	28
694	The coordination chemistry of organo-hydride donors: new prospects for efficient multi-electron reduction. Chemical Society Reviews, 2013, 42, 5439.	18.7	131
695	Band-engineered CaTiO3 nanowires for visible light photocatalysis. Journal of Applied Physics, 2013, 113, .	1.1	32
696	Strong Visibleâ€Light Absorption and Hotâ€Carrier Injection in TiO ₂ /SrRuO ₃ Heterostructures. Advanced Energy Materials, 2013, 3, 1084-1090.	10.2	35
697	Leaf-architectured 3D Hierarchical Artificial Photosynthetic System of Perovskite Titanates Towards CO2 Photoreduction Into Hydrocarbon Fuels. Scientific Reports, 2013, 3, 1667.	1.6	159
698	Nano-WS2 embedded PES membrane with improved fouling and permselectivity. Journal of Colloid and Interface Science, 2013, 396, 120-128.	5.0	52
699	Fabrication of SrTiO3 exposing characteristic facets using molten salt flux and improvement of photocatalytic activity for water splitting. Catalysis Science and Technology, 2013, 3, 1733.	2.1	86
700	Donor–acceptor porphyrin functionalized Pt nano-assemblies for artificial photosynthesis: a simple and efficient homogeneous photocatalytic hydrogen production system. Catalysis Science and Technology, 2013, 3, 2295.	2.1	39
701	Significantly enhanced photocatalytic hydrogen evolution under visible light over CdS embedded on metal–organic frameworks. Chemical Communications, 2013, 49, 6761.	2.2	253
702	Combinatorial Atmospheric Pressure Chemical Vapor Deposition of Graded TiO ₂ –VO ₂ Mixed-Phase Composites and Their Dual Functional Property as Self-Cleaning and Photochromic Window Coatings. ACS Combinatorial Science, 2013, 15, 309-319.	3.8	53
703	Preparation of novel SrTiO3:Rh/Ta photocatalyst by spray pyrolysis and its activity for H2 evolution from aqueous methanol solution under visible light. International Journal of Hydrogen Energy, 2013, 38, 823-831.	3.8	24
704	High photocatalytic activity of hydrogen production from water over Fe doped and Ag deposited anatase TiO2 catalyst synthesized by solvothermal method. Chemical Engineering Journal, 2013, 228, 896-906.	6.6	77
705	Polymer–inorganic supramolecular nanohybrids for red, white, green, and blue applications. Progress in Polymer Science, 2013, 38, 1442-1486.	11.8	105
706	Grapheneâ€Based Materials for Hydrogen Generation from Lightâ€Driven Water Splitting. Advanced Materials, 2013, 25, 3820-3839.	11.1	704
707	Tuning the Electronic Structure of Graphite Oxide through Ammonia Treatment for Photocatalytic Generation of H ₂ and O ₂ from Water Splitting. Journal of Physical Chemistry C, 2013, 117, 6516-6524.	1.5	151
708	Single-site Sn-grafted Ru/TiO2 photocatalysts for biomass reforming: Synergistic effect of dual co-catalysts and molecular mechanism. Journal of Catalysis, 2013, 303, 141-155.	3.1	89
709	Flux Growth of Single-Crystal Na ₂ Ta ₄ O ₁₁ Particles and their Photocatalytic Hydrogen Production. Crystal Growth and Design, 2013, 13, 2322-2326.	1.4	41
710	Tailoring AgI nanoparticles for the assembly of AgI/BiOI hierarchical hybrids with size-dependent photocatalytic activities. Journal of Materials Chemistry A, 2013, 1, 7131.	5.2	124

	С	TATION REPORT	
# 711	ARTICLE Hydrogen Production from Water Splitting Using Photo-Semiconductor Catalysts. , 2013, , 43-61.	IF	CITATIONS
712	Synthesis of brookite TiO2 nanorods with isolated Co(ii) surface sites and photocatalytic degradation of 5,8-dihydroxy-1,4-naphthoquinone dye. Journal of Materials Chemistry A, 2013, 1, 771	5.2	27
713	First principles high throughput screening of oxynitrides for water-splitting photocatalysts. Energy and Environmental Science, 2013, 6, 157-168.	15.6	290
714	Synthesis of the bismuth oxyhalide solid solutions with tunable band gap and photocatalytic activities. Dalton Transactions, 2013, 42, 9706.	1.6	95
715	One-pot synthesis of In2S3 nanosheets/graphene composites with enhanced visible-light photocatalytic activity. Applied Catalysis B: Environmental, 2013, 129, 80-88.	10.8	145
716	First Principles Study on Ta ₃ N ₅ :Ti ₃ O ₃ N _{2< Solid Solution As a Water-Splitting Photocatalyst. Journal of Physical Chemistry C, 2013, 117, 24710-24715.}	/sub> 1.5	16
717	Lanthanoid Oxide Layers on Rhodium-Loaded (Ga _{1–<i>x</i>} Zn _{<i>x</i>})(N _{1–<i>x</i>} O _{<i>x</i><!--<br-->Photocatalyst as a Modifier for Overall Water Splitting under Visible-Light Irradiation. Journal of Physical Chemistry C, 2013, 117, 14000-14006.}	'sub>) 1.5	52
718	Control of Phase Coexistence in Calcium Tantalate Composite Photocatalysts for Highly Efficient Hydrogen Production. Chemistry of Materials, 2013, 25, 4739-4745.	3.2	41
719	Metal Doping of BiVO ₄ by Composite Electrodeposition with Improved Photoelectrochemical Water Oxidation. Journal of Physical Chemistry C, 2013, 117, 23048-23056.	1.5	94
720	Synthesis and Optical Properties of Ag(I), Pb(II), and Bi(III) Tantalate-Based Photocatalysts. ACS Catalysis, 2013, 3, 2943-2953.	5.5	45
721	Tuning Activities of K _{1.9} Na _{0.1} Ta ₂ O ₆ <i>·</i> 2H ₂ O Nanocrystals in Photocatalysis by Controlling Exposed Facets. ACS Applied Materials & Interface 2013, 5, 10260-10265.	s, 4.0	16
722	Synthesis and Characterization of Visible Light Absorbing (GaN) _{1–<i>x</i>} (ZnO) _{<i>x</i>} Semiconductor Nanorods. Inorganic Cher 2013, 52, 8389-8398.	mistry, 1.9	41
723	Efficient visible light driven photocatalytic hydrogen production from water using attapulgite clay sensitized by CdS nanoparticles. Nanotechnology, 2013, 24, 505401.	1.3	46
724	Nature of Catalytic Active Sites Present on the Surface of Advanced Bulk Tantalum Mixed Oxide Photocatalysts. ACS Catalysis, 2013, 3, 2920-2929.	5.5	56
725	Preparation of a novel recyclable cocatalyst wool–Pd for enhancement of photocatalytic H2 evolution on CdS. International Journal of Hydrogen Energy, 2013, 38, 10761-10767.	3.8	33
726	Synthesis and characterization of silver diethyldithiocarbamate cluster for the deposition of acanthite (Ag2S) thin films for photoelectrochemical applications. Thin Solid Films, 2013, 536, 124-12	29. ^{0.8}	30
727	Silver Exchange of Layered Metal Oxides and Their Photocatalytic Activities. ACS Catalysis, 2013, 3, 2547-2555.	5.5	46
728	Epitaxial Growth Route to Crystalline TiO ₂ Nanobelts with Optimizable Electrochemical Performance. ACS Applied Materials & Interfaces, 2013, 5, 368-373.	4.0	28

#	Article	IF	CITATIONS
729	Investigation of 35 Elements as Single Metal Oxides, Mixed Metal Oxides, or Dopants for Titanium Dioxide for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117, 25248-25258.	1.5	17
730	Roles of cocatalysts in semiconductor-based photocatalytic hydrogen production. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20110430.	1.6	43
731	Fundamental Bulk/Surface Structure–Photoactivity Relationships of Supported (Rh2–yCryO3)/GaN Photocatalysts. Journal of Physical Chemistry Letters, 2013, 4, 3719-3724.	2.1	32
732	Enhanced photocatalytic hydrogen generation from barium tantalate composites. Photochemical and Photobiological Sciences, 2013, 12, 671-677.	1.6	57
733	Design and development of photoanodes for water-splitting dye-sensitized photoelectrochemical cells. Chemical Society Reviews, 2013, 42, 2357-2387.	18.7	495
734	Hydrogen evolution from water through metal sulfide reactions. Journal of Chemical Physics, 2013, 139, 204301.	1.2	23
735	Solar fuels production by artificial photosynthesis. , 2013, , .		0
736	Improvement of Efficiency in CdS Quantum Dots Sensitized Solar Cells. Acta Physica Polonica A, 2013, 124, 750-754.	0.2	2
737	Investigation of Solar Photoelectrochemical Hydrogen Generation Ability of Ferrites for Energy Production. Materials Science Forum, 2013, 764, 97-115.	0.3	3
738	Synthesis of Titania Nanowires From Local Synthetic Rutiles. Materials Science Forum, 0, 756, 31-36.	0.3	0
739	Nonmetal Doping in TiO2 Toward Visible-Light-Induced Photocatalysis. Handbook of Environmental Chemistry, 2013, , 87-113.	0.2	2
740	Pyrolysis Synthesized g-C ₃ N ₄ for Photocatalytic Degradation of Methylene Blue. Journal of Chemistry, 2013, 2013, 1-5.	0.9	38
741	Metastable βâ€Bi ₂ O ₃ Nanoparticles with Potential for Photocatalytic Water Purification Using Visible Light Irradiation. ChemistryOpen, 2013, 2, 146-155.	0.9	68
742	Improved Texturing and Photocatalytic Efficiency in Ti <scp>O</scp> ₂ Films Grown Using Aerosolâ€ <scp>A</scp> ssisted <scp>CVD</scp> and Atmospheric Pressure CVD. Chemical Vapor Deposition, 2013, 19, 355-362.	1.4	6
743	Windowsill Hydrogen Production under Daylight Irradiation. ChemPlusChem, 2013, 78, 1330-1333.	1.3	3
744	Photocatalytic Hydrogen Production from Water Splitting on CdS and Cd _{0.8} Zn _{0.2} S Nanorods: Influence of Ni(OH) ₂ Modification. Advanced Materials Research, 2013, 805-806, 1291-1296.	0.3	3
745	SODIUM TANTALATE SPHERES PREPARED VIA AN ELECTROCHEMICAL PROCESS AND THEIR PHOTOELECTROCHEMICAL BEHAVIOR. Nano, 2013, 08, 1350024.	0.5	1
746	Monitoring the reactions of photosynthetic water oxidation using infrared spectroscopy. Biomedical Spectroscopy and Imaging, 2013, 2, 115-128.	1.2	26

#	Article	IF	CITATIONS
747	Optical absorption and spectral photoconductivity in α-(Fe _{1â^²<i>x</i>} Cr _{<i>x</i>}) ₂ O ₃ solid-solution thin films. Journal of Physics Condensed Matter, 2013, 25, 392002.	0.7	33
748	Photocatalytic Water Splitting over LaTa7O19 Composed of TaO7 Pentagonal Bipyramids and TaO6 Octahedra. Chemistry Letters, 2013, 42, 744-746.	0.7	7
749	Oxidation of Water under Visibleâ€Light Irradiation over Modified BaTaO ₂ N Photocatalysts Promoted by Tungsten Species. Angewandte Chemie, 2013, 125, 6616-6619.	1.6	18
750	Two Wembers of the {X ₄ Nb ₁₆ O ₅₆ } Family (X = Ge, Si) Based on $[(GeOH)2Q24/sub>Ge2Nb16H22/sub>O54]12â€" and [K(GeOH)22/sub>Ge22/sub>Nb16H32/sub>O54]10â€" [K(GeOH)22/sub>Ge22/sub>Nb16H32/sub>O54]10â€"$	1.0 •.	21
751	European Journal of Morganic Chemistry, 2013, 2013, 1706-1712. Semiconductor and Plasmonic Photocatalysis for Selective Organic Transformations. Current Organic Chemistry, 2013, 17, 1274-1287.	0.9	11
752	Hydrogen Production by Photocatalytic Water Splitting. Journal of the Japan Petroleum Institute, 2013, 56, 280-287.	0.4	19
753	ZnO-based Solid Solutions for Visible Light Driven Photocatalysis. Transactions of the Materials Research Society of Japan, 2013, 38, 145-158.	0.2	7
754	The study on the geometry and electronic properties of (WO3)x/(TiO2)y heterostructure by using the layered structural model. Journal of Theoretical and Computational Chemistry, 2014, 13, 1450034.	1.8	1
755	THE ELECTRONIC AND OPTICAL PROPERTIES OF X-DOPED SrTiO ₃ (X = Rh, Pd,) Tj ETQ4	99.80 rgB	T ₈ Overlock (
756	Band alignment in visible-light photo-active CoO/SrTiO3 (001) heterostructures. Journal of Applied Physics, 2014, 116, .	1.1	10
757	Core–shell photoanode developed by atomic layer deposition of Bi ₂ O ₃ on Si nanowires for enhanced photoelectrochemical water splitting. Nanotechnology, 2014, 25, 455402.	1.3	33
758	Substitutionâ€Controlled Excited State Processes in Heteroleptic Copper(I) Photosensitizers Used in Hydrogen Evolving Systems. ChemPhysChem, 2014, 15, 3709-3713.	1.0	61
759	Electrochemical and Photoelectrochemical Properties of the Copper Hydroxyphosphate Mineral Libethenite. ChemElectroChem, 2014, 1, 663-672.	1.7	15

760	Structural and optical properties of molybdenum doped bismuth vanadate powders. , 2014, , .		5
761	Structural, optical and visible-light photocatalytic properties of Sr3FeNb2O9 oxide. Journal of the Korean Physical Society, 2014, 65, 520-525.	0.3	6
762	Nanoporous WO ₃ – Fe ₂ O ₃ films; structural and photo-electrochemical characterization. Functional Materials Letters, 2014, 07, 1440006.	0.7	9
763	Graphene–Titania Hybrid Photoanodes by Supersonic Kinetic Spraying for Solar Water Splitting. Journal of the American Ceramic Society, 2014, 97, 3660-3668.	1.9	11
764	Nanostructured Manganese Oxides as Highly Active Water Oxidation Catalysts: A Boost from Manganese Precursor Chemistry. ChemSusChem, 2014, 7, 2202-2211.	3.6	110

#	Article	IF	CITATIONS
765	Reduction of Carbon Dioxide: Photo-Catalytic Route to Solar Fuels. Nanostructure Science and Technology, 2014, , 211-233.	0.1	2
766	Solar Photocatalytic Hydrogen Production: Current Status and Future Challenges. Nanostructure Science and Technology, 2014, , 41-74.	0.1	3
767	Sensitization of Perovskite Strontium Stannate SrSnO ₃ towards Visible-Light Absorption by Doping. International Journal of Photoenergy, 2014, 2014, 1-3.	1.4	15
768	Efficient Electricity Generation and Degradation of Organic Pollutants in Wastewater Using Ag-BiOI Photoactivated Fuel Cell. ACS Symposium Series, 2014, , 149-164.	0.5	0
769	Novel heterojunction photocatalysts based on lanthanum titanate nanosheets and indium oxide nanoparticles with enhanced photocatalytic hydrogen production activity. Journal of Materials Chemistry A, 2014, 2, 19260-19267.	5.2	57
770	Combinatorial Screening of Photoelectrocatalytic System with High Signal/Noise Ratio. Analytical Chemistry, 2014, 86, 11972-11976.	3.2	8
771	Combinatorial Atmospheric Pressure Chemical Vapor Deposition of F:TiO ₂ ; the Relationship between Photocatalysis and Transparent Conducting Oxide Properties. Advanced Functional Materials, 2014, 24, 1758-1771.	7.8	44
772	Preparation of titania nanotube-Cd0.65Zn0.35S nanocomposite by a hydrothermal sulfuration method for efficient visible-light-driven photocatalytic hydrogen production. Applied Surface Science, 2014, 322, 265-271.	3.1	28
773	Increasing the Visible Light Absorption of Graphitic Carbon Nitride (Melon) Photocatalysts by Homogeneous Selfâ€Modification with Nitrogen Vacancies. Advanced Materials, 2014, 26, 8046-8052.	11.1	658
774	Electronic structures and water reactivity of mixed metal sulfide cluster anions. Journal of Chemical Physics, 2014, 141, 074305.	1.2	5
775	Tunable Luminescence in CdSe Quantum Dots Doped by Mn Impurities. Journal of Physical Chemistry C, 2014, 118, 28314-28321.	1.5	27
776	Complete Water Splitting with Multi-Component Catalysts: Proposed Mechanism of Charge Transport in NiOx Loaded SrTiO3 Photocatalyst for Complete Water Splitting. Springer Theses, 2014, , 53-66.	0.0	1
777	Visible light-induced Cr-doped SrTiO3-g-C3N4 composite for improved photocatalytic performance. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 1111-1116.	0.4	11
778	Enhanced photocatalytic hydrogen production under visible light over a material based on magnesium ferrite derived from layered double hydroxides (LDHs). International Journal of Energy Research, 2014, 38, 2010-2018.	2.2	22
779	Atomic Layer Deposition of Metastable β-Fe ₂ O ₃ via Isomorphic Epitaxy for Photoassisted Water Oxidation. ACS Applied Materials & Interfaces, 2014, 6, 21894-21900.	4.0	31
780	The Effects of Preparation Conditions for a BaNbO ₂ N Photocatalyst on Its Physical Properties. ChemSusChem, 2014, 7, 2016-2021.	3.6	42
781	Solution Synthesis of Cu ₃ PdN Nanocrystals as Ternary Metal Nitride Electrocatalysts for the Oxygen Reduction Reaction. Chemistry of Materials, 2014, 26, 6226-6232.	3.2	82
782	The possibility of optical excitations at the smallest gap of Cu-delafossite nanocrystals. Journal Physics D: Applied Physics, 2014, 47, 405301.	1.3	Ο

ARTICLE IF CITATIONS # Electrical Properties and Defect Chemistry of Indium-Doped TiO₂: Electrical Conductivity. 783 0.9 11 ECS Journal of Solid State Science and Technology, 2014, 3, P330-P339. Titania Nanotubes by Electrochemical Anodization for Solar Energy Conversion. Journal of the 784 1.3 Electrochemical Society, 2014, 161, D3066-D3077. PdS-modified CdS/NiS composite as an efficient photocatalyst for H2 evolution in visible light. 785 2.2 57 Catalysis Today, 2014, 225, 136-141. Photocatalysts with internal electric fields. Nanoscale, 2014, 6, 24-42. 786 654 A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 787 5.6 826 2014, 20, 33-50. The development of highly crystalline single-phase Bi20TiO32 nanoparticles for light driven oxygen evolution. Applied Catalysis B: Environmental, 2014, 150-151, 363-369. 788 10.8 Effect of Hydrogen and Oxygen Evolution Cocatalysts on Photocatalytic Activity of GaN:ZnO. 789 1.0 52 European Journal of Inorganic Chemistry, 2014, 2014, 767-772. Incorporation of cadmium sulfide nanoparticles on the cadmium titanate nanofibers for enhanced 790 2.3 organic dye degradation and hydrogen release. Ceramics International, 2014, 40, 1553-1559. CTAB-assisted synthesis and characterization of Bi2WO6 photocatalysts grown from WO3·0.33H2O 791 0.9 15 nanoplate precursors. Monatshefte FÃ1/4r Chemie, 2014, 145, 47-59. Prospects for increasing the efficiency of water photodecomposition on inorganic semiconductors. 792 0.1 Russian Journal of Physical Chemistry A, 2014, 88, 181-191. Decomposition of a cyanine dye in binary nanosheet colloids of photocatalytically active niobate and 793 1.7 11 inert clay. Journal of Materials Science, 2014, 49, 915-922. Mesoporous materials for clean energy technologies. Chemical Society Reviews, 2014, 43, 7681-7717. 794 18.7 Tantalum-based semiconductors for solar water splitting. Chemical Society Reviews, 2014, 43, 795 18.7 421 4395-4422. Metal–organic frameworks MIL-88A hexagonal microrods as a new photocatalyst for efficient 796 1.6 231 decolorization of methylene blue dye. Dalton Transactions, 2014, 43, 3792-3798 Enhanced Photocatalytic Hydrogen Evolution over Hierarchical Composites of ZnIn₂S₄ Nanosheets Grown on MoS₂ Slices. Chemistry - an Asian 797 1.7 57 Journal, 2014, 9, 1291-1297. Highly efficient light-induced hydrogen evolution from a stable Pt/CdS NPs-co-loaded hierarchically 798 24 porous zeolite beta. Applied Cátalysis B: Environmental, 2014, 152-153, 271-279. Novel synthesis of rutile titanium dioxideâ€"polypyrrole nano composites and their application in 799 2.1 25 hydrogen generation. Synthetic Metals, 2014, 189, 77-85. Double heterojunction nanowire photocatalysts for hydrogen generation. Nanoscale, 2014, 6, 2.8 4117-4124.

# 801	ARTICLE Nitrogenâ€Doped Graphene Oxide Quantum Dots as Photocatalysts for Overall Water‧plitting under Visible Light Illumination. Advanced Materials, 2014, 26, 3297-3303.	IF 11.1	Citations 749
802	S-doped ZnO nanorods on stainless-steel wire mesh as immobilized hierarchical photocatalysts for photocatalytic H 2 production. International Journal of Hydrogen Energy, 2014, 39, 16524-16533.	3.8	66
803	Dynamical Investigations of Inhomogeneous Vibrational Broadening in Diluted Magnetic Semiconductor Nanocrystals. Journal of Physical Chemistry C, 2014, 118, 3266-3273.	1.5	6
804	Synthesis of Monodispere Au@Co ₃ O ₄ Coreâ€Shell Nanocrystals and Their Enhanced Catalytic Activity for Oxygen Evolution Reaction. Advanced Materials, 2014, 26, 3950-3955.	11.1	418
805	New Visible Light Absorbing Materials for Solar Fuels, Ga(Sb _{<i>x</i>})N _{1â~²<i>x</i>} . Advanced Materials, 2014, 26, 2878-2882.	11.1	30
806	A novel 3D structured reduced graphene oxide/TiO ₂ composite: synthesis and photocatalytic performance. Journal of Materials Chemistry A, 2014, 2, 3605-3612.	5.2	59
807	Hydrothermal-synthesized SrTiO3 photocatalyst codoped with rhodium and antimony with visible-light response for sacrificial H2 and O2 evolution and application to overall water splitting. Applied Catalysis B: Environmental, 2014, 150-151, 187-196.	10.8	131
808	Photocatalytic properties of rutile TiO ₂ powder for overall water splitting. Catalysis Science and Technology, 2014, 4, 1949-1953.	2.1	49
809	Reduced Graphene Oxide/InGaZn Mixed Oxide Nanocomposite Photocatalysts for Hydrogen Production. ChemSusChem, 2014, 7, 585-597.	3.6	38
810	Photocatalytic Water Splitting under Visible Light by Mixed-Valence Sn ₃ O ₄ . ACS Applied Materials & Interfaces, 2014, 6, 3790-3793.	4.0	148
811	Preparation by Solvothermal Synthesis, Growth Mechanism, and Photocatalytic Performance of CuS Nanopowders. European Journal of Inorganic Chemistry, 2014, 2014, 2368-2375.	1.0	56
812	Copper-Organic/Octamolybdates: Structures, Bandgap Sizes, and Photocatalytic Activities. Inorganic Chemistry, 2014, 53, 3464-3470.	1.9	35
813	Bottom-up synthesis of high surface area mesoporous crystalline silicon and evaluation of its hydrogen evolution performance. Nature Communications, 2014, 5, 3605.	5.8	212
814	Synthesis and photocatalytic activity of graphene based doped TiO2 nanocomposites. Applied Surface Science, 2014, 319, 8-15.	3.1	102
815	Photoelectrochemical Water Splitting at Semiconductor Electrodes: Fundamental Problems and New Perspectives. ChemPhysChem, 2014, 15, 1983-1995.	1.0	139
816	Synthesis of a 3D network of Pt nanowires by atomic layer deposition on a carbonaceous template. Nanoscale, 2014, 6, 6939.	2.8	14
817	Leaf-inspired hierarchical porous CdS/Au/N-TiO2 heterostructures for visible light photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2014, 147, 221-228.	10.8	80
818	Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity. Advanced Functional Materials, 2014, 24, 2421-2440.	7.8	1,293

#	Article	IF	CITATIONS
819	A new type of carbon nitride-based polymer composite for enhanced photocatalytic hydrogen production. Chemical Communications, 2014, 50, 6762-6764.	2.2	86
820	Self-doped Ti3+@TiO2 visible light photocatalyst: Influence of synthetic parameters on the H2 production activity. International Journal of Hydrogen Energy, 2014, 39, 711-717.	3.8	60
821	Combined XPS and first principles study of double-perovskite Ca2GdTaO6. Journal of Materials Science, 2014, 49, 819-826.	1.7	16
822	Non-metal doping of transition metal oxides for visible-light photocatalysis. Catalysis Today, 2014, 225, 111-135.	2.2	311
823	Cosubstituting effects of copper(I) and gallium(III) for ZnGa2S4 with defect chalcopyrite structure on photocatalytic activity for hydrogen evolution. Journal of Catalysis, 2014, 310, 31-36.	3.1	32
824	Photocatalytic materials: recent achievements and near future trends. Journal of Materials Chemistry A, 2014, 2, 2863-2884.	5.2	387
825	A tellurium-substituted Lindqvist-type polyoxoniobate showing high H ₂ evolution catalyzed by tellurium nanowires via photodecomposition. Chemical Communications, 2014, 50, 836-838.	2.2	61
826	Preparation and photocatalytic activity of Ag/bamboo-type TiO2 nanotube composite electrodes for methylene blue degradation. Materials Science in Semiconductor Processing, 2014, 25, 43-51.	1.9	22
827	Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chemical Society Reviews, 2014, 43, 7787-7812.	18.7	2,125
828	Colloidal hybrid heterostructures based on Il–VI semiconductor nanocrystals for photocatalytic hydrogen generation. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 19, 52-61.	5.6	67
829	A visible light responsive rhodium and antimony-codoped SrTiO ₃ powdered photocatalyst loaded with an IrO ₂ cocatalyst for solar water splitting. Chemical Communications, 2014, 50, 2543-2546.	2.2	202
830	Assessing capability of semiconductors to split water using ionization potentials and electron affinities only. Physical Chemistry Chemical Physics, 2014, 16, 3706.	1.3	226
831	Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale, 2014, 6, 2009.	2.8	987
832	Efficient and stable photocatalytic hydrogen production from water splitting over ZnxCd1–xS solid solutions under visible light irradiation. International Journal of Hydrogen Energy, 2014, 39, 1630-1639.	3.8	68
833	Optical and magnetic properties of Fe2O3 nanoparticles synthesized by laser ablation/fragmentation technique in different liquid media. Applied Surface Science, 2014, 289, 462-471.	3.1	78
834	Low temperature crystallization of yttrium orthoferrite by organic acid-assisted sol–gel synthesis. Materials Letters, 2014, 114, 136-139.	1.3	10
835	Enhanced visible-light-driven photocatalytic hydrogen generation over g-C3N4 through loading the noble metal-free NiS2 cocatalyst. RSC Advances, 2014, 4, 6127.	1.7	136
836	The nature of vertical excited states of dyes containing metals for DSSC applications: insights from TD-DFT and density based indexes. Physical Chemistry Chemical Physics, 2014, 16, 14435.	1.3	57

#	Article	IF	CITATIONS
837	Hetero-structured semiconductor nanomaterials for photocatalytic applications. Journal of Industrial and Engineering Chemistry, 2014, 20, 363-371.	2.9	65
838	Four Polyoxonibate-Based Inorganic–Organic Hybrids Assembly from Bicapped Heteropolyoxonibate with Effective Antitumor Activity. Crystal Growth and Design, 2014, 14, 110-116.	1.4	85
839	Enhancement of Photocatalytic Water Oxidation by the Morphological Control of LaTiO ₂ N and Cobalt Oxide Catalysts. Journal of Physical Chemistry C, 2014, 118, 16344-16351.	1.5	82
840	Monodisperse CuS nanodisks: low-temperature solvothermal synthesis and enhanced photocatalytic activity. RSC Advances, 2014, 4, 59185-59193.	1.7	17
841	Electrocatalysis of Water Oxidation by H ₂ Oâ€Capped Iridiumâ€Oxide Nanoparticles Electrodeposited on Spectroscopic Graphite. ChemPhysChem, 2014, 15, 2844-2850.	1.0	8
843	Theoretical Characterization of Conduction-Band Electrons in Photodoped and Aluminum-Doped Zinc Oxide (AZO) Quantum Dots. Journal of Physical Chemistry C, 2014, 118, 26584-26590.	1.5	31
844	TiO2 functionalization for efficient NOx removal in photoactive cement. Applied Surface Science, 2014, 319, 29-36.	3.1	44
846	Facile synthesis of uniform ZnxCd1â^'xS alloyed hollow nanospheres for improved photocatalytic activities. Journal of Materials Science: Materials in Electronics, 2014, 25, 4103-4109.	1.1	18
847	Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion. Energy and Environmental Science, 2014, 7, 3934-3951.	15.6	470
848	Excellent Sun-Light-Driven Photocatalytic Activity by Aurivillius Layered Perovskites, Bi _{5–<i>x</i>} La _{<i>x</i>} Ti ₃ FeO ₁₅ (<i>x</i> = 1, 2). ACS Applied Materials & amp; Interfaces, 2014, 6, 21000-21010.	4.0	91
849	Effective Enhancement of TiO ₂ Photocatalysis by Synergistic Interaction of Surface Species: From Promoters to Co-catalysts. ACS Catalysis, 2014, 4, 4277-4288.	5.5	37
850	Synthesis and characterization of nanoporous Bi3NbO7films: application to photoelectrochemical water splitting. RSC Advances, 2014, 4, 10542-10548.	1.7	11
851	Limiting factors for photochemical charge separation in BiVO ₄ /Co ₃ O ₄ , a highly active photocatalyst for water oxidation in sunlight. Journal of Materials Chemistry A, 2014, 2, 9405-9411.	5.2	118
852	Synthesis, crystal structure and photocatalytic properties of an unprecedented arsenic-disubstituted Lindqvist-type peroxopolyoxoniobate ion: {As ₂ Nb ₄ (O ₂) ₄ O ₁₄ H _{1.5} } ^{4.5 Dalton Transactions, 2014, 43, 9843-9846.}	â ^{1,6} /sup>.	34
853	Graphene oxide based BCNO hybrid nanostructures: tunable band gaps for full colour white emission. RSC Advances, 2014, 4, 26855-26860.	1.7	22
854	Assembling model tris(bipyridine)ruthenium(<scp>ii</scp>) photosensitizers into ordered monolayers in the presence of the polyoxometallate anion [Co ₄ (H ₂ O) ₂ (α-PW ₉ O ₃₄) ₂] ^{ RSC Advances, 2014, 4, 11766-11775.}	10a^^ <td>o≯.</td>	o≯.
855	Insight into band positions and inter-particle electron transfer dynamics between CdS nanoclusters and spatially isolated TiO ₂ dispersed in cubic MCM-48 mesoporous materials: a highly efficient system for photocatalytic hydrogen evolution under visible light illumination. Physical Chemistry Chemical Physics, 2014, 16, 2048-2061.	1.3	17
856	Genesis of enhanced photoactivity of CdS/Ni x nanocomposites for visible-light-driven splitting ofÂwater. International Journal of Hydrogen Energy, 2014, 39, 19424-19433.	3.8	40

	Cı	TATION REPORT	
#	Article	IF	CITATIONS
857	Use of potential determining ions to control energetics and photochemical charge transfer of a nanoscale water splitting photocatalyst. Energy and Environmental Science, 2014, 7, 736-743.	15.6	25
858	Spin density distribution after electron transfer from triethylamine to an [Ir(ppy)2(bpy)]+ photosensitizer during photocatalytic water reduction. Physical Chemistry Chemical Physics, 2014, 1 4789.	6, 1.3	40
859	Trapped State Sensitive Kinetics in LaTiO ₂ N Solid Photocatalyst with and without Cocatalyst Loading. Journal of the American Chemical Society, 2014, 136, 17324-17331.	6.6	70
860	A ferroelectric photocatalyst for enhancing hydrogen evolution: polarized particulate suspension. Physical Chemistry Chemical Physics, 2014, 16, 10408-10413.	1.3	95
861	Supersonic aerosol-deposited TiO ₂ photoelectrodes for photoelectrochemical solar water splitting. RSC Advances, 2014, 4, 8661-8670.	1.7	24
862	Octahedral-shaped perovskite nanocrystals and their visible-light photocatalytic activity. Chemical Communications, 2014, 50, 6027-6030.	2.2	26
863	A biomimetic photoelectrochemical device from a molecular heterometallic sodium–manganese wa splitting catalyst. Inorganic Chemistry Frontiers, 2014, 1, 705-711.	ater 3.0	4
864	Speciation of Cr(<scp>iii</scp>) in intermediate phases during the sol–gel processing of Cr-doped SrTiO ₃ powders. Journal of Materials Chemistry A, 2014, 2, 6138-6145.	5.2	18
865	Highly efficient photocatalytic hydrogen evolution by nickel phosphide nanoparticles from aqueous solution. Chemical Communications, 2014, 50, 10427.	2.2	175
866	Synergetic effect of polyoxoniobate and NiS as cocatalysts for enhanced photocatalytic H2 evolution on Cd0.65Zn0.35S. RSC Advances, 2014, 4, 21369.	1.7	16
867	Electrodeposition of Ni-doped FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting. Journal of Materials Chemistry A, 2014, 2, 14957.	5.2	88
868	High-efficiency water oxidation and energy storage utilizing various reversible redox mediators under visible light over surface-modified WO3. RSC Advances, 2014, 4, 8308-8316.	1.7	29
869	Green synthesis of flower-like Bi2WO6microspheres as a visible-light-driven photocatalyst. New Journal of Chemistry, 2014, 38, 1973-1979.	1.4	32
870	Platinum and indium sulfide-modified CuInS ₂ as efficient photocathodes for photoelectrochemical water splitting. Chemical Communications, 2014, 50, 8941-8943.	2.2	98
871	Thermal structural characterization of the acentric layered perovskite LiHSrTa ₂ O ₇ : X-ray and neutron diffraction, SHG and Raman experiments. Dalton Transactions, 2014, 43, 14841-14850.	1.6	3
872	Ion-exchange preparation for visible-light-driven photocatalyst AgBr/Ag2CO3 and its photocatalytic activity. RSC Advances, 2014, 4, 9139.	1.7	43
873	High alkalinity boosts visible light driven H ₂ evolution activity of g-C ₃ N ₄ in aqueous methanol. Chemical Communications, 2014, 50, 15521	1-15524. ^{2.2}	69
874	Temperature-dependent photocatalytic hydrogen evolution activity from water on a dye-sensitized layered titanate. Physical Chemistry Chemical Physics, 2014, 16, 3520.	1.3	11

#	Article	IF	CITATIONS
875	Structural, optical, and selective ethanol sensing properties of p-type semiconducting CoNb2O6 nanopowder. Sensors and Actuators B: Chemical, 2014, 205, 289-297.	4.0	31
876	Syntheses, structures and photocatalytic properties of five new praseodymium–antimony oxochlorides: from discrete clusters to 3D inorganic–organic hybrid racemic compounds. Dalton Transactions, 2014, 43, 10064-10073.	1.6	14
877	The electronic structure of silver orthophosphate: experiment and theory. Journal of Materials Chemistry A, 2014, 2, 6092-6099.	5.2	21
878	Electronic Structure and Photoelectrochemical Properties of an Ir-Doped SrTiO ₃ Photocatalyst. Journal of Physical Chemistry C, 2014, 118, 20222-20228.	1.5	63
879	Pt deposited TiO2 catalyst fabricated by thermal decomposition of titanium complex for solar hydrogen production. Solid State Sciences, 2014, 38, 18-24.	1.5	5
880	Enhanced H ₂ Generation of Auâ€Loaded, Nitrogenâ€Doped TiO ₂ Hierarchical Nanostructures under Visible Light. Advanced Materials Interfaces, 2014, 1, 1300018.	1.9	67
881	Fabrication of photocatalyst panels and the factors determining their activity for water splitting. Catalysis Science and Technology, 2014, 4, 325-328.	2.1	40
882	A Bismuth Vanadate–Cuprous Oxide Tandem Cell for Overall Solar Water Splitting. Journal of Physical Chemistry C, 2014, 118, 16959-16966.	1.5	226
883	Advanced chemical compositions and nanoarchitectures of bismuth based complex oxides for solar photocatalytic application. RSC Advances, 2014, 4, 47136-47152.	1.7	132
884	Contrasting ion-association behaviour of Ta and Nb polyoxometalates. Dalton Transactions, 2014, 43, 15295-15299.	1.6	55
885	Diameter Dependent Electron Transfer Kinetics in Semiconductor–Enzyme Complexes. ACS Nano, 2014, 8, 10790-10798.	7.3	32
886	Copper Deficiency in the p-Type Semiconductor Cu _{1–<i>x</i>} Nb ₃ 0 ₈ . Chemistry of Materials, 2014, 26, 2095-2104.	3.2	35
887	Photocatalytic H ₂ Evolution from Water–Methanol System by Anisotropic InFeO ₃ (ZnO) _{<i>m</i>} Oxides without Cocatalyst in Visible Light. ACS Applied Materials & Interfaces, 2014, 6, 12321-12327.	4.0	12
888	Ten-percent solar-to-fuel conversion with nonprecious materials. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14057-14061.	3.3	262
889	Photocatalytic generation of solar fuels from the reduction of H ₂ O and CO ₂ : a look at the patent literature. Physical Chemistry Chemical Physics, 2014, 16, 19790.	1.3	100
890	Improved overall water splitting with barium tantalate mixed oxide composites. Chemical Science, 2014, 5, 3746-3752.	3.7	49
891	Critical Role of the Semiconductor–Electrolyte Interface in Photocatalytic Performance for Water-Splitting Reactions Using Ta ₃ N ₅ Particles. Chemistry of Materials, 2014, 26, 4812-4825.	3.2	98
892	Advanced Charge Utilization from NaTaO3 Photocatalysts by Multilayer Reduced Graphene Oxide. Chemistry of Materials, 2014, 26, 4705-4711.	3.2	27

ARTICLE IF CITATIONS # Effect of Excited-State Structural Relaxation on Midgap Excitations in Co²⁺-Doped ZnO 893 1.5 19 Quantum Dots. Journal of Physical Chemistry C, 2014, 118, 13152-13156. Boosting the Efficiency of Suspended Photocatalysts for Overall Water Splitting. Journal of Physical 894 2.1 Chemistry Letters, 2014, 5, 2510-2511. A Novel Sr2CuInO3S p-type semiconductor photocatalyst for hydrogen production under visible light 895 7.1 47 irradiation. Journal of Energy Chemistry, 2014, 23, 420-426. Enabling Silicon for Solar-Fuel Production. Chemical Reviews, 2014, 114, 8662-8719. 896 329 F, Ca co-doped TiO₂nanocrystals with enhanced photocatalytic activity. Dalton 897 1.6 28 Transactions, 2014, 43, 16160-16163. 898 Materials and Processes for Solar Fuel Production. Nanostructure Science and Technology, 2014, , . 0.1 Adsorption of Colloidal Platinum Nanoparticles to Supports: Charge Transfer and Effects of 899 1.6 81 Electrostatic and Steric Interactions. Langmuir, 2014, 30, 11928-11936. Nanoporous sulfur-doped graphitic carbon nitride microrods: A durable catalyst for 900 3.8 128 visible-light-driven H 2 evolution. International Journal of Hydrogen Energy, 2014, 39, 15373-15379. Band gap engineering of SrTiO 3 for water splitting under visible light irradiation. International 901 3.8 79 Journal of Hydrogen Energy, 2014, 39, 12507-12514. Enhancing Photocatalytic Activity of LaTiO₂N by Removal of Surface Reconstruction 4.5 129 Layer. Nano Letters, 2014, 14, 1038-1041. Copper-based water reduction catalysts for efficient light-driven hydrogen generation. Journal of 903 4.8 20 Molecular Catalysis A, 2014, 395, 449-456. Agl Microplate Monocrystals with Polar {0001} Facets: Spontaneous Photocarrier Separation and 904 Enhanced Photocatalytic Activity. Chemistry - A European Journal, 2014, 20, 2637-2645. Thermally-induced desulfurization and conversion of guanidine thiocyanate into graphitic carbon nitride catalysts for hydrogen photosynthesis. Journal of Materials Chemistry A, 2014, 2, 2942. 905 5.2 183 Identifying Potential BO₂ Oxide Polymorphs for Epitaxial Growth Candidates. ACS Applied 906 4.0 26 Materials & amp; Interfaces, 2014, 6, 3630-3639. NiTi-Layered double hydroxides nanosheets as efficient photocatalysts for oxygen evolution from 907 250 3.7 water using visible light. Chemical Science, 2014, 5, 951-958. Tetragonal tungsten bronze-type nanorod photocatalysts with tunnel structures: Ta substitution for 908 33 Nb and overall water splitting. Journal of Materials Chémistry A, 2014, 2, 8815-8822. G–C3N4/BiVO4 composites with enhanced and stable visible light photocatalytic activity. Journal of 909 2.8 124 Alloys and Compounds, 2014, 590, 9-14. One-pot synthesis of ZnO decorated with AgBr nanoparticles and its enhanced photocatalytic 910 1.3 properties. CrystEngComm, 2014, 16, 2652

# 911	ARTICLE Photocatalytic activity of TiO2-MO x composites in the reaction of hydrogen generation from aqueous isopropanol solution. Russian Journal of General Chemistry, 2014, 84, 611-616.	IF 0.3	Citations
912	Photocatalytic Decomposition of Gas-Phase Chlorobenzene with Transition Metal–Doped KLaTi2O6 Under Visible Light Irradiation. Environmental Engineering Science, 2014, 31, 1-8.	0.8	12
913	Amorphous FeOOH Oxygen Evolution Reaction Catalyst for Photoelectrochemical Water Splitting. Journal of the American Chemical Society, 2014, 136, 2843-2850.	6.6	524
914	Substoichiometric two-dimensional molybdenum oxide flakes: a plasmonic gas sensing platform. Nanoscale, 2014, 6, 12780-12791.	2.8	77
915	Bismuth Oxybromide with Reasonable Photocatalytic Reduction Activity under Visible Light. ACS Catalysis, 2014, 4, 954-961.	5.5	300
916	The Role of Surface States in the Oxygen Evolution Reaction on Hematite. Angewandte Chemie - International Edition, 2014, 53, 13404-13408.	7.2	128
917	Electron- and Energy-Transfer Processes in a Photocatalytic System Based on an Ir(III)-Photosensitizer and an Iron Catalyst. Journal of Physical Chemistry Letters, 2014, 5, 1355-1360.	2.1	44
918	Visible-light driven photocatalyst (Er 3+ :YAlO 3 /Pt–NaTaO 3) for hydrogen production from water splitting. International Journal of Hydrogen Energy, 2014, 39, 17608-17616.	3.8	20
919	Engineering nanointerfaces for nanocatalysis. Chemical Society Reviews, 2014, 43, 7870-7886.	18.7	255
920	Enhanced photocatalytic hydrogen production activity via dual modification of MOF and reduced graphene oxide on CdS. Chemical Communications, 2014, 50, 8533.	2.2	212
921	Preparation and characterizations of Cu2O/reduced graphene oxide nanocomposites with high photo-catalytic performances. Powder Technology, 2014, 261, 42-48.	2.1	120
922	Photocatalytic hydrogen production over carbon nitride loaded with WS2 as cocatalyst under visible light. Applied Catalysis B: Environmental, 2014, 156-157, 122-127.	10.8	179
923	Activation of MCM-41 mesoporous silica by transition-metal incorporation for photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2014, 150-151, 138-146.	10.8	67
924	High visible-photoactivity of spherical Cd0.5Zn0.5S coupled with graphene composite for decolorizating organic dyes. Journal of Alloys and Compounds, 2014, 609, 46-53.	2.8	21
925	Photocatalytic hydrogen production over various sodium tantalates. Catalysis Today, 2014, 225, 142-148.	2.2	28
926	Electrospun CdS–TiO2 doped carbon nanofibers for visible-light-induced photocatalytic hydrolysis of ammonia borane. Catalysis Communications, 2014, 50, 63-68.	1.6	68
927	Highly active SrTiO3 for visible light photocatalysis: A first-principles prediction. Solid State Communications, 2014, 181, 5-8.	0.9	24
928	Optical, structural and photoelectrochemical properties of CdS1â^²xSex semiconductor films produced by chemical bath deposition. International Journal of Hydrogen Energy, 2014, 39, 3517-3527.	3.8	45

ARTICLE IF CITATIONS Optical Properties of Metal–Molybdenum Disulfide Hybrid Nanosheets and Their Application for 929 7.3 92 Enhanced Photocatalytic Hydrogen Evolution. ACS Nano, 2014, 8, 6979-6985. Long-term investigation of the photocatalytic hydrogen production on platinized TiO2: an isotopic 15.6 study. Energy and Environmental Science, 2014, 7, 1420. A review on selected heterogeneous photocatalysts for hydrogen production. International Journal 931 2.2 148 of Energy Research, 2014, 38, 1903-1920. Relative Stability of F-Covered TiO₂ Anatase (101) and (001) Surfaces from Periodic DFT Calculations and ab Initio Atomistic Thermodynamics. Journal of Physical Chemistry C, 2014, 118, 13667-13673. Superior H₂production by hydrophilic ultrafine Ta₂O₅engineered 933 1.3 16 covalently on graphene. Nanotechnológy, 2014, 25, 215401. Semiconductors Used in Photovoltaic and Photocatalytic Devices: Assessing Fundamental Properties from DFT. Journal of Physical Chemistry C, 2014, 118, 5997-6008. 934 1.5 239 Photochemical splitting of water for hydrogen production by photocatalysis: A review. Solar Energy 935 3.0 578 Materials and Solar Cells, 2014, 128, 85-101. Sustainable solar hydrogen production: from photoelectrochemical cells to PV-electrolyzers and 936 15.6 179 back again. Energy and Environmental Science, 2014, 7, 2056-2070. Plasmonic Ag deposited TiO₂nano-sheet film for enhanced photocatalytic hydrogen 937 1.3 106 production by water splitting. Nanotechnology, 2014, 25, 165401. Influence of Surface States on the Evaluation of the Flat Band Potential of TiO₂. ACS Applied Materials & amp; Interfaces, 2014, 6, 2401-2406. Photocatalytic properties of lanthanide tungstates Ln2W2O9 (Ln=La, Pr, Nd, Sm, and Gd). Journal of 939 1.9 14 Physics and Chemistry of Solids, 2014, 75, 486-490. Improved photocatalytic hydrogen production property over Ni/NiO/N–TiO2â" x heterojunction 940 nanocomposite prepared by NH3 plasma treatment. Journal of Power Sources, 2014, 250, 30-39. Molecular doping of carbon nitride photocatalysts with tunable bandgap and enhanced activity. 941 3.1 276 Journal of Catalysis, 2014, 310, 24-30. Nanostructure sensitization of transition metal oxides for visible-light photocatalysis. Beilstein 942 1.5 Journal of Nanotechnology, 2014, 5, 696-710. Preparation and Use of Photocatalytically Active Segmented Ag | ZnO and Coaxial TiO₂-Ag 943 0.2 0 Nanowires Made by Templated Electrodeposition. Journal of Visualized Experiments, 2014, , . Enhanced photoactivity in nitrogenâ€doped KM 0.33 W 1.67 O 6 (M = Al and Cr). Micro and Nano Letters, 944 2014, 9, 11-15. Newly developed TiO2-2-HABT functional material for water treatment. Emerging Materials Research, 945 0.4 2 2014, 3, 31-36. Hydrogen Generation by Graphene Oxideâ€"Alkylamine Hybrids through Photocatalytic Water Splitting. 946 Chemistry Letters, 2014, 43, 486-488.

#	Article	IF	CITATIONS
947	Deposition of plasmonic silver nanoparticles onto semiconducting oxide nanosheets and their photochromic behavior. Journal of the Ceramic Society of Japan, 2015, 123, 809-812.	0.5	2
948	Photoelectrocatalytic activity of flexible PEDOT–PSS/silicon carbide nanowire films. RSC Advances, 2015, 5, 99143-99147.	1.7	12
949	Redox levels in aqueous solution: Effect of van der Waals interactions and hybrid functionals. Journal of Chemical Physics, 2015, 143, 244508.	1.2	62
950	Multifunctional Single-Phase Photocatalysts: Extended Near Infrared Photoactivity and Reliable Magnetic Recyclability. Scientific Reports, 2015, 5, 15511.	1.6	28
951	Characterization of Baddeleyite-structure NbON Films Deposited by RF Reactive Sputtering for Solar Hydrogen Production Devices. Electrochemistry, 2015, 83, 711-714.	0.6	12
953	Group III-nitride nanowire structures for photocatalytic hydrogen evolution under visible light irradiation. APL Materials, 2015, 3, .	2.2	42
954	Nickelâ€Containing Kegginâ€Type Polyoxometalates as Hydrogen Evolution Catalysts: Photochemical Structure–Activity Relationships. ChemPlusChem, 2015, 80, 1389-1398.	1.3	45
955	Defect pyrochlore oxides: as photocatalyst materials for environmental and energy applications ―a review. Journal of Chemical Technology and Biotechnology, 2015, 90, 1937-1948.	1.6	63
956	Enhanced photoelectrocatalytic performance of α-Fe2O3 thin films by surface plasmon resonance of Au nanoparticles coupled with surface passivation by atom layer deposition of Al2O3. Nanoscale Research Letters, 2015, 10, 374.	3.1	26
957	Bipolar Carrier Transfer Channels in Epitaxial Graphene/SiC Core–Shell Heterojunction for Efficient Photocatalytic Hydrogen Evolution. Advanced Materials, 2015, 27, 7986-7991.	11.1	42
958	An Amorphous Carbon Nitride Photocatalyst with Greatly Extended Visibleâ€Lightâ€Responsive Range for Photocatalytic Hydrogen Generation. Advanced Materials, 2015, 27, 4572-4577.	11.1	771
959	High Throughput Discovery of Solar Fuels Photoanodes in the CuO–V ₂ O ₅ System. Advanced Energy Materials, 2015, 5, 1500968.	10.2	82
960	Magnetic effects in Mn-doped CdSe nanocrystals. Physica Status Solidi (B): Basic Research, 2015, 252, 2275-2279.	0.7	11
961	Assessing Rare Metal Availability Challenges for Solar Energy Technologies. Sustainability, 2015, 7, 11818-11837.	1.6	49
962	Optimisation of the Photonic Efficiency of TiO2 Decorated on MWCNTs for Methylene Blue Photodegradation. PLoS ONE, 2015, 10, e0125511.	1.1	9
964	Pt atoms adsorbed on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>TiO</mml:mi><mml:r with noncontact atomic force microscopy and first-principles simulations. Physical Review B, 2015, 91,</mml:r </mml:msub></mml:mrow></mml:math 	nn>21.1	nl:mn>
965	Visible light induced hydrogen production over thiophenothiazine-based dye sensitized TiO ₂ photocatalyst in neutral water. RSC Advances, 2015, 5, 31415-31421.	1.7	47
966	Synthesis of g-C ₃ N ₄ /Bi ₂ O ₃ /TiO ₂ composite nanotubes: enhanced activity under visible light irradiation and improved photoelectrochemical activity. RSC Advances, 2015, 5, 48983-48991.	1.7	65

# 967	ARTICLE Enhancement of visible light photocatalytic activity of tantalum oxynitride and tantalum nitride by coupling with bismuth oxide; an example of composite photocatalysis. Materials Research Society Symposia Proceedings, 2015, 1738, 13.	IF 0.1	Citations 3
968	Enhanced photoelectrochemical performance of CdSe quantum dot sensitized SrTiO ₃ . Journal of Materials Chemistry A, 2015, 3, 13476-13482.	5.2	27
969	Efficient charge separation based on type-II g-C ₃ N ₄ /TiO ₂ -B nanowire/tube heterostructure photocatalysts. Dalton Transactions, 2015, 44, 13030-13039.	1.6	69
970	Transforming MoO3 macrorods into bismuth molybdate nanoplates via the surfactant-assisted hydrothermal method. Ceramics International, 2015, 41, 11471-11481.	2.3	18
972	Solar Photoelectrochemical Water Splitting with Bioconjugate and Bio-Hybrid Electrodes. , 2015, , 125-147.		1
973	Modified Graphitic Carbon Nitrides for Photocatalytic Hydrogen Evolution from Water. , 2015, , .		6
974	Two-dimensional transition metal dichalcogenide nanomaterials for solar water splitting. Electronic Materials Letters, 2015, 11, 323-335.	1.0	93
975	BiOBr/protonated graphitic C3N4 heterojunctions: Intimate interfaces by electrostatic interaction and enhanced photocatalytic activity. Journal of Alloys and Compounds, 2015, 634, 215-222.	2.8	159
976	Modification of polyamide-CdS-CdSe composite material films with Ag using a cation–cation exchange reaction. Applied Surface Science, 2015, 351, 203-208.	3.1	4
977	Band gap engineering of Ba5Nb4O15 for efficient water splitting under visible light. Journal of Alloys and Compounds, 2015, 644, 757-762.	2.8	11
978	Z-scheme water splitting under visible light irradiation over powdered metal-complex/semiconductor hybrid photocatalysts mediated by reduced graphene oxide. Journal of Materials Chemistry A, 2015, 3, 13283-13290.	5.2	65
979	Electrosprayed heterojunction WO3/BiVO4 films with nanotextured pillar structure for enhanced photoelectrochemical water splitting. Applied Physics Letters, 2015, 106, .	1.5	49
980	Alkyne substituted mononuclear photocatalysts based on [RuCl(bpy)(tpy)] ⁺ . Dalton Transactions, 2015, 44, 11368-11379.	1.6	10
981	A rational approach towards enhancing solar water splitting: a case study of Au–RGO/N-RGO–TiO2. Nanoscale, 2015, 7, 11206-11215.	2.8	83
982	Semiconductors for Photocatalytic and Photoelectrochemical Solar Water Splitting. , 2015, , 1-56.		5
983	Enhanced photocatalytic generation of hydrogen by Pt-deposited nitrogen-doped TiO2 hierarchical nanostructures. Applied Surface Science, 2015, 354, 347-352.	3.1	44
984	Band alignment and enhanced photocatalytic activation for α-Bi2O3/BiOCl (0 0 1) core–shell heterojunction. Journal of Molecular Catalysis A, 2015, 406, 145-151.	4.8	66
985	BiOCl/SnS ₂ hollow spheres for the photocatalytic degradation of waste water. RSC Advances, 2015, 5, 107088-107097.	1.7	30

		CITATION REI	PORT	
#	Article		IF	CITATIONS
986	A faradaic impedance study on the kinetic properties of water photosplitting at illuminated TiO2/solution interface. Journal of Solid State Electrochemistry, 2015, 19, 3411-3423.		1.2	5
987	Fabrication of the heterostructured CsTaWO6/Au/g-C3N4 hybrid photocatalyst with enhance performance of photocatalytic hydrogen production from water. Applied Surface Science, 2 252-260.	ed 015, 358,	3.1	55
988	Investigating the Energetic Ordering of Stable and Metastable TiO ₂ Polymorph DFT+ <i>U</i> and Hybrid Functionals. Journal of Physical Chemistry C, 2015, 119, 21060-22	ls Using 1071.	1.5	81
989	Influence of Self-Assembling Redox Mediators on Charge Transfer at Hydrophobic Electrode Langmuir, 2015, 31, 10638-10648.	5.	1.6	7
990	Transition Metal-Doped Semiconductor Quantum Dots: Tunable Emission. ACS Symposium 117-135.	Series, 2015, ,	0.5	2
991	A facile strategy to fabricate plasmonic Au/TiO2 nano-grass films with overlapping visible light-harvesting structures for H2 production from water. Journal of Materials Science, 2015 2298-2305.	, 50,	1.7	47
992	Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photoca hydrogen production. Nature Communications, 2015, 6, 5881.	italytic	5.8	653
993	Z-Schematic Water Splitting into H ₂ and O ₂ Using Metal Sulfide Hydrogen-Evolving Photocatalyst and Reduced Graphene Oxide as a Solid-State Electron Me Journal of the American Chemical Society, 2015, 137, 604-607.		6.6	467
994	First-principles study of electronic structure and photocatalytic properties of MnNiO _{3 an alkaline oxygen-evolution photocatalyst. Chemical Communications, 2015, 51, 2867-287}		2.2	13
995	Visible light photocatalysis by in situ growth of plasmonic Ag nanoparticles upon AgTaO3. International Journal of Hydrogen Energy, 2015, 40, 3672-3678.		3.8	45
996	Coupling of piezoelectric effect with electrochemical processes. Nano Energy, 2015, 14, 29	6-311.	8.2	153
997	Silica–Titania Composite Aerogel Photocatalysts by Chemical Liquid Deposition of Titania Nanoporous Silica Scaffolds. ACS Applied Materials & Interfaces, 2015, 7, 5400-5409.	onto	4.0	96
998	Phase dependent visible to near-infrared photoluminescence of CuInS ₂ nanocr Journal of Materials Chemistry C, 2015, 3, 3258-3265.	ystals.	2.7	32
999	NiO _x -Fe ₂ O ₃ -coated p-Si photocathodes for enhance splitting in neutral pH water. Nanoscale, 2015, 7, 4900-4905.	d solar water	2.8	17
1000	Structural, morphological and optical properties of sprayed nanocrystalline thin films of CdI solid solution. Electronic Materials Letters, 2015, 11, 46-54.	xZnxS	1.0	17
1001	Recent progress in enhancing solar-to-hydrogen efficiency. Journal of Power Sources, 2015, 649-666.	280,	4.0	112
1002	Optical, electronic, and photoelectrochemical properties of the p-type Cu _{3â^*x} VO ₄ semiconductor. Journal of Materials Chemistry A, 20 4501-4509.	15, 3,	5.2	75
1003	Electrostatically Assembled CdS-Co ₃ O ₄ Nanostructures for Photo Water Oxidation and Photocatalytic Reduction of Dye Molecules. Small, 2015, 11, 668-674		5.2	39

#	Article	IF	CITATIONS
1004	[M ₄ Sn ₄ Se ₁₇] ^{10–} Cluster Anions (M = Mn, Zn, Cd) in a Cs ⁺ Environment and as Ternary Precursors for Ionothermal Treatment. Inorganic Chemistry, 2015, 54, 1188-1190.	1.9	36
1005	Synergistic photocatalytic hydrogen evolution over oxide nanosheets combined with photochemically inert additives. Physical Chemistry Chemical Physics, 2015, 17, 5547-5550.	1.3	14
1006	Opportunities for Utilizing and Recycling CO2. , 2015, , 67-100.		6
1007	Mn ₂ V ₂ O ₇ : An Earth Abundant Light Absorber for Solar Water Splitting. Advanced Energy Materials, 2015, 5, 1401840.	10.2	61
1008	Enhancing Majority Carrier Transport in WO ₃ Water Oxidation Photoanode via Electrochemical Doping. Journal of the Electrochemical Society, 2015, 162, H65-H71.	1.3	56
1009	Fabrication of inorganic–organic core–shell heterostructure: novel CdS@g-C ₃ N ₄ nanorod arrays for photoelectrochemical hydrogen evolution. RSC Advances, 2015, 5, 14074-14080.	1.7	71
1010	Facile Synthesis and Enhanced Visible‣ight Photocatalysis of Graphitic Carbon Nitride Composite Semiconductors. ChemSusChem, 2015, 8, 1189-1196.	3.6	116
1011	Enhancement of visible-light photocatalytic activity of Pt supported potassium niobate (Pt-KNbO3) by up-conversion luminescence agent (Er3+:Y3Al5O12) for hydrogen evolution from aqueous methanol solution. Energy, 2015, 82, 72-79.	4.5	36
1012	Photochemical Charge Separation at Particle Interfaces: The n-BiVO ₄ –p-Silicon System. ACS Applied Materials & Interfaces, 2015, 7, 5959-5964.	4.0	43
1013	Construction of Visible-Light-Responsive SrTiO3 with Enhanced CO2 Adsorption Ability: Highly Efficient Photocatalysts for Artifical Photosynthesis. Catalysis Letters, 2015, 145, 640-646.	1.4	29
1014	TiO ₂ @Layered Double Hydroxide Core–Shell Nanospheres with Largely Enhanced Photocatalytic Activity Toward O ₂ Generation. Advanced Functional Materials, 2015, 25, 2243-2249.	7.8	223
1015	A bifunctional catalyst for hydrogen evolution reaction: The interactive influences between CdS and MoS2 on photoelectrochemical activity. International Journal of Hydrogen Energy, 2015, 40, 3813-3821.	3.8	23
1016	A composite photocatalyst of an organic electron donor–acceptor dyad and a Pt catalyst supported on semiconductor nanosheets for efficient hydrogen evolution from oxalic acid. Catalysis Science and Technology, 2015, 5, 428-437.	2.1	16
1017	Photocatalysis on Nanostructured Carbon Supported Catalysts. RSC Catalysis Series, 2015, , 412-444.	0.1	1
1018	Direct Imaging Single Methanol Molecule Photocatalysis on Titania. Journal of Physical Chemistry C, 2015, 119, 17748-17754.	1.5	37
1019	Enhanced photocatalytic H ₂ evolution over noble-metal-free NiS cocatalyst modified CdS nanorods/g-C ₃ N ₄ heterojunctions. Journal of Materials Chemistry A, 2015, 3, 18244-18255.	5.2	306
1020	Room temperature synthesis of an amorphous MoS ₂ based composite stabilized by N-donor ligands and its light-driven photocatalytic hydrogen production. RSC Advances, 2015, 5, 67742-67751.	1.7	14
1021	Investigation of the Electric Structures of Heterointerfaces in Pt- and In ₂ S ₃ -Modified CuInS ₂ Photocathodes Used for Sunlight-Induced Hydrogen Evolution. ACS Applied Materials & Interfaces, 2015, 7, 16086-16092.	4.0	61

#	Article	IF	CITATIONS
1022	Investigating the photo-oxidation of model indoor air pollutants using field asymmetric ion mobility spectrometry. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 312, 1-7.	2.0	10
1023	Solar Water Splitting Using Semiconductor Photocatalyst Powders. Topics in Current Chemistry, 2015, 371, 73-103.	4.0	52
1024	1,4-Bis(imidazole)butane ligand and strontium(<scp>ii</scp>) directed 1-D chains based on basket-type molybdophosphates and transition metal (TM) linkers. CrystEngComm, 2015, 17, 6110-6119.	1.3	14
1025	Fabrication of a Core–Shell-Type Photocatalyst via Photodeposition of Group IV and V Transition Metal Oxyhydroxides: An Effective Surface Modification Method for Overall Water Splitting. Journal of the American Chemical Society, 2015, 137, 9627-9634.	6.6	178
1026	Application of GO in Energy Conversion and Storage. SpringerBriefs in Physics, 2015, , 79-118.	0.2	0
1027	Particle suspension reactors and materials for solar-driven water splitting. Energy and Environmental Science, 2015, 8, 2825-2850.	15.6	344
1028	Photochemical charge transfer observed in nanoscale hydrogen evolving photocatalysts using surface photovoltage spectroscopy. Energy and Environmental Science, 2015, 8, 2970-2976.	15.6	74
1029	Assembly of a basket-like {Sr âŠ, P ₆ Mo ₁₈ O ₇₃ } cage from 0D dimmer to 2D network and its photo-/electro-catalytic properties. Dalton Transactions, 2015, 44, 12839-12851.	1.6	23
1030	Hierarchical graphene/CdS/Ag2S sandwiched nanofilms for photoelectrochemical water splitting. Electrochimica Acta, 2015, 176, 334-343.	2.6	28
1031	Sol–gel synthesis and characterization of α-Fe2O3 nanoparticles. Superlattices and Microstructures, 2015, 86, 306-312.	1.4	67
1032	Photocatalytic Hydrogen Production over Chromium Doped Layered Perovskite Sr ₂ TiO ₄ . Inorganic Chemistry, 2015, 54, 7445-7453.	1.9	84
1033	Structural and electronic investigations of PbTa4O11 and BiTa7O19 constructed from α-U3O8 types of layers. Journal of Solid State Chemistry, 2015, 229, 310-321.	1.4	8
1034	Mass production of ZnxCd1â^'xS nanoparticles with enhanced visible light photocatalytic activity. Materials Letters, 2015, 158, 432-435.	1.3	11
1035	Coupled Heterojunction Sn ₂ Ta ₂ O ₇ @SnO ₂ : Cooperative Promotion of Effective Electron–Hole Separation and Superior Visible-light Absorption. ACS Applied Materials & Interfaces, 2015, 7, 13905-13914.	4.0	22
1036	The rise of hematite: origin and strategies to reduce the high onset potential for the oxygen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 16896-16912.	5.2	220
1037	Facile water-based preparation of Rh-doped SrTiO ₃ nanoparticles for efficient photocatalytic H ₂ evolution under visible light irradiation. Journal of Materials Chemistry A, 2015, 3, 14794-14800.	5.2	31
1038	Fabrication of hierarchical ZnO/CdS heterostructured nanocomposites for enhanced hydrogen evolution from solar water splitting. Physical Chemistry Chemical Physics, 2015, 17, 20407-20415.	1.3	65
1039	Recent progress in polyoxoniobates decorated and stabilized via transition metal cations or clusters. CrystEngComm, 2015, 17, 6261-6268.	1.3	51

#	Article	IF	CITATIONS
1040	Correlating flat band and onset potentials for solar water splitting on model hematite photoanodes. RSC Advances, 2015, 5, 61021-61030.	1.7	66
1041	Photocatalytic Properties of Layered Metal Oxides Substituted with Silver by a Molten AgNO ₃ Treatment. ACS Applied Materials & Interfaces, 2015, 7, 14638-14643.	4.0	18
1042	Environmental Photochemistry Part III. Handbook of Environmental Chemistry, 2015, , .	0.2	2
1043	Photoelectrochemical cell based on n-CuIn5S8 film as photoanodes for photocatalytic water splitting. International Journal of Hydrogen Energy, 2015, 40, 7252-7259.	3.8	25
1044	Nanoscale Effects in Water Splitting Photocatalysis. Topics in Current Chemistry, 2015, 371, 105-142.	4.0	36
1045	Rapid microwave-assisted green production of a crystalline polyimide for enhanced visible-light-induced photocatalytic hydrogen production. Journal of Materials Chemistry A, 2015, 3, 10205-10208.	5.2	64
1046	Dielectric, optical and electric studies on nanocrystalline Ba5Nb4O15 thin films deposited by RF magnetron sputtering. Applied Surface Science, 2015, 340, 56-63.	3.1	14
1047	Novel self-growth photocatalytic rod-like heterojunction for hydrogen production under visible light. Journal of Crystal Growth, 2015, 419, 149-152.	0.7	6
1048	Preparation of <scp>S</scp> nâ€doped <scp>C</scp> d <scp>S</scp> / <scp>T</scp> i <scp>O</scp> ₂ /conducting polymer fiber composites for efficient photocatalytic hydrogen production under visible light irradiation. Journal of Applied Polymer Science, 2015, 132, .	1.3	4
1049	In situ growth of CdS nanoparticles on UiO-66 metal-organic framework octahedrons for enhanced photocatalytic hydrogen production under visible light irradiation. Applied Surface Science, 2015, 346, 278-283.	3.1	197
1050	Titanium dioxide fibers prepared from two novel polytitanium precursors containing linear Ti–OH–Ti chains applied for photocatalytic degradation. Materials Letters, 2015, 153, 191-194.	1.3	8
1051	Nickel Oxide Particles Catalyze Photochemical Hydrogen Evolution from Water—Nanoscaling Promotes P-Type Character and Minority Carrier Extraction. ACS Nano, 2015, 9, 5135-5142.	7.3	98
1052	Synthesis of BiVO4-g-C3N4 composite photocatalyst with improved visible light-induced photocatalytic activity. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 217-222.	0.4	8
1053	Novel visible-light sensitive vanadate photocatalysts for water oxidation: implications from density functional theory calculations. Journal of Materials Chemistry A, 2015, 3, 10720-10723.	5.2	27
1054	Design of a dinuclear ruthenium based catalyst with a rigid xanthene bridge for catalytic water oxidation. Inorganic Chemistry Communication, 2015, 55, 56-59.	1.8	12
1055	Roles of MoS ₂ and Graphene as Cocatalysts in the Enhanced Visibleâ€Light Photocatalytic H ₂ Production Activity of Multiarmed CdS Nanorods. ChemCatChem, 2015, 7, 943-951.	1.8	164
1056	Fabrication of mixed-crystalline-phase spindle-like TiO2 for enhanced photocatalytic hydrogen production. Science China Materials, 2015, 58, 363-369.	3.5	31
1057	Carbon cycle in advanced coal chemical engineering. Chemical Society Reviews, 2015, 44, 5409-5445.	18.7	142

#	Article	IF	CITATIONS
1058	Solar hydrogen evolution using a CuGaS ₂ photocathode improved by incorporating reduced graphene oxide. Journal of Materials Chemistry A, 2015, 3, 8566-8570.	5.2	45
1059	Towards a smart energy network: The roles of fuel/electrolysis cells and technological perspectives. International Journal of Hydrogen Energy, 2015, 40, 6866-6919.	3.8	141
1060	Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting. Energy and Environmental Science, 2015, 8, 2811-2824.	15.6	520
1061	Microcrystalline β-RbNd(MoO ₄) ₂ : spin polarizing DFT+U. RSC Advances, 2015, 5, 44960-44968.	1.7	7
1062	Plasmon-enhanced light harvesting: applications in enhanced photocatalysis, photodynamic therapy and photovoltaics. RSC Advances, 2015, 5, 29076-29097.	1.7	196
1063	Photocatalytic water oxidation under visible light by valence band controlled oxynitride solid solutions LaTaON ₂ –SrTiO ₃ . Journal of Materials Chemistry A, 2015, 3, 11824-11829.	5.2	37
1064	Recent Advances in Polyoxometalate-Catalyzed Reactions. Chemical Reviews, 2015, 115, 4893-4962.	23.0	1,674
1065	A simple approach to synthesize g-C3N4 with high visible light photoactivity for hydrogen production. International Journal of Hydrogen Energy, 2015, 40, 7273-7281.	3.8	53
1066	Bandgap engineering of oxygen-rich TiO2+x for photocatalyst with enhanced visible-light photocatalytic ability. Journal of Materials Science, 2015, 50, 4324-4329.	1.7	20
1068	The influence of oxygen vacancies and La doping on the surface structure of NaTaO 3. Computational Materials Science, 2015, 103, 1-7.	1.4	21
1069	Facile synthesis and photocatalytic properties of ZnO core/ZnS–CdS solid solution shell nanorods grown vertically on reductive graphene oxide. Dalton Transactions, 2015, 44, 9528-9537.	1.6	48
1071	Enhanced visible light photocatalytic H2-production of g-C3N4/WS2 composite heterostructures. Applied Surface Science, 2015, 358, 196-203.	3.1	327
1072	Surface engineering for an enhanced photoelectrochemical response of TiO ₂ nanotube arrays by simple surface air plasma treatment. Chemical Communications, 2015, 51, 16940-16943.	2.2	29
1073	Controlling the Electronic Energy Structure of ZnS–AgInS ₂ Solid Solution Nanocrystals for Photoluminescence and Photocatalytic Hydrogen Evolution. Journal of Physical Chemistry C, 2015, 119, 24740-24749.	1.5	122
1074	Ultra-low content of Pt modified CdS nanorods: one-pot synthesis and high photocatalytic activity for H ₂ production under visible light. Journal of Materials Chemistry A, 2015, 3, 23732-23742.	5.2	137
1075	Challenges in Co-Alloyed Titanium Oxynitrides, a Promising Class of Photochemically Active Materials. Chemistry of Materials, 2015, 27, 7207-7217.	3.2	32
1076	Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting. Nanoscale, 2015, 7, 19764-19788.	2.8	327
1077	Molecular Chromophore–Catalyst Assemblies for Solar Fuel Applications. Chemical Reviews, 2015, 115, 13006-13049.	23.0	412

#	Article	IF	CITATIONS
1078	Visible light driven photocatalytic hydrogen evolution over CdS incorporated mesoporous silica derived from MCM-48. Applied Surface Science, 2015, 356, 308-316.	3.1	38
1079	Photoelectrochemical Hydrogen Evolution: Single-Layer, Conjugated Polymer Films Bearing Surface-Deposited Pt Nanoparticles. Journal of the Electrochemical Society, 2015, 162, H551-H556.	1.3	23
1080	Oxide-based nanostructures for photocatalytic and electrocatalytic applications. CrystEngComm, 2015, 17, 8978-9001.	1.3	62
1081	Aromatic Amines Sources, Environmental Impact and Remediation. Environmental Chemistry for A Sustainable World, 2015, , 297-346.	0.3	13
1082	Efficient COD Removal Coinciding with Dye Decoloration by Five-Layer Aurivillius Perovskites under Sunlight-Irradiation. ACS Sustainable Chemistry and Engineering, 2015, 3, 2900-2908.	3.2	28
1083	Amorphous and Crystalline Sodium Tantalate Composites for Photocatalytic Water Splitting. ACS Applied Materials & amp; Interfaces, 2015, 7, 23153-23162.	4.0	31
1084	Heat treatment of electrodeposited NiO films for improved catalytic water oxidation. RSC Advances, 2015, 5, 86713-86722.	1.7	39
1085	The nature of photogenerated charge separation among different crystal facets of BiVO ₄ studied by density functional theory. Physical Chemistry Chemical Physics, 2015, 17, 23503-23510.	1.3	112
1086	Enhanced photocatalytic H ₂ evolution over CdS/Au/g-C ₃ N ₄ composite photocatalyst under visible-light irradiation. APL Materials, 2015, 3, 104410.	2.2	59
1087	A core–shell structured magnetic Ag/AgBr@Fe ₂ O ₃ composite with enhanced photocatalytic activity for organic pollutant degradation and antibacterium. RSC Advances, 2015, 5, 71035-71045.	1.7	41
1088	A review on g-C3N4 for photocatalytic water splitting and CO2 reduction. Applied Surface Science, 2015, 358, 15-27.	3.1	684
1089	Predicting suitable optoelectronic properties of monoclinic VON semiconductor crystals for photovoltaics using accurate first-principles computations. Physical Chemistry Chemical Physics, 2015, 17, 25244-25249.	1.3	10
1090	Bismuth and chromium co-doped strontium titanates and their photocatalytic properties under visible light irradiation. Physical Chemistry Chemical Physics, 2015, 17, 26320-26329.	1.3	57
1091	Visible-light-driven g-C3N4/Ti3+-TiO2 photocatalyst co-exposed {001} and {101} facets and its enhanced photocatalytic activities for organic pollutant degradation and Cr(VI) reduction. Applied Surface Science, 2015, 358, 223-230.	3.1	140
1092	First Synthesis of Highly Crystalline, Hexagonally Ordered, Uniformly Mesoporous TiO ₂ –B and Its Optical and Photocatalytic Properties. Chemistry of Materials, 2015, 27, 6550-6557.	3.2	40
1093	Surfactant-mediated electrodeposition of a water-oxidizing manganese oxide. Dalton Transactions, 2015, 44, 16873-16881.	1.6	5
1094	New insight into calcium tantalate nanocomposite photocatalysts for overall water splitting and reforming of alcohols and biomass derivatives. APL Materials, 2015, 3, 104412.	2.2	8
1095	An effect of Ag(<scp>i</scp>)-substitution at Cu sites in CuGaS ₂ on photocatalytic and photoelectrochemical properties for solar hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 21815-21823.	5.2	59

		CITATION REPORT		
#	Article		IF	CITATIONS
1096	Sustainability Using Solar Energy: Present and Future. ACS Symposium Series, 2015, ,	119-143.	0.5	3
1097	Understanding the Influence of Lattice Composition on the Photocatalytic Activity of Defectâ€Pyrochloreâ€Structured Semiconductor Mixed Oxides. Advanced Functional I 905-912.	Materials, 2015, 25,	7.8	26
1098	Pd–Ti-MCM-48 cubic mesoporous materials for solar simulated hydrogen evolution. Journal of Hydrogen Energy, 2015, 40, 905-918.	International	3.8	21
1099	Morphology engineering of nanostructured TiO ₂ particles. RSC Advances 6481-6488.	, 2015, 5,	1.7	5
1100	Engineering heterogeneous semiconductors for solar water splitting. Journal of Materi A, 2015, 3, 2485-2534.	als Chemistry	5.2	1,609
1101	Recent advances in dye-sensitized photoelectrochemical cells for solar hydrogen produon molecular components. Energy and Environmental Science, 2015, 8, 760-775.	uction based	15.6	363
1102	Discovery and optimization of Zn0.3Cd0.7S-based photocatalysts by scanning electro microscopy and characterization of potential photocatalysts. Electrochimica Acta, 201	chemical .5, 153, 416-425.	2.6	8
1103	Flux-mediated crystal growth of metal oxides: synthetic tunability of particle morpholo and surface features for photocatalysis research. CrystEngComm, 2015, 17, 2225-224		1.3	107
1104	Improving photocatalytic hydrogen production of metal–organic framework UiO-66 dye-sensitization. Applied Catalysis B: Environmental, 2015, 168-169, 572-576.	octahedrons by	10.8	252
1105	Electronic structure of β-RbSm(MoO ₄) ₂ and chemical bondi Dalton Transactions, 2015, 44, 1805-1815.	ng in molybdates.	1.6	85
1106	Mechanistic insights into solar water oxidation by cobalt-phosphate-modified α-Fe ₂ O ₃ photoanodes. Energy and Environmental Science,	2015, 8, 577-584.	15.6	164
1107	Diethylenetriamine-assisted hydrothermal synthesis of dodecahedral α-Fe _{2nanocrystals with enhanced and stable photoelectrochemical activity. CrystEngComm}	0>O ₃ , 2015, 17, 27-31.	1.3	11
1108	Bismuth-rich strategy induced photocatalytic molecular oxygen activation properties c oxyhalogen: The case of Bi24O31Cl10. Applied Catalysis B: Environmental, 2015, 165,	of bismuth 668-675.	10.8	171
1109	Squaraine-sensitized composite of a reduced graphene oxide/TiO ₂ photo stacking as a new method of dye anchoring. Journal of Materials Chemistry A, 2015, 3,		5.2	25
1110	Artificial photosynthesis on tree trunk derived alkaline tantalates with hierarchical ana towards CO ₂ photo-fixation into CO and CH ₄ . Nanoscale, 2		2.8	59
1111	Layered KTiNbO5 photocatalyst modified with transitional metal ions (Mn2+, Ni2+): In microstructure and photocatalytic reaction pathways for the oxidation of dimethyl submercaptan. Powder Technology, 2015, 270, 154-162.	vestigation of fide and ethyl	2.1	19
1112	Pt nanoparticles loaded titanium picolinate framework for photocatalytic hydrogen ge Catalysis Communications, 2015, 59, 55-60.	neration.	1.6	5
1113	Novel nano-structured for the improvement of photo-catalyzed hydrogen production v splitting with in-situ nano-carbon formation. Renewable and Sustainable Energy Review 1205-1216.	via water vs, 2015, 41,	8.2	17

#	Article	IF	CITATIONS
1114	Covalent grafting of phenylphosphonate on calcium niobate platelets. Journal of Colloid and Interface Science, 2015, 437, 97-110.	5.0	11
1115	Theoretical and Experimental Studies on the Crystal Structure, Electronic Structure and Optical Properties of SmTaO4. Materials, 2016, 9, 55.	1.3	20
1116	From Nanorods to Nanowires of CdS Synthesized by a Solvothermal Method: Influence of the Morphology on the Photoactivity for Hydrogen Evolution from Water. Molecules, 2016, 21, 401.	1.7	19
1117	The cross-substitution effect of tantalum on the visible-light-driven water oxidation activity of BaNbO ₂ N crystals grown directly by an NH ₃ -assisted flux method. Journal of Materials Chemistry A, 2016, 4, 12807-12817.	5.2	50
1118	Heterogenized Water Oxidation Catalysts Prepared by Immobilizing KlÃ ¤ iâ€ T ype Organometallic Precursors. Chemistry - A European Journal, 2016, 22, 13459-13463.	1.7	25
1119	Some physical investigations on In2S3:Sn sprayed thin film. Journal of Materials Science: Materials in Electronics, 2016, 27, 11556-11564.	1.1	5
1120	Synthesis of high-purity, layered structured K ₂ Ta ₄ O ₁₁ intermediate phase nanocrystals for photocatalytic water splitting. Physical Chemistry Chemical Physics, 2016, 18, 25831-25836.	1.3	7
1121	Synthesis, Characterization and Photocatalytic Activity of Ag ⁺ ―and Sn ²⁺ â€Doped KTi _{0.5} Te _{1.5} O ₆ . Photochemistry and Photobiology, 2016, 92, 223-230.	1.3	4
1122	Visible light driven hydrogen evolution with a noble metal free CuGa ₂ In ₃ S ₈ nanoparticle system in water. Catalysis Science and Technology, 2016, 6, 6536-6541.	2.1	5
1123	Visible light photocatalysis by metal-to-metal charge transfer for degradation of methyl orange. Journal of Materials Chemistry A, 2016, 4, 12479-12486.	5.2	10
1124	Metal Complexes Supported on Solid Matrices for Visible‣ightâ€Driven Molecular Transformations. Chemistry - A European Journal, 2016, 22, 11122-11137.	1.7	42
1125	Abnormal Cathodic Photocurrent Generated on an nâ€Type FeOOH Nanorodâ€Array Photoelectrode. Chemistry - A European Journal, 2016, 22, 4802-4808.	1.7	6
1126	NaTaO ₃ /MCM-48 composites for photocatalytic conversion of organic molecules. Journal of Physics: Conference Series, 2016, 758, 012003.	0.3	0
1127	Gas phase vibrational spectroscopy of cold (TiO2)nâ^' (<i>n</i> = 3–8) clusters. Journal of Chemical Physics, 2016, 144, 124308.	1.2	16
1128	Hydrothermal Synthesis of Highly Water-dispersible Anatase Nanoparticles with Large Specific Surface Area and Their Adsorptive Properties. MATEC Web of Conferences, 2016, 67, 02013.	0.1	1
1129	Nanoparticle-Catalysts for Hydrogen Storage Based on Small Molecules. Recyclable Catalysis, 2016, 2, .	0.1	3
1130	Silica-supported Cu2O nanoparticles with tunable size for sustainable hydrogen generation. Applied Catalysis B: Environmental, 2016, 192, 199-207.	10.8	38
1131	Stability and self-passivation of copper vanadate photoanodes under chemical, electrochemical, and photoelectrochemical operation. Physical Chemistry Chemical Physics, 2016, 18, 9349-9352.	1.3	56

#	Article	IF	CITATIONS
1132	UVâ€Lightâ€Driven Oxygen Pumping in a Highâ€Temperature Solid Oxide Photoelectrochemical Cell. Advanced Functional Materials, 2016, 26, 120-128.	7.8	22
1133	Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chemical Reviews, 2016, 116, 3722-3811.	23.0	2,051
1134	The mechanism of hydrogen and oxygen evolution reactionÂinÂNi–NiO/β-Ga2O3 photocatalyst. International Journal of Hydrogen Energy, 2016, 41, 5670-5681.	3.8	27
1135	Design and Development of Oxynitride Photocatalysts for Overall Water Splitting under Visible Light Irradiation. ChemElectroChem, 2016, 3, 31-37.	1.7	46
1136	The effect of annealing on the photocatalytic activity of ZnxCd1â^'xS arrays and characterization for the optimization of the photocatalysts. International Journal of Hydrogen Energy, 2016, 41, 10670-10679.	3.8	15
1137	Nanomaterials for Hydrogen Generation from Solar Water Splitting. Nanoscience and Technology, 2016, , 445-470.	1.5	2
1138	Role of surface composition upon the photocatalytic hydrogen production of Cr-doped and La/Cr-codoped SrTiO3. Journal of Materials Science, 2016, 51, 6464-6473.	1.7	45
1139	Nanocatalysts for Solar Water Splitting and a Perspective on Hydrogen Economy. Chemistry - an Asian Journal, 2016, 11, 22-42.	1.7	74
1140	Enhanced photoelectrochemical performance of electrodeposited hematite films decorated with nanostructured NiMnO _x . RSC Advances, 2016, 6, 35239-35247.	1.7	34
1141	TiO2 nanorods: hydrothermal fabrication and photocatalytic activities. Journal of Materials Science: Materials in Electronics, 2016, 27, 7222-7226.	1.1	11
1142	Hybrid tantalum oxide nanoparticles from the hydrolysis of imidazolium tantalate ionic liquids: efficient catalysts for hydrogen generation from ethanol/water solutions. Journal of Materials Chemistry A, 2016, 4, 7469-7475.	5.2	33
1143	Solar fuel photoanodes prepared by inkjet printing of copper vanadates. Journal of Materials Chemistry A, 2016, 4, 7483-7494.	5.2	56
1144	Porous TaON Photoanodes Loaded with Cobalt-Based Cocatalysts for Efficient and Stable Water Oxidation Under Visible Light. Topics in Catalysis, 2016, 59, 740-749.	1.3	12
1145	Immobilizing CdS nanoparticles and MoS ₂ /RGO on Zr-based metal–organic framework 12-tungstosilicate@UiO-67 toward enhanced photocatalytic H ₂ evolution. RSC Advances, 2016, 6, 40560-40566.	1.7	33
1146	Photoelectrocatalytic activity of Mn2O3–TiO2 composite thin films engendered from a trinuclear molecular complex. International Journal of Hydrogen Energy, 2016, 41, 9267-9275.	3.8	37
1147	(Fe _{1â^'x} Ni _x) ₃ N nanoparticles: the structure, magnetic and photocatalytic properties for water splitting. RSC Advances, 2016, 6, 44641-44645.	1.7	5
1148	Improving the photoactivity of bismuth vanadate thin film photoanodes through doping and surface modification strategies. Applied Catalysis B: Environmental, 2016, 194, 141-149.	10.8	45
1149	Layered Double Hydroxide Nanoclusters: Aqueous, Concentrated, Stable, and Catalytically Active Colloids toward Green Chemistry. ACS Nano, 2016, 10, 5550-5559.	7.3	89

#	Article	IF	CITATIONS
1150	Editorial of the PCCP themed issue on "Basic Mechanisms in Energy Conversion― Physical Chemistry Chemical Physics, 2016, 18, 10680-10681.	1.3	0
1151	Noble metal nanoclusters and their in situ calcination to nanocrystals: Precise control of their size and interface with TiO2 nanosheets and their versatile catalysis applications. Nano Research, 2016, 9, 1763-1774.	5.8	57
1152	Flat-Band Potentials of Molecularly Thin Metal Oxide Nanosheets. ACS Applied Materials & Interfaces, 2016, 8, 11539-11547.	4.0	92
1153	Size and Morphology of Suspended WO3 Particles Control Photochemical Charge Carrier Extraction and Photocatalytic Water Oxidation Activity. Topics in Catalysis, 2016, 59, 750-756.	1.3	22
1154	Aerosol synthesis of shape-controlled template particles: a route to Ta ₃ N ₅ nanoplates and octahedra as photocatalysts. Journal of Materials Chemistry A, 2016, 4, 8451-8457.	5.2	23
1155	Inorganic perovskite photocatalysts for solar energy utilization. Chemical Society Reviews, 2016, 45, 5951-5984.	18.7	434
1156	Size Effects of Platinum Nanoparticles in the Photocatalytic Hydrogen Production Over 3D Mesoporous Networks of CdS and Pt Nanojunctions. Advanced Functional Materials, 2016, 26, 8062-8071.	7.8	98
1157	Towards visible-light water splitting Photocatalysts: Band engineering of two-dimensional A5B4O15 perovskites. Nano Energy, 2016, 28, 390-396.	8.2	29
1158	Facile Spray Deposition of Photocatalytic ZnO/Cu–Inâ€Znâ€S Heterostructured Composite Thin Film. ChemistrySelect, 2016, 1, 4979-4986.	0.7	1
1159	Solar hydrogen production on some water splitting photocatalysts. , 2016, , .		0
1159 1160	Solar hydrogen production on some water splitting photocatalysts. , 2016, , . The effect of silver nanoparticles/graphene-coupled TiO ₂ beads photocatalyst on the photoconversion efficiency of photoelectrochemical hydrogen production. Nanotechnology, 2016, 27, 435405.	1.3	0
	The effect of silver nanoparticles/graphene-coupled TiO ₂ beads photocatalyst on the photoconversion efficiency of photoelectrochemical hydrogen production. Nanotechnology, 2016,	1.3 2.8	
1160	The effect of silver nanoparticles/graphene-coupled TiO ₂ beads photocatalyst on the photoconversion efficiency of photoelectrochemical hydrogen production. Nanotechnology, 2016, 27, 435405. Molybdenum carbide microcrystals: Efficient and stable catalyst for photocatalytic H2 evolution		17
1160 1161	The effect of silver nanoparticles/graphene-coupled TiO ₂ beads photocatalyst on the photoconversion efficiency of photoelectrochemical hydrogen production. Nanotechnology, 2016, 27, 435405. Molybdenum carbide microcrystals: Efficient and stable catalyst for photocatalytic H2 evolution from water in the presence of dye sensitizer. Journal of Materiomics, 2016, 2, 344-349.	2.8	17 8
1160 1161 1162	The effect of silver nanoparticles/graphene-coupled TiO ₂ beads photocatalyst on the photoconversion efficiency of photoelectrochemical hydrogen production. Nanotechnology, 2016, 27, 435405. Molybdenum carbide microcrystals: Efficient and stable catalyst for photocatalytic H2 evolution from water in the presence of dye sensitizer. Journal of Materiomics, 2016, 2, 344-349. Hollow Nano- and Microstructures as Catalysts. Chemical Reviews, 2016, 116, 14056-14119.	2.8 23.0	17 8 634
1160 1161 1162 1163	The effect of silver nanoparticles/graphene-coupled TiO ₂ beads photocatalyst on the photoconversion efficiency of photoelectrochemical hydrogen production. Nanotechnology, 2016, 27, 435405. Molybdenum carbide microcrystals: Efficient and stable catalyst for photocatalytic H2 evolution from water in the presence of dye sensitizer. Journal of Materiomics, 2016, 2, 344-349. Hollow Nano- and Microstructures as Catalysts. Chemical Reviews, 2016, 116, 14056-14119. Copper(I)-Based <i>p</i> -Type Oxides for Photoelectrochemical and Photovoltaic Solar Energy Conversion. Chemistry of Materials, 2016, 28, 5999-6016. Structural dependence of the photocatalytic properties of double perovskite compounds A ₂ lnTaO ₆ (A = Sr or Ba) doped with nickel. Physical Chemistry Chemical	2.8 23.0 3.2	17 8 634 163
1160 1161 1162 1163 1164	The effect of silver nanoparticles/graphene-coupled TiO ₂ beads photocatalyst on the photoconversion efficiency of photoelectrochemical hydrogen production. Nanotechnology, 2016, 27, 435405. Molybdenum carbide microcrystals: Efficient and stable catalyst for photocatalytic H2 evolution from water in the presence of dye sensitizer. Journal of Materiomics, 2016, 2, 344-349. Hollow Nano- and Microstructures as Catalysts. Chemical Reviews, 2016, 116, 14056-14119. Copper(I)-Based <i>p</i> , Type Oxides for Photoelectrochemical and Photovoltaic Solar Energy Conversion. Chemistry of Materials, 2016, 28, 5999-6016. Structural dependence of the photocatalytic properties of double perovskite compounds A ₂ 1nTaO ₆ (A = Sr or Ba) doped with nickel. Physical Chemistry Chemical Physics, 2016, 18, 21491-21499. Photo-Induced or Plasmon-Induced Reaction: Investigation of the Light-Induced Azo-Coupling of Amino	2.8 23.0 3.2 1.3	17 8 634 163 35

#	Article	IF	CITATIONS
1168	Sol-gel-synthesized titania-vanadia nanocrystal films for triple-functional window coatings. Ceramics International, 2016, 42, 17610-17619.	2.3	4
1169	Tantalum nitride for photocatalytic water splitting: concept and applications. Materials for Renewable and Sustainable Energy, 2016, 5, 1.	1.5	70
1170	Theoretical and Experimental Study on the Optoelectronic Properties of Nb ₃ O ₇ (OH) and Nb ₂ O ₅ Photoelectrodes. Journal of Physical Chemistry C, 2016, 120, 23329-23338.	1.5	22
1171	Solar-driven BiVO ₄ Photoanodes Prepared by a Facile Screen Printing Method. Chemistry Letters, 2016, 45, 152-154.	0.7	20
1172	Strategy for enhancing the solar-driven water splitting performance of TiO 2 nanorod arrays with thin Zn(O,S) passivated layer by atomic layer deposition. Electrochimica Acta, 2016, 219, 470-481.	2.6	16
1173	Manganeseâ€Substituted Polyoxometalate as an Effective Shuttle Redox Mediator in Zâ€Scheme Water Splitting under Visible Light. ChemSusChem, 2016, 9, 2201-2208.	3.6	58
1174	Hydrogen plasma reduced black TiO2B nanowires for enhanced photoelectrochemical water-splitting. Journal of Power Sources, 2016, 325, 697-705.	4.0	58
1175	Sulfur-centred polyoxoniobate-based 3D organic–inorganic hybrid compound and its magnetic behavior. Chemical Communications, 2016, 52, 10846-10849.	2.2	37
1176	Tailored preparation of WO ₃ nano-grassblades on FTO substrate for photoelectrochemical water splitting. CrystEngComm, 2016, 18, 6798-6808.	1.3	20
1177	Carbon Nitride–Aromatic Diimide–Graphene Nanohybrids: Metal-Free Photocatalysts for Solar-to-Hydrogen Peroxide Energy Conversion with 0.2% Efficiency. Journal of the American Chemical Society, 2016, 138, 10019-10025.	6.6	406
1178	0D/2D nanocomposite visible light photocatalyst for highly stable and efficient hydrogen generation via recrystallization of CdS on MoS2 nanosheets. Nano Energy, 2016, 27, 466-474.	8.2	124
1179	A survey on the present status of sustainable technologies for water pollutant abatement. Desalination and Water Treatment, 2016, 57, 28705-28714.	1.0	3
1180	Titanium Doping and Its Effect on the Morphology of Three-Dimensional Hierarchical Nb ₃ O ₇ (OH) Nanostructures for Enhanced Light-Induced Water Splitting. Chemistry of Materials, 2016, 28, 7666-7672.	3.2	8
1181	Homologous Compounds ZnnIn2O3+n (n = 4, 5, and 7) Containing Laminated Functional Groups as Efficient Photocatalysts for Hydrogen Production. ACS Applied Materials & Interfaces, 2016, 8, 28700-28708.	4.0	24
1182	A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. Journal of Materials Chemistry A, 2016, 4, 17587-17603.	5.2	1,037
1183	Controlling the Photocorrosion of Zinc Sulfide Nanoparticles in Water by Doping with Chloride and Cobalt Ions. Langmuir, 2016, 32, 12641-12649.	1.6	32
1184	Flux Synthesis, Optical and Photocatalytic Properties of <i>n</i> -type Sn ₂ TiO ₄ : Hydrogen and Oxygen Evolution under Visible Light. Chemistry of Materials, 2016, 28, 8876-8889.	3.2	61
1185	Self-assembly and photocatalytic properties of Ta/W mixed-addendum polyoxometalate and transition-metal cations. CrystEngComm, 2016, 18, 8722-8725.	1.3	22

		JN REPORT	
#	Article	IF	CITATIONS
1186	Structure engineering of a core/shell Si@Ta3N5 heterojunction nanowires array for photoelectrochemical water oxidation. RSC Advances, 2016, 6, 104955-104961.	1.7	5
1187	Highly Efficient Water Dissociation on Anatase TiO ₂ (101). Journal of Physical Chemistry C, 2016, 120, 26807-26813.	1.5	35
1188	Enabling Overall Water Splitting on Photocatalysts by CO-Covered Noble Metal Co-catalysts. Journal of Physical Chemistry Letters, 2016, 7, 4358-4362.	2.1	32
1189	Graphene in Photocatalysis: A Review. Small, 2016, 12, 6640-6696.	5.2	836
1190	Recent Progress in Cobaltâ€Based Heterogeneous Catalysts for Electrochemical Water Splitting. Advanced Materials, 2016, 28, 215-230.	11.1	2,083
1191	A Ternary Znâ~'Alâ~'Ir Hydrotalciteâ€Like Compound Exhibiting High Efficiency and Recyclability as a Water Oxidation Catalyst. ChemPlusChem, 2016, 81, 1060-1063.	1.3	18
1192	Enhanced photocatalytic activity for hydrogen evolution of SrZrO3 modified with earth abundant metal oxides (MO, M = Cu, Ni, Fe, Co). Fuel, 2016, 181, 670-679.	3.4	45
1193	Exploring the mechanism of water-splitting reaction in NiO _x /l²-Ga ₂ O ₃ photocatalysts by first-principles calculations. Physical Chemistry Chemical Physics, 2016, 18, 11111-11119.	1.3	17
1194	Visible light driven photocatalytic hydrogen evolution over CdS incorporated mesoporous anatase TiO2 beads. Research on Chemical Intermediates, 2016, 42, 5479-5493.	1.3	9
1195	Efficient photocatalytic hydrogen evolution system by assembling earth abundant NixOy nanoclusters in cubic MCM-48 mesoporous materials. RSC Advances, 2016, 6, 59169-59180.	1.7	8
1196	One-pot synthesis of CdS sensitized TiO2 decorated reduced graphene oxide nanosheets for the hydrolysis of ammonia-borane and the effective removal of organic pollutant from water. Ceramics International, 2016, 42, 15247-15252.	2.3	44
1197	Visible-Light-Responsive CuLi _{1/3} Ti _{2/3} O ₂ Powders Prepared by a Molten CuCl Treatment of Li ₂ TiO ₃ for Photocatalytic H ₂ Evolution and Z-Schematic Water Splitting. Chemistry of Materials, 2016, 28, 4677-4685.	3.2	20
1198	Structural characteristics and spectral response of composite transition metal oxide photocatalytic materials. Journal of Materials Science, 2016, 51, 7049-7072.	1.7	11
1199	Intercalated network of graphene oxide (GO)–CuO–polythiophene (PTh) hybrid nanocomposite for photocatalytic applications. Journal of Materials Science: Materials in Electronics, 2016, 27, 10634-10641.	1.1	19
1200	Photoinduced electron transfer between semiconducting nanosheets and acceptor molecules in the presence of colloidal clay particles. Applied Clay Science, 2016, 130, 76-82.	2.6	2
1201	Photochemical Water Splitting Pioneer: Frank Osterloh and <i>Chemistry of Materials</i> ' 1k Club. Chemistry of Materials, 2016, 28, 1-2.	3.2	8
1202	An Alternative Reaction Pathway for Iridium-Catalyzed Water Oxidation Driven by Cerium Ammonium Nitrate (CAN). ACS Catalysis, 2016, 6, 4559-4563.	5.5	58
1203	Activatedâ€Carbonâ€Templated Crystalline Tantalates for Photocatalytic Water Splitting. ChemNanoMat, 2016, 2, 273-280.	1.5	6

#	Article	IF	CITATIONS
1204	First 14-Layer Twinned Hexagonal Perovskite Ba14Mn1.75Ta10.5O42: Atomic-Scale Imaging of Cation Ordering. Chemistry of Materials, 2016, 28, 4686-4696.	3.2	12
1205	Solarâ€ŧoâ€Hydrogen Efficiency of 9.5 % by using a Thin‣ayer Platinum Catalyst and Commercial Amorphous Silicon Solar Cells. ChemCatChem, 2016, 8, 1713-1717.	1.8	7
1206	Photocatalytic H 2 evolution from water–methanol mixtures on InGaO 3 (ZnO) m with an anisotropic layered structure modified with CuO and NiO cocatalysts. Journal of Molecular Catalysis A, 2016, 415, 82-88.	4.8	8
1207	Where Do Photogenerated Holes Go in Anatase:Rutile TiO ₂ ? A Transient Absorption Spectroscopy Study of Charge Transfer and Lifetime. Journal of Physical Chemistry A, 2016, 120, 715-723.	1.1	128
1208	A review of metal oxynitrides for photocatalysis. Inorganic Chemistry Frontiers, 2016, 3, 578-590.	3.0	187
1209	Indium–Tin–Oxide Nanowire Array Based CdSe/CdS/TiO ₂ One-Dimensional Heterojunction Photoelectrode for Enhanced Solar Hydrogen Production. ACS Sustainable Chemistry and Engineering, 2016, 4, 1161-1168.	3.2	33
1210	Highly efficient NaTaO3 for visible light photocatalysis predicted from first principles. Solar Energy Materials and Solar Cells, 2016, 149, 97-102.	3.0	17
1211	Photocatalytic Conversion of Nitrobenzene to Aniline through Sequential Proton-Coupled One-Electron Transfers from a Cadmium Sulfide Quantum Dot. Journal of the American Chemical Society, 2016, 138, 1591-1600.	6.6	157
1212	Fabrication and photoactivity of short rod-shaped mesoporous SiO ₂ @TiO ₂ composites with TiO ₂ shell. RSC Advances, 2016, 6, 6551-6561.	1.7	10
1213	Recent advances in the TiO 2 /CdS nanocomposite used for photocatalytic hydrogen production and quantum-dot-sensitized solar cells. Renewable and Sustainable Energy Reviews, 2016, 54, 1048-1059.	8.2	135
1214	In situ photo-assisted deposition and photocatalysis of ZnIn ₂ S ₄ /transition metal chalcogenides for enhanced degradation and hydrogen evolution under visible light. Dalton Transactions, 2016, 45, 552-560.	1.6	61
1215	A pure organic heterostructure of μ-oxo dimeric iron(<scp>iii</scp>) porphyrin and graphitic-C ₃ N ₄ for solar H ₂ roduction from water. Journal of Materials Chemistry A, 2016, 4, 290-296.	5.2	117
1216	Direct microwave synthesis of graphitic C3N4 with improved visible-light photocatalytic activity. Ceramics International, 2016, 42, 4063-4071.	2.3	34
1217	Tailoring Charge Recombination in Photoelectrodes Using Oxide Nanostructures. Nano Letters, 2016, 16, 2381-2386.	4.5	18
1218	Improved Photocatalytic Performance under Solar Light Irradiation by Integrating Wide-band-gap Semiconductors, SnO2, SnTaO3 and Sn2Ta2O7. Materials Today: Proceedings, 2016, 3, 424-428.	0.9	5
1219	Crystal Structure, Electronic Structure, and Photocatalytic Activity of Oxysulfides: La ₂ Ta ₂ ZrS ₂ O ₈ , La ₂ Ta ₂ TiS ₂ O ₈ , and La ₂ Nb ₂ TiS ₂ O ₈ . Inorganic Chemistry, 2016, 55,	1.9	25
1220	3674-3679. Cr ₂ O ₃ Nanoparticles on Ba ₅ Ta ₄ O ₁₅ as a Nobleâ€Metalâ€Free Oxygen Evolution Co atalyst for Photocatalytic Overall Water Splitting. ChemCatChem, 2016, 8, 153-156.	1.8	34
1221	In-situ hydrothermal synthesized γ-Al 2 O 3 /O-g-C 3 N 4 heterojunctions with enhanced visible-light photocatalytic activity in water splitting for hydrogen. Journal of Energy Chemistry, 2016, 25, 594-600.	7.1	19

#	Article	IF	CITATIONS
1222	Fabrication of cubic Zn ₂ SnO ₄ /SnO ₂ complex hollow structures and their sunlight-driven photocatalytic activity. Nanoscale, 2016, 8, 12858-12862.	2.8	58
1223	Oxygen vacancies as active sites for H ₂ S dissociation on the rutile TiO ₂ (110) surface: a first-principles study. Physical Chemistry Chemical Physics, 2016, 18, 6706-6712.	1.3	42
1224	Layered Perovskite Oxychloride Bi ₄ NbO ₈ Cl: A Stable Visible Light Responsive Photocatalyst for Water Splitting. Journal of the American Chemical Society, 2016, 138, 2082-2085.	6.6	364
1225	Improvement of visible light-induced photocatalytic performance by Cr-doped SrTiO3â^'carbon nitride intercalation compound (CNIC) composite. Journal of Central South University, 2016, 23, 310-316.	1.2	4
1226	Preparation of fine particles of sheelite-monoclinic phase BiVO ₄ via an aqueous chelating method for efficient photocatalytic oxygen evolution under visible-light irradiation. Journal of Materials Chemistry A, 2016, 4, 3926-3932.	5.2	24
1227	A novel copper-rich open-framework chalcogenide constructed from octahedral Cu ₄ Se ₆ and icosahedral Cu ₈ Se ₁₃ nanoclusters. Chemical Communications, 2016, 52, 4140-4143.	2.2	34
1228	Photoelectrochemical Approach for Water Splitting. Lecture Notes in Energy, 2016, , 249-260.	0.2	5
1229	Effect of the Hydrogen Bond in Photoinduced Water Dissociation: A Double-Edged Sword. Journal of Physical Chemistry Letters, 2016, 7, 603-608.	2.1	46
1230	Solar hydrogen generation over CdS incorporated in Ti-MCM-48 mesoporous materials under visible light illumination. International Journal of Hydrogen Energy, 2016, 41, 4106-4119.	3.8	19
1231	Bismuth oxychloride hollow microspheres with high visible light photocatalytic activity. Nano Research, 2016, 9, 593-601.	5.8	88
1232	Excitation dependent multicolor emission and photoconductivity of Mn, Cu doped In ₂ S ₃ monodisperse quantum dots. Nanotechnology, 2016, 27, 155708.	1.3	28
1233	Atomic-Scale Observations of Catalyst Structures under Reaction Conditions and during Catalysis. Chemical Reviews, 2016, 116, 3487-3539.	23.0	261
1234	Role of WO ₃ Layers Electrodeposited on SnO ₂ Inverse Opal Skeletons in Photoelectrochemical Water Splitting. Journal of Physical Chemistry C, 2016, 120, 5906-5915.	1.5	51
1235	Visible light active Ce/Ce2O/CeO2/TiO2 nanotube arrays for efficient hydrogen production by photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2016, 41, 5437-5444.	3.8	31
1236	Beyond the Pipeline: Assessing the Efficiency Limits of Advanced Technologies for Solar Water Disinfection. Environmental Science and Technology Letters, 2016, 3, 73-80.	3.9	52
1237	Coupled semiconductor nanocomposite g-C 3 N 4 /TiO 2 with enhanced visible light photocatalytic activity. Materials Research Bulletin, 2016, 76, 370-375.	2.7	85
1238	Surface modification of semiconductor photoanode for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2016, 41, 7987-7992.	3.8	12
1239	Crystal facet engineering of ZnO photoanode for the higher water splitting efficiency with proton transferable nafion film. Nano Energy, 2016, 20, 156-167.	8.2	99

#	Article	IF	CITATIONS
1241	Principles on design and fabrication of nanomaterials as photocatalysts for water-splitting. Renewable and Sustainable Energy Reviews, 2016, 57, 584-601.	8.2	192
1242	Graphene oxide-based nanomaterials for efficient photoenergy conversion. Journal of Materials Chemistry A, 2016, 4, 2014-2048.	5.2	73
1243	Water Splitting By Photocatalytic Reduction. Green Chemistry and Sustainable Technology, 2016, , 175-210.	0.4	2
1244	Removal of rhodamine 6G dye contaminant by visible light driven immobilized Ca1â¿Ln MnO3 (Ln = Sm, Ho;) Tj E	TQq1 1 0	.784314 rg
1245	Electronic structure, photovoltage, and photocatalytic hydrogen evolution with p-CuBi ₂ O ₄ nanocrystals. Journal of Materials Chemistry A, 2016, 4, 2936-2942.	5.2	158
1246	Selected perovskite oxides: Characterization, preparation and photocatalytic properties—A review. Applied Catalysis B: Environmental, 2016, 186, 97-126.	10.8	505
1247	Highly efficient photocatalytic activities, band alignment of BiVO4/BiOCl {001} prepared by in situ chemical transformation. Journal of Molecular Catalysis A, 2016, 411, 179-187.	4.8	41
1248	Energetic stability, oxidation states, and electronic structure of Bi-doped NaTaO ₃ : a first-principles hybrid functional study. Physical Chemistry Chemical Physics, 2016, 18, 857-865.	1.3	15
1249	Characterization of the Photocatalytic Activity of Bismuth Oxychloride Nanostructures. Analytical Letters, 2016, 49, 1452-1466.	1.0	7
1250	Enhanced photocatalytic hydrogen evolution over graphitic carbon nitride modified with Ti-activated mesoporous silica. Applied Catalysis A: General, 2016, 521, 111-117.	2.2	16
1251	Structure-controlled porous films of nanoparticulate Rh-doped SrTiO ₃ photocatalyst toward efficient H ₂ evolution under visible light irradiation. Catalysis Science and Technology, 2016, 6, 254-260.	2.1	9
1252	Pd–MgNi x nanospheres/black-TiO 2 porous films with highly efficient hydrogen production by near-complete suppression of surface recombination. Applied Catalysis B: Environmental, 2016, 183, 69-74.	10.8	26
1253	Enhanced visible-light-driven photocatalytic activity in yellow and black orthorhombic NaTaO 3 nanocubes by surface modification and simultaneous N/Ta 4+ co-doping. Journal of Colloid and Interface Science, 2016, 461, 185-194.	5.0	18
1254	Iridium(III) Bis-Pyridine-2-Sulfonamide Complexes as Efficient and Durable Catalysts for Homogeneous Water Oxidation. Inorganic Chemistry, 2016, 55, 518-526.	1.9	39
1255	Kinetic analysis of photoelectrochemical water oxidation by mesostructured Co-Pi/α-Fe ₂ O ₃ photoanodes. Journal of Materials Chemistry A, 2016, 4, 2986-2994.	5.2	162
1256	Solar Energy for Fuels. Topics in Current Chemistry, 2016, , .	4.0	7
1257	Long-term production of H2 over Pt/CdS nanoplates under sunlight illumination. Chemical Engineering Journal, 2016, 283, 351-357.	6.6	58
1258	Ligand removal from CdS quantum dots for enhanced photocatalytic H ₂ generation in pH neutral water. Journal of Materials Chemistry A, 2016, 4, 2856-2862.	5.2	103

#	ARTICLE A facile strategy to fabricate Au/TiO 2 nanotubes photoelectrode with excellent	IF 3.1	CITATIONS
1260	photoelectrocatalytic properties. Applied Surface Science, 2017, 391, 345-352. Photocatalytic hydrogen production over solid solutions between BiFeO 3 and SrTiO 3. Applied Surface Science, 2017, 391, 535-541.	3.1	58
1261	Synthesis of Mn-doped ZnS microspheres with enhanced visible light photocatalytic activity. Applied Surface Science, 2017, 391, 557-564.	3.1	76
1262	Photocatalysis versus Photosynthesis: A Sensitivity Analysis of Devices for Solar Energy Conversion and Chemical Transformations. ACS Energy Letters, 2017, 2, 445-453.	8.8	214
1263	Sunlight responsive new Sillén-Aurivillius A1X1 hybrid layered oxyhalides with enhanced photocatalytic activity. Solar Energy Materials and Solar Cells, 2017, 161, 197-205.	3.0	23
1264	Aerosol-Sprayed Gold/Ceria Photocatalyst with Superior Plasmonic Hot Electron-Enabled Visible-Light Activity. ACS Applied Materials & amp; Interfaces, 2017, 9, 2560-2571.	4.0	65
1265	Hydrogen evolution with nanoengineered ZnO interfaces decorated using a beetroot extract and a hydrogenase mimic. Sustainable Energy and Fuels, 2017, 1, 69-73.	2.5	35
1266	An α-Bi ₂ O ₃ /BiOBr core–shell heterojunction with high photocatalytic activity. Dalton Transactions, 2017, 46, 2310-2321.	1.6	32
1267	The Role of Cocatalysts on Bismuth Vanadate in the Abatement of Endocrine Disrupting Chemicals and Related Compounds under Visible Light. Particle and Particle Systems Characterization, 2017, 34, 1600300.	1.2	5
1268	Photoelectrochemical water splitting with a SrTiO ₃ :Nb/SrTiO ₃ n ⁺ –n homojunction structure. Physical Chemistry Chemical Physics, 2017, 19, 2760-2767.	1.3	20
1269	Synthesis and photocatalytic properties of tetragonal tungsten bronze type oxynitrides. Applied Catalysis B: Environmental, 2017, 206, 444-448.	10.8	13
1270	Heterojunction Photocatalysts. Advanced Materials, 2017, 29, 1601694.	11.1	3,143
1271	Visible-Light Driven Photocatalytic Degradation of Organic Dyes over Ordered Mesoporous Cd _{<i>x</i>} Zn _{1–<i>x</i>} S Materials. Journal of Physical Chemistry C, 2017, 121, 5137-5144.	1.5	65
1272	Electrochemical Doping as a Way to Enhance Water Photooxidation on Nanostructured Nickel Titanate and Anatase Electrodes. ChemElectroChem, 2017, 4, 1429-1435.	1.7	4
1273	Nano-architecture based photoelectrochemical water oxidation efficiency enhancement by CdS photoanodes. Materials Research Express, 2017, 4, 026203.	0.8	5
1274	Synthesis and Photocatalytic Activity of La ₅ Ti ₂ Cu(S _{1a^'<i>x</i>} Se _{<i>x</i>}) ₅ O ₇ Solid Solutions for H ₂ Production under Visible Light Irradiation. ChemPhotoChem, 2017, 1, 265-272.	sub> 1.5	16
1275	Layered Perovskite Pb ₂ Bi ₄ Ti ₅ O ₁₈ for Excellent Visible Light-Driven Photocatalytic NO Removal. Industrial & Engineering Chemistry Research, 2017, 56, 2908-2916.	1.8	32
1276	Electronic structure and optical properties of \hat{l}^2 -RbSm(MoO 4) 2 from spin polarization calculations: DFT+U. Materials Chemistry and Physics, 2017, 192, 260-267.	2.0	4

#	Article	IF	CITATIONS
1277	A New Strategy to Design Highly Sustainable Sulfide PhotoCatalyst for Hydrogen Production. Chinese Journal of Chemistry, 2017, 35, 148-152.	2.6	8
1278	Enhancement of the H ₂ evolution activity of La ₅ Ti ₂ Cu(S _{1â^²x} Se _x) ₅ O ₇ photocatalysts by coloading Pt and NiS cocatalysts. Journal of Materials Chemistry A, 2017, 5, 6106-6112.	5.2	17
1279	One-pot microemulsion-mediated synthesis of Bi-rich Bi4O5Br2 with controllable morphologies and excellent visible-light photocatalytic removal of pollutants. Applied Catalysis B: Environmental, 2017, 207, 153-165.	10.8	143
1280	Fabrication and behaviors of CdS on Bi ₂ MoO ₆ thin film photoanodes. RSC Advances, 2017, 7, 10774-10781.	1.7	32
1281	Photophysical Properties of SrTaO ₂ N Thin Films and Influence of Anion Ordering: A Joint Theoretical and Experimental Investigation. Chemistry of Materials, 2017, 29, 3989-3998.	3.2	37
1282	Compound Copper Chalcogenide Nanocrystals. Chemical Reviews, 2017, 117, 5865-6109.	23.0	670
1283	TiO2/RGO composites: Its achievement and factors involved in hydrogen production. Renewable and Sustainable Energy Reviews, 2017, 76, 1384-1392.	8.2	33
1284	Hybrid of AgInZnS and MoS 2 as efficient visible-light driven photocatalyst for hydrogen production. International Journal of Hydrogen Energy, 2017, 42, 12254-12261.	3.8	26
1285	Photocatalytic Z-Scheme Water Splitting for Independent H ₂ /O ₂ Production via a Stepwise Operation Employing a Vanadate Redox Mediator under Visible Light. Journal of Physical Chemistry C, 2017, 121, 9691-9697.	1.5	64
1286	Facile fabrication of rodâ€shaped Zn ₂ GeO ₄ nanocrystals as photocatalyst for hydrogen production. Crystal Research and Technology, 2017, 52, 1700022.	0.6	8
1287	Enhanced photocatalytic oxygen evolution over Mo-doped Ca ₂ NiWO ₆ perovskite photocatalyst under visible light irradiation. RSC Advances, 2017, 7, 5821-5826.	1.7	13
1288	Surface-modified metal sulfides as stable H ₂ -evolving photocatalysts in Z-scheme water splitting with a [Fe(CN) ₆] ^{3â^'/4â^'} redox mediator under visible-light irradiation. Sustainable Energy and Fuels, 2017, 1, 1065-1073.	2.5	41
1289	Highly Dispersed RuO ₂ Hydrates Prepared via Simple Adsorption as Efficient Cocatalysts for Visible-Light-Driven Z-Scheme Water Splitting with an IO ₃ [–] /I [–] Redox Mediator. ACS Catalysis, 2017, 7, 4336-4343.	5.5	42
1290	Effect of reducible oxide–metal cluster charge transfer on the structure and reactivity of adsorbed Au and Pt atoms and clusters on anatase TiO2. Journal of Chemical Physics, 2017, 146, .	1.2	18
1291	Crumpled Cu 2 O-g-C 3 N 4 nanosheets for hydrogen evolution catalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 527, 34-41.	2.3	41
1292	A novel Z-scheme Er3+:YAlO3/Ta2O5-Caln2S4/MoSe2-reduced graphene oxide photocatalyst with superior photocatalytic hydrogen evolution activity. Renewable Energy, 2017, 111, 628-637.	4.3	13
1293	Materials Chemistry of Inorganic Nanosheets—Overview and History. Nanostructure Science and Technology, 2017, , 3-31.	0.1	2
1294	Formation of N-oxide in the third oxidation of [Ru ^{II} (tpy)(L)(OH ₂)] ²⁺ . Chemical Communications, 2017, 53, 5622-5624.	2.2	8

#	Article	IF	CITATIONS
1295	Computational investigation of the co-doping effect of sulphur andÂnitrogen on the electronics of CsTaWO 6. Journal of Materiomics, 2017, 3, 71-76.	2.8	0
1296	Competitive ion-exchange of manganese and gadolinium in titanate nanotubes. Catalysis Today, 2017, 284, 146-152.	2.2	9
1297	Rapid fabrication of TiO2@carboxymethyl cellulose coatings capable of shielding UV, antifog and delaying support aging. Carbohydrate Polymers, 2017, 169, 398-405.	5.1	22
1298	Recent Progress in the Development of Semiconductorâ€Based Photocatalyst Materials for Applications in Photocatalytic Water Splitting and Degradation of Pollutants. Advanced Sustainable Systems, 2017, 1, 1700006.	2.7	144
1299	Gold(Core)–Lead(Shell) Nanoparticle‣oaded Titanium(IV) Oxide Prepared by Underpotential Photodeposition: Plasmonic Water Oxidation. Angewandte Chemie, 2017, 129, 10483-10487.	1.6	6
1300	Development of non-oxide semiconductors as light harvesting materials in photocatalytic and photoelectrochemical water splitting. Dalton Transactions, 2017, 46, 10529-10544.	1.6	62
1301	Apparatus for the investigation of high-temperature, high-pressure gas-phase heterogeneous catalytic and photo-catalytic materials. Review of Scientific Instruments, 2017, 88, 054101.	0.6	4
1302	Gold(Core)–Lead(Shell) Nanoparticle‣oaded Titanium(IV) Oxide Prepared by Underpotential Photodeposition: Plasmonic Water Oxidation. Angewandte Chemie - International Edition, 2017, 56, 10347-10351.	7.2	31
1303	Metal clusters: New era of hydrogen production. Renewable and Sustainable Energy Reviews, 2017, 79, 878-892.	8.2	49
1304	III-nitride nanowires for solar light harvesting: A review. Renewable and Sustainable Energy Reviews, 2017, 79, 1002-1015.	8.2	35
1305	Syntheses of asymmetric zinc porphyrins bearing different pseudo-pyridine substituents and their photosensitization for visible-light-driven H ₂ production activity. Dalton Transactions, 2017, 46, 8219-8228.	1.6	36
1306	Enhancing efficiency of Fe2O3 for robust and proficient solar water splitting using a highly dispersed bioinspired catalyst. Journal of Catalysis, 2017, 352, 83-92.	3.1	28
1307	Enhancing the photocatalytic activity of BiOX (X = Cl, Br, and I), (BiO) ₂ CO ₃ and Bi ₂ O ₃ by modifying their surfaces with polar organic anions, 4-substituted thiophenolates. Journal of Materials Chemistry A, 2017, 5, 14406-14414.	5.2	71
1308	Photosensitized H ₂ Production Using a Zinc Porphyrin-Substituted Protein, Platinum Nanoparticles, and Ascorbate with No Electron Relay: Participation of Good's Buffers. Inorganic Chemistry, 2017, 56, 4584-4593.	1.9	12
1309	The fabrication and photoelectrocatalytic study of composite ZnSe/Au/TiO ₂ nanotube films. Journal Physics D: Applied Physics, 2017, 50, 185102.	1.3	1
1311	Ion beam modification of single crystalline BiVO4. Nuclear Instruments & Methods in Physics Research B, 2017, 409, 133-137.	0.6	2
1312	Modulating the electronic structure of lanthanum manganite by ruthenium doping for enhanced photocatalytic water oxidation. Physical Chemistry Chemical Physics, 2017, 19, 12167-12174.	1.3	23
1313	Inorganic Photochemical Synthesis. , 2017, , 143-165.		3

#	Article	IF	CITATIONS
1314	Monolayer Group IV–VI Monochalcogenides: Low-Dimensional Materials for Photocatalytic Water Splitting. Journal of Physical Chemistry C, 2017, 121, 7615-7624.	1.5	154
1315	A layered Na _{1â^'x} Ni _y Fe _{1â^'y} O ₂ double oxide oxygen evolution reaction electrocatalyst for highly efficient water-splitting. Energy and Environmental Science, 2017, 10, 121-128.	15.6	201
1316	Formation of New Phases to Improve the Visible-Light Photocatalytic Activity of Tio ₂ (B) Via Introducing Alien Elements. Journal of Physical Chemistry C, 2017, 121, 52-59.	1.5	1
1317	Bandgap Engineering of Barium Bismuth Niobate Double Perovskite for Photoelectrochemical Water Oxidation. Advanced Energy Materials, 2017, 7, 1602260.	10.2	67
1318	Factors affecting the efficiency of a water splitting photocatalyst: A perspective. Renewable and Sustainable Energy Reviews, 2017, 71, 585-601.	8.2	93
1319	F–Bi ₄ TaO ₈ Cl flower-like hierarchical structures: controlled preparation, formation mechanism and visible photocatalytic hydrogen production. RSC Advances, 2017, 7, 121-127.	1.7	23
1320	Extremely Active, Tunable, and pH-Responsive Iridium Water Oxidation Catalysts. ACS Energy Letters, 2017, 2, 105-110.	8.8	52
1321	CO2 utilization: Developments in conversion processes. Petroleum, 2017, 3, 109-126.	1.3	460
1322	A CoOx-modified SnNb2O6photoelectrode for highly efficient oxygen evolution from water. Chemical Communications, 2017, 53, 629-632.	2.2	33
1323	Covalent Surface Modification of Gallium Arsenide Photocathodes for Water Splitting in Highly Acidic Electrolyte. ChemSusChem, 2017, 10, 767-773.	3.6	27
1324	Photosystem II Based Multilayers. , 2017, , 109-133.		0
1325	Two-Dimensional Bi ₂ WO ₆ Nanosheets as a Robust Catalyst toward Photocyclization. ACS Omega, 2017, 2, 7219-7229.	1.6	28
1326	Nanostructured N-doped orthorhombic Nb ₂ O ₅ as an efficient stable photocatalyst for hydrogen generation under visible light. Dalton Transactions, 2017, 46, 14859-14868.	1.6	60
1327	In situ solid-state fabrication of hybrid AgCl/AgI/AgIO3 with improved UV-to-visible photocatalytic performance. Scientific Reports, 2017, 7, 12365.	1.6	15
1328	Visualizing the Nano Cocatalyst Aligned Electric Fields on Single Photocatalyst Particles. Nano Letters, 2017, 17, 6735-6741.	4.5	164
1329	Efficient photocatalytic hydrogen evolution under visible light by ternary composite CdS@NU-1000/RGO. Catalysis Science and Technology, 2017, 7, 5113-5119.	2.1	67
1330	Nitrogen Rich Carbon Coated TiO2 Nanoparticles as Anode for High Performance Lithium-ion Battery. Electrochimica Acta, 2017, 255, 417-427.	2.6	56
1331	Photocatalytic Water Splitting: Quantitative Approaches toward Photocatalyst by Design. ACS Catalysis, 2017, 7, 8006-8022.	5.5	656

#	Article	IF	CITATIONS
1332	Synthesis, properties, and application of polymeric carbon nitrides. Russian Chemical Bulletin, 2017, 66, 782-807.	0.4	7
1333	Synergistically enhanced photocatalysis from plasmonics and a co-catalyst in Au@ZnO–Pd ternary core–shell nanostructures. Inorganic Chemistry Frontiers, 2017, 4, 2088-2096.	3.0	51
1334	Waste-to-Energy Conversion on Graphitic Carbon Nitride: Utilizing the Transformation of Macrolide Antibiotics To Enhance Photoinduced Hydrogen Production. ACS Sustainable Chemistry and Engineering, 2017, 5, 9667-9672.	3.2	18
1335	Structures, electron density and characterization of novel photocatalysts, (BaTaO ₂ N) _{1â°x} (SrWO ₂ N) _x solid solutions. Dalton Transactions, 2017, 46, 14947-14956.	1.6	16
1336	Carbon dots anchored on octahedral CoO as a stable visible-light-responsive composite photocatalyst for overall water splitting. Journal of Materials Chemistry A, 2017, 5, 19800-19807.	5.2	100
1337	Engineering Reaction Kinetics by Tailoring the Metal Tips of Metal–Semiconductor Nanodumbbells. Nano Letters, 2017, 17, 5688-5694.	4.5	31
1338	Water Adsorption on Cu ₂ O(111) Surfaces: A Scanning Tunneling Microscopy Study. Journal of Physical Chemistry C, 2017, 121, 20877-20881.	1.5	16
1339	Fundamental Semiconducting Properties of Perovskite Oxynitride SrNbO ₂ N: Epitaxial Growth and Characterization. Chemistry of Materials, 2017, 29, 7697-7703.	3.2	17
1340	Enhanced Photoactivity from Singleâ€Crystalline SrTaO ₂ N Nanoplates Synthesized by Topotactic Nitridation. Angewandte Chemie - International Edition, 2017, 56, 14169-14173.	7.2	31
1341	Actualizing efficient photocatalytic water oxidation over SrTaO ₂ N by Na modification. Catalysis Science and Technology, 2017, 7, 4640-4647.	2.1	27
1342	Construction of full-spectrum-driven Ag–g-C ₃ N ₄ /W ₁₈ O ₄₉ heterojunction catalyst with outstanding N ₂ photofixation ability. RSC Advances, 2017, 7, 42997-43004.	1.7	14
1343	Influence of Thermal Annealing on Free Carrier Concentration in (GaN) _{1–<i>x</i>} (ZnO) _{<i>x</i>} Semiconductors. Journal of Physical Chemistry C, 2017, 121, 23249-23258.	1.5	8
1344	Synthesis and characterization of Ln,Yb:BaGdF5 (Ln = Er, Ho) nanocrystals by hydrothermal method. Russian Journal of Physical Chemistry A, 2017, 91, 2034-2038.	0.1	2
1345	Ruddlesden-Popper compounds (SrO)(LaFeO3)n (n = 1 and 2) as p-type semiconductors for photocatalytic hydrogen production. Electrochimica Acta, 2017, 252, 138-146.	2.6	29
1346	Rational fabrication of a graphitic-C ₃ N ₄ /Sr ₂ KNb ₅ O ₁₅ nanorod composite with enhanced visible-light photoactivity for degradation of methylene blue and hydrogen production. RSC Advances, 2017, 7, 42774-42782.	1.7	4
1347	A novel p–n heterojunction Mn 0.25 Cd 0.75 S/Co 3 O 4 for highly efficient photocatalytic H 2 evolution under visible light irradiation. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80, 570-577.	2.7	45
1348	Spectroscopic Study of the Reversible Chemical Reduction and Reoxidation of Substitutional Cr Ions in Sr ₂ TiO ₄ . Inorganic Chemistry, 2017, 56, 9177-9184.	1.9	5
1349	Charge Carrier Dynamics in Metal Oxide Photoelectrodes for Water Oxidation. Semiconductors and Semimetals, 2017, , 3-46.	0.4	16

#	Article	IF	CITATIONS
1350	New Understanding on Photocatalytic Mechanism of Nitrogen-Doped Graphene Quantum Dots-Decorated BiVO ₄ Nanojunction Photocatalysts. ACS Omega, 2017, 2, 3766-3773.	1.6	36
1351	Metal Organic Frameworks: A New Generation Coordination Polymers for Visible Light Photocatalysis. ChemistrySelect, 2017, 2, 6163-6177.	0.7	23
1352	Frontiers of water oxidation: the quest for true catalysts. Chemical Society Reviews, 2017, 46, 6124-6147.	18.7	198
1353	Control of Elemental Distribution in the Nanoscale Solid-State Reaction That Produces (Ga _{1–<i>x</i>} Zn _{<i>x</i>})(N _{1–<i>x</i>} O _{<i>x</i>}) Nanocrystals. ACS Nano, 2017, 11, 8401-8412.	7.3	20
1354	Particulate photocatalysts for overall water splitting. Nature Reviews Materials, 2017, 2, .	23.3	1,427
1355	Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chemical Society Reviews, 2017, 46, 5950-5974.	18.7	676
1356	Spatially selective photochemical activity on surfaces of ferroelastics with local polarization. Semiconductor Science and Technology, 2017, 32, 103001.	1.0	6
1357	Nanoheterostructured photocatalysts for improving photocatalytic hydrogen production. Chinese Journal of Catalysis, 2017, 38, 1295-1306.	6.9	114
1358	Water-oxidation photoanodes using organic light-harvesting materials: a review. Journal of Materials Chemistry A, 2017, 5, 19560-19592.	5.2	87
1359	Preparation of the W ₁₈ O ₄₉ /g-C ₃ N ₄ heterojunction catalyst with full-spectrum-driven photocatalytic N ₂ photofixation ability from the UV to near infrared region. New Journal of Chemistry, 2017, 41, 8920-8926.	1.4	79
1360	Valence Band Engineering of Layered Bismuth Oxyhalides toward Stable Visible-Light Water Splitting: Madelung Site Potential Analysis. Journal of the American Chemical Society, 2017, 139, 18725-18731.	6.6	144
1361	Enhanced Photoactivity from Single rystalline SrTaO ₂ N Nanoplates Synthesized by Topotactic Nitridation. Angewandte Chemie, 2017, 129, 14357-14361.	1.6	10
1362	Photochemical metal organic deposition of FeO x catalyst on BiVO 4 for improving solar-driven water oxidation efficiency. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80, 1014-1021.	2.7	13
1364	One-step in situ green template mediated porous graphitic carbon nitride for efficient visible light photocatalytic activity. Journal of Environmental Chemical Engineering, 2017, 5, 3500-3507.	3.3	32
1365	<i>Ab initio</i> density functional theory calculation of La ₅ Ti ₂ Cu _{1â[^]<i>x</i>} Ag _{<i>x</i>} S ₅ O _{7solution semiconductor photocatalysts for water splitting. Journal Physics D: Applied Physics, 2017, 50, 234004.}	b>solid 1.3	3
1366	Crystal structure and dielectric properties of BaANaTeO6 (A = Bi, La) double perovskites. Ceramics International, 2017, 43, 12718-12723.	2.3	16
1367	In situ photodeposition of MoS _x on CdS nanorods as a highly efficient cocatalyst for photocatalytic hydrogen production. Journal of Materials Chemistry A, 2017, 5, 15287-15293.	5.2	93
1368	Synthesis of ZnGaNO solid solution–carbon nitride intercalation compound composite for improved visible light photocatalytic activity. Journal of Central South University, 2017, 24, 276-283.	1.2	2

#	ARTICLE	IF	CITATIONS
1369	A review: Effect of nanostructures on photocatalytic CO 2 conversion over metal oxides and compound semiconductors. Journal of CO2 Utilization, 2017, 20, 163-177.	3.3	90
1370	A survey of photogeochemistry. Geochemical Transactions, 2017, 18, 1.	1.8	29
1371	rGO-ZnO nanocomposites for high electrocatalytic effect on water oxidation obtained by microwave-hydrothermal method. Applied Surface Science, 2017, 423, 743-751.	3.1	59
1372	Mesoporous carbon nitrides: synthesis, functionalization, and applications. Chemical Society Reviews, 2017, 46, 72-101.	18.7	534
1373	Energy-Related Small Molecule Activation Reactions: Oxygen Reduction and Hydrogen and Oxygen Evolution Reactions Catalyzed by Porphyrin- and Corrole-Based Systems. Chemical Reviews, 2017, 117, 3717-3797.	23.0	1,042
1374	Nanocrystalline spinel ferrite for an enriched production of hydrogen through a solar energy stimulated water splitting process. Energy, 2017, 118, 1234-1242.	4.5	41
1375	Structurally tuned lead magnesium titanate perovskite as a photoelectrode material for enhanced photoelectrochemical water splitting. Chemical Engineering Journal, 2017, 309, 682-690.	6.6	33
1376	High-temperature antiferroelectric and ferroelectric phase transitions in phase pure LaTaO 4. Ceramics International, 2017, 43, 1543-1551.	2.3	6
1377	Photocatalytic Water Splitting and Carbon Dioxide Reduction. , 2017, , 2709-2756.		9
1378	Micro far-infrared dielectric response of lanthanide orthotantalates for applications in microwave circuitry. Journal of Alloys and Compounds, 2017, 693, 1243-1249.	2.8	15
1379	Influence of the solvent on the structure, morphology and performance for H2 evolution of CdS photocatalysts prepared by solvothermal method. Applied Catalysis B: Environmental, 2017, 203, 753-767.	10.8	146
1380	Cyan titania nanowires: Spectroscopic study of the origin of the self-doping enhanced photocatalytic activity. Catalysis Today, 2017, 284, 52-58.	2.2	10
1381	Photoreduction of non-noble metal Bi on the surface of Bi2WO6 for enhanced visible light photocatalysis. Applied Surface Science, 2017, 396, 652-658.	3.1	68
1382	Photocatalytic, photoelectrochemical, and antibacterial activity of benign-by-design mechanochemically synthesized metal oxide nanomaterials. Catalysis Today, 2017, 284, 3-10.	2.2	23
1383	Anatase TiO2 film composed of nanorods with predominantÂ{110} active facets as an excellent photocatalyst for water splitting. International Journal of Hydrogen Energy, 2017, 42, 5478-5484.	3.8	13
1384	CO2 reduction over NaNbO3 and NaTaO3 perovskite photocatalysts. Photochemical and Photobiological Sciences, 2017, 16, 17-23.	1.6	76
1385	Achievement of visible-light-driven Z-scheme overall water splitting using barium-modified Ta ₃ N ₅ as a H ₂ -evolving photocatalyst. Chemical Science, 2017, 8, 437-443.	3.7	110
1386	Discovery of a Novel Sn(II)â€Based Oxide βâ€&nMoO ₄ for Daylightâ€Driven Photocatalysis. Advanced Science, 2017, 4, 1600246.	5.6	22

#	Article	IF	Citations
1387	In-situ growth of highly uniform and single crystalline Co3O4 nanocubes on graphene for efficient oxygen evolution. Catalysis Communications, 2017, 88, 81-84.	1.6	25
1388	Enhanced mechanism of the photo-thermochemical cycle based on effective Fe-doping TiO2 films and DFT calculations. Applied Catalysis B: Environmental, 2017, 204, 324-334.	10.8	75
1389	An efficient hydrogen evolution catalyst composed of palladium phosphorous sulphide (PdP _{â⁻¹⁄40.33} S _{â⁻¹⁄41.67}) and twin nanocrystal Zn _{0.5} Cd _{0.5} S solid solution with both homo- and hetero-junctions. Energy and Environmental Science, 2017, 10, 225-235.	15.6	169
1390	One-dimensional CdS@MoS2 core-shell nanowires for boosted photocatalytic hydrogen evolution under visible light. Applied Catalysis B: Environmental, 2017, 202, 298-304.	10.8	334
1391	Enhancing photocatalytic H2 evolution from water on CuO-Co3O4/TiO2: The key roles of Co3O4 loading amounts. International Journal of Hydrogen Energy, 2017, 42, 30559-30568.	3.8	22
1392	Electrostatic self-assembly of exfoliated niobate nanosheets (Nb ₃ O8â^') and cobalt porphyrins (Co ^{III} TMPyP) utilized for rapid construction of intercalated nanocomposite and exploration of electrocatalysis towards oxygen reduction. Functional Materials Letters, 2017, 10, 1750070.	0.7	8
1393	First-principles calculation of M ₃ Ta ₆ Si ₄ O ₂₆ (M = Ba,) Tj ETQa	q0,0,0 rgB 0.5	T /Overlock
1394	Electron beam Ni-layer deposited LaTiO <inf>2</inf> N photoanodes for the enhanced photoelectrochemical performance of water oxidation. , 2017, , .		0
1395	Diffusion of Formaldehyde on Rutile TiO2(110) Assisted by Surface Hydroxyl Groups. Chinese Journal of Chemical Physics, 2017, 30, 253-258.	0.6	3
1397	Ion-Exchange of Cu2+ Promoted Layered Perovskite K2La2Ti3O10 for Photocatalytic Degradation Chlorobenzene under Simulated Solar Light Irradiation. Catalysts, 2017, 7, 126.	1.6	5
1398	Protonation and Photocatalytic Activity of the Rb ₂ La ₂ Ti ₃ O ₁₀ Layered Oxide in the Reaction of Hydrogen Production. International Journal of Photoenergy, 2017, 2017, 1-8.	1.4	13
1399	UV Photocatalytic Activity for Water Decomposition of Sr _{<i>x</i>} Ba _{1â~<i>x</i>} Nb ₂ O ₆ Nanocrystals with Different Components and Morphologies. Journal of Chemistry, 2017, 2017, 1-6.	0.9	2
1400	Investigation on Stability of Electroplated-Sulfurized CuInS2-based Photocathode Modified with an In2S3 Layer for H2 Evolution under Various pH Conditions. Oriental Journal of Chemistry, 2017, 33, 556-561.	0.1	11
1401	Light to Hydrogen: Photocatalytic Hydrogen Generation from Water with Molecularly-Defined Iron Complexes. Inorganics, 2017, 5, 14.	1.2	33
1402	Hydrogen as an Energy Carrier. , 2017, , 161-183.		3
1405	Au ₂₅ -Loaded BaLa ₄ Ti ₄ O ₁₅ Water-Splitting Photocatalyst with Enhanced Activity and Durability Produced Using New Chromium Oxide Shell Formation Method. Journal of Physical Chemistry C, 2018, 122, 13669-13681.	1.5	67
1406	Kinetic Coupling of Water Splitting and Photoreforming on SrTiO ₃ -Based Photocatalysts. ACS Catalysis, 2018, 8, 2902-2913.	5.5	36
1407	Necessary and sufficient conditions for the successful three-phase photocatalytic reduction of CO ₂ by H ₂ O over heterogeneous photocatalysts. Physical Chemistry Chemical Physics, 2018, 20, 8423-8431.	1.3	38

#	Article	IF	CITATIONS
1408	Theoretical study of the rutile based semiconductor with visible-light responsive photocatalytic activity for water splitting. International Journal of Hydrogen Energy, 2018, 43, 6131-6137.	3.8	1
1409	Coherent Bi2O3-TiO2 hetero-junction material through oriented growth as an efficient photo-catalyst for methyl orange degradation. Materials Today Chemistry, 2018, 8, 36-41.	1.7	5
1410	One-pot synthesis of sulfur and nitrogen codoped titanium dioxide nanorod arrays for superior photoelectrochemical water oxidation. Applied Catalysis B: Environmental, 2018, 234, 213-222.	10.8	37
1411	Construction of strontium tantalate homo-semiconductor composite photocatalysts with a tunable type II junction structure for overall water splitting. Catalysis Science and Technology, 2018, 8, 3025-3033.	2.1	8
1412	Highly efficient visible-light driven photocatalytic hydrogen evolution over Er3+:YAlO3/Ta2O5/rGO/MoSe2 nanocomposite. Journal of Molecular Liquids, 2018, 260, 375-385.	2.3	14
1413	Enhanced Photoelectrochemical Water Oxidation on BiVO4 with Mesoporous Cobalt Nitride Sheets as Oxygen-Evolution Cocatalysts. European Journal of Inorganic Chemistry, 2018, 2018, 2557-2563.	1.0	14
1414	Fabrication of band gap engineered nanostructured tri-metallic (Mn-Co-Ti) oxide thin films. AIP Conference Proceedings, 2018, , .	0.3	0
1415	Hybrid of g-C ₃ N ₄ and MoS ₂ Integrated onto Cd _{0.5} Zn _{0.5} S: Rational Design with Efficient Charge Transfer for Enhanced Photocatalytic Activity. ACS Sustainable Chemistry and Engineering, 2018, 6, 6718-6729.	3.2	54
1416	Morphology-controlled synthesis of 3D flower-like NiWO4 microstructure via surfactant-free wet chemical method. Journal of Alloys and Compounds, 2018, 753, 791-798.	2.8	17
1417	Highly efficient Fe(<scp>iii</scp>) reduction and solar-energy accumulation over a BiVO ₄ photocatalyst. Chemical Communications, 2018, 54, 2670-2673.	2.2	21
1418	Noninvasively Modifying Band Structures of Wideâ€Bandgap Metal Oxides to Boost Photocatalytic Activity. Advanced Materials, 2018, 30, e1706259.	11.1	48
1419	Layered cesium copper titanate for photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2018, 227, 349-355.	10.8	23
1420	Efficient photocatalytic degradation of gaseous acetaldehyde over ground Rh–Sb co-doped SrTiO ₃ under visible light irradiation. RSC Advances, 2018, 8, 5331-5337.	1.7	23
1421	Enhanced Visible-Light-Driven Photocatalytic Activity by 0D/2D Phase Heterojunction of Quantum Dots/Nanosheets on Bismuth Molybdates. Journal of Physical Chemistry C, 2018, 122, 3738-3747.	1.5	53
1422	A crystalline and 3D periodically ordered mesoporous quaternary semiconductor for photocatalytic hydrogen generation. Nanoscale, 2018, 10, 3225-3234.	2.8	25
1423	(00 <i>l</i>)-Facet-Exposed Planelike ABi ₂ Nb ₂ O ₉ (A = Ca, Sr, Ba) Powders with a Single-Crystal Grain for Enhancement of Photocatalytic Activity. ACS Sustainable Chemistry and Engineering, 2018, 6, 3840-3852.	3.2	28
1424	Au/TiO ₂ –gC ₃ N ₄ Nanocomposites for Enhanced Photocatalytic H ₂ Production from Water under Visible Light Irradiation with Very Low Quantities of Sacrificial Agents. Advanced Energy Materials, 2018, 8, 1702142.	10.2	163
1425	Preparation of NaYF4: Gd3+, Yb3+, Tm3+ @ TiO2 and NaYF4: Gd3+, Yb3+, Tm3+ @ TiO2 @ Au nanocomposites and their upconversion and photocatalytic properties under simulated solar light with or without an UV filter. Journal of Materials Science: Materials in Electronics, 2018, 29, 2024 2087	1.1	8

#	Article	IF	CITATIONS
1426	The preparation and photocatalytic activity of CdS/(Cal-Ta2O5-SiO2) composite photocatalyst under visible light. Journal of Solid State Chemistry, 2018, 258, 634-639.	1.4	6
1427	The first example of an oxide semiconductor photocatalyst consisting of a heptavalent cation: visible-light-induced water oxidation on M ₃ ReO ₈ . Journal of Materials Chemistry A, 2018, 6, 1991-1994.	5.2	5
1428	Barium Bismuth Niobate Double Perovskite/Tungsten Oxide Nanosheet Photoanode for Highâ€Performance Photoelectrochemical Water Splitting. Advanced Energy Materials, 2018, 8, 1701655.	10.2	62
1429	Photocatalytic hydrogen generation from a visible-light responsive metal–organic framework system: the impact of nickel phosphide nanoparticles. Journal of Materials Chemistry A, 2018, 6, 2476-2481.	5.2	94
1430	Graphene aerogels for efficient energy storage and conversion. Energy and Environmental Science, 2018, 11, 772-799.	15.6	435
1431	Red-Light-Driven Water Splitting by Au(Core)–CdS(Shell) Half-Cut Nanoegg with Heteroepitaxial Junction. Journal of the American Chemical Society, 2018, 140, 1251-1254.	6.6	147
1432	Strong hybridization between Bi-6s and O-2p orbitals in Sillén–Aurivillius perovskite Bi ₄ MO ₈ X (M = Nb, Ta; X = Cl, Br), visible light photocatalysts enabling stable water oxidation. Journal of Materials Chemistry A, 2018, 6, 3100-3107.	5.2	106
1433	Low-Temperature Hydrogen Production via Water Conversion on Pt/TiO ₂ . Journal of Physical Chemistry C, 2018, 122, 10956-10962.	1.5	29
1434	Synthesis and Visible-light Photocatalytic Performance of C-doped Nb2O5 with High Surface Area. Chemical Research in Chinese Universities, 2018, 34, 274-278.	1.3	4
1435	A photochemical diode artificial photosynthesis system for unassisted high efficiency overall pure water splitting. Nature Communications, 2018, 9, 1707.	5.8	123
1436	Measuring the effective area and charge density of platinum electrodes for bionic devices. Journal of Neural Engineering, 2018, 15, 046015.	1.8	30
1437	Nickel doping effect on properties of sprayed In2S3 films. Indian Journal of Physics, 2018, 92, 989-997.	0.9	5
1438	Robust polyoxometalate-loaded nickel foam for electrocatalytic oxygen evolution reaction. Materials Letters, 2018, 221, 264-266.	1.3	15
1439	Improved water oxidation under visible light on oxyhalide Bi ₄ MO ₈ X (M = Nb,) Tj ETQq1 2018, 2, 1474-1480.	1 0.7843 2.5	14 rgBT /Ove 33
1440	Highly efficient near-infrared light photocatalytic hydrogen evolution over MoS ₂ supported Ta ₂ O ₅ combined with an up-conversion luminescence agent (β-Tm ³⁺ ,Yb ³⁺ :NaYF ₄ /MoS ₂ –Ta ₂ O _{5<td>ub^{1,4}) Tj ET</td><td>Qq0 0 0 rgB</td>}	ub ^{1,4}) Tj ET	Qq0 0 0 rgB
1441	Fe 2 O 3 /ZnO/ZnFe 2 O 4 composites for the efficient photocatalytic degradation of organic dyes under visible light. Solid State Sciences, 2018, 80, 6-14.	1.5	26
1442	Two-electron oxidation of water to form hydrogen peroxide catalysed by silicon-porphyrins. Sustainable Energy and Fuels, 2018, 2, 1966-1973.	2.5	24
1443	Sustainable photocatalytic activities of visible-light sensitive N-doped TiO2 microspheres with permeable silica shells. Applied Catalysis A: General, 2018, 558, 9-17.	2.2	12

#	Article	IF	Citations
1444	CdS-Based photocatalysts. Energy and Environmental Science, 2018, 11, 1362-1391.	15.6	1,220
1445	Optimizing the precursor of sulfur source for hydrothermal synthesis of high performance CdS for photocatalytic hydrogen production. RSC Advances, 2018, 8, 11489-11497.	1.7	29
1446	Crystal structure, phonon modes and dielectric properties of B site ordered ABiLiTeO6 (A = Ba, Sr) double perovskites. Ceramics International, 2018, 44, 12036-12041.	2.3	13
1447	Energy Conversion in Natural and Artificial Photosynthesis. Springer Series in Chemical Physics, 2018,	0.2	11
1448	Anions and cations distribution in M 5+ /N 3- co-alloyed TiO 2 nanotubular structures for photo-electrochemical water splitting. Materials Science in Semiconductor Processing, 2018, 73, 22-29.	1.9	4
1449	The roles of surface oxygen vacancy over Mg4Ta2O9-x photocatalyst in enhancing visible-light photocatalytic hydrogen evolution performance. Catalysis Communications, 2018, 103, 29-33.	1.6	8
1450	Twoâ€Electron Oxidation of Water Through Oneâ€Photon Excitation of Aluminium Porphyrins: Molecular Mechanism and Detection of Key Intermediates. ChemPhotoChem, 2018, 2, 240-248.	1.5	21
1451	Solarâ€ŧoâ€Hydrogen Energy Conversion Based on Water Splitting. Advanced Energy Materials, 2018, 8, 1701620.	10.2	429
1452	Effects of Calcination Temperature on the Physical Properties and Hydrogen Evolution Activities of La ₅ Ti ₂ Cu(S _{1â€} <i>_x</i> Se <i>_x</i>) _{5Photocatalysts. Particle and Particle Systems Characterization, 2018, 35, 1700275.}	b> Ω ≭sub∶	>7 8 /sub>
1453	Synthesis, structural characterization and evaluation of a novel floating metal-free photocatalyst based on g-C ₃ N ₄ grafted expanded perlite for the degradation of dyes. Materials Technology, 2018, 33, 1-9.	1.5	22
1454	Protolytic behavior of axially coordinated hydroxy groups of Tin(IV) porphyrins as promising molecular catalysts for water oxidation. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 358, 402-410.	2.0	20
1455	Water splitting over core-shell structural nanorod CdS@Cr2O3 catalyst by inhibition of H2-O2 recombination via removing nascent formed oxygen using perfluorodecalin. Applied Catalysis B: Environmental, 2018, 221, 618-625.	10.8	57
1456	Photochemical hydrogen evolution on metal ion surface-grafted TiO2-particles prepared by sol/gel method without calcination. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 358, 386-394.	2.0	15
1457	Phase junction CdS: High efficient and stable photocatalyst for hydrogen generation. Applied Catalysis B: Environmental, 2018, 221, 179-186.	10.8	111
1458	Nature of surface oxygen intermediates on TiO2 during photocatalytic splitting of water. Chinese Chemical Letters, 2018, 29, 769-772.	4.8	17
1459	Impact of bi-axial strain on the structural, electronic and optical properties of photo-catalytic bulk bismuth oxyhalides. Physical Chemistry Chemical Physics, 2018, 20, 103-111.	1.3	18
1460	Synergistic effects of CdS in sodium titanate based nanostructures for hydrogen evolution. Chinese Chemical Letters, 2018, 29, 1417-1420.	4.8	15
1461	Improving solar water-splitting performance of LaTaON2 by bulk defect control and interface engineering. Applied Catalysis B: Environmental, 2018, 226, 111-116.	10.8	26

#	Article	IF	CITATIONS
1462	Effect of protonation on the photocatalytic activity of the K2La2Ti3O10 layered oxide in the reaction of hydrogen production. Monatshefte FA¼r Chemie, 2018, 149, 475-482.	0.9	17
1463	Accuracy of dielectric-dependent hybrid functionals in the prediction of optoelectronic properties of metal oxide semiconductors: a comprehensive comparison with many-body <i>GW</i> and experiments. Journal of Physics Condensed Matter, 2018, 30, 044003.	0.7	59
1464	High efficiency water splitting photoanodes composed of nano-structured anatase-rutile TiO2 heterojunctions by pulsed-pressure MOCVD. Applied Catalysis B: Environmental, 2018, 224, 904-911.	10.8	51
1465	Insights into the photoactivity of iron modified bismuth titanate (Fe_BTO) nanoparticles. Catalysis Today, 2018, 300, 81-88.	2.2	13
1466	Graphene quantum dots from chemistry to applications. Materials Today Chemistry, 2018, 10, 221-258.	1.7	539
1467	Water Splitting over Ba ₂ In ₂ O ₅ Photocatalysts with a Brownmillerite Structure and the Effect of La-substitution on Its Band Structure and Photocatalytic Activities. Chemistry Letters, 2018, 47, 1526-1529.	0.7	2
1468	Effective Photocatalytic Hydrogen Evolution by Cascadal Carrier Transfer in the Reverse Direction. ACS Omega, 2018, 3, 12770-12777.	1.6	14
1469	Tuning Texture and Morphology of Mesoporous TiO2 by Non-Hydrolytic Sol-Gel Syntheses. Molecules, 2018, 23, 3006.	1.7	6
1470	Denaturation of Lysozyme with Visible-light-responsive Photocatalysts of Ground Rhodium-doped and Ground Rhodium-antimony-co-doped Strontium Titanate. Journal of Oleo Science, 2018, 67, 1521-1533.	0.6	2
1471	Visible Light-Promoted Plasmon Resonance to Induce "Hot―Hole Transfer and Photothermal Conversion for Catalytic Oxidation. Journal of Physical Chemistry C, 2018, 122, 28934-28948.	1.5	32
1472	In situ preparation of N doped orthorhombic Nb2O5 nanoplates /rGO composites for photocatalytic hydrogen generation under sunlight. International Journal of Hydrogen Energy, 2018, 43, 19873-19884.	3.8	36
1473	Particularities of photocatalysis and formation of reactive oxygen species on insulators and semiconductors: cases of SiO ₂ , TiO ₂ and their composite SiO ₂ . Catalysis Science and Technology, 2018, 8, 5657-5668.	2.1	17
1474	Design, modification and application of semiconductor photocatalysts. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 590-602.	2.7	94
1475	3D Hierarchical heterostructures of Bi ₂ W _{1â^x} Mo _x O ₆ with enhanced oxygen evolution reaction from water under natural sunlight. New Journal of Chemistry, 2018, 42, 17597-17605.	1.4	8
1476	Layered Trichalcogenidophosphate: A New Catalyst Family for Water Splitting. Nano-Micro Letters, 2018, 10, 67.	14.4	65
1477	Analyzing the Photo-oxidation of 2-propanol at Indoor Air Level Concentrations Using Field Asymmetric Ion Mobility Spectrometry. Journal of Visualized Experiments, 2018, , .	0.2	1
1478	Synthesis of Full-Spectrum-Response Cu ₂ (OH)PO ₄ /g-C ₃ N ₄ Photocatalyst with Outstanding Photocatalytic H ₂ O ₂ Production Performance via a "Two Channel Routeâ€ ACS Sustainable Chemistry and Engineering, 2018, 6, 14542-14553.	3.2	62
1479	Nanohybrid-sensitized photoelectrochemical cells for solar-to-hydrogen conversion. MRS Communications, 2018, 8, 754-764.	0.8	2

#	Article	IF	CITATIONS
1480	Water splitting by plasmonic photocatalysts with a gold nanoparticle/cadmium sulfide heteroepitaxial junction: A mini review. Electrochemistry Communications, 2018, 97, 22-26.	2.3	16
1481	A Hollow Porous CdS Photocatalyst. Advanced Materials, 2018, 30, e1804368.	11.1	204
1482	Gold–Titanium Dioxide Half-Dome Heterostructures for Plasmonic Hydrogen Evolution. ACS Applied Energy Materials, 0, , .	2.5	6
1483	Concurrent Photocatalytic Hydrogen Generation and Dye Degradation Using MILâ€125â€NH ₂ under Visible Light Irradiation. Advanced Functional Materials, 2018, 28, 1806368.	7.8	110
1484	CsTaWO6 as photoelectron platform by carbon nitride sensitizing toward enhanced charge carrier separation and photocatalytic activity. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	3
1485	Zinc oxide for solar water splitting: A brief review of the material's challenges and associated opportunities. Nano Energy, 2018, 54, 409-428.	8.2	126
1486	Structural and Optical Properties of Perovskite–Type Compounds Obtained by Ultrasonic Method. IOP Conference Series: Materials Science and Engineering, 2018, 416, 012067.	0.3	1
1487	From Rusting to Solar Power Plants: A Successful Nano-Pattering of Stainless Steel 316L for Visible Light-Induced Photoelectrocatalytic Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 17352-17358.	3.2	21
1488	Plasmonâ€Enhanced Solar Water Splitting on Metalâ€Semiconductor Photocatalysts. Chemistry - A European Journal, 2018, 24, 18322-18333.	1.7	57
1489	Roles of Phase Junction in Photocatalysis and Photoelectrocatalysis. Journal of Physical Chemistry C, 2018, 122, 21083-21096.	1.5	95
1490	Alternative route to bypass the bottle-neck of water oxidation: Two-electron oxidation of water catalyzed by earth-abundant metalloporphyrins. Coordination Chemistry Reviews, 2018, 377, 64-72.	9.5	34
1491	Molybdenumâ€Based Coâ€catalysts in Photocatalytic Hydrogen Production: Categories, Structures, and Roles. ChemSusChem, 2018, 11, 3871-3881.	3.6	34
1492	pH-Mediated Collective and Selective Solar Photocatalysis by a Series of Layered Aurivillius Perovskites. ACS Omega, 2018, 3, 11104-11116.	1.6	31
1493	Efficient Noble-Metal-Free Co-NG/TiO ₂ Photocatalyst for H ₂ Evolution: Synergistic Effect between Single-Atom Co and N-Doped Graphene for Enhanced Photocatalytic Activity. ACS Sustainable Chemistry and Engineering, 2018, 6, 12766-12775.	3.2	63
1494	Synergy between quantum confinement and chemical functionality of graphene dots promotes photocatalytic H ₂ evolution. Journal of Materials Chemistry A, 2018, 6, 18216-18224.	5.2	10
1495	Visible Light Driven Photoanodes for Water Oxidation Based on Novel r-GO/β-Cu2V2O7/TiO2 Nanorods Composites. Nanomaterials, 2018, 8, 544.	1.9	23
1496	Oxygen vacancy induced bismuth basic nitrate with excellent photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2018, 29, 18067-18073.	1.1	6
1497	Improvement of visible-light photo catalytic activity of BiNbO ₄ by Ti doping. IOP Conference Series: Earth and Environmental Science, 2018, 170, 032119.	0.2	2

#	Article	IF	CITATIONS
1498	Enhancing Hydrogen Generation Through Nanoconfinement of Sensitizers and Catalysts in a Homogeneous Supramolecular Organic Framework. Small, 2018, 14, e1801037.	5.2	44
1499	Enhanced H ₂ Evolution on ZnIn ₂ S ₄ Photocatalyst under Visible Light by Surface Modification with Metal Cyanoferrates. Chemistry Letters, 2018, 47, 941-944.	0.7	15
1500	One-pot synthesis of Cu-modified HNb ₃ O ₈ nanobelts with enhanced photocatalytic hydrogen production. Journal of Materials Chemistry A, 2018, 6, 10769-10775.	5.2	7
1501	Toward Shape-Controlled Metal Oxynitride and Nitride Particles for Solar Energy Applications. ACS Energy Letters, 2018, 3, 1331-1344.	8.8	43
1502	The Combination of Hydrogen and Methanol Production through Artificial Photosynthesis—Are We Ready Yet?. ChemSusChem, 2018, 11, 2654-2672.	3.6	8
1503	2.8 Magnetic Materials. , 2018, , 204-234.		11
1504	Recent advances in rational engineering of multinary semiconductors for photoelectrochemical hydrogen generation. Nano Energy, 2018, 51, 457-480.	8.2	140
1505	An Efficient, Visibleâ€Lightâ€Driven, Hydrogen Evolution Catalyst NiS/Zn _{<i>x</i>} Cd _{1Ⱂ<i>x</i>} S Nanocrystal Derived from a Metal–Organic Framework. Angewandte Chemie, 2018, 130, 9938-9942.	1.6	54
1506	Structure and photoactivity for hydrogen production of CdS nanorods modified with In, Ga, Ag-In and Ag-Ga and prepared by solvothermal method. Materials Today Energy, 2018, 9, 345-358.	2.5	11
1507	Water oxidation chemistry of oxynitrides and oxides: Comparing NaTaO3 and SrTaO2N. Surface Science, 2018, 677, 258-263.	0.8	16
1508	How does the tin(IV)-insertion to porphyrins proceed in water at ambient temperature?: Re-investigation by time dependent 1H NMR and detection of intermediates. Inorganica Chimica Acta, 2018, 482, 914-924.	1.2	9
1509	Interstitial charge transfer pathways in a TiO ₂ /CdIn ₂ S ₄ heterojunction photocatalyst for direct conversion of sunlight into fuel. Journal of Materials Chemistry A, 2018, 6, 16064-16073.	5.2	73
1510	Composition effect of alloy semiconductors on Pt-tipped Zn _{1â^'x} Cd _x Se nanorods for enhanced photocatalytic hydrogen generation. Journal of Materials Chemistry A, 2018, 6, 16316-16321.	5.2	14
1511	Tuning the Crystal Phase and Morphology of the Photoluminescent Indium Sulphide Nanocrystals and Their Adsorptionâ€Based Catalytic and Photocatalytic Applications. ChemistrySelect, 2018, 3, 8171-8182.	0.7	8
1512	Data-driven material discovery for photocatalysis: a short review. Journal of Semiconductors, 2018, 39, 071001.	2.0	16
1513	Activation of Kagome lattice-structured Cu ₃ V ₂ O ₇ (OH) ₂ ·2H ₂ O volborthite <i>via</i> hydrothermal crystallization for boosting visible light-driven water oxidation. Physical Chemistry Chemical Physics. 2018. 20. 24561-24569.	1.3	9
1514	Zinc Tantalum Oxynitride (ZnTaO2N) Photoanode Modified with Cobalt Phosphate Layers for the Photoelectrochemical Oxidation of Alkali Water. Nanomaterials, 2018, 8, 48.	1.9	15
1515	Te-doped perovskite NaTaO3 as a promising photocatalytic material for hydrogen production from water splitting driven by visible light. Materials Research Bulletin, 2018, 107, 125-131.	2.7	31

#	Article	IF	CITATIONS
1516	Facile fabrication and enhanced photocatalytic performance: From BiOCl to element-doped BiOCl. Chemical Physics Letters, 2018, 706, 483-487.	1.2	56
1517	The effect of pH on the photochemical reactivity of BaTiO3. Surface Science, 2018, 675, 83-90.	0.8	9
1518	Recent advances in the field of light-driven water oxidation catalyzed by transition-metal substituted polyoxometalates. Dalton Transactions, 2018, 47, 8180-8188.	1.6	56
1519	Lead Bismuth Oxyhalides PbBiO ₂ X (X = Cl, Br) as Visible-Light-Responsive Photocatalysts for Water Oxidation: Role of Lone-Pair Electrons in Valence Band Engineering. Chemistry of Materials, 2018, 30, 5862-5869.	3.2	82
1520	A promising electrodeposited iron oxide nanoparticles of very high saturation magnetization and superparamagnetic properties for remediation of polluted water with lead ions. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 379-387.	2.7	5
1521	Enhanced H ₂ evolution over an Ir-doped SrTiO ₃ photocatalyst by loading of an Ir cocatalyst using visible light up to 800 nm. Chemical Communications, 2018, 54, 10606-10609.	2.2	39
1522	Synergistic interplay of Zn and Rh-Cr promoters on Ga2O3 based photocatalysts for water splitting. Physical Chemistry Chemical Physics, 2018, 20, 23515-23521.	1.3	5
1523	Artificial Photosynthesis Inspired by PSII: Water Splitting on Heterogeneous Photocatalysts. , 2018, , 327-333.		1
1524	Low temperature synthesis of BiFeO ₃ nanoparticles with enhanced magnetization and promising photocatalytic performance in dye degradation and hydrogen evolution. RSC Advances, 2018, 8, 29613-29627.	1.7	57
1525	Energy-Band Alignment of BiVO ₄ from Photoelectron Spectroscopy of Solid-State Interfaces. Journal of Physical Chemistry C, 2018, 122, 20861-20870.	1.5	38
1526	Synthesis and electronic properties of Fe2TiO5 epitaxial thin films. APL Materials, 2018, 6, .	2.2	18
1527	Au@TiO ₂ Core–Shell Composites for the Photocatalytic Reduction of CO ₂ . Chemistry - A European Journal, 2018, 24, 12416-12425.	1.7	51
1528	Mesoporous ZnFe 2 O 4 Photoanodes with Templateâ€Tailored Mesopores and Temperatureâ€Dependent Photocurrents. ChemPhysChem, 2018, 19, 2313-2320.	1.0	22
1529	Ptl /[(CH3)2NH2]3[Bil6] as a well-dispersed photocatalyst for hydrogen production in hydroiodic acid. Nano Energy, 2018, 50, 665-674.	8.2	45
1530	Anatomy of a Visible Light Activated Photocatalyst for Water Splitting. ACS Catalysis, 2018, 8, 6650-6658.	5.5	24
1531	An Efficient, Visibleâ€Lightâ€Driven, Hydrogen Evolution Catalyst NiS/Zn _{<i>x</i>} Cd _{1â^'<i>x</i>} S Nanocrystal Derived from a Metal–Organic Framework. Angewandte Chemie - International Edition, 2018, 57, 9790-9794.	7.2	200
1532	Activating Kläi-Type Organometallic Precursors at Metal Oxide Surfaces for Enhanced Solar Water Oxidation. ACS Energy Letters, 2018, 3, 1613-1619.	8.8	33
1533	Homogeneous Electron Doping into Nonstoichiometric Strontium Titanate Improves Its Photocatalytic Activity for Hydrogen and Oxygen Evolution. ACS Catalysis, 2018, 8, 7190-7200.	5.5	34

#	Article	IF	CITATIONS
1534	Electrodeposited single-crystalline PbCrO ₄ microrods for photoelectrochemical water oxidation: enhancement of minority carrier diffusion. Journal of Materials Chemistry A, 2018, 6, 13312-13320.	5.2	12
1535	A photo-excited electron transfer hyperchannel constructed in Pt-dispersed pyrimidine-modified carbon nitride for remarkably enhanced water-splitting photocatalytic activity. Applied Catalysis B: Environmental, 2018, 237, 888-894.	10.8	36
1536	The Study of Near-Band-Edge Property in Oxygen-Incorporated ZnS for Acting as an Efficient Crystal Photocatalyst. ACS Omega, 2018, 3, 6351-6359.	1.6	8
1537	Effects of Se Incorporation in La ₅ Ti ₂ CuS ₅ O ₇ by Annealing on Physical Properties and Photocatalytic H ₂ Evolution Activity. ACS Applied Materials & Interfaces, 2019, 11, 5595-5601.	4.0	17
1538	A high H2 evolution rate under visible light of a CdS/TiO2@NiS catalyst due to a directional electron transfer between the phases. Chinese Journal of Chemical Engineering, 2019, 27, 544-548.	1.7	8
1539	Photocatalytic properties of layer-by-layer thin films of hexaniobate nanoscrolls. Catalysis Today, 2019, 326, 60-67.	2.2	14
1540	Transition metal-doped amorphous molybdenum sulfide/graphene ternary cocatalysts for excellent photocatalytic hydrogen evolution: Synergistic effect of transition metal and graphene. Journal of Colloid and Interface Science, 2019, 533, 287-296.	5.0	30
1541	Photocatalytic Water Splitting for Solar Hydrogen Production Using the Carbonate Effect and the Z‧cheme Reaction. Advanced Energy Materials, 2019, 9, 1801294.	10.2	136
1542	Cocatalyst modification of niobium-substituted silver tantalate photocatalyst for enhanced solar water-splitting activity. International Journal of Hydrogen Energy, 2019, 44, 23600-23609.	3.8	8
1543	Impacts of metal oxides on the structural, optical, dielectric and photocatalytic properties of synthesized ternary composite (Nb2O5/MoS2/Graphene). Ceramics International, 2019, 45, 23196-23202.	2.3	8
1544	Enhanced Solar Water Splitting Performance of 50-100 nm Pore Sized TiO2 Nanotubes. Asian Journal of Chemistry, 2019, 31, 559-565.	0.1	0
1545	Photocatalytic conversion of CO2 using earth-abundant catalysts: A review on mechanism and catalytic performance. Renewable and Sustainable Energy Reviews, 2019, 113, 109246.	8.2	123
1546	Diffusion controlled porous WO ₃ thin film photoanodes for efficient solar-driven photoelectrochemical permanganic acid production. Sustainable Energy and Fuels, 2019, 3, 2380-2390.	2.5	5
1547	Sensitization of TiO2 by a symmetric anionic polymethine dye with three conjugated chromophores. Research on Chemical Intermediates, 2019, 45, 4043-4052.	1.3	6
1548	Modulation of HCHO, H2O and H adsorption on AgPd cocatalyst by optimizing of selective exposed facet to enhancing the efficiency of conversion toxic formaldehyde into hydrogen driven by visible light. Journal of Catalysis, 2019, 375, 493-506.	3.1	12
1549	Cu2O as an emerging photocathode for solar water splitting - A status review. International Journal of Hydrogen Energy, 2019, 44, 21351-21378.	3.8	155
1550	Inverted Pyramid Textured p-Silicon Covered with Co ₂ P as an Efficient and Stable Solar Hydrogen Evolution Photocathode. ACS Energy Letters, 2019, 4, 1755-1762.	8.8	35
1551	Photo-catalytic hydrogen production over Au/g-C ₃ N ₄ : effect of gold particle dispersion and morphology. Physical Chemistry Chemical Physics, 2019, 21, 15974-15987.	1.3	31

#	Article	IF	CITATIONS
1552	A triptych photocatalyst based on the Co-Integration of Ag nanoparticles and carbo-benzene dye into a TiO2 thin film. International Journal of Hydrogen Energy, 2019, 44, 26347-26360.	3.8	9
1553	Thin Films of Thermally Stable Ordered Mesoporous Rh ₂ O ₃ (I) for Visible-Light Photocatalysis and Humidity Sensing. ACS Applied Nano Materials, 2019, 2, 7126-7133.	2.4	9
1554	Fabrication of Te@NiTe2/NiS heterostructures for electrocatalytic hydrogen evolution reaction. Electrochimica Acta, 2019, 328, 135075.	2.6	28
1555	Part Segmentation for Highly Accurate Deformable Tracking in Occlusions via Fully Convolutional Neural Networks. , 2019, , .		0
1556	Synthesis of Flower-Like g-C3N4/BiOBr and Enhancement of the Activity for the Degradation of Bisphenol A Under Visible Light Irradiation. Frontiers in Chemistry, 2019, 7, 649.	1.8	34
1558	Ag–TiO ₂ Hybrid Nanocrystal Photocatalyst: Hydrogen Evolution under UV Irradiation but Not under Visible-Light Irradiation. ACS Applied Energy Materials, 2019, 2, 8274-8282.	2.5	24
1559	Effect of ion (Ag+, N3â^') doping on the photocatalytic activity of the Ruddlesden–Popper-type layered perovskite K2Nd2Ti3O10. Comptes Rendus Chimie, 2019, 22, 667-677.	0.2	7
1560	Multi-Layered Mesoporous TiO2 Thin Films: Photoelectrodes with Improved Activity and Stability. Coatings, 2019, 9, 625.	1.2	6
1561	Achieving Controllable CoTiO ₃ -Encapsulated TiO ₂ Heterostructures for Enhanced Photoelectrochemical Water Splitting. ACS Applied Energy Materials, 2019, 2, 8229-8235.	2.5	27
1562	Optimized photoactive coatings prepared with functionalized TiO2. International Journal of Hydrogen Energy, 2019, 44, 31800-31807.	3.8	7
1563	Ag/AgCl-GO: A composite for degradation of Rhodamine B in dye wastewater. Advanced Powder Technology, 2019, 30, 3193-3202.	2.0	6
1564	Recent advances in dye-sensitized photoelectrochemical cells for water splitting. EnergyChem, 2019, 1, 100015.	10.1	73
1565	Effect of Naâ€Ðoping on Electron Decay Kinetics in SrTiO ₃ Photocatalyst. ChemCatChem, 2019, 11, 6349-6354.	1.8	23
1566	Supramolecular Anchoring of Octahedral Molybdenum Clusters onto Graphene and Their Synergies in Photocatalytic Water Reduction. Inorganic Chemistry, 2019, 58, 15443-15454.	1.9	34
1567	Rapid photocatalytic degradation of acetaminophen and levofloxacin using g-C ₃ N ₄ nanosheets under solar light irradiation. Materials Research Express, 2019, 6, 125538.	0.8	9
1568	Influence of Reduced Cu Surface States on the Photoelectrochemical Properties of CuBi ₂ O ₄ . ACS Applied Energy Materials, 2019, 2, 6866-6874.	2.5	23
1569	Photocatalytic performance of carbon nitride intercalation compound. IOP Conference Series: Earth and Environmental Science, 2019, 300, 032024.	0.2	0
1570	Selectively Photocatalytic Activity of an Open-Framework Chalcogenide Built from Corner-Sharing T4 Supertetrahedral Clusters. Inorganic Chemistry, 2019, 58, 12011-12016.	1.9	6

#	Article	IF	CITATIONS
1571	Plasmonic Gold Nanoprism–Cobalt Molecular Complex Dyad Mimics Photosystem-II for Visible–NIR Illuminated Neutral Water Oxidation. ACS Energy Letters, 2019, 4, 2428-2435.	8.8	19
1572	Plasmonic Ag decorated CdMoO ₄ as an efficient photocatalyst for solar hydrogen production. RSC Advances, 2019, 9, 28525-28533.	1.7	11
1573	Yttrium Tantalum Oxynitride Multiphases as Photoanodes for Water Oxidation. Journal of Physical Chemistry C, 2019, 123, 26211-26217.	1.5	9
1574	Sandwich-Nanostructured n-Cu ₂ O/AuAg/p-Cu ₂ O Photocathode with Highly Positive Onset Potential for Improved Water Reduction. ACS Applied Materials & Interfaces, 2019, 11, 38625-38632.	4.0	30
1575	Cu ₃ MS ₄ (M=V, Nb, Ta) and its Solid Solutions with Sulvanite Structure for Photocatalytic and Photoelectrochemical H ₂ Evolution under Visibleâ€Light Irradiation. ChemSusChem, 2019, 12, 1977-1983.	3.6	24
1576	GaP–ZnS Multilayer Films: Visible-Light Photoelectrodes by Interface Engineering. Journal of Physical Chemistry C, 2019, 123, 3336-3342.	1.5	7
1577	Time-dependent DFT and experimental study on visible light photocatalysis by metal oxides of Ti, V and Zn after complexing with a conjugated polymer. New Journal of Chemistry, 2019, 43, 1505-1516.	1.4	8
1578	Recent advances and strategies to tailor the energy levels, active sites and electron mobility in titania and its doped/composite analogues for hydrogen evolution in sunlight. Catalysis Science and Technology, 2019, 9, 12-46.	2.1	74
1579	Z-scheme photocatalyst systems employing Rh- and Ir-doped metal oxide materials for water splitting under visible light irradiation. Faraday Discussions, 2019, 215, 313-328.	1.6	33
1580	Development and Optimization of an Immobilized Photocatalytic System within a Stacked Frame Photoreactor (SFPR) Using Light Distribution and Fluid Mixing Simulation Coupled with Experimental Validation. Industrial & Engineering Chemistry Research, 2019, 58, 2727-2740.	1.8	8
1581	Combined theoretical and experimental characterizations of semiconductors for photoelectrocatalytic applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 40, 212-233.	5.6	29
1582	Active Surface Species Ruling Product Selectivity in Photocatalytic CO ₂ Reduction over Pt- or Co-Promoted TiO ₂ . Journal of Physical Chemistry C, 2019, 123, 4140-4147.	1.5	13
1583	Titanium oxide based photocatalytic materials development and their role of in the air pollutants degradation: Overview and forecast. Environment International, 2019, 125, 200-228.	4.8	208
1584	Particulate Photocatalysts for Water Splitting: Recent Advances and Future Prospects. ACS Energy Letters, 2019, 4, 542-549.	8.8	229
1585	Fast Flux Reaction Approach for the Preparation of Sn ₂ TiO ₄ : Tuning Particle Sizes and Photocatalytic Properties. Journal of the Electrochemical Society, 2019, 166, H3084-H3090.	1.3	12
1586	Highly Efficient Nanostructured Bi2WO6 Thin Film Electrodes for Photoelectrochemical and Environment Remediation. Nanomaterials, 2019, 9, 755.	1.9	10
1587	A systematic investigation on morphology tailoring, defect tuning and visible-light photocatalytic functionality of Ti-based perovskite nanostructures. Catalysis Today, 2019, 335, 591-598.	2.2	10
1588	Photoconductivity–Lifetime Product Correlates Well with the Photocatalytic Activity of Oxyhalides Bi ₄ TaO ₈ Cl and PbBiO ₂ Cl: An Approach to Boost Their O ₂ Evolution Rates. ACS Energy Letters, 2019, 4, 1572-1578.	8.8	31

#	Article	IF	CITATIONS
1589	Observation of visible light activated photocatalytic degradation of stearic acid on thin films of tantalum oxynitride synthesized by aerosol assisted chemical vapour deposition. Dalton Transactions, 2019, 48, 10619-10627.	1.6	11
1590	Inâ€situ Photosynthetic Route to Tailor Point Defects in TiO 2 (B) Nanosheets for Visible Lightâ€Driven Photocatalytic Hydrogen Production. ChemCatChem, 2019, 11, 4252-4255.	1.8	9
1591	Nanoconfined Growth of Carbon-Encapsulated Cobalts as Cocatalysts for Photocatalytic Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2019, 7, 14023-14030.	3.2	23
1592	Nanostructured materials for photocatalysis. Chemical Society Reviews, 2019, 48, 3868-3902.	18.7	744
1593	Tailoring morphological characteristics of zinc oxide using a one-step hydrothermal method for photoelectrochemical water splitting application. International Journal of Hydrogen Energy, 2019, 44, 17535-17543.	3.8	27
1594	Structural and Raman analysis of double perovskite La2CoTi0.7Ni0.3O6. AIP Conference Proceedings, 2019, , .	0.3	3
1595	Adsorption Features of Formaldehyde on TiO ₂ (110) Surface Probed by High-Resolution Scanning Tunnelling Microscopy. Journal of Physical Chemistry Letters, 2019, 10, 3352-3358.	2.1	13
1596	Controlled growth of ZnS/ZnO heterojunctions on porous biomass carbons <i>via</i> one-step carbothermal reduction enables visible-light-driven photocatalytic H ₂ production. Inorganic Chemistry Frontiers, 2019, 6, 2035-2042.	3.0	32
1597	Visible light active Bi ₃ TaO ₇ nanosheets for water splitting. Dalton Transactions, 2019, 48, 9284-9290.	1.6	14
1598	A Theoretical Perspective on Charge Separation and Transfer in Metal Oxide Photocatalysts for Water Splitting. ChemCatChem, 2019, 11, 3688-3715.	1.8	27
1599	Hydrothermal synthesis and structural characterization of several complex rare earth tantalates: Ln2TaO5(OH) (Ln = La, Pr) and Ln3Ta2O9(OH) (Ln = Pr, Nd). Dalton Transactions, 2019, 48, 7704-7713.	1.6	6
1600	Computational Screening of Electrocatalytic Activity of Transition Metal-Doped CdS Nanotubes for Water Splitting. Journal of Physical Chemistry C, 2019, 123, 13419-13427.	1.5	10
1601	Review on heterophase/homophase junctions for efficient photocatalysis: The case of phase transition construction. Chinese Journal of Catalysis, 2019, 40, 796-818.	6.9	96
1602	Effects of Coapplication of Rh-Doping and Ag-Substitution on the Band Structure of Li ₂ TiO ₃ and the Photocatalytic Property. ACS Sustainable Chemistry and Engineering, 2019, 7, 9881-9887.	3.2	10
1603	Exploration and evaluation of proton source-assisted photocatalyst for hydrogen generation. Photochemical and Photobiological Sciences, 2019, 18, 1716-1726.	1.6	27
1604	Surface Plasmon Resonant Gold-Palladium Bimetallic Nanoparticles for Promoting Catalytic Oxidation. MRS Advances, 2019, 4, 1877-1886.	0.5	8
1606	Atomic-Level Understanding of the Effect of Heteroatom Doping of the Cocatalyst on Water-Splitting Activity in AuPd or AuPt Alloy Cluster-Loaded BaLa ₄ Ti ₄ O ₁₅ . ACS Applied Energy Materials, 2019, 2, 4175-4187.	2.5	61
1607	Emerging approach in semiconductor photocatalysis: Towards 3D architectures for efficient solar fuels generation in semi-artificial photosynthetic systems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 39, 142-160.	5.6	34

#	Article	IF	CITATIONS
1608	Singleâ€step preparation of rutileâ€type CrNbO ₄ and CrTaO ₄ oxides from oxalate precursors–characterization and properties. Journal of the American Ceramic Society, 2019, 102, 6697-6704.	1.9	6
1609	Hierarchical NiO@Nâ€Doped Carbon Microspheres with Ultrathin Nanosheet Subunits as Excellent Photocatalysts for Hydrogen Evolution. Small, 2019, 15, e1901024.	5.2	81
1610	Phosphorus-Rich Metal Phosphides: Direct and Tin Flux-Assisted Synthesis and Evaluation as Hydrogen Evolution Electrocatalysts. Inorganic Chemistry, 2019, 58, 5013-5024.	1.9	38
1611	Dual-Functional Photocatalysis for Simultaneous Hydrogen Production and Oxidation of Organic Substances. ACS Catalysis, 2019, 9, 4247-4270.	5.5	209
1613	First principles study on Zn doped MgO using Hubbard U correction. Materials Research Express, 2019, 6, 094012.	0.8	7
1614	Optimized band gap and fast interlayer charge transfer in two-dimensional perovskite oxynitride Ba2NbO3N and Sr2NbO3/Ba2NbO3N bonded heterostructure visible-light photocatalysts for overall water splitting. Journal of Colloid and Interface Science, 2019, 546, 20-31.	5.0	26
1615	Electrocatalytic and Enhanced Photocatalytic Applications of Sodium Niobate Nanoparticles Developed by Citrate Precursor Route. Scientific Reports, 2019, 9, 4488.	1.6	75
1616	Electronic structure basis for enhanced overall water splitting photocatalysis with aluminum doped SrTiO ₃ in natural sunlight. Energy and Environmental Science, 2019, 12, 1385-1395.	15.6	134
1617	Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nature Catalysis, 2019, 2, 387-399.	16.1	985
1618	Improving hydrogen evolution activity of perovskite BaTiO3 with Mo doping: Experiments and first-principles analysis. International Journal of Hydrogen Energy, 2019, 44, 11695-11704.	3.8	34
1619	Synthesis of Hybrid Zinc-Based Materials from Ionic Liquids: A Novel Route to Prepare Active Zn Catalysts for the Photoactivation of Water and Methane. ACS Sustainable Chemistry and Engineering, 2019, 7, 8090-8098.	3.2	13
1620	Significance of hydrogen bonding networks in the proton-coupled electron transfer reactions of photosystem II from a quantum-mechanics perspective. Physical Chemistry Chemical Physics, 2019, 21, 8721-8728.	1.3	3
1621	Facile Synthesis of Ce–Doped SnO ₂ Nanoparticles: A Promising Photocatalyst for Hydrogen Evolution and Dyes Degradation. ChemistrySelect, 2019, 4, 3722-3729.	0.7	28
1622	Synthesis of oxy-sulfide based nanocomposite catalyst for visible light-driven reduction of Cr(VI). Environmental Research, 2019, 172, 279-288.	3.7	17
1623	Hierarchical ZnIn2S4: A promising cocatalyst to boost visible-light-driven photocatalytic hydrogen evolution of In(OH)3. International Journal of Hydrogen Energy, 2019, 44, 5787-5798.	3.8	40
1624	Strategy for improving the visible photocatalytic H2 evolution activity of 2D graphitic carbon nitride nanosheets through the modification with metal and metal oxide nanocomponents. Applied Catalysis B: Environmental, 2019, 248, 538-551.	10.8	64
1625	Designing interfaces in energy materials applications with first-principles calculations. Npj Computational Materials, 2019, 5, .	3.5	71
1626	Composite Nanofibers for Removing Water Pollutants: Fabrication Techniques. , 2019, , 441-468.		3

#	Article	IF	CITATIONS
1627	Plasmon induced interfacial charge transfer across Zr-based metal-organic framework coupled Ag2WO4 heterojunction functionalized by Ag NPs: Efficient visible light photocatalyst. Chemical Physics Letters, 2019, 720, 7-14.	1.2	19
1628	Influence of the preparation conditions on the morphology and photocatalytic performance Pt-modified hexaniobate composites. Journal of Physics Condensed Matter, 2019, 31, 394001.	0.7	9
1629	Carbonâ€Bridged g ₃ N ₄ Nanosheets for High Hydrogen Evolution Rate by a Twoâ€Step Gaseous Treatment. ChemistrySelect, 2019, 4, 13064-13070.	0.7	6
1630	Recent advances and demonstrated potentials for clean hydrogen via overall solar water splitting. MRS Advances, 2019, 4, 2771-2785.	0.5	5
1631	Characterization and Optimization of Silver-Modified In _{0.2} Cd _{0.8} S-Based Photocatalysts. ACS Omega, 2019, 4, 21214-21222.	1.6	5
1632	Photoinduced electron transfer in semiconductor–clay binary nanosheet colloids controlled by clay particles as a turnout switch. Applied Catalysis B: Environmental, 2019, 241, 499-505.	10.8	10
1633	Enhanced visible-light photoelectrochemical hydrogen evolution through degradation of methyl orange in a cell based on coral-like Pt-deposited TiO2 thin film with sub-2 nm pores. Catalysis Today, 2019, 335, 333-344.	2.2	30
1634	Theoretical Insights into Heterogeneous (Photo)electrochemical CO ₂ Reduction. Chemical Reviews, 2019, 119, 6631-6669.	23.0	431
1635	Preparation and characterization of Pt, N-TiO2-graphene nanocomposites for hydrogen production. Ceramics International, 2019, 45, 6058-6065.	2.3	13
1636	Nanorod Array of SnO ₂ Quantum Dot Interspersed Multiphase TiO ₂ Heterojunctions with Highly Photocatalytic Water Splitting and Self-Rechargeable Battery-Like Applications. ACS Applied Materials & Interfaces, 2019, 11, 2071-2081.	4.0	48
1637	Current Trends and Future Roadmap for Solar Fuels. Energy, Environment, and Sustainability, 2019, , 445-484.	0.6	0
1638	Role of Dimensionality for Photocatalytic Water Splitting: CdS Nanotube versus Bulk Structure. ChemPhysChem, 2019, 20, 383-391.	1.0	20
1639	A sandwich-type polyoxometalate for efficient noble-metal-free hydrogen evolution upon visible light irradiation. Journal of Catalysis, 2019, 369, 54-59.	3.1	16
1640	Layered lithium niobium (III) oxide—LiNbO ₂ as a visible-light-driven photocatalyst for H ₂ evolution. JPhys Energy, 2019, 1, 015001.	2.3	3
1641	Particularities of trichloroethylene photocatalytic degradation over crystalline RbLaTa2O7 nanowire bundles grown by solid-state synthesis route. Journal of Environmental Chemical Engineering, 2019, 7, 102789.	3.3	10
1642	Mixing Thermodynamics and Photocatalytic Properties of GaP–ZnS solid solutions. Advanced Theory and Simulations, 2019, 2, 1800146.	1.3	7
1643	Sensitization of TiO ₂ by the symmetric cationic polymethine dye for the photocatalytic reduction of methylene blue. Functional Materials Letters, 2019, 12, 1950038.	0.7	5
1644	One-Step Solvothermal Formation of Pt Nanoparticles Decorated Pt ²⁺ -Doped α-Fe ₂ O ₃ Nanoplates with Enhanced Photocatalytic O ₂ Evolution. ACS Catalysis, 2019, 9, 1211-1219.	5.5	167

#	Article	IF	CITATIONS
1645	Iron oxide nanostructures for photoelectrochemical applications: Effect of applied potential during Fe anodization. Journal of Industrial and Engineering Chemistry, 2019, 70, 234-242.	2.9	13
1646	Hydrogen atom etching induced large-size ultrathin g-C3N4 nanosheets for enhanced photoluminescence. Journal of Luminescence, 2019, 206, 660-665.	1.5	14
1647	Rational synthesis of MnxCd1-xS for enhanced photocatalytic H2 evolution: Effects of S precursors and the feed ratio of Mn/Cd on its structure and performance. Journal of Colloid and Interface Science, 2019, 535, 469-480.	5.0	80
1648	Effect of alkaline treatment on photochemical activity and stability of Zn0.3Cd0.7S. Applied Surface Science, 2019, 465, 459-469.	3.1	36
1649	Carbon nitride, metal nitrides, phosphides, chalcogenides, perovskites and carbides nanophotocatalysts for environmental applications. Environmental Chemistry Letters, 2019, 17, 655-682.	8.3	51
1650	Ultra-thin Al2O3 coatings on BiVO4 photoanodes: Impact on performance and charge carrier dynamics. Catalysis Today, 2019, 321-322, 59-66.	2.2	28
1651	Reduced graphene oxide-transition metal hybrids for hydrogen generation by photocatalytic water splitting. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2019, 94, 283-286.	0.9	14
1652	Room-temperature synthesis of flower-like BiOBr/Bi2S3 composites for the catalytic degradation of fluoroquinolones using indoor fluorescent light illumination. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124069.	2.3	28
1653	Visible-light responsive organic nano-heterostructured photocatalysts for environmental remediation and H2 generation. Journal of Materials Science and Technology, 2020, 38, 93-106.	5.6	31
1654	Photocatalytic enhancement of hydrogen production in water splitting under simulated solar light by band gap engineering and localized surface plasmon resonance of ZnxCd1-xS nanowires decorated by Au nanoparticles. Nano Energy, 2020, 67, 104225.	8.2	69
1655	In situ loading CuO quantum dots on TiO2 nanosheets as cocatalyst for improved photocatalytic water splitting. Journal of Alloys and Compounds, 2020, 813, 152184.	2.8	58
1656	Characterization of RuO2–Rh2O3 supported on Ag1-xNbO3; at x=0, 0.1 and 0.5 for the H2 production. Materials Science in Semiconductor Processing, 2020, 107, 104806.	1.9	0
1657	Modulating the Chargeâ€Transfer Step of a p–n Heterojunction with Nitrogenâ€Doped Carbon: A Promising Strategy To Improve Photocatalytic Performance. Chemistry - A European Journal, 2020, 26, 921-926.	1.7	15
1658	Fluxâ€mediated synthesis and photocatalytic activity of NaNbO ₃ particles. Journal of the American Ceramic Society, 2020, 103, 454-464.	1.9	16
1659	DFT study of various tungstates for photocatalytic water splitting. Physical Chemistry Chemical Physics, 2020, 22, 1727-1737.	1.3	50
1660	Electrochemically controlled CdS@CdSe nanoparticles on ITO@TiO2 dual core–shell nanowires for enhanced photoelectrochemical hydrogen production. Applied Surface Science, 2020, 505, 144569.	3.1	11
1661	Porous organic polymers: a promising platform for efficient photocatalysis. Materials Chemistry Frontiers, 2020, 4, 332-353.	3.2	256
1662	Influence of Ti ³⁺ defect-type on heterogeneous photocatalytic H ₂ evolution activity of TiO ₂ . Journal of Materials Chemistry A, 2020, 8, 1432-1442.	5.2	89

#	Article	IF	CITATIONS
1663	Ferrite Materials for Photoassisted Environmental and Solar Fuels Applications. Topics in Current Chemistry, 2020, 378, 6.	3.0	39
1664	Comparative Study of Photocarrier Dynamics in CVD-deposited CuWO ₄ , CuO, and WO ₃ Thin Films for Photoelectrocatalysis. Zeitschrift Fur Physikalische Chemie, 2020, 234, 699-717.	1.4	11
1665	Modulation of band alignment with water redox potentials by biaxial strain on orthorhombic NaTaO ₃ thin films. Physical Chemistry Chemical Physics, 2020, 22, 23810-23815.	1.3	5
1666	Self-assembly of polyoxovanadate-capped polyoxoniobates and their catalytic decontamination of sulfur mustard simulants. Chemical Communications, 2020, 56, 13967-13970.	2.2	23
1667	Optoelectronic properties of the novel perovskite materials LiPb(Cl:Br:I)3 for enhanced hydrogen production by visible photo-catalytic activity: Theoretical prediction based on empirical formulae and DFT. International Journal of Hydrogen Energy, 2020, 45, 33466-33477.	3.8	16
1668	Emerging nanoporous anodized stainless steel for hydrogen production from solar water splitting. Journal of Cleaner Production, 2020, 274, 122826.	4.6	18
1669	Photocatalytic ozonation for sea water decontamination. Journal of Water Process Engineering, 2020, 37, 101501.	2.6	5
1670	Ultrasonicâ€Assisted Preparation Of Perovskiteâ€Type Lanthanum Nickelate Nanostructures and Its Photocatalytic Properties. ChemistrySelect, 2020, 5, 7947-7958.	0.7	14
1671	New Visible-Light-Driven H ₂ - and O ₂ -Evolving Photocatalysts Developed by Ag(I) and Cu(I) Ion Exchange of Various Layered and Tunneling Metal Oxides Using Molten Salts Treatments. Chemistry of Materials, 2020, 32, 10524-10537.	3.2	6
1672	HYSCORE and DFT Studies of Proton-Coupled Electron Transfer in a Bioinspired Artificial Photosynthetic Reaction Center. IScience, 2020, 23, 101366.	1.9	2
1673	Hydrogen evolution with fluorescein-sensitized Pt/SrTiO3 nanocrystal photocatalysts is limited by dye adsorption and regeneration. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 400, 112705.	2.0	14
1674	Electronic structures, and optical and photocatalytic properties of the BP–BSe van der Waals heterostructures. New Journal of Chemistry, 2020, 44, 14964-14969.	1.4	11
1675	Evaluation of Photocatalysts for Water Splitting through Combined Analysis of Surface Coverage and Energy-Level Alignment. ACS Catalysis, 2020, 10, 13186-13195.	5.5	19
1676	Ferroelectric surface photovoltage enhancement in chromium-doped SrTiO ₃ nanocrystal photocatalysts for hydrogen evolution. Materials Advances, 2020, 1, 1382-1389.	2.6	6
1677	p-Type Cu ₂ O as an effective interlayer between CdS and NiO _x cocatalysts to promote photocatalytic hydrogen production. New Journal of Chemistry, 2020, 44, 17719-17723.	1.4	4
1678	Mechanochemical Synthesis of Red-Light-Active Green TiO ₂ Photocatalysts with Disorder: Defect-Rich, with Polymorphs, and No Metal Loading. Chemistry of Materials, 2020, 32, 9190-9200.	3.2	26
1679	Photocatalytic, structural and optical properties of mixed anion solid solutions Ba3Sc2â^'xInxO5Cu2S2 and Ba3In2O5Cu2S2â^'ySey. Journal of Materials Chemistry A, 2020, 8, 19887-19897.	5.2	8
1680	Chemische Batterien mit CO2. Angewandte Chemie, 2020, , .	1.6	1

#	Article	IF	CITATIONS
1681	Ab Initio Positioning of the Valence and Conduction Bands of Bulk Photocatalysts: Proposition of Absolute Reference Energy. Journal of Physical Chemistry C, 2020, 124, 19426-19434.	1.5	15
1682	A novel p–n Mn _{0.2} Cd _{0.8} S/NiWO ₄ heterojunction for highly efficient photocatalytic H ₂ production. Dalton Transactions, 2020, 49, 12242-12248.	1.6	27
1683	Chemical Batteries with CO ₂ . Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
1684	Role of the Sulphur Source in the Solvothermal Synthesis of Ag-CdS Photocatalysts: Effects on the Structure and Photoactivity for Hydrogen Production. Hydrogen, 2020, 1, 64-89.	1.7	6
1685	Structural, Optical and Photocatalytic Characterization of ZnxCd1â^'xS Solid Solutions Synthetized Using a Simple Ultrasonic Radiation Method. Energies, 2020, 13, 5603.	1.6	3
1686	Long wavelength visible light-responsive SrTiO ₃ photocatalysts doped with valence-controlled Ru for sacrificial H ₂ and O ₂ evolution. Catalysis Science and Technology, 2020, 10, 4912-4916.	2.1	24
1687	Z-Schematic Solar Water Splitting Using Fine Particles of H ₂ -Evolving (CuGa) _{0.5} ZnS ₂ Photocatalyst Prepared by a Flux Method with Chloride Salts. ACS Applied Energy Materials, 2020, 3, 5684-5692.	2.5	22
1688	Local Structure and Magnetism of Fe2O3 Maghemite Nanocrystals: The Role of Crystal Dimension. Nanomaterials, 2020, 10, 867.	1.9	37
1689	Synergistic effects of octahedral TiO2-MIL-101(Cr) with two heterojunctions for enhancing visible-light photocatalytic degradation of liquid tetracycline and gaseous toluene. Journal of Colloid and Interface Science, 2020, 579, 37-49.	5.0	151
1690	Space-induced charge carriers separation enhances photocatalytic hydrogen evolution on hollow urchin-like TiO2 nanomaterial. Journal of Alloys and Compounds, 2020, 837, 155547.	2.8	17
1691	Degenerated TiO ₂ Semiconductor Modified with Ni and Zn as Efficient Photocatalysts for the Water Splitting Reaction. ChemCatChem, 2020, 12, 4642-4651.	1.8	11
1692	Large Photoresponsivity in the Amorphousâ€TiO ₂ /SrRuO ₃ Heterostructure. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000273.	1.2	3
1693	Recent developments in reduced graphene oxide nanocomposites for photoelectrochemical water-splitting applications. International Journal of Hydrogen Energy, 2020, 45, 11976-11994.	3.8	50
1694	Activation of Waterâ€Splitting Photocatalysts by Loading with Ultrafine Rh–Cr Mixedâ€Oxide Cocatalyst Nanoparticles. Angewandte Chemie, 2020, 132, 7142-7148.	1.6	7
1695	Floating Networks of Alga-like Photoelectrodes for Highly Efficient Photoelectrochemical H ₂ Production. ACS Sustainable Chemistry and Engineering, 2020, 8, 10564-10571.	3.2	6
1696	Application of Wastewater Reuse with Photocatalyst Prepared by Sol-Gel Method and Its Kinetics on the Decomposition of Low Molecular Weight Pollutants. International Journal of Environmental Research and Public Health, 2020, 17, 4203.	1.2	2
1697	Hydrogen for aircraft power and propulsion. International Journal of Hydrogen Energy, 2020, 45, 20740-20764.	3.8	43
1698	Polyimide-based photocatalysts: rational design for energy and environmental applications. Journal of Materials Chemistry A, 2020, 8, 14441-14462.	5.2	38

#	Article	IF	CITATIONS
1699	Zn2MnO4/ZnO nanocomposites: One step sonochemical fabrication and demonstration as a novel catalyst in water splitting reaction. Ceramics International, 2020, 46, 25789-25801.	2.3	11
1700	Van der Waals heterostructures of SiC and Janus MSSe (M = Mo, W) monolayers: a first principles study. RSC Advances, 2020, 10, 25801-25807.	1.7	22
1701	Heterogeneous Photocatalysis. Topics in Current Chemistry Collections, 2020, , .	0.2	2
1702	Enhanced photocatalytic hydrogen evolution over monolayer HTi2NbO7 nanosheets with highly dispersed Pt nanoclusters. Applied Surface Science, 2020, 511, 145501.	3.1	15
1703	Activation of Waterâ€Splitting Photocatalysts by Loading with Ultrafine Rh–Cr Mixedâ€Oxide Cocatalyst Nanoparticles. Angewandte Chemie - International Edition, 2020, 59, 7076-7082.	7.2	48
1704	Combining Photocatalysis and Optical Fiber Technology toward Improved Microreactor Design for Hydrogen Generation with Metallic Nanoparticles. ACS Photonics, 2020, 7, 714-722.	3.2	13
1705	Determining the role of oxygen vacancies in the photoelectrocatalytic performance of WO ₃ for water oxidation. Chemical Science, 2020, 11, 2907-2914.	3.7	126
1706	Structural Evolution of Ni-Based Co-Catalysts on [Ca2Nb3O10]â^ Nanosheets during Heating and Their Photocatalytic Properties. Catalysts, 2020, 10, 13.	1.6	9
1707	High-throughput measurement of the influence of pH on hydrogen production from BaTiO3/TiO2 core/shell photocatalysts. Applied Catalysis B: Environmental, 2020, 269, 118750.	10.8	21
1708	Band-gap engineering using metal-semiconductor interfaces for photocatalysis and supercapacitor application. , 2020, , 391-451.		0
1709	Pinning of the Fermi Level in CuFeO ₂ by Polaron Formation Limiting the Photovoltage for Photochemical Water Splitting. Advanced Functional Materials, 2020, 30, 1910432.	7.8	38
1710	Solar water splitting over Rh _{0.5} Cr _{1.5} O ₃ -loaded AgTaO ₃ of a valence-band-controlled metal oxide photocatalyst. Chemical Science, 2020, 11, 2330-2334.	3.7	26
1711	Principle and surface science of photocatalysis. Interface Science and Technology, 2020, 31, 1-38.	1.6	24
1712	Enhanced Photoelectrochemical Water-Splitting Property on TiO ₂ Nanotubes by Surface Chemical Modification and Wettability Control. ACS Applied Materials & Interfaces, 2020, 12, 20110-20118.	4.0	34
1713	Ultraviolet-induced Ostwald ripening strategy towards a mesoporous Ga ₂ O ₃ /GaOOH heterojunction composite with a controllable structure for enhanced photocatalytic hydrogen evolution. Catalysis Science and Technology, 2020, 10, 2882-2892.	2.1	14
1714	Defect-Induced Acceleration and Deceleration of Photocarrier Recombination in SrTiO ₃ Powders. Journal of Physical Chemistry C, 2020, 124, 11057-11063.	1.5	19
1715	A hierarchical SnS@ZnIn ₂ S ₄ marigold flower-like 2D nano-heterostructure as an efficient photocatalyst for sunlight-driven hydrogen generation. Nanoscale Advances, 2020, 2, 2577-2586.	2.2	22
1716	Electronic properties and enhanced photocatalytic performance of van der Waals heterostructures of ZnO and Janus transition metal dichalcogenides. Physical Chemistry Chemical Physics, 2020, 22, 10351-10359.	1.3	53

#	Article	IF	CITATIONS
1717	Enhanced water oxidation performances of birnessite and magnetic birnessite nanocomposites by transition metal ion doping. Sustainable Energy and Fuels, 2020, 4, 3157-3166.	2.5	32
1718	In–Fe mixed oxide as an oxygen-evolution photocatalyst for visible-light-driven Z-scheme water splitting. Sustainable Energy and Fuels, 2020, 4, 2686-2690.	2.5	6
1719	Dimethylammonium iodide stabilized bismuth halide perovskite photocatalyst for hydrogen evolution. Nano Research, 2021, 14, 1116-1125.	5.8	34
1720	Bifunctional photoelectrochemical process for humic acid degradation and hydrogen production using multi-layered p-type Cu2O photoelectrodes with plasmonic Au@TiO2. Journal of Hazardous Materials, 2021, 402, 123533.	6.5	37
1721	Influence of orientation and ferroelectric domains on the photochemical reactivity of La2Ti2O7. Journal of the European Ceramic Society, 2021, 41, 319-325.	2.8	2
1722	The state of the field: from inception to commercialization of metal–organic frameworks. Faraday Discussions, 2021, 225, 9-69.	1.6	70
1723	Thermal expansion and heat capacities of holmium and erbium orthotantalates ceramics. Journal of the American Ceramic Society, 2021, 104, 472-480.	1.9	1
1724	Solar hydrogen production from seawater splitting using mixed-valence titanium phosphite photocatalyst. Journal of Environmental Chemical Engineering, 2021, 9, 104826.	3.3	9
1725	Recent progress in Bi ₂ WO ₆ â€Based photocatalysts for clean energy and environmental remediation: Competitiveness, challenges, and future perspectives. Nano Select, 2021, 2, 187-215.	1.9	31
1726	Band Structure–Controlled Zn _{1â^'<i>x</i>} Cd _{<i>x</i>} S Solid Solution for Photocatalytic Hydrogen Production Improvement via Appropriately Enhancing Oxidation Capacity. Solar Rrl, 2021, 5, 2000685.	3.1	11
1727	A new lead-free Sillén–Aurivillius oxychloride Bi5SrTi3O14Cl with triple-perovskite layers for photocatalytic water splitting under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 408, 113095.	2.0	8
1728	Zirconium doping in calcium titanate perovskite oxides with surface nanostep structure for promoting photocatalytic hydrogen evolution. Applied Surface Science, 2021, 542, 148544.	3.1	13
1729	Creation of active water-splitting photocatalysts by controlling cocatalysts using atomically precise metal nanoclusters. Chemical Communications, 2021, 57, 417-440.	2.2	34
1730	Construction of a TiO2 heterostructure nanowire with a sulfurized shell via a simple sulfurization process for enhanced photoelectrochemical water oxidation. Journal of Alloys and Compounds, 2021, 858, 158375.	2.8	5
1731	Best practices in photoelectrochemistry. Journal of Power Sources, 2021, 482, 228958.	4.0	5
1732	Increased production of hydrogen with in situ CO2 capture through the process of water splitting using magnetic core/shell structures as novel photocatalysts. Environmental Science and Pollution Research, 2021, 28, 3566-3578.	2.7	14
1733	Recent trends and insights in nickel chalcogenide nanostructures for water-splitting reactions. Materials Research Innovations, 2021, 25, 29-52.	1.0	35
1734	Visible-light-driven photocatalytic water oxidation over LaNbON ₂ –LaMg _{2/3} Nb _{1/3} O ₃ solid solutions. Inorganic Chemistry Frontiers, 2021, 8, 2365-2372.	3.0	8

#	Article	IF	Citations
1735	Synthesis of transition metal sulfide nanostructures for water splitting. , 2021, , 311-341.		1
1736	Efficient solar light-driven hydrogen generation using an Sn ₃ O ₄ nanoflake/graphene nanoheterostructure. RSC Advances, 2021, 11, 29877-29886.	1.7	7
1737	Cation disorder and octahedral distortion control of internal electric field, band bending and carrier lifetime in Aurivillius perovskite solid solutions for enhanced photocatalytic activity. Materials Advances, 0, , .	2.6	18
1738	First-principles study of the electronic structures and optical and photocatalytic performances of van der Waals heterostructures of SiS, P and SiC monolayers. RSC Advances, 2021, 11, 14263-14268.	1.7	14
1739	Rare earth oxynitrides: promising visible-light-driven photocatalysts for water splitting. Materials Advances, 2021, 2, 1190-1203.	2.6	15
1740	Highly crystalline Na _{0.5} Bi _{0.5} TiO ₃ of a photocatalyst valence-band-controlled with Bi(<scp>iii</scp>) for solar water splitting. Chemical Communications, 2021, 57, 323-326.	2.2	8
1741	Development of visible-light-responsive Ir and La-codoped KTaO ₃ photocatalysts for water splitting. Chemical Communications, 2021, 57, 10331-10334.	2.2	8
1742	State-of-the-art developments in carbon-based metal nanocomposites as a catalyst: photocatalysis. Nanoscale Advances, 2021, 3, 1887-1900.	2.2	51
1743	Photocatalytic Hydrogen Generation from Waterâ€Annealed TiO ₂ Nanotubes with White and Grey Modification. ChemElectroChem, 2021, 8, 240-245.	1.7	11
1744	Self-assembly and activation of a titania-nanotube based photocatalyst for H ₂ evolution. Chemical Communications, 2021, 57, 7120-7123.	2.2	2
1745	Prospects and challenges in designing photocatalytic particle suspension reactors for solar fuel processing. Chemical Science, 2021, 12, 9866-9884.	3.7	22
1746	Photocatalytic Hydrogen Evolution Based on Cobalt–Organic Framework with High Water Vapor Adsorption. Inorganic Chemistry, 2021, 60, 1922-1929.	1.9	10
1747	Synthesis, band structure and photocatalytic properties of Sillén–Aurivillius oxychlorides BaBi ₅ Ti ₃ O ₁₄ Cl, Ba ₂ Bi ₅ Ti ₄ O ₁₇ Cl and Ba ₃ Bi ₅ Ti ₅ O ₂₀ Cl with triple-, quadruple- and quintuple-perovskite layers. Journal of Materials Chemistry A, 2021, 9, 8332-8340.	5.2	22
1748	Heat Capacity and Thermal Expansion of M-EuTaO4. Inorganic Materials, 2021, 57, 197-202.	0.2	1
1750	A Review of Inorganic Photoelectrode Developments and Reactor Scaleâ€Up Challenges for Solar Hydrogen Production. Advanced Energy Materials, 2021, 11, 2003286.	10.2	51
1751	rGO-Bi2MoO6 heterostructure: synthesis, characterization and utilization as a visible light active photocatalyst for the degradation of tetracycline. Journal of Materials Science: Materials in Electronics, 2021, 32, 9822-9840.	1.1	1
1752	Boosting the Catalytic Performance by Confining Rich Carbon Atoms over Graphite Carbon Nitride Structure. Catalysis Letters, 2021, 151, 3721-3732.	1.4	0
1753	A review on plasmonic nanoparticle-semiconductor photocatalysts for water splitting. Journal of Cleaner Production, 2021, 294, 126200.	4.6	65

#	Article	IF	CITATIONS
1754	Covalent Organic Frameworks for Sunlight-driven Hydrogen Evolution. Chemistry Letters, 2021, 50, 676-686.	0.7	15
1755	Recent development and future prospects of <scp>TiO₂</scp> photocatalysis. Journal of the Chinese Chemical Society, 2021, 68, 738-769.	0.8	107
1756	Hydrogen Generation over RuO ₂ Nanoparticle-Decorated LaNaTaO ₃ Perovskite Photocatalysts under UV Exposure. ACS Omega, 2021, 6, 10250-10259.	1.6	7
1757	Carbon Nitrideâ€Based Photoanode with Enhanced Photostability and Water Oxidation Kinetics. Advanced Functional Materials, 2021, 31, 2101724.	7.8	29
1758	High-throughput screening of ternary vanadate photoanodes for efficient oxygen evolution reactions: A review of band-gap engineering. Applied Catalysis A: General, 2021, 616, 118073.	2.2	5
1759	Synthesis of Carbon Nitride Intercalation Compound Composite and Study of Visible Light-Induced Photocatalytic Performance. Materials Science Forum, 0, 1032, 3-8.	0.3	0
1760	Pristine hexagonal CdS assembled with NiV LDH nanosheet formed p-n heterojunction for efficient photocatalytic hydrogen evolution. Applied Surface Science, 2021, 548, 149212.	3.1	39
1761	Recent advances in bismuth-based multimetal oxide photocatalysts for hydrogen production from water splitting: Competitiveness, challenges, and future perspectives. Materials Reports Energy, 2021, 1, 100019.	1.7	17
1762	Crystal structure and phonon modes of disorder induced Ba2Li1-xTe1+xO5.5+δ (x =0, 0.1, 0.2) double perovskite based microwave dielectrics. Materials Research Bulletin, 2021, 137, 111190.	2.7	2
1763	NbS2Cl2 monolayer: A promising 2D semiconductor for photocatalytic water splitting. FlatChem, 2021, 27, 100237.	2.8	5
1764	Density functional theory study on the structural, electronic, optical and photocatalytic properties of BaTa2O6, Ba2Ta15O32, Ba3Ta5O15 and Ba5Ta4O15. Journal of Solid State Chemistry, 2021, 298, 122127.	1.4	4
1767	Lead-free halide perovskites, beyond solar cells and LEDs. JPhys Energy, 2021, 3, 032014.	2.3	11
1768	Microwave Synthetic Routes for Shape-Controlled Catalyst Nanoparticles and Nanocomposites. Molecules, 2021, 26, 3647.	1.7	16
1769	Covalent SO Bonding Enables Enhanced Photoelectrochemical Performance of Cu ₂ S/Fe ₂ O ₃ Heterojunction for Water Splitting. Small, 2021, 17, e2100320.	5.2	62
1770	Advances in engineering perovskite oxides for photochemical and photoelectrochemical water splitting. Applied Physics Reviews, 2021, 8, .	5.5	19
1771	50 Years of Materials Research for Photocatalytic Water Splitting. European Journal of Inorganic Chemistry, 2021, 2021, 2435-2441.	1.0	41
1772	Au nanoparticles decorated brookite-anatase nanowires for efficient photo-oxidation of aqueous resorcinol. Journal of Materials Science: Materials in Electronics, 2021, 32, 19764-19777.	1.1	13
1773	Design of Electrochemical Microfluidic Detectors: A Review. Advanced Materials Technologies, 2021, 6, 2100569.	3.0	10

#	Article	IF	CITATIONS
1774	Photoelectrochemical water splitting on the Pt-In2S3/CuInS2 photoelectrode under solar light irradiation: Effects of electrolytes on the solar energy to hydrogen conversion. Journal of Electroanalytical Chemistry, 2021, 895, 115489.	1.9	12
1775	ZnS-GaP Solid Solution Thin Films with Enhanced Visible-Light Photocurrent. ACS Applied Energy Materials, 0, , .	2.5	4
1776	Fabrication of Pt/In2S3/CuInS2 thin film as stable photoelectrode for water splitting under solar light irradiation. Catalysis Today, 2021, 375, 87-93.	2.2	18
1777	Room Temperature Synthesis of [Pd(cyclam)]5{H3Nb6O19}2·26H2O: a Suitable Precursor for the inâ€situ Generation of a Highly Active Catalyst for Lightâ€Driven Hydrogen Evolution. European Journal of Inorganic Chemistry, 0, , .	1.0	0
1778	Growth, characterization and theoretical optical properties of polycrystalline n-silicon thin films for oxide-silicon tandem cells. Engineering Research Express, 2021, 3, 035034.	0.8	0
1779	Zinc sulfide for photocatalysis: White angel or black sheep?. Progress in Materials Science, 2022, 124, 100865.	16.0	23
1780	Data-Driven Discovery of 2D Materials for Solar Water Splitting. Frontiers in Materials, 2021, 8, .	1.2	8
1781	NH2-MIL-125(Ti) doped CdS/Graphene composite as electro and photo catalyst in basic medium under light irradiation. Environmental Research, 2021, 200, 111719.	3.7	10
1782	Forward and backward electron transfer on Pt loaded TiO2 photocatalysts under visible-light illumination. Applied Physics Letters, 2021, 119, .	1.5	4
1783	RhO cocatalyst for efficient water oxidation over TaON photoanodes in wide pH range under visible-light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 419, 113463.	2.0	9
1784	0D/2D heterostructure constructed by ultra-small chalcogenide-cluster aggregated quaternary sulfides and g-C3N4 for enhanced photocatalytic H2 evolution. Chemical Engineering Journal, 2021, 426, 131216.	6.6	18
1785	Mechanistic insights of hydrogen evolution reaction on quaternary earth-abundant chalcogenide Cu2BaSnS4 from first principles. Applied Surface Science, 2021, 570, 151049.	3.1	1
1786	CdS decorated MnWO ₄ nanorod nanoheterostructures: a new 0D–1D hybrid system for enhanced photocatalytic hydrogen production under natural sunlight. Nanoscale Advances, 2021, 3, 508-516.	2.2	18
1787	Synthesis of hydroxide-enriched cerium-doped oxy-sulfide catalyst for visible light-assisted reduction of Cr(vi). New Journal of Chemistry, 2021, 45, 288-297.	1.4	1
1788	Self-assembly of a Ni(I)-photocatalyst for plain water splitting without sacrificial agents. Electrochemistry Communications, 2021, 122, 106909.	2.3	5
1789	Semiconductor nanocrystal photocatalysis for the production of solar fuels. Journal of Chemical Physics, 2021, 154, 030901.	1.2	32
1790	Optimizing accuracy and efficacy in data-driven materials discovery for the solar production of hydrogen. Energy and Environmental Science, 2021, 14, 2335-2348.	15.6	23
1792	Efficient Hydrogenation of CO ₂ to Methanol over Supported Subnanometer Gold Catalysts at Low Temperature. ChemCatChem, 2017, 9, 3691-3696.	1.8	40

#	Article	IF	CITATIONS
1793	Polymer Electrolyte Membrane Fuel Cells (PEM-FC) polymer electrolyte membrane fuel cell (PEMFC) and Non-noble Metal Catalysts for Oxygen Reduction polymer electrolyte membrane fuel cell (PEMFC) non-noble metal catalysts for oxygen reduction. , 2012, , 8265-8307.		4
1794	The Role of Co-catalysts: Interaction and Synergies with Semiconductors. Green Energy and Technology, 2013, , 195-216.	0.4	1
1795	Heterojunctions: Joining Different Semiconductors. Green Energy and Technology, 2013, , 311-327.	0.4	4
1796	The New Promising Semiconductors: Metallates and Other Mixed Compounds. Green Energy and Technology, 2013, , 123-156.	0.4	2
1797	Photocatalytic Water Splitting and Carbon Dioxide Reduction. , 2015, , 1-39.		2
1798	Hydrogen Production from Photoelectrochemical Water Splitting. , 2018, , 1-52.		6
1799	Photo-Catalytic Hydrogen Production. , 2012, , 1099-1121.		4
1800	Hydrogen Production from Photoelectrochemical Water Splitting. , 2019, , 1003-1053.		5
1801	Perovskite Oxide–Based Photocatalysts for Excellent Visible Light–Driven Photocatalysis and Energy Conversion. Nanotechnology in the Life Sciences, 2019, , 35-54.	0.4	3
1802	Synthetic Nanosheets from Ion-Exchangeable Layered Solids. Nanostructure Science and Technology, 2017, , 55-100.	0.1	1
1803	The photophysical anisotropy and electronic structure of new narrow band gap perovskites Ln2AlMnO6 (Ln = La, Pr, Nd): An experimental and DFT perspective. Ceramics International, 2020, 46, 21021-21032.	2.3	15
1804	Reviving Inert Oxides for Electrochemical Water Splitting by Subsurface Engineering. Chemistry of Materials, 2020, 32, 5569-5578.	3.2	11
1805	Differentiating the Electrical and Optoelectrical Properties of Oxysulfides La ₂ Ta ₂ MS ₂ O ₈ (M = Zr, Ti) via Application of Pressure. Journal of Physical Chemistry C, 2020, 124, 14477-14484.	1.5	5
1806	BiVO4-Based Photoanodes for Photoelectrochemical Water Splitting. ACS Symposium Series, 2020, , 137-167.	0.5	4
1807	Chapter 7. Artificial Photosynthesis with Inorganic Particles. RSC Energy and Environment Series, 2018, , 214-280.	0.2	4
1808	Electronic and optical properties of MoS ₂ /α-Fe ₂ O ₃ (0001) heterostructures: a first-principles investigation. CrystEngComm, 2017, 19, 6333-6338.	1.3	10
1809	Fast low temperature synthesis of layered perovskite heterojunctions for overall water splitting. JPhys Energy, 2021, 3, 014002.	2.3	3
1810	Colloidal Transition-Metal-Doped Quantum Dots. , 2010, , 397-453.		64

#	Article	IF	CITATIONS
1811	The Potential of Carbon-based Materials for Photocatalytic Application. Current Organic Chemistry, 2014, 18, 1346-1364.	0.9	12
1812	Titanium Dioxide Nanoparticles and Nanostructures. Current Inorganic Chemistry, 2012, 2, 94-114.	0.2	9
1813	Photocatalytic Activity for Hydrogen Evolution of Heteroatom-Doped SrTiO3 Prepared Using a Graphitic-Carbon Nitride Nanosheet. Ceramics, 2020, 3, 22-30.	1.0	6
1814	Enhancing Gas Response Characteristics of Mixed Metal Oxide Gas Sensors. Journal of the Korean Ceramic Society, 2018, 55, 1-20.	1.1	31
1815	Biomolecule-Assisted Synthesis of Nanocrystalline CdS and Bi ₂ S ₃ for Photocatalytic Hydrogen Evolution. World Journal of Nano Science and Engineering, 2011, 01, 79-83.	0.3	7
1816	Bismuth Iron Oxide Nanoparticles as Photocatalyst for Solar Hydrogen Generation from Water. Journal of Fundamentals of Renewable Energy and Applications, 2011, 1, 1-10.	0.2	61
1817	First-principles study of electronic structures and optical properties of Mn and Cu doped potassium hexatitanate (K2Ti6O13). Wuli Xuebao/Acta Physica Sinica, 2018, 67, 067101.	0.2	5
1818	Electronic Properties of h-WO3 and CuWO4 Nanocrystalsas Determined from X-ray Spectroscopy and First-Principles Band-Structure Calculations. International Journal of Applied Physics and Mathematics, 2011, , 19-23.	0.3	14
1819	Structural and Electronic Parameters of Complex Niobates and Tantalates. International Journal of Applied Physics and Mathematics, 2011, , 38-42.	0.3	2
1820	Controlling the carrier density in niobium oxynitride BaNbO ₂ N <i>via</i> cation doping for efficient photoelectrochemical water splitting under visible light. Sustainable Energy and Fuels, 2021, 5, 6181-6188.	2.5	6
1821	First principles study of electronic and optical properties and photocatalytic performance of GaN–SiS van der Waals heterostructure. RSC Advances, 2021, 11, 32996-33003.	1.7	11
1822	Layered Dion–Jacobson-Type Chalcogenide Perovskite CsLaM ₂ X ₇ (M = Ta/Nb; X) Tj E ACS Applied Materials & Interfaces, 2021, 13, 48971-48980.	TQq1 1 4.0	0.784314 rg 3
1823	Photo-catalytic Hydrogen Photo-catalytic Hydrogen Production photocatalysis/photocatalytic hydrogen production. , 2012, , 7881-7901.		0
1824	Polymer Electrolyte Membrane Fuel Cells (PEM-FC) and Non-noble Metal Catalysts for Oxygen Reduction. , 2012, , 343-386.		0
1825	Chalcogenides and Other Non-oxidic Semiconductors. Green Energy and Technology, 2013, , 157-169.	0.4	0
1826	Turning Sunlight into Fuels: Photocatalysis for Energy. Green Energy and Technology, 2013, , 67-84.	0.4	ο
1827	Semiconductor–Liquid Junction: From Fundamentals to Solar Fuel Generating Structures. , 2014, , 1893-1924.		0
1828	Photolysis of Water. , 2014, , 1581-1587.		0

#	Article	IF	Citations
1830	New Cu(I)-Based p-Type Semiconducting Metal Oxides for Solar-to-Fuel Conversion: Investigation and Challenges. Nanostructure Science and Technology, 2014, , 97-112.	0.1	1
1831	Photocatalytic hydrogen production by water splitting using novel catalysts under UV-vis light irradiation. Advances in Energy Research, 2014, 2, 33-45.	0.4	1
1832	Study of Inorganic Photocatalyst Media for Reused Wastewater. Journal of Korean Neuropsychiatric Association, 2015, 31, 42-48.	0.2	2
1833	Photoelectrochemical Performance of Hematite Nanoparticles Synthesized by a DC Thermal Plasma Process. Applied Chemistry for Engineering, 2015, 26, 306-310.	0.2	0
1834	Descontaminación de agua utilizando nanomateriales y procesos fotocatalÃticos. Mundo Nano Revista Interdisciplinaria En Nanociencia Y NanotecnologÃa, 2015, 8, 17-39.	0.1	1
1836	3 Material Selection for Photoelectrochemical or Photocatalytic Processes. , 2016, , 47-62.		0
1837	Water-Splitting Technologies for Hydrogen Generation. Electrochemical Energy Storage and Conversion, 2017, , 85-124.	0.0	0
1838	Composite Nanofibers for Removing Water Pollutants: Fabrication Techniques. , 2018, , 1-29.		0
1839	Architecture, Structure and Function of the Energy Conversion Centers. Springer Series in Chemical Physics, 2018, , 9-32.	0.2	2
1840	Photocatalytic reduction of methylene blue by the heterostructure of Titanium (IV) oxide and symmetric cationic polymethine dye. Naukovij VĬsnik ÄŒernìvecʹkogo UnĬversitetu Hìmìâ, 2019, , 3	5- 41 .	0
1841	Photocatalytic Activity of the Modified Coupled Semiconductors and Its Relationship with Surface Properties. Nanoscience and Nanotechnology - Asia, 2019, 9, 337-343.	0.3	0
1842	Possibility of Producing Hydrogen from Water by Electrolysis as a Renewable Source of Energy. Annals of Agricultural Science Moshtohor, 2020, 58, 233-246.	0.0	0
1843	Thermodynamic Properties of M-EuTaO4. Russian Journal of Inorganic Chemistry, 2020, 65, 1873-1878.	0.3	1
1844	A computational survey of metal-free polyimide-based photocatalysts within the single-stranded polymer model. Molecular Catalysis, 2020, 497, 111184.	1.0	4
1845	New electrolyzer principles: decoupled water splitting. , 2022, , 407-454.		4
1846	Green processes and sustainable materials for renewable energy production via water splitting. , 2022, , 169-212.		4
1847	Theoretical study of Ni doping SrTiO3 using a density functional theory. AIMS Materials Science, 2020, 7, 902-910.	0.7	4
1848	Design and Fabrication of ZnO/CdS heterostructured nanocomposites for enhanced hydrogen evolution from solar water splitting. Inorganic Chemistry Communication, 2021, 134, 109056.	1.8	13

#	Article	IF	CITATIONS
1849	Highly efficient thiomolybdate [Mo2S12]2- nanocluster cocatalyst decorated on TiO2 to boost photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 19570-19579.	3.8	7
1850	Construction and performance of a simple and efficient g-C ₃ N ₄ photocatalytic hydrogen production system. RSC Advances, 2021, 11, 36034-36041.	1.7	1
1851	ZnO nanoparticles supported on dendritic fibrous nanosilica as efficient catalysts for the one-pot synthesis of quinazoline-2,4(1 <i>H</i> ,3 <i>H</i>)-diones. RSC Advances, 2021, 11, 37103-37111.	1.7	8
1852	Systematic Exploration of WO ₃ /TiO ₂ Heterojunction Phase Space for Applications in Photoelectrochemical Water Splitting. Journal of Physical Chemistry C, 2022, 126, 871-884.	1.5	16
1853	Mono-transition-metal-substituted polyoxometalates as shuttle redox mediator for Z-scheme water splitting under visible light. Sustainable Energy and Fuels, 2022, 6, 664-673.	2.5	9
1854	Band-engineered Zn2TiO4 nanowires for hydrogen generation from water using visible light: A first-principles study. AIP Advances, 2022, 12, 015201.	0.6	1
1855	Perovskite oxide for emerging photo(electro)catalysis in energy and environment. Environmental Research, 2022, 205, 112544.	3.7	50
1856	Visible-light-induced hydrogen evolution from water on hybrid photocatalysts consisting of synthetic chlorophyll-a derivatives with a carboxy group in the 20-substituent adsorbed on semiconductors. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 426, 113750.	2.0	3
1858	Computational chemistry and the study and design of catalysts. , 2022, , 299-332.		1
1859	Hydrogen Production from Water Splitting through Photocatalytic Activity of Carbonâ€Based Materials. Chemical Engineering and Technology, 2023, 46, 420-434.	0.9	26
1860	Solar hydrogen generation using niobium-based photocatalysts: design strategies, progress, and challenges. Materials Today Energy, 2022, 24, 100936.	2.5	9
1861	Recent Advancement of the Current Aspects of gâ€C ₃ N ₄ for its Photocatalytic Applications in Sustainable Energy System. Chemical Record, 2022, 22, e202100310.	2.9	32
1862	Ultrasensitive electrode-free and co-catalyst-free detection of nanomoles per hour hydrogen evolution for the discovery of new photocatalysts. Review of Scientific Instruments, 2022, 93, 025002.	0.6	1
1863	Modulating the Electronic Structures and Potential Applications of Zr2co2/Mse2 (M = Mo, W) Heterostructures by Different Stacking Modes: A Density Functional Theory Calculation. SSRN Electronic Journal, 0, , .	0.4	0
1864	Rational design of a graphitic carbon nitride catalytic–biocatalytic system as a photocatalytic platform for solar fine chemical production from CO ₂ . Reaction Chemistry and Engineering, 2022, 7, 1566-1572.	1.9	20
1865	Preparation of a Coal-Based MoS ₂ /SiO ₂ /GO Composite Catalyst and Its Performance in the Photocatalytic Degradation of Wastewater and Hydrogen Production. Langmuir, 2022, 38, 3305-3315.	1.6	14
1866	Boosting photocharge separation in Z-schemed g-C3N4/RGO/ln2S3 photocatalyst for H2 evolution and antibiotic degradation. Journal of Industrial and Engineering Chemistry, 2022, 110, 217-224.	2.9	14
1867	Hydrogen Production on Pt/TiO ₂ : Synergistic Catalysis between Pt Clusters and Interfacial Adsorbates. Journal of Physical Chemistry Letters, 2022, 13, 3182-3187.	2.1	4

#	Article	IF	Citations
1868	Photocatalytic fuel cells: From batch to microfluidics. Journal of Environmental Chemical Engineering, 2022, 10, 107611.	3.3	12
1869	Degradation of mixed cationic dye pollutant by metal free melem derivatives and graphitic carbon nitride. Chemosphere, 2022, 298, 134249.	4.2	14
1870	Bandgap dependence on facet and size engineering of TiO ₂ : A DFT Study. , 2021, , .		1
1871	WO ₃ as Additive for Efficient Photocatalyst Binary System TiO ₂ /WO ₃ . Latvian Journal of Physics and Technical Sciences, 2021, 58, 24-34.	0.4	1
1872	A Mini-Review on Nanostructured g-C3N4 Photocatalysts for Solar Fuel Production. Nanoscience and Nanotechnology - Asia, 2021, 12, .	0.3	0
1873	Two-Dimensional Semiconductor Heterojunctions for Optoelectronics and Electronics. Frontiers in Energy Research, 2021, 9, .	1.2	7
1874	Thermal Expansion, Heat Capacity, and Thermodynamic Properties of Monoclinic Lanthanide Orthotantalates: A Review. Russian Journal of Inorganic Chemistry, 2021, 66, 1947-1972.	0.3	2
1875	Annealed Polycarbazole/Tin Oxide/Graphene Oxide Ternary Nano Composite: A Highly Efficient Photocatalyst for the Photodegradation of Congo Red Dye under UV and Natural Daylight Irradiations. Fibers and Polymers, 2022, 23, 1641-1656.	1.1	2
1876	Influence of particle size and shape on the rate of hydrogen produced by Alâ€doped SrTiO ₃ photocatalysts. Journal of the American Ceramic Society, 2022, 105, 5336-5346.	1.9	6
1881	Synergistic impacts of sonolysis aided photocatalytic degradation of water pollutant over perovskite-type CeNiO ₃ nanospheres. New Journal of Chemistry, 2022, 46, 10117-10127.	1.4	13
1882	Facile, sustainable and unassisted plain water oxidation on Au/Ce0.9Ti0.1O2 nanorods in direct sunlight. Journal of Chemical Sciences, 2022, 134, .	0.7	7
1883	Influence of Zn in the CdS Crystal Lattice and Its Impact over the Catalytic Activity in the H2 Production. Journal of Chemistry, 2022, 2022, 1-12.	0.9	1
1884	Electronic defects in metal oxide photocatalysts. Nature Reviews Materials, 2022, 7, 503-521.	23.3	129
1885	Chiral {Ni ₆ PW ₉ } Cluster–Organic Framework: Synthesis, Structure, and Properties. Inorganic Chemistry, 2022, 61, 7477-7483.	1.9	9
1886	Photocatalytic activity of the visible-light-driven spherical Ag2S modifying the CdS synthesized by the facile chemical methods for the degradation of methylene blue and rhodamine B. Materials Chemistry and Physics, 2022, 285, 126174.	2.0	15
1887	Scope and prospect of transition metal-based cocatalysts for visible light-driven photocatalytic hydrogen evolution with graphitic carbon nitride. Coordination Chemistry Reviews, 2022, 465, 214516.	9.5	34
1888	Role of Oxygen Vacancy in the Photocarrier Dynamics of WO ₃ Photocatalysts: The Case of Recombination Centers. Journal of Physical Chemistry C, 2022, 126, 9257-9263.	1.5	22
1889	Lspr Effect Induced Energy Transfer Enhances the Photothermal Conversion of Co2 Over Ni(Oh)2/Ti3c2 Catalyst. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
1890	Charge Carrier Management in Semiconductors: Modeling Charge Transport and Recombination. Springer Handbooks, 2022, , 365-398.	0.3	2
1891	Cs,Rh-codoped WO ₃ with a core–shell structure responsive up to 600 nm as an O ₂ -evolving photocatalyst for Z-schematic water splitting. Sustainable Energy and Fuels, 0, , .	2.5	1
1892	Heterogeneous Photocatalyst for CO2 Reduction. Springer Handbooks, 2022, , 1369-1380.	0.3	2
1893	Chemical exfoliation of silica filters used on methylene blue degradation by photocatalysis. Chemical Papers, 0, , .	1.0	2
1894	Advances in facet-dependent photocatalytic properties of BiOCl catalyst for environmental remediation. Reviews in Inorganic Chemistry, 2023, 43, 221-245.	1.8	2
1895	Modulating the electronic structures and potential applications of Zr2CO2/MSe2 (MÂ=ÂMo, W) heterostructures by different stacking modes: A density functional theory calculation. Applied Surface Science, 2022, 599, 154014.	3.1	9
1896	Potential Application of Perovskite Structure for Water Treatment: Effects of Band Gap, Band Edges, and Lifetime of Charge Carrier for Photocatalysis. Frontiers in Nanotechnology, 0, 4, .	2.4	6
1897	Semiconducting properties of CuBi2O4 prepared at low temperature: application to oxygen evolution under visible light. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135, 2769-2781.	0.8	4
1898	Porous TiO2/Carbon Dot Nanoflowers with Enhanced Surface Areas for Improving Photocatalytic Activity. Nanomaterials, 2022, 12, 2536.	1.9	9
1899	A novel SAXS/XRD/XAFS combined technique for in-situ time-resolved simultaneous measurements. Nano Research, 2023, 16, 1123-1131.	5.8	16
1900	Ionâ€Implantation in Titaniaâ€Based Plasmonic Photoâ€anodes: A Review. Advanced Materials Interfaces, 2022, 9, .	1.9	4
1901	Nanostructural Analysis of SrTiO ₃ :Al Photocatalyst Dispersed with Pt/Cr ₂ O ₃ /CoOOH Cocatalysts by Electron Microscopy. Chemistry Letters, 2022, 51, 978-981.	0.7	3
1902	Role of Surface Defects and Optical Band-gap Energy on Photocatalytic Activities of Titanate-based Perovskite Nanomaterial. , 0, , .		1
1903	Understanding the Photoelectrochemical Properties of Theoretically Predicted Waterâ€Splitting Catalysts for Effective Materials Discovery. Advanced Energy Materials, 2022, 12, .	10.2	7
1904	Exploring the photocatalytic properties and carrier dynamics of 2D Janus XMMX′ (X = S, Se; M = Ga, In;) Tj ETQ	q0.0 0 rgE 1.3	BT_/Overlock
1905	Theory and Computation in Photo-Electro-Chemical Catalysis: Highlights, Challenges, and Prospects. Engineering Materials, 2022, , 3-43.	0.3	Ο

Two-dimensional ternary chalcogenides <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Fe</mml:mi> <mml:msub> <mml:mi>X</mml:mi> <mml:mr <mml:math 1906

#	Article	IF	CITATIONS
1908	Overall Water Splitting Under Visible Light Irradiation Over Ir and A odoped KTaO ₃ (A=Ca, Sr, Ba, La) Photocatalysts. Energy Technology, 0, , 2200739.	1.8	1
1909	Synthesis of a Gold-Inserted Iron Disilicide and Rutile Titanium Dioxide Heterojunction Photocatalyst via the Vapor–Liquid–Solid Method and Its Water-Splitting Reaction. ACS Omega, 2022, 7, 38744-38751.	1.6	1
1910	Constructing Particulate p–n Heterojunction Mo:SrTiO ₃ /NiO@Ni(OH) ₂ for Enhanced H ₂ Evolution under Simulated Solar Light. ACS Applied Energy Materials, 2022, 5, 12727-12738.	2.5	2
1911	A novel method for fabrication of electrospun cadmium sulfide nanoparticles- decorated zinc oxide nanofibers as effective photocatalyst for water photosplitting. AEJ - Alexandria Engineering Journal, 2023, 65, 825-835.	3.4	4
1912	Steering Bi-directional Charge Transfer via Non-Conjugated Insulating Polymer. Journal of Catalysis, 2022, , .	3.1	0
1913	Hollow TiO2/SiO2 Composite Microspheres through Reactive Assembly across Immiscible Liquids Interface. Physical Chemistry Chemical Physics, 0, , .	1.3	0
1914	Synchronizing charge-carrier capacity and interfacial morphology of green rGO modified ZnO and TiO2 heterojunctions and study of their photocatalytic behaviour towards UV and visible light active drug and dye. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 287, 116094.	1.7	4
1916	Core–shell nanoheterodimers: laser-assisted deposition of single bimetallic Au@M (M = Au, Ag, Pd, Pt) nanodots on TiO ₂ nanoparticles. Materials Advances, 2023, 4, 694-708.	2.6	2
1917	Engineering carrier density at TiO2 nanotube metasurface with hole reservoir for Enhanced Photo-electrocatalysis. Applied Surface Science, 2023, 613, 155974.	3.1	4
1918	Novel Nanomaterials for Hydrogen Production and Storage: Evaluating the Futurity of Graphene/Graphene Composites in Hydrogen Energy. Energies, 2022, 15, 9085.	1.6	9
1919	Platinum@Hexaniobate Nanopeapods: A Directed Photocatalytic Architecture for Dye-Sensitized Semiconductor H ₂ Production under Visible Light Irradiation. ACS Applied Energy Materials, 2022, 5, 14687-14700.	2.5	3
1920	Advanced Photoelectrochemical Hydrogen Generation by CdO-g-C3N4 in Aqueous Medium under Visible Light. Molecules, 2022, 27, 8646.	1.7	3
1921	Thin Layers of SrTiO3-TiO2 with Eutectic Composition for Photoelectrochemical Water Splitting. Coatings, 2022, 12, 1876.	1.2	1
1922	Highly Selective Nitrogen-Doped Graphene Quantum Dots/Eriochrome Cyanine Composite Photocatalyst for NADH Regeneration and Coupling of Benzylamine in Aerobic Condition under Solar Light. Catalysts, 2023, 13, 199.	1.6	4
1923	Hematite-based photoanodes for photoelectrochemical water splitting: Performance, understanding, and possibilities. Journal of Environmental Chemical Engineering, 2023, 11, 109224.	3.3	5
1924	Local surface plasmon resonance promotion of photogenerated electrons to hot electrons for enhancing photothermal CO2 hydrogenation over Ni(OH)2/Ti3C2 catalysts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 661, 130907.	2.3	10
1925	First Principles Study on the Features of CaxSr2â^'xTa2O7 (x = 0, 1) as a Photocatalytic Material. , 0, , .		0
1926	Synthesis of WO ₃ @WS ₂ core–shell nanostructures <i>via</i> solution-based sulfurization for improved performance of water splitting. RSC Advances, 2023, 13, 4150-4155.	1.7	2

# 1927	ARTICLE Photocatalytic water splitting and reduction of CO2. , 2023, , 111-155.	IF	Citations 0
1928	Application of Nanomaterials for Renewable Energy Production. Clean Energy Production Technologies, 2023, , 1-20.	0.3	0
1929	Revealing the electronic, optical and photocatalytic properties of PN-M ₂ CO ₂ (P = Al, Ga; M = Ti, Zr, Hf) heterostructures. Nanoscale Advances, 2023, 5, 1405-1415.	2.2	1
1930	Materials for Water Splitting. , 2012, , 592-614.		8
1931	Graphene quantum dots and their role in environmental sustainability. , 2023, , 227-249.		0
1932	Research Progress of Solar Hydrogen Production Technology under Double Carbon Target. Acta Chimica Sinica, 2022, 80, 1629.	0.5	0
1933	First principles study of electronic properties and optoelectronic performance of type-II SiS/BSe heterostructure. New Journal of Chemistry, 2023, 47, 4537-4542.	1.4	2
1934	Biohybrid Moleculeâ€Based Photocatalysts for Water Splitting Hydrogen Evolution. ChemPlusChem, 2023, 88, .	1.3	1
1935	Structural, electrical and optical properties of Ca0.5Sr0.5SnO3 nanoparticle prepared by sol-gel method. Materials Today: Proceedings, 2023, 82, 308-313.	0.9	1
1936	Computational fluid dynamics simulation of bubble hydrodynamics in water splitting: Effect of electrolyte inflow velocity and electrode morphology on cell performance. International Journal of Hydrogen Energy, 2023, 48, 17769-17782.	3.8	1
1937	Mesoporous CuFe ₂ O ₄ Photoanodes for Solar Water Oxidation: Impact of Surface Morphology on the Photoelectrochemical Properties**. Chemistry - A European Journal, 2023, 29, .	1.7	2
1938	Graphene quantum dots for optical application. , 2023, , 211-225.		1
1939	Recent Advances in (Oxy)sulfide Photocatalysts for Solar-driven Water Splitting and CO2 Reduction. , 2023, , 92-102.		0
1940	Multidisciplinary Approaches to Solar-driven Water Splitting and Carbon Dioxide Conversion. , 2023, , 1-24.		Ο
1941	Sol–gel synthesis and structural and luminescent characteristics of a Gd0.96Eu0.01Sm0.01Tb0.01Er0.01Nb0.9Ta0.1O4 polycomponent solid solution. Journal of the Korean Ceramic Society, 0, , .	1.1	0
1942	Recent Advances on Small Band Gap Semiconductor Materials (â‰ 2 .1 eV) for Solar Water Splitting. Catalysts, 2023, 13, 728.	1.6	14
1943	One-pot synthesis, characterization, photocatalytic activity and biological studies of Co(II), Ni(II) and Cu(II) complexes of a tetraazamacrocyclic Schiff base. Journal of Coordination Chemistry, 2023, 76, 729-748.	0.8	0
1945	Photocatalysis. , 2017, , 326-344.		0

#	Article	IF	CITATIONS
1952	Self-cleaning ceramic coatings. , 2023, , 43-69.		0
1954	Graphene-Based Photocatalysts for the Elimination of Pollutants in Water. Springer Series in Materials Science, 2023, , 161-177.	0.4	0
1961	Nanotechnology for Water Splitting: A Sustainable Way to Generate Hydrogen. , 2023, , 223-253.		0
1962	A chemist's guide to photoelectrode development for water splitting – the importance of molecular precursor design. , 2023, 1, 832-873.		2
1964	Electrospun Nanofibers for Water Purification as Catalyst. Nanostructure Science and Technology, 2023, , 123-151.	0.1	0
1966	Recent advances in synthesis of water-stable metal halide perovskites and photocatalytic applications. Journal of Materials Chemistry A, 2023, 11, 22656-22687.	5.2	4
1985	TiO2-Based Photocatalysts for Environment Application. , 2024, , .		0