The Myoblast Autologous Grafting in Ischemic Cardiom

Circulation 117, 1189-1200 DOI: 10.1161/circulationaha.107.734103

Citation Report

#	Article	IF	CITATIONS
1	Adult stem cells and their trans-differentiation potential—perspectives and therapeutic applications. Journal of Molecular Medicine, 2008, 86, 1301-1314.	1.7	110
2	Cardiac Cell Therapy Trials: Chronic Myocardial Infarction and Congestive Heart Failure. Journal of Cardiovascular Translational Research, 2008, 1, 201-206.	1.1	10
3	Cardiac Stem Cell Therapy and Arrhythmogenicity: Prometheus and the arrows of Apollo and Artemis. Journal of Cardiovascular Translational Research, 2008, 1, 207-216.	1.1	1
4	Can radionuclide imaging predict future response to stem cell therapy?. Journal of Nuclear Cardiology, 2008, 15, 308-310.	1.4	6
5	Cardiovascular cell therapy and endogenous repair. Diabetes, Obesity and Metabolism, 2008, 10, 5-15.	2.2	38
6	Stemming heart failure with cardiac―or reprogrammedâ€stem cells. Journal of Cellular and Molecular Medicine, 2008, 12, 2217-2232.	1.6	29
7	Differentiation potential of human muscle-derived cells towards chondrogenic phenotype in alginate beads culture. Osteoarthritis and Cartilage, 2008, 16, 1509-1518.	0.6	25
9	Molecular Imaging. Journal of the American College of Cardiology, 2008, 52, 1661-1664.	1.2	17
10	Cardiovascular stem cells in regenerative medicine: ready for prime time?. Drug Discovery Today: Therapeutic Strategies, 2008, 5, 201-207.	0.5	11
11	Using Adult Stem Cells to Treat Heart Failure—Fact or Fiction?. Heart Lung and Circulation, 2008, 17, S48-S54.	0.2	9
12	Characterization of the paracrine effects of human skeletal myoblasts transplanted in infarcted myocardium. European Journal of Heart Failure, 2008, 10, 1065-1072.	2.9	119
13	Stem cells in the heart: What's the buzz all about? Part 2: Arrhythmic risks and clinical studies. Heart Rhythm, 2008, 5, 880-887.	0.3	49
14	Myoblast Transplantation for Cardiac Repair: From Automyoblast to Allomyoblast Transplantation. Annals of Thoracic Surgery, 2008, 86, 1841-1848.	0.7	9
15	Randomized Study of Mononuclear Bone Marrow Cell Transplantation in Patients With Coronary Surgery. Annals of Thoracic Surgery, 2008, 86, 1833-1840.	0.7	105
16	Systems approaches to preventing transplanted cell death in cardiac repair. Journal of Molecular and Cellular Cardiology, 2008, 45, 567-581.	0.9	364
17	Current Status and Future Prospects for Cell Transplantation to Prevent Congestive Heart Failure. Seminars in Thoracic and Cardiovascular Surgery, 2008, 20, 131-137.	0.4	43
18	Paracrine Effects of Cell Transplantation: Modifying Ventricular Remodeling in the Failing Heart. Seminars in Thoracic and Cardiovascular Surgery, 2008, 20, 87-93.	0.4	45
19	Myocardial repair: from salvage to tissue reconstruction. Expert Review of Cardiovascular Therapy, 2008, 6, 669-686.	0.6	37

#	Article	IF	CITATIONS
20	Four-year follow-up of treatment with intramyocardial skeletal myoblasts injection in patients with ischaemic cardiomyopathy. European Heart Journal, 2008, 29, 1386-1396.	1.0	64
21	Cell Therapy for Age-Related Disorders: Myocardial Infarction and Stroke – A Mini-Review. Gerontology, 2008, 54, 300-311.	1.4	16
22	Randomized, controlled trial of intramuscular or intracoronary injection of autologous bone marrow cells into scarred myocardium during CABG versus CABG alone. Nature Clinical Practice Cardiovascular Medicine, 2008, 5, 663-670.	3.3	96
23	Towards the second generation of skeletal myoblasts?. Cardiovascular Research, 2008, 79, 355-356.	1.8	11
24	Genetic Enhancement of Stem Cell Engraftment, Survival, and Efficacy. Circulation Research, 2008, 102, 1471-1482.	2.0	140
25	Skeletal Myoblasts Preserve Remote Matrix Architecture and Global Function When Implanted Early or Late After Coronary Ligation Into Infarcted or Remote Myocardium. Circulation, 2008, 118, S130-S137.	1.6	57
26	Skeletal myoblast transplantation: no MAGIC bullet for ischemic cardiomyopathy. Nature Clinical Practice Cardiovascular Medicine, 2008, 5, 520-521.	3.3	18
27	Potential strategies for myocardial regeneration in pediatric patients. Pediatric Health, 2008, 2, 503-516.	0.3	2
28	Cardiac regeneration and stem cell therapy. Current Opinion in Organ Transplantation, 2008, 13, 536-542.	0.8	58
29	Stem Cells and Cardiac Disease: Where are We Going?. Current Stem Cell Research and Therapy, 2008, 3, 265-276.	0.6	9
31	Rewiring the Heart: Stem Cell Therapy to Restore Normal Cardiac Excitability and Conduction. Current Stem Cell Research and Therapy, 2009, 4, 23-33.	0.6	12
32	The delivery dilemma. Nature Reports Stem Cells, 2009, , .	0.1	8
33	Cardiac repair and regeneration: the Rubik's cube of cell therapy for heart disease. DMM Disease Models and Mechanisms, 2009, 2, 344-358.	1.2	76
34	Five-year follow-up after transepicardial implantation of autologous bone marrow mononuclear cells to ungraftable coronary territories for patients with ischaemic cardiomyopathyâ~†. European Journal of Cardio-thoracic Surgery, 2009, 36, 633-643.	0.6	22
35	Stem Cell Therapy for Heart Failure. Circulation, 2009, 119, 2735-2740.	1.6	122
36	Heart Failure Management: The Present and the Future. Antioxidants and Redox Signaling, 2009, 11, 1989-2010.	2.5	26
37	Cell Therapy with Bone Marrow Cells for Myocardial Regeneration. Antioxidants and Redox Signaling, 2009, 11, 1897-1911.	2.5	16
38	Gene and Cell Therapy for Heart Failure. Antioxidants and Redox Signaling, 2009, 11, 2025-2042.	2.5	8

	CITATION	Report	
#	Article	IF	CITATIONS
39	Cell Therapy for Myocardial Regeneration. Current Molecular Medicine, 2009, 9, 287-298.	0.6	18
40	Does the Human Skeletal Muscle Harbor the Murine Equivalents of Cardiac Precursor Cells?. Molecular Therapy, 2009, 17, 733-741.	3.7	7
41	Improved diastolic function after myoblast transplantation in a model of ischemia-infarction. Scandinavian Cardiovascular Journal, 2009, 43, 100-109.	0.4	4
42	Cellular Cardiomyoplasty: What Have We Learned?. Asian Cardiovascular and Thoracic Annals, 2009, 17, 89-101.	0.2	15
43	Stem Cells Are Not Proarrhythmic: Letting the Genie out of the Bottle. Circulation, 2009, 119, 1824-1831.	1.6	39
44	Electrophysiological Challenges of Cell-Based Myocardial Repair. Circulation, 2009, 120, 2496-2508.	1.6	98
45	Angiomyogenesis for Myocardial Repair. Antioxidants and Redox Signaling, 2009, 11, 1929-1944.	2.5	31
46	Tracking cardiac engraftment and distribution of implanted bone marrow cells: Comparing intra-aortic, intravenous, and intramyocardial delivery. Journal of Thoracic and Cardiovascular Surgery, 2009, 137, 1225-1233.e1.	0.4	101
47	Cardiac tissue engineering using stem cells [Cellular/Tissue Engineering]. IEEE Engineering in Medicine and Biology Magazine, 2009, 28, 80, 82, 84-86, 88-89.	1.1	32
48	Cardiac cell therapy: overexpression of connexin43 in skeletal myoblasts and prevention of ventricular arrhythmias. Journal of Cellular and Molecular Medicine, 2009, 13, 3703-3712.	1.6	36
50	Actualización en cardiologÃa intervencionista. Revista Espanola De Cardiologia Suplementos, 2009, 9, 101-116.	0.2	0
51	A firstâ€inâ€man study of percutaneous myocardial cryotreatment in nonrevascularizable patients with refractory angina. Catheterization and Cardiovascular Interventions, 2009, 74, 387-394.	0.7	4
52	Percutaneous versus surgical delivery of autologous myoblasts after chronic myocardial infarction: An in vivo cardiovascular magnetic resonance study. Catheterization and Cardiovascular Interventions, 2010, 75, 120-127.	0.7	11
53	The possible use of stem cells in regenerative medicine: dream or reality?. Langenbeck's Archives of Surgery, 2009, 394, 985-997.	0.8	50
54	Stem cell therapy for heart failure. Current Treatment Options in Cardiovascular Medicine, 2009, 11, 316-327.	0.4	12
55	Bone Marrow Stem Cells for the Treatment of Ischemic Heart Disease: A Clinical Trial Review. Journal of Cardiovascular Translational Research, 2009, 2, 202-218.	1.1	16
56	Comparison of adult versus embryonic stem cell therapy for cardiovascular disease: Insights from molecular imaging studies. Current Cardiovascular Imaging Reports, 2009, 2, 50-58.	0.4	2
57	Stem Cells from In- or Outside of the Heart: Isolation, Characterization, and Potential for Myocardial Tissue Regeneration. Pediatric Cardiology, 2009, 30, 699-709.	0.6	13

#	Article	IF	CITATIONS
58	Evaluation of the effect of autologous mesenchymal stem cell injection in a largeâ€animal model of bilateral kidney ischaemia reperfusion injury. Cell Proliferation, 2009, 42, 284-297.	2.4	49
59	Discrepancies between the fate of myoblast xenograft in mouse leg muscle and NMR label persistency after loading with Gd-DTPA or SPIOs. Gene Therapy, 2009, 16, 734-745.	2.3	25
60	One-Year Follow-Up of Feasibility and Safety of the First U.S., Randomized, Controlled Study Using 3-Dimensional Guided Catheter-Based Delivery of Autologous Skeletal Myoblasts for Ischemic Cardiomyopathy (CAuSMIC Study). JACC: Cardiovascular Interventions, 2009, 2, 9-16.	1.1	113
61	Update on therapeutic vascularization strategies. Regenerative Medicine, 2009, 4, 65-80.	0.8	125
62	Stem cells in myocardial infarction: from bench to bedside. Heart, 2009, 95, 508-514.	1.2	23
63	Stem Cell Therapy Is Proarrhythmic. Circulation, 2009, 119, 1814-1823.	1.6	64
64	Direct injection of autologous mesenchymal stromal cells improves myocardial function. Biochemical and Biophysical Research Communications, 2009, 390, 902-907.	1.0	44
65	Regeneration Next: Toward Heart Stem Cell Therapeutics. Cell Stem Cell, 2009, 5, 364-377.	5.2	166
66	Knockdown of microRNA-181 by lentivirus mediated siRNA expression vector decreases the arrhythmogenic effect of skeletal myoblast transplantation in rat with myocardial infarction. Microvascular Research, 2009, 78, 393-404.	1.1	28
67	Cell-Based Therapy for Ischemic Heart Disease: A Clinical Update. Annals of Thoracic Surgery, 2009, 88, 1714-1722.	0.7	39
68	Imaging Survival and Function of Transplanted Cardiac Resident Stem Cells. Journal of the American College of Cardiology, 2009, 53, 1229-1240.	1.2	170
69	The Year in Cardiovascular Surgery. Journal of the American College of Cardiology, 2009, 53, 2389-2403.	1.2	4
70	Cardiovascular Translational Medicine (IX) The Basics of Cell Therapy to Treat Cardiovascular Disease: One Cell Does Not Fit All. Revista Espanola De Cardiologia (English Ed), 2009, 62, 1032-1044.	0.4	5
71	Endothelial progenitor cells and cardiovascular cell-based therapies. Cytotherapy, 2009, 11, 103-113.	0.3	63
72	Cell-based Therapy for Heart Disease: A Clinically Oriented Perspective. Molecular Therapy, 2009, 17, 758-766.	3.7	63
73	Stem Cells for Cardiac Regeneration by Cell Therapy and Myocardial Tissue Engineering. , 2009, 114, 107-128.		7
74	A heart full of stem cells: the spectrum of myocardial progenitor cells in the postnatal heart. Therapeutic Advances in Cardiovascular Disease, 2009, 3, 215-229.	1.0	17
75	Role of Nuclear Imaging in Regenerative Cardiology. Cardiology Clinics, 2009, 27, 355-367.	0.9	4

ARTICLE IF CITATIONS # Optimization of human skeletal muscle precursor cell culture and myofiber formation in vitro. 1.9 59 76 Methods, 2009, 47, 98-103. Stem cell therapy for cardiac repair: benefits and barriers. Expert Reviews in Molecular Medicine, 1.6 109 2009, 11, e20. Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic 78 1.0 231 cardiomyopathy. European Heart Journal, 2009, 30, 2722-2732. Cardiac Cell Repair Therapy: A Clinical Perspective. Mayo Clinic Proceedings, 2009, 84, 876-892. 134 Stem cell therapy: A "magic bullet―for cardiomyopathies?*. Critical Care Medicine, 2009, 37, 1487-1489. 82 0.4 2 Transplantation of progenitor cells and regeneration of damaged myocardium: more facts or doubts? Insights from experimental and clinical studies. Journal of Cardiovascular Medicine, 2009, 10, 624-634. Cell-Based Therapy for Heart Failure: Skeletal Myoblasts. Cell Transplantation, 2009, 18, 695-707. 85 1.2 26 Two-Dimensional Speckle Tracking Strain Analysis for Efficacy Assessment of Myocardial Cell Therapy. 1.2 86 Cell Transplantation, 2009, 18, 361-370. 2. Current Status and Future in Tissue Engineering of Heart Structures. The Journal of the Japanese 88 0.0 0 Society of Internal Medicine, 2009, 98, 343-350. Innovation in Basic Science: Stem Cells and their role in the treatment of Paediatric Cardiac Failure – 0.4 Opportunities and Challenges. Cardiology in the Young, 2009, 19, 74-84. Transcatheter Injection-Induced Changes in Human Bone Marrow-Derived Mesenchymal Stem Cells. 90 1.2 27 Cell Transplantation, 2009, 18, 1111-1121. Cardiac Regenerative Medicine Cellular Therapy and Tissue Engineering. Circulation Journal, 2009, 73, A61-A67. Oscillating Pressure Treatment Upregulates Connexin43 Expression in Skeletal Myoblasts and 92 1.2 7 Enhances Therapeutic Efficacy for Myocardial Infarction. Cell Transplantation, 2009, 18, 1123-1135. Myoblast Transfer in Ischemic Heart Failure: Effects on Rhythm Stability. Cell Transplantation, 2009, 18, 333-342. 1.2 Stem cell therapy for ischemic heart disease: where are we?. Current Opinion in Organ 94 0.8 22 Transplantation, 2009, 14, 79-84. Cell Sheet-Based Myocardial Tissue Engineering: New Hope for Damaged Heart Rescue. Current 106 Pharmaceutical Design, 2009, 15, 2807-2814. Current Status of Therapeutic Angiogenesis with Protein, Gene and Cell Therapy. Current Drug 96 0.2 0 Therapy, 2009, 4, 221-233. Myocardial Homing and Coronary Endothelial Function After Autologous Blood CD34+ Progenitor Célls Intracoronary Injection in the Chronic Phase of Myocardial Infarction. Journal of Cardiovascular Pharmacology, 2009, 53, 480-485.

#	Article	IF	CITATIONS
98	The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) Trial: First Randomized Placebo-Controlled Study of Myoblast Transplantation. Yearbook of Cardiology, 2009, 2009, 413-415.	0.0	1
99	Cell Therapy for Cardiac Regeneration after Myocardial Infarct: Which Cell is the Best?. Cardiovascular and Hematological Agents in Medicinal Chemistry, 2010, 8, 227-243.	0.4	10
100	Transplantation of Mesenchymal Stem Cells Exerts a Greater Long-Term Effect than Bone Marrow Mononuclear Cells in a Chronic Myocardial Infarction Model in Rat. Cell Transplantation, 2010, 19, 313-328.	1.2	70
101	Skeletal Myoblasts for Heart Regeneration and Repair: State of the Art and Perspectives on the Mechanisms for Functional Cardiac Benefits. Current Pharmaceutical Design, 2010, 16, 915-928.	0.9	18
102	Cardiac progenitor cells: from embryonic to the aging heart. Aging Health, 2010, 6, 679-686.	0.3	0
103	Stem cell paracrine actions and tissue regeneration. Regenerative Medicine, 2010, 5, 121-143.	0.8	709
104	Transplantation of adipose tissue and stem cells: role in metabolism and disease. Nature Reviews Endocrinology, 2010, 6, 195-213.	4.3	268
106	Recommendations for Successful Training on Methods of Delivery of Biologics for Cardiac Regeneration. JACC: Cardiovascular Interventions, 2010, 3, 265-275.	1.1	71
107	Engineering cardiac tissue in vivo from human adipose-derived stem cells. Biomaterials, 2010, 31, 2236-2242.	5.7	70
108	Intramyocardial Navigation and Mapping for Stem Cell Delivery. Journal of Cardiovascular Translational Research, 2010, 3, 135-146.	1.1	31
109	Stem Cell Therapy: Pieces of the Puzzle. Journal of Cardiovascular Translational Research, 2010, 3, 49-60.	1.1	28
110	Stem Cell Therapy for Chronic Myocardial Infarction. Journal of Cardiovascular Translational Research, 2010, 3, 79-88.	1.1	17
111	Current and Future Status of Stem Cell Therapy in Heart Failure. Current Treatment Options in Cardiovascular Medicine, 2010, 12, 614-627.	0.4	8
113	Current Status of Stem Cell Therapy in Heart Failure. Current Cardiology Reports, 2010, 12, 199-208.	1.3	19
114	Stem cells for heart failure in the aging heart. Heart Failure Reviews, 2010, 15, 447-456.	1.7	20
115	Role of Molecular Imaging in Stem Cell Therapy for Myocardial Restoration. Trends in Cardiovascular Medicine, 2010, 20, 183-188.	2.3	5
116	Engraftment Is Optimal When Myoblasts Are Transplanted Early: The Role of Hepatocyte Growth Factor. Annals of Thoracic Surgery, 2010, 89, 829-835.	0.7	9
117	Characterization of distinct mesenchymal-like cell populations from human skeletal muscle in situ and in vitro. Experimental Cell Research, 2010, 316, 2513-2526.	1.2	77

#	Article	IF	CITATIONS
118	Polyurethane Scaffolds Seeded With Genetically Engineered Skeletal Myoblasts: A Promising Tool to Regenerate Myocardial Function. Artificial Organs, 2010, 34, E46-54.	1.0	25
119	Advances in cardiovascular molecular imaging for tracking stem cell therapy. Thrombosis and Haemostasis, 2010, 104, 13-22.	1.8	24
120	Stem cells for myocardial repair. Thrombosis and Haemostasis, 2010, 104, 6-12.	1.8	49
121	Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. Journal of Clinical Investigation, 2010, 120, 11-19.	3.9	538
122	Current Perspectives on Imaging Cardiac Stem Cell Therapy. Journal of Nuclear Medicine, 2010, 51, 128S-136S.	2.8	33
123	Cell therapy for cardiac repair. British Medical Bulletin, 2010, 94, 65-80.	2.7	19
124	Engineering a novel three-dimensional contractile myocardial patch with cell sheets and decellularised matrixâ~†â~†â~†. European Journal of Cardio-thoracic Surgery, 2010, 38, 450-455.	0.6	39
125	The "Natural Selection―of Muscle for Cardiac Repair. Circulation Research, 2010, 106, 4-6.	2.0	0
126	Printing a Tissue. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1277-1278.	1.1	1
127	Phases l–III Clinical Trials Using Adult Stem Cells. Stem Cells International, 2010, 2010, 1-12.	1.2	44
128	Viable Fibroblast Matrix Patch Induces Angiogenesis and Increases Myocardial Blood Flow in Heart Failure After Myocardial Infarction. Tissue Engineering - Part A, 2010, 16, 3065-3073.	1.6	22
130	Composite Cell Sheets. Circulation, 2010, 122, S118-23.	1.6	121
131	Secreted Frizzled Related Protein 4 Reduces Fibrosis Scar Size and Ameliorates Cardiac Function After Ischemic Injury. Tissue Engineering - Part A, 2010, 16, 3329-3341.	1.6	50
133	Cells as biologics for cardiac repair in ischaemic heart failure. Heart, 2010, 96, 792-800.	1.2	42
134	Intraoperative CD133+ cell transplantation during coronary artery bypass grafting in ischemic cardiomyopathy. Multimedia Manual of Cardiothoracic Surgery: MMCTS / European Association for Cardio-Thoracic Surgery, 2010, 2010, mmcts.2009.003947.	0.5	6
135	Stem Cell Therapy for Myocardial Infarction: Are We Missing Time?. Cardiology, 2010, 117, 1-10.	0.6	18
136	Intracoronary infusion of selected autologous bone marrow stem cells improves longitudinal myocardial strain and strain rate in patients with old anterior myocardial infarction without recent revascularization. European Journal of Echocardiography, 2010, 11, 440-445.	2.3	13
137	Repeated implantation of skeletal myoblast in a swine model of chronic myocardial infarction. European Heart Journal, 2010, 31, 1013-1021.	1.0	57

ARTICLE IF CITATIONS # Skeletal myoblast implants induce minor propagation delays, but do not promote arrhythmias in the 138 0.7 2 normal swine heart. Europace, 2010, 12, 1637-1644. Cell-based therapy of the failing heart: a need to connect for proper electrical and contractile function. Europace, 2010, 12, 1520-1521. Transmyocardial Laser Revascularization Combined with Intramyocardial Endothelial Progenitor Cell Transplantation in Patients with Intractable Ischemic Heart Disease Ineligible for Conventional 140 29 0.4 Revascularization: Preliminary Results in a Highly Selected Small Patient Cohort. Thoracic and Cardiovascular Surgeon, 2010, 58, 11-16. Skeletal myoblasts for cardiac repair. Regenerative Medicine, 2010, 5, 919-932. 141 Review: The New Concept of â€[°]â€[~]Interventional Heart Failure Therapyâ€[™]â€[™]: Part 2â€[°]Inotropes, Valvular Disease, Pumps, and Transplantation. Journal of Cardiovascular Pharmacology and Therapeutics, 2010, 142 1.0 8 15, 231-243. Intramyocardial Stem Cell Transplantation Without Tissue Engineered Constructs: The Current 0.7 Clinical Situation. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2010, , 95-110. Cell therapy for heart failure: the need for a new therapeutic strategy. Expert Review of 144 0.6 14 Cardiovascular Therapy, 2010, 8, 1107-1126. Adult Stem Cell-Based Therapy for the Heart., 2010, , 899-935. 145 Characterizing functional stem cellâ€"cardiomyocyte interactions. Regenerative Medicine, 2010, 5, 146 0.8 14 87-105. Promises and pitfalls in cell replacement therapy for heart failure. Drug Discovery Today Disease 0.8 Mechanisms, 2010, 7, e109-e115. Stem cell therapy for the heart: a perspective. Translational Research, 2010, 155, 3-5. 148 2.2 7 New therapies for the failing heart: trans-genes versus trans-cells. Translational Research, 2010, 156, 2.2 130-135. Cell therapy for the treatment of coronary heart disease: a critical appraisal. Nature Reviews 150 6.1 237 Cardiology, 2010, 7, 204-215. Modification of mesenchymal stem cells for cardiac regeneration. Expert Opinion on Biological 1.4 Therapy, 2010, 10, 309-319. Cardiomyogenic differentiation of human bone marrow mesenchymal cells: Role of cardiac extract 152 1.0 44 from neonatal rat cardiomyocytes. Differentiation, 2010, 79, 93-101. Preclinical and Clinical Studies on Application of Human Myoblasts in Regeneration of the Postinfarction Heart. Transplantation Proceedings, 2010, 42, 3323-3327. Implantation of cardiac progenitor cells using self-assembling peptide improves cardiac function 154 0.9 82 after myocardial infarction. Journal of Molecular and Cellular Cardiology, 2010, 49, 972-983. Pregenerative medicine: developmental paradigms in the biology of cardiovascular regeneration. Journal of Clinical Investigation, 2010, 120, 20-28.

#	Article	IF	Citations
156	Contemporary Use of Ventricular Assist Devices. Annual Review of Medicine, 2010, 61, 255-270.	5.0	43
157	Stem Cells in the Treatment of Heart Disease. Annual Review of Medicine, 2010, 61, 287-300.	5.0	50
158	The high functionalization of temperature-responsive culture dishes for establishing advanced cell sheet engineering. Journal of Materials Chemistry, 2010, 20, 8768.	6.7	11
159	Stem Cell Therapy for Vascular Regeneration. Circulation, 2010, 122, 517-526.	1.6	177
160	Novel device for transplantation of cell sheet and evaluation of thin polymer films by atomic force microscopy. , 2011, , .		0
161	Augmentation of left ventricular mechanics by recirculationâ€mediated AAV2/1–SERCA2a gene delivery in experimental heart failure. European Journal of Heart Failure, 2011, 13, 247-253.	2.9	51
162	Stem and progenitor cell-based therapy in ischaemic heart disease: promise, uncertainties, and challenges. European Heart Journal, 2011, 32, 1197-1206.	1.0	225
163	Strategies for Myocardial Tissue Engineering: The Beat Goes On. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2011, , 49-79.	0.7	0
164	Hypoxia Promotes Proliferation of Human Myogenic Satellite Cells: A Potential Benefactor in Tissue Engineering of Skeletal Muscle. Tissue Engineering - Part A, 2011, 17, 1747-1758.	1.6	46
165	The Stuttering Progress of Cell Therapy for Heart Disease. Clinical Pharmacology and Therapeutics, 2011, 90, 532-541.	2.3	85
166	Stem Cells Signaling Pathways in the Heart. , 2011, , 407-429.		0
167	Stem cells in cardiac repair. Future Cardiology, 2011, 7, 99-117.	0.5	67
168	Regenerating the Heart. , 2011, , .		2
169	Stem Cells & Regenerative Medicine. Pancreatic Islet Biology, 2011, , .	0.1	6
170	Stem Cell Therapy for the Treatment of Myocardial Infarction. Current Pharmaceutical Design, 2011, 17, 3328-3340.	0.9	10
171	Scaffold-Based Transplantation of Akt1-Overexpressing Skeletal Myoblasts: Functional Regeneration Is Associated with Angiogenesis and Reduced Infarction Size. Tissue Engineering - Part A, 2011, 17, 205-212.	1.6	11
172	A double-blind, randomized, controlled, multicenter study to assess the safety and cardiovascular effects of skeletal myoblast implantation by catheter delivery in patients with chronic heart failure after myocardial infarction. American Heart Journal, 2011, 162, 654-662.e1.	1.2	99
173	Stem cell therapy for chronic heart failure. Lessons from a 15-year experience. Comptes Rendus - Biologies, 2011, 334, 489-496.	0.1	19

		EPORT	
# 174	ARTICLE Regenerative Chimerism Bioengineered Through Stem Cell Reprogramming. , 2011, , 445-468.	IF	Citations
175	Stem cell therapy for cardiac disease. Expert Opinion on Biological Therapy, 2011, 11, 177-187.	1.4	28
176	Stem Cell Therapy to Treat Heart Failure. , 2011, , 407-423.		3
177	Cardiac cell therapy: Lessons from clinical trials. Journal of Molecular and Cellular Cardiology, 2011, 50, 258-265.	0.9	153
178	Skeletal muscle stem cells propagated as myospheres display electrophysiological properties modulated by culture conditions. Journal of Molecular and Cellular Cardiology, 2011, 50, 357-366.	0.9	9
179	Stem cells for cardiac repair in acute myocardial infarction. Expert Review of Cardiovascular Therapy, 2011, 9, 1015-1025.	0.6	16
180	Cell-Based Therapy in Chagas Disease. Advances in Parasitology, 2011, 75, 49-63.	1.4	4
181	Cardiac Cell Therapies: The Next Generation. Cardiovascular Therapeutics, 2011, 29, 2-16.	1.1	18
182	Cardiac regeneration therapy: connections to cardiac physiology. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H2169-H2180.	1.5	9
183	Advances in Cell Transplantation Therapy for Diseased Myocardium. Stem Cells International, 2011, 2011, 1-8.	1.2	3
184	Stem Cell Therapy in Myocardial Infarction Clinical Point of View and the Results of the REANIMA Study (REgenerAtion of Myocardium with boNe Marrow Mononuclear Cells in MyocArdial) Tj ETQq0 0 0 rgBT /O	verlock 10) Tf 5 0 337 Tc
185	Randomized Clinical Trials in Stem Cell Therapy for the Heart - Old and New Types of Cells for Cardiovascular Repair. , 2011, , .		0
186	Synchrotron Radiation and Nanotechnology for Stem Cell Research. , 0, , .		3
187	Heat shock attenuates VEGF expression in three-dimensional myoblast sheets deteriorating therapeutic efficacy in heart failure. Medical Science Monitor, 2011, 17, BR345-BR353.	0.5	5
188	Cardiac Stem Cells: Biology and Therapeutic Applications. , 2011, , 327-346.		3
189	Therapy for Angina Pectoris Secondary to Coronary Disease. , 0, , .		0
190	Stem cells in rhythmology — Short communication. Interventional Medicine & Applied Science, 2011, 3, 110-112.	0.2	0
191	Human Myoblast Genome Therapies and Devices in Regenerative Medicine. Recent Patents on Regenerative Medicine, 2011, 1, 88-117.	0.4	3

#	ARTICLE	IF	CITATIONS
192	Could Metabolic Syndrome, Lipodystrophy, and Aging Be Mesenchymal Stem Cell Exhaustion Syndromes?. Stem Cells International, 2011, 2011, 1-10.	1.2	41
193	Ventricular Assist Device: Emerging Modality for Long Term Cardiac Support. , 2011, , .		1
194	Cell-Based Therapies and Tissue Engineering in Heart Failure. , 2011, , 742-752.		0
195	The Effects of Mechanical Stress on the Growth, Differentiation, and Paracrine Factor Production of Cardiac Stem Cells. PLoS ONE, 2011, 6, e28890.	1.1	52
196	Cardiac Cell Therapy and Bypass Surgery. Current Pharmaceutical Design, 2011, 17, 3348-3355.	0.9	2
197	Current perspective of stem cell therapies for cardiac regeneration. Therapy: Open Access in Clinical Medicine, 2011, 8, 69-82.	0.2	2
198	Cell Therapy for the Treatment of Chronic Ischemic Heart Disease. Current Pharmaceutical Design, 2011, 17, 3308-3327.	0.9	3
199	Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nature Cell Biology, 2011, 13, 497-505.	4.6	464
200	Positron emission tomography for the evaluation and treatment of cardiomyopathy. Annals of the New York Academy of Sciences, 2011, 1228, 137-149.	1.8	11
201	Role of stem cells in cardiovascular biology. Journal of Thrombosis and Haemostasis, 2011, 9, 151-161.	1.9	14
202	Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Research, 2011, 6, 206-214.	0.3	379
203	SDF-1α as a therapeutic stem cell homing factor in myocardial infarction. , 2011, 129, 97-108.		192
204	Improvement of cardiac function in the failing rat heart after transfer of skeletal myoblasts engineered to overexpress placental growth factor. Journal of Thoracic and Cardiovascular Surgery, 2011, 141, 1238-1245.	0.4	13
205	Stem Cell Therapy in Cardiology: Current Concepts and The Road Ahead. Apollo Medicine, 2011, 8, 191-194.	0.0	0
206	Tissue-Engineered Cardiac Constructs for Cardiac Repair. Annals of Thoracic Surgery, 2011, 91, 320-329.	0.7	61
207	Marrow Stromal Cells Differentiate Into Vasculature After Allogeneic Transplantation Into Ischemic Myocardium. Annals of Thoracic Surgery, 2011, 91, 1206-1212.	0.7	21
208	Stem Cell Engraftment and Survival in the Ischemic Heart. Annals of Thoracic Surgery, 2011, 92, 1917-1925.	0.7	84
209	Clinical impact of combined transplantation of autologous skeletal myoblasts and bone marrow mononuclear cells in patients with severely deteriorated ischemic cardiomyopathy. Surgery Today, 2011, 41, 1029-1036.	0.7	24

#	Article	IF	CITATIONS
210	Cardiac Cell Therapy: The Next (Re)Generation. Stem Cell Reviews and Reports, 2011, 7, 1018-1030.	5.6	28
211	The Role of Cardiac Electrophysiology in Myocardial Regenerative Stem Cell Therapy. Journal of Cardiovascular Translational Research, 2011, 4, 61-65.	1.1	7
212	Cell Therapy for Cardiovascular Disease: A Comparison of Methods of Delivery. Journal of Cardiovascular Translational Research, 2011, 4, 177-181.	1.1	78
213	Stem cells therapy for cardiovascular repair in ischemic heart disease: How to predict and secure optimal outcome?. EPMA Journal, 2011, 2, 107-117.	3.3	23
214	Collagen scaffolds with or without the addition of RGD peptides support cardiomyogenesis after aggregation of mouse embryonic stem cells. In Vitro Cellular and Developmental Biology - Animal, 2011, 47, 653-664.	0.7	15
215	Stem Cell Therapy for Incontinence: Where Are We Now? What is the Realistic Potential?. Current Urology Reports, 2011, 12, 336-344.	1.0	21
216	Stem cells in clinical practice: applications and warnings. Journal of Experimental and Clinical Cancer Research, 2011, 30, 9.	3.5	152
217	In vitro cardiomyogenic potential of human amniotic fluid stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 220-228.	1.3	56
218	High-resolution X-ray microtomography for three-dimensional imaging of cardiac progenitor cell homing in infarcted rat hearts. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, e168-e178.	1.3	23
219	The Future of Induced Pluripotent Stem Cells for Cardiac Therapy and Drug Development. Current Pharmaceutical Design, 2011, 17, 3258-3270.	0.9	21
220	In vivo bioluminescence for tracking cell fate and function. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H663-H671.	1.5	100
221	Cardiomyocyte death: mechanisms and translational implications. Cell Death and Disease, 2011, 2, e244-e244.	2.7	368
222	Getting to the Heart of Myocardial Stem Cells and Cell Therapy. Circulation, 2011, 123, 1771-1779.	1.6	43
223	miR669a and miR669q prevent skeletal muscle differentiation in postnatal cardiac progenitors. Journal of Cell Biology, 2011, 193, 1197-1212.	2.3	77
224	Malignant Tumor Formation After Transplantation of Short-Term Cultured Bone Marrow Mesenchymal Stem Cells in Experimental Myocardial Infarction and Diabetic Neuropathy. Circulation Research, 2011, 108, 1340-1347.	2.0	293
225	Stem Cells Review Series. Circulation Research, 2011, 109, 907-909.	2.0	13
226	Cardiac cell therapy: where we've been, where we are, and where we should be headed. British Medical Bulletin, 2011, 98, 161-185.	2.7	174
227	Feasibility of cell transplantation with a left ventricular assist device to improve the success rate of left ventricular assist device removal: the first experiment. Interactive Cardiovascular and Thoracic Surgery, 2011, 12, 10-14.	0.5	2

# 228	ARTICLE Cell-based cardiovascular repair and regeneration in acute myocardial infarction and chronic ischemic cardiomyopathy current status and future developments. International Journal of	IF 0.3	Citations
229	Developmental Biology, 2011, 55, 407-417. Intracoronary administration of bone marrow-derived mononuclear cells and arrhythmic events in patients with chronic heart failure. European Heart Journal, 2011, 32, 485-491.	1.0	11
230	Epicardium-derived cells: a new source of regenerative capacity. Heart, 2011, 97, 15-19.	1.2	32
231	Stem cell therapy for heart diseases. British Medical Bulletin, 2011, 98, 143-159.	2.7	59
232	The use of stem cells for the repair of cardiac tissue in ischemic heart disease. Expert Review of Medical Devices, 2011, 8, 209-225.	1.4	10
233	The proarrhythmic risk of cell therapy for cardiovascular diseases. Expert Review of Cardiovascular Therapy, 2011, 9, 1593-1601.	0.6	8
234	Direct autologous bone marrow-derived stem cell transplantation for ischemic heart disease: a meta-analysis. Expert Opinion on Biological Therapy, 2011, 11, 559-567.	1.4	33
235	Biomaterials for Cardiac Cell Transplantation. , 2011, , 393-404.		0
236	Imaging. Circulation Research, 2011, 109, 962-979.	2.0	99
237	Regenerative Therapies Using Cell Sheet-Based Tissue Engineering for Cardiac Disease. Cardiology Research and Practice, 2011, 2011, 1-8.	0.5	52
238	Meeting the Need for Regenerative Therapies I: Target-Based Incidence and Its Relationship to U.S. Spending, Productivity, and Innovation. Tissue Engineering - Part B: Reviews, 2012, 18, 139-154.	2.5	11
239	Functional Multipotency of Stem Cells: What Do We Need from Them in the Heart?. Stem Cells International, 2012, 2012, 1-12.	1.2	10
240	Mesenchymal Stem Cells for Cardiac Regeneration: Translation to Bedside Reality. Stem Cells International, 2012, 2012, 1-14.	1.2	41
241	Myocardial Restoration: Is It the Cell or the Architecture or Both?. Cardiology Research and Practice, 2012, 2012, 1-11.	0.5	9
242	Cardiac Side Population Cells. Circulation Research, 2012, 110, 1355-1363.	2.0	58
243	Update on cardiac stem cell therapy in heart failure. Current Opinion in Cardiology, 2012, 27, 154-160.	0.8	18
244	Human Skeletal Muscle Cells With a Slow Adhesion Rate After Isolation and an Enhanced Stress Resistance Improve Function of Ischemic Hearts. Molecular Therapy, 2012, 20, 138-145.	3.7	18
245	Role of GATA-4 in Differentiation and Survival of Bone Marrow Mesenchymal Stem Cells. Progress in Molecular Biology and Translational Science, 2012, 111, 217-241.	0.9	14

		CITATION R	EPORT	
#	Article		IF	CITATIONS
246	New cell therapies in cardiology. Expert Review of Cardiovascular Therapy, 2012, 10, 102	23-1037.	0.6	9
247	Conditioned Media from Mesenchymal Stem Cells Enhanced Bone Regeneration in Rat C Defects. Tissue Engineering - Part A, 2012, 18, 1479-1489.	alvarial Bone	1.6	304
248	Distribution of Cardiac Stem Cells in the Human Heart. ISRN Cardiology, 2012, 2012, 1-5	j.	1.6	16
249	The Potential of Stem Cells in the Treatment of Skeletal Muscle Injury and Disease. Stem International, 2012, 2012, 1-9.	Cells	1.2	19
250	Substrate stiffness affects skeletal myoblast differentiation <i>in vitro</i> . Science and Te Advanced Materials, 2012, 13, 064211.	echnology of	2.8	43
251	Role of miRNAs in Muscle Stem Cell Biology: Proliferation, Differentiation and Death. Cur Pharmaceutical Design, 2012, 18, 1718-1729.	rent	0.9	39
252	Adjuvant early and late cardioprotective therapy: access to the heart. Cardiovascular Res 94, 226-236.	earch, 2012,	1.8	6
253	Genetic engineering of somatic cells to study and improve cardiac function. Europace, 20 v40-v49.	012, 14,	0.7	14
254	Cardiac stem and progenitor cell biology and therapy. , 2012, , 418-442.			1
255	Towards regenerative therapy for cardiac disease. Lancet, The, 2012, 379, 933-942.		6.3	214
256	The Future of Heart Transplantation. American Journal of Transplantation, 2012, 12, 287	5-2891.	2.6	33
257	Rationale and design of the first randomized, double-blind, placebo-controlled trial of intramyocardial injection of autologous bone-marrow derived Mesenchymal Stromal Cell ischemic Heart Failure (MSC-HF Trial). American Heart Journal, 2012, 164, 285-291.	s in chronic	1.2	86
258	Advances in cell-based therapy for peripheral vascular disease. Atherosclerosis, 2012, 22	3, 269-277.	0.4	28
259	Mechanical preconditioning enables electrophysiologic coupling of skeletal myoblast cel myocardium. Journal of Thoracic and Cardiovascular Surgery, 2012, 144, 1176-1184.e1.	ls to	0.4	13
260	Contractile Protein and Extracellular Matrix Secretion of Cell Monolayer Sheets Following Stretch. Cardiovascular Engineering and Technology, 2012, 3, 302-310.	g Cyclic	0.7	1
261	Cardiac tissue engineering using human stem cell-derived cardiomyocytes for disease mo drug discovery. Drug Discovery Today: Disease Models, 2012, 9, e219-e227.	odeling and	1.2	6
262	Treatment of the ventricular tachycardia with engraftment of pluripotent stem cells-deriv cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2012, 53, 3-5.	ved	0.9	4
263	Potential for stem cell use in congenital heart disease. Future Cardiology, 2012, 8, 161-1	69.	0.5	10

#	Article	IF	CITATIONS
264	Hepatocyte Growth Factorâ€Transfected Skeletal Myoblasts to Limit the Development of Postinfarction Heart Failure. Artificial Organs, 2012, 36, 238-246.	1.0	14
265	Stem cell mediated cardiovascular repair. Canadian Journal of Physiology and Pharmacology, 2012, 90, 337-351.	0.7	4
266	Cell therapy in the heart. Canadian Journal of Physiology and Pharmacology, 2012, 90, 307-315.	0.7	11
267	Cell Delivery Routes for Stem Cell Therapy to the Heart: Current and Future Approaches. Journal of Cardiovascular Translational Research, 2012, 5, 713-726.	1.1	54
268	Myocardial cell sheet therapy and cardiac function. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H1169-H1182.	1.5	43
269	Cell delivery in cardiac regenerative therapy. Ageing Research Reviews, 2012, 11, 32-40.	5.0	23
270	Transmurality of scar influences the effect of a hybrid-intervention with autologous bone marrow cell injection and aortocoronary bypass surgery (MNC/CABG) in patients after myocardial infarction. International Journal of Cardiology, 2012, 156, 303-308.	0.8	8
271	Enhanced gap junction expression in myoblast-containing engineered tissue. Biochemical and Biophysical Research Communications, 2012, 422, 462-468.	1.0	13
272	Reawakening Atlas: Chemical Approaches To Repair or Replace Dysfunctional Musculature. ACS Chemical Biology, 2012, 7, 1773-1790.	1.6	19
273	Production of De Novo Cardiomyocytes: Human Pluripotent Stem Cell Differentiation and Direct Reprogramming. Cell Stem Cell, 2012, 10, 16-28.	5.2	616
274	Controlled Angiogenesis in the Heart by Cell-Based Expression of Specific Vascular Endothelial Growth Factor Levels. Human Gene Therapy Methods, 2012, 23, 346-356.	2.1	24
275	The effectiveness of rigid pericardial endoscopy for minimally invasive minor surgeries: cell transplantation, epicardial pacemaker lead implantation, and epicardial ablation. Journal of Cardiothoracic Surgery, 2012, 7, 117.	0.4	12
277	Cardiac differentiation of human pluripotent stem cells. Journal of Cellular and Molecular Medicine, 2012, 16, 1663-1668.	1.6	17
278	Functional cardiac tissue engineering. Regenerative Medicine, 2012, 7, 187-206.	0.8	98
279	Direct Comparison of Different Stem Cell Types and Subpopulations Reveals Superior Paracrine Potency and Myocardial Repair Efficacy With Cardiosphere-Derived Cells. Journal of the American College of Cardiology, 2012, 59, 942-953.	1.2	427
280	Cell Therapy for Left Ventricular Dysfunction: An Overview for Cardiac Clinicians. Heart Lung and Circulation, 2012, 21, 532-542.	0.2	16
281	Translational Findings From Cardiovascular Stem Cell Research. Trends in Cardiovascular Medicine, 2012, 22, 1-6.	2.3	19
282	Cell Therapy for Cardiac Disease. , 2012, , 697-705.		0

#	Article	IF	CITATIONS
283	Cardiovascular surgery for realization of regenerative medicine. General Thoracic and Cardiovascular Surgery, 2012, 60, 744-755.	0.4	16
284	Cellular Therapy for the Infarcted Myocardium. , 2012, , 341-390.		1
285	Heart regeneration. Postepy W Kardiologii Interwencyjnej, 2012, 4, 301-314.	0.1	0
286	Analysis of pro-arrhythmic effects induced by different routes of administration of bone marrow stem cells. Stem Cell Studies, 2012, 2, 1.	0.2	1
287	Pluripotent Stem Cell-Engineered Cell Sheets Reassembled with Defined Cardiovascular Populations Ameliorate Reduction in Infarct Heart Function Through Cardiomyocyte-Mediated Neovascularization. Stem Cells, 2012, 30, 1196-1205.	1.4	140
288	Regenerating functional heart tissue for myocardial repair. Cellular and Molecular Life Sciences, 2012, 69, 2635-2656.	2.4	48
289	A new heart: Somatic stem cells and myocardial regeneration. Journal of Surgical Oncology, 2012, 105, 475-480.	0.8	8
290	Cardiac Stem Cells in Patients with Ischemic Cardiomyopathy: Discovery, Translation, and Clinical Investigation. Current Atherosclerosis Reports, 2012, 14, 491-503.	2.0	10
291	Novel therapeutic approaches to post-infarction remodelling. Cardiovascular Research, 2012, 94, 293-303.	1.8	101
292	Concise Review: Cell Therapy and Tissue Engineering for Cardiovascular Disease. Stem Cells Translational Medicine, 2012, 1, 136-141.	1.6	81
293	Pluripotent stem cellâ€based heart regeneration: From the developmental and immunological perspectives. Birth Defects Research Part C: Embryo Today Reviews, 2012, 96, 98-108.	3.6	9
294	Advances in Stem Cell Therapy. Advances in Experimental Medicine and Biology, 2012, 741, 290-313.	0.8	17
295	Stem Cells in the Treatment of Cardiovascular Disease—An Overview. Stem Cell Reviews and Reports, 2012, 8, 494-502.	5.6	11
296	Effects on Arrhythmogenesis and Arrhythmic Threshold of Injection of Autologous Fibroblasts into Myocardial Infarcts in Adult Pigs. Journal of Cardiovascular Translational Research, 2012, 5, 337-344.	1.1	3
297	Cell tracking in cardiac repair: what to image and how to image. European Radiology, 2012, 22, 189-204.	2.3	36
298	Tissue engineered myoblast sheets improved cardiac function sufficiently to discontinue LVAS in a patient with DCM: report of a case. Surgery Today, 2012, 42, 181-184.	0.7	298
299	Emerging roles for integrated imaging modalities in cardiovascular cell-based therapeutics: a clinical perspective. European Journal of Nuclear Medicine and Molecular Imaging, 2012, 39, 165-181.	3.3	17
300	MR fluoroscopy in vascular and cardiac interventions (review). International Journal of Cardiovascular Imaging, 2012, 28, 117-137.	0.7	38

#	Article	IF	CITATIONS
301	Therapeutic angiogenesis for myocardial ischemia revisited: basic biological concepts and focus on latest clinical trials. Angiogenesis, 2012, 15, 1-22.	3.7	116
302	Concise Review: Engineering Myocardial Tissue: The Convergence of Stem Cells Biology and Tissue Engineering Technology. Stem Cells, 2013, 31, 2587-2598.	1.4	40
303	Preconditioning mesenchymal stem cells with caspase inhibition and hyperoxia prior to hypoxia exposure increases cell proliferation. Journal of Cellular Biochemistry, 2013, 114, 2612-2623.	1.2	37
304	Translational Approach to Heart Failure. , 2013, , .		3
305	Towards the Generation of Patient-Specific Patches for Cardiac Repair. Stem Cell Reviews and Reports, 2013, 9, 313-325.	5.6	13
306	Stem Cell Therapy for Pediatric Dilated Cardiomyopathy. Current Cardiology Reports, 2013, 15, 369.	1.3	24
307	Myocardial regeneration of the failing heart. Heart Failure Reviews, 2013, 18, 815-833.	1.7	18
308	Choice of cell-delivery route for successful cell transplantation therapy for the heart. Future Cardiology, 2013, 9, 215-227.	0.5	33
309	Priming mesenchymal stem cells boosts stem cell therapy to treat myocardial infarction. Journal of Cellular and Molecular Medicine, 2013, 17, 617-625.	1.6	47
310	Myocardial protection in cardiac surgery: a historical review from the beginning to the current topics. General Thoracic and Cardiovascular Surgery, 2013, 61, 485-496.	0.4	43
311	Intramyocardial Autologous Cell Engraftment in Patients with Ischaemic Heart Failure: A Meta-Analysis of Randomised Controlled Trials. Heart Lung and Circulation, 2013, 22, 887-894.	0.2	21
312	Cardiac Tissue Engineering and the Bioartificial Heart. Revista Espanola De Cardiologia (English Ed), 2013, 66, 391-399.	0.4	39
313	Autotransplantation of mesenchymal stromal cells from bone-marrow to heart in patients with severe stable coronary artery disease and refractory angina — Final 3-year follow-up. International Journal of Cardiology, 2013, 170, 246-251.	0.8	59
314	Molecular imaging: The key to advancing cardiac stem cell therapy. Trends in Cardiovascular Medicine, 2013, 23, 201-210.	2.3	15
315	Cellular Reprogramming. Circulation: Heart Failure, 2013, 6, 1102-1107.	1.6	2
316	Pathological Ventricular Remodeling. Circulation, 2013, 128, 1021-1030.	1.6	126
317	Cell Therapy of Peripheral Arterial Disease. Circulation Research, 2013, 112, 1288-1302.	2.0	200
318	The Survey on Cellular and Engineered Tissue Therapies in Europe in 2011. Tissue Engineering - Part A, 2013, 20, 131108064828001.	1.6	39

ARTICLE IF CITATIONS # Current status of myocardial regeneration therapy. General Thoracic and Cardiovascular Surgery, 319 0.4 7 2013, 61, 17-23. Critical path in cardiac stem cell therapy: an update on cell delivery. Cytotherapy, 2013, 15, 399-415. 0.3 321 Mesenchymal Stem Cell Therapy for Heart Disease., 2013, , 241-270. 7 Periprocedural adverse events in cell therapy trials in myocardial infarction and cardiomyopathy: a systematic review. Clinical Research in Cardiology, 2013, 102, 1-10. The use of cell-sheet technique eliminates arrhythmogenicity of skeletal myoblast-based therapy to 324 0.8 33 the heart with enhanced therapeutic effects. International Journal of Cardiology, 2013, 168, 261-269. IngenierÃa tisular cardiaca y corazÃ³n bioartificial. Revista Espanola De Cardiologia, 2013, 66, 391-399. 0.6 326 Potential benefits of cell therapy in coronary heart disease. Journal of Cardiology, 2013, 62, 267-276. 0.8 18 Current status of myocardial regeneration therapy. Personalized Medicine Universe, 2013, 2, 2-6. 0.1 328 Stem Cells and Mitochondria., 2013, , 183-201. 0 Introduction to Stem Cells and Regenerative Medicine. Respiration, 2013, 85, 3-10. 1.2 301 Cardiac Stem Cells – Biology and Therapeutic Applications. , 2013, , 603-619. 330 0 Activation of Diverse Signaling Pathways by Ex-Vivo Delivery of Multiple Cytokines for Myocardial 1.1 Repair. Stem Cells and Development, 2013, 22, 204-215. Cell sheet transplantation for heart tissue repair. Journal of Controlled Release, 2013, 169, 336-340. 332 4.8 59 Cerium Oxide Nanoparticles Counteract the Oxidative Stress in Cardiac Progenitor Cells. NATO 333 Science for Peace and Security Series A: Chemistry and Biology, 2013, , 101-112. Clinical Application of Adult Stem Cells for Therapy for Cardiac Disease. Cardiovascular Therapeutics, 334 1.1 14 2013, 31, 323-334. Stem Cell Therapy: Promising Treatment in Heart Failure?. Current Heart Failure Reports, 2013, 10, 73-80. Cell Therapy for Cardiovascular Regeneration. Annals of Vascular Diseases, 2013, 6, 137-144. 337 0.2 11 The effect of controlled expression of VEGF by transduced myoblasts in a cardiac patch on 338 vascularization in a mouse model of myocardial infarction. Biomaterials, 2013, 34, 393-401.

ARTICLE IF CITATIONS # Cardiac Regeneration with Stem Cells., 2013, , 65-112. 339 0 340 Stem Cell Therapy for Heart Failure. Methodist DeBakey Cardiovascular Journal, 2021, 9, 187. Muscle-derived Stem Cell Sheets Support Pump Function and Prevent Cardiac Arrhythmias in a Model 341 3.7 20 of Chronic Myocardial Infarction. Molecular Therapy, 2013, 21, 662-669. Myoblasts and Embryonic Stem Cells Differentially Engraft in a Mouse Model of Genetic Dilated 342 Cárdiomyopathy. Mólecular Therapy, 2013, 21, 1064-1075. Stem Cell Therapy for the Treatment of Acute Myocardial Infarction and Chronic Ischemic Heart 343 0.9 0 Disease. Current Pharmaceutical Biotechnology, 2013, 14, 12-19. Present and Future Perspectives on Cell Sheet-Based Myocardial Regeneration Therapy. BioMed Research International, 2013, 2013, 1-6. 44 Current Stem Cell Delivery Methods for Myocardial Repair. BioMed Research International, 2013, 2013, 345 0.9 66 1-15. Therapeutic Application of Cardiac Stem Cells and Other Cell Types. BioMed Research International, 2013, 2013, 1-6. 346 Mechanistic molecular imaging of cardiac cell therapy for ischemic heart disease. American Journal of 347 1.5 6 Physiology - Heart and Circulatory Physiology, 2013, 305, H947-H959. Nanoscaffolds for Guided Cardiac Repair: The New Therapeutic Challenge of Regenerative Medicine. 349 1.5 Journal of Nanomaterials, 2013, 2013, 1-16. Cell Therapy for Heart Failure. Circulation Research, 2013, 113, 810-834. 350 497 2.0 At a Crossroad. Circulation Research, 2013, 112, 884-890. Pluripotent Stem Cells for Cardiac Cell Therapy: The Application of Cell Sheet Technology., 2013,,. 352 3 Regenerative Medicine for the Cornea. BioMed Research International, 2013, 2013, 1-8. Impact of Hepatocyte Growth Factor on Skeletal Myoblast Transplantation Late after Myocardial 354 0.9 0 Infarction. Drug Target Insights, 2013, 7, DTI.S11802. Human Cardiospheres as a Source of Multipotent Stem and Progenitor Cells. Stem Cells International, 1.2 2013, 2013, 1-10. Biochemical Basis and Therapeutic Implications of Angiogenesis., 2013,,. 356 5 Effect of Exogenous Oct4 Overexpression on Cardiomyocyte Differentiation of Human Amniotic Mesenchymal Cells. Cellular Reprogramming, 2013, 15, 471-480.

#	Article	IF	CITATIONS
358	Protein <i>O</i> -GlcNAcylation Is a Novel Cytoprotective Signal in Cardiac Stem Cells. Stem Cells, 2013, 31, 765-775.	1.4	54
359	<i>In Vitro</i> Development and Characterization of a Tissue-Engineered Conduit Resembling Esophageal Wall Using Human and Pig Skeletal Myoblast, Oral Epithelial Cells, and Biologic Scaffolds. Tissue Engineering - Part A, 2013, 19, 2242-2252.	1.6	25
360	The Advancing Field of Cellâ€Based Therapy: Insights and Lessons From Clinical Trials. Journal of the American Heart Association, 2013, 2, e000338.	1.6	81
361	Stem cell therapy for chronic heart failure: an updated appraisal. Expert Opinion on Biological Therapy, 2013, 13, 503-516.	1.4	10
362	Regenerative medicine for the treatment of heart disease. Journal of Internal Medicine, 2013, 273, 235-245.	2.7	21
363	Intracoronary Delivery of Autologous Cardiac Stem Cells Improves Cardiac Function in a Porcine Model of Chronic Ischemic Cardiomyopathy. Circulation, 2013, 128, 122-131.	1.6	214
364	Cardiac Progenitor Cells in Myocardial Infarction Wound Healing: A Critical Review. Advances in Wound Care, 2013, 2, 317-326.	2.6	4
365	Catheter-Based Endomyocardial Delivery of Mesenchymal Precursor Cells Using 3D Echo Guidance Improves Cardiac Function in a Chronic Myocardial Injury Ovine Model. Cell Transplantation, 2013, 22, 2299-2309.	1.2	17
366	Cell Sheet Technology for Heart Failure. Current Pharmaceutical Biotechnology, 2013, 14, 61-66.	0.9	0
367	Cardiac Stem Cell Therapy: Stemness or Commitment?. Cell Transplantation, 2013, 22, 1-14.	1.2	14
368	Stem Cell-Based Therapy for Ischemic Heart Disease. Cell Transplantation, 2013, 22, 663-675.	1.2	48
369	Common Expression of Stemness Molecular Markers and Early Cardiac Transcription Factors in Human Wharton's Jelly-Derived Mesenchymal Stem Cells and Embryonic Stem Cells. Cell Transplantation, 2013, 22, 1883-1900.	1.2	44
370	Cell Sheet Technology for Heart Failure. Current Pharmaceutical Biotechnology, 2013, 14, 61-66.	0.9	6
371	Stem Cells Transplantation in Myocardial Tissue Induces Pro-arrhythmic Effects and Promotes Reperfusion. Comparison between Intramyocardial and Intravenous Approach. Journal of Genetic Syndromes & Gene Therapy, 2014, 05, .	0.2	0
373	Gene- and Cell-Based Therapy for Cardiovascular Disease. , 2014, , 783-833.		0
374	In-vivo comparison of the acute retention of stem cell derivatives and fibroblasts after intramyocardial transplantation in the mouse model. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41, 2325-2336.	3.3	23
375	Intramyocardial injection of hypoxia-preconditioned adipose-derived stromal cells treats acute myocardial infarction: an in vivo study in swine. Cell and Tissue Research, 2014, 358, 417-432.	1.5	7
376	Stem cells can form gap junctions with cardiac myocytes and exert pro-arrhythmic effects. Frontiers in Physiology, 2014, 5, 419.	1.3	20

#	Article	IF	CITATIONS
377	Transforming the Promise of Pluripotent Stem Cell-Derived Cardiomyocytes to a Therapy: Challenges and Solutions for Clinical Trials. Canadian Journal of Cardiology, 2014, 30, 1335-1349.	0.8	27
378	Hyperthermia Differently Affects Connexin43 Expression and Gap Junction Permeability in Skeletal Myoblasts and HeLa Cells. Mediators of Inflammation, 2014, 2014, 1-16.	1.4	12
379	Concise Review: Skeletal Muscle Stem Cells and Cardiac Lineage: Potential for Heart Repair. Stem Cells Translational Medicine, 2014, 3, 183-193.	1.6	27
380	Cardiac cell therapy: current status and future trends. , 2014, , 325-343.		Ο
381	Cardiac regeneration using pluripotent stem cells—Progression to large animal models. Stem Cell Research, 2014, 13, 654-665.	0.3	87
382	Cardiac stem cell therapy: Checkered past, promising future?. Journal of Thoracic and Cardiovascular Surgery, 2014, 148, 3188-3193.	0.4	2
383	Combined Usage of Stem Cells in End‣tage Heart Failure Therapies. Journal of Cellular Biochemistry, 2014, 115, 1217-1224.	1.2	8
384	Silk for cardiac tissue engineering. , 2014, , 429-455.		4
385	Recent Developments in Cardiovascular Stem Cells. Circulation Research, 2014, 115, e71-8.	2.0	29
386	Haemodynamic unloading increases the survival and affects the differentiation of cardiac stem cells after implantation into an infarcted heart. European Journal of Cardio-thoracic Surgery, 2014, 45, 976-982.	0.6	8
387	Strategies for Cardiac Regeneration and Repair. Science Translational Medicine, 2014, 6, 239rv1.	5.8	100
388	Cardiac Stem Cell Therapy. Journal of Cardiovascular Pharmacology, 2014, 63, 85-94.	0.8	11
390	Targeting pleiotropic signaling pathways to control adult cardiac stem cell fate and function. Frontiers in Physiology, 2014, 5, 219.	1.3	4
391	Stem cell and gene therapy for cardiac regeneration. , 2014, , 347-379.		3
392	Tracking of stem cells in vivo for cardiovascular applications. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 7.	1.6	25
393	Long-term follow-up after autologous skeletal myoblast transplantation in ischaemic heart disease. Interactive Cardiovascular and Thoracic Surgery, 2014, 18, 61-66.	0.5	33
394	Resident Cardiac Stem Cells and Their Role in Stem Cell Therapies for Myocardial Repair. Canadian Journal of Cardiology, 2014, 30, 1288-1298.	0.8	23
395	Mesenchymal stem cell delivery strategies to promote cardiac regeneration following ischemic injury. Biomaterials, 2014, 35, 3956-3974.	5.7	62

#	Article	IF	CITATIONS
396	Reprogramming antitumor immunity. Trends in Immunology, 2014, 35, 178-185.	2.9	39
397	Cardiac Fibroblast-Derived 3D Extracellular Matrix Seeded with Mesenchymal Stem Cells as a Novel Device to Transfer Cells to the Ischemic Myocardium. Cardiovascular Engineering and Technology, 2014, 5, 119-131.	0.7	48
398	Fate choice of post-natal mesoderm progenitors: skeletal versus cardiac muscle plasticity. Cellular and Molecular Life Sciences, 2014, 71, 615-627.	2.4	8
399	Cell therapy for cardiac repair—lessons from clinical trials. Nature Reviews Cardiology, 2014, 11, 232-246.	6.1	261
400	Pluripotent Stem Cell Derived Cardiomyocytes for Cardiac Repair. Current Treatment Options in Cardiovascular Medicine, 2014, 16, 319.	0.4	33
401	Tracking gene and cell fate for therapeutic gain. Nature Materials, 2014, 13, 106-109.	13.3	24
402	Ischemic preconditioning for cell-based therapy and tissue engineering. , 2014, 142, 141-153.		29
403	Engineering the extracellular matrix for clinical applications: Endoderm, mesoderm, and ectoderm. Biotechnology Journal, 2014, 9, 337-347.	1.8	10
404	Moving Beyond Surrogate Endpoints in Cell Therapy Trials for Heart Disease. Stem Cells Translational Medicine, 2014, 3, 2-6.	1.6	16
405	Tissue-Engineered Cardiovascular Products. , 2014, , 1745-1764.		0
407	Biomaterials and cells for cardiac tissue engineering. , 2014, , 127-179.		7
408	Translating Stem Cell Research to Cardiac Disease Therapies. Journal of the American College of Cardiology, 2014, 64, 922-937.	1.2	85
409	Cardiac Tissue Slice Transplantation as a Model to Assess Tissue-Engineered Graft Thickness, Survival, and Function. Circulation, 2014, 130, S77-86.	1.6	28
410	Use of differentiated pluripotent stem cells in replacement therapy for treating disease. Science, 2014, 345, 1247391.	6.0	243
411	Stem cell therapy for cardiac dysfunction. SpringerPlus, 2014, 3, 440.	1.2	36
412	Myocyte renewal and therapeutic myocardial regeneration using various progenitor cells. Heart Failure Reviews, 2014, 19, 789-797.	1.7	7
413	Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovascular Research, 2014, 103, 530-541.	1.8	601
414	Cardiac Stem Cell Imaging by SPECT and PET. Current Cardiovascular Imaging Reports, 2014, 7, 1.	0.4	0

#	Article	IF	CITATIONS
415	In vitro and in vivo characteristics of connexin 43-modified human skeletal myoblasts as candidates for prospective stem cell therapy for the failing heart. International Journal of Cardiology, 2014, 173, 55-64.	0.8	18
416	New vessel formation in the context of cardiomyocyte regeneration – the role and importance of an adequate perfusing vasculature. Stem Cell Research, 2014, 13, 666-682.	0.3	13
417	Cell therapy, 3D culture systems and tissue engineering for cardiac regeneration. Advanced Drug Delivery Reviews, 2014, 69-70, 254-269.	6.6	85
418	The Promise and Challenges of Cardiac Stem Cell Therapy. Seminars in Thoracic and Cardiovascular Surgery, 2014, 26, 44-52.	0.4	16
419	Cardiac tissue engineering: renewing the arsenal for the battle against heart disease. Integrative Biology (United Kingdom), 2014, 6, 111-126.	0.6	35
420	Breakthroughs in Cell Therapy for Heart Disease: Focus on Cardiosphere-Derived Cells. Mayo Clinic Proceedings, 2014, 89, 850-858.	1.4	44
421	Future Prospects for Regenerated Heart Using Induced Pluripotent Stem Cells. Journal of Pharmacological Sciences, 2014, 125, 1-5.	1.1	15
422	Chromosomal Instability but Lack of Transformation in Human Myoblast Preparations. Cell Transplantation, 2014, 23, 1475-1487.	1.2	6
423	Cell delivery routes for cardiac stem cell therapy. , 2014, , 99-117.		1
424	Cardiac cell therapy to restore contracting elements. , 2014, , 255-265.		0
424 425	Cardiac cell therapy to restore contracting elements. , 2014, , 255-265. Cell therapy to regenerate the ischemic heart. , 2014, , 118-137.		0
424 425 426	Cardiac cell therapy to restore contracting elements. , 2014, , 255-265. Cell therapy to regenerate the ischemic heart. , 2014, , 118-137. Cell therapy for cardiac repair – bench to bedside and back. , 2014, , 138-162.		0 4 2
424 425 426 427	Cardiac cell therapy to restore contracting elements., 2014,, 255-265. Cell therapy to regenerate the ischemic heart., 2014,, 118-137. Cell therapy for cardiac repair – bench to bedside and back., 2014,, 138-162. Monitoring myocardial functional regeneration following cardiac stem cell application., 2014,, 196-206.		0 4 2 0
424 425 426 427 428	Cardiac cell therapy to restore contracting elements. , 2014, , 255-265. Cell therapy to regenerate the ischemic heart. , 2014, , 118-137. Cell therapy for cardiac repair – bench to bedside and back. , 2014, , 138-162. Monitoring myocardial functional regeneration following cardiac stem cell application. , 2014, , 196-206. Examination of bone marrow mesenchymal stem cells seeded onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) biological materials for myocardial patch. Journal of Histotechnology, 2015, 38, 83-90.	0.2	0 4 2 0 2
 424 425 426 427 428 430 	Cardiac cell therapy to restore contracting elements. , 2014, , 255-265. Cell therapy to regenerate the ischemic heart. , 2014, , 118-137. Cell therapy for cardiac repair – bench to bedside and back. , 2014, , 138-162. Monitoring myocardial functional regeneration following cardiac stem cell application. , 2014, , 196-206. Examination of bone marrow mesenchymal stem cells seeded onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) biological materials for myocardial patch. Journal of Histotechnology, 2015, 38, 83-90. Pathophysiology of Myocardial Infarction. , 2015, 5, 1841-1875.	0.2	0 4 2 0 2 2 437
 424 425 426 427 428 430 431 	Cardiac cell therapy to restore contracting elements. , 2014, , 255-265. Cell therapy to regenerate the ischemic heart. , 2014, , 118-137. Cell therapy for cardiac repair – bench to bedside and back. , 2014, , 138-162. Monitoring myocardial functional regeneration following cardiac stem cell application. , 2014, , 196-206. Examination of bone marrow mesenchymal stem cells seeded onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) biological materials for myocardial patch. Journal of Histotechnology, 2015, 38, 83-90. Pathophysiology of Myocardial Infarction. , 2015, 5, 1841-1875. Human Placenta-Derived Multipotent Cells (hPDMCs) Modulate Cardiac Injury: From Bench to Small and Large Animal Myocardial Ischemia Studies. Cell Transplantation, 2015, 24, 2463-2478.	0.2	0 4 2 0 2 2 437 12
 424 425 426 427 428 430 431 432 	Cardiac cell therapy to restore contracting elements. , 2014, , 255-265. Cell therapy to regenerate the ischemic heart. , 2014, , 118-137. Cell therapy for cardiac repair àC" bench to bedside and back. , 2014, , 138-162. Monitoring myocardial functional regeneration following cardiac stem cell application. , 2014, , 196-206. Examination of bone marrow mesenchymal stem cells seeded onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) biological materials for myocardial patch. Journal of Histotechnology, 2015, 38, 83-90. Pathophysiology of Myocardial Infarction. , 2015, 5, 1841-1875. Human Placenta-Derived Multipotent Cells (hPDMCs) Modulate Cardiac Injury: From Bench to Small and Large Animal Myocardial Ischemia Studies. Cell Transplantation, 2015, 24, 2463-2478. Restoration of Anal Sphincter Function after Myoblast Cell Therapy in Incontinent Rats. Cell Transplantation, 2015, 24, 277-286.	0.2	0 4 2 0 2 437 12 25

		CITATION RE	PORT	
#	Article		IF	Citations
434	The Future of Therapeutics: Stem Cells, Tissue Plasticity, and Tissue Engineering. , 0, , \widehat{a}	306-316.		0
435	Stem Cells Transplantation in Myocardial Tissue Induces Pro- Arrhythmic Effects and P Reperfusion. Comparison between Intramyocardial and Intravenous Approach. Journal Syndromes & Gene Therapy, 2015, 06, .	romotes 4 of Genetic	0.2	Ο
436	Is Cardiac Stem Cell Therapy a New Horizon of Heart Regeneration: Literature Review. Biology (Los Angeles, Calif), 2015, 05, .	Molecular	0.0	0
437	Current Concepts in Stem Cell Therapy for Cardiovascular Diseases: What We Know a Hanyang Medical Reviews, 2015, 35, 242.	nd Don't Know.	0.4	1
438	Gelatin Hydrogel Enhances the Engraftment of Transplanted Cardiomyocytes and Ang Ameliorate Cardiac Function after Myocardial Infarction. PLoS ONE, 2015, 10, e01333	iogenesis to 08.	1.1	39
439	Adipose stem cell sheets improved cardiac function in the rat myocardial infa not alter cardiac contractile responses to β-adrenergic stimulation Biomedical Research, 2015, 36, 11-19.	rction, but did .	0.3	22
440	Safety and Efficacy of Autologous Skeletal Myoblast Sheets (TCD-51073) for the Treat Chronic Heart Failure Due to Ischemic Heart Disease. Circulation Journal, 2015, 79, 99	ment of Severe 1-999.	0.7	144
441	Clinical Application of Induced Pluripotent Stem Cells in Cardiovascular Medicine. Card 131, 236-244.	liology, 2015,	0.6	2
442	Arrhythmia in Stem Cell Transplantation. Cardiac Electrophysiology Clinics, 2015, 7, 3	57-370.	0.7	40
443	"Second-generation―stem cells for cardiac repair. World Journal of Stem Cells, 20)15, 7, 352.	1.3	16
444	Cardiac tissue engineering and regeneration using cell-based therapy. Stem Cells and Advances and Applications, 2015, 8, 81.	Cloning:	2.3	34
445	Cell Therapy in Cardiac Diseases. , 2015, , 565-582.			0
446	The Evolution of the Stem Cell Theory for Heart Failure. EBioMedicine, 2015, 2, 1871-1	.879.	2.7	24
447	Cardiac differentiation potential of human induced pluripotent stem cells in a 3D self-a peptide scaffold. Differentiation, 2015, 90, 101-110.	assembling	1.0	20
448	Cardiac atrial appendage stem cells engraft and differentiate into cardiomyocytes in vi for cardiac repair after MI. International Journal of Cardiology, 2015, 201, 10-19.	vo: A new tool	0.8	33
449	A novel high throughput approach to screen for cardiac arrhythmic events following st treatment. Medical Hypotheses, 2015, 84, 294-297.	tem cell	0.8	1
450	Adipose-derived stem cell sheet transplantation therapy in a porcine model of chronic Translational Research, 2015, 165, 631-639.	heart failure.	2.2	37
451	Meta-Analysis of Cell Therapy Trials for Patients With Heart Failure. Circulation Researce 1361-1377.	:h, 2015, 116,	2.0	193

#	Article	IF	CITATIONS
452	Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Archives of Toxicology, 2015, 89, 1401-1438.	1.9	492
453	Programming and reprogramming a human heartÂcell. EMBO Journal, 2015, 34, 710-738.	3.5	96
454	mAb C19 targets a novel surface marker for the isolation of human cardiac progenitor cells from human heart tissue and differentiated hESCs. Journal of Molecular and Cellular Cardiology, 2015, 82, 228-237.	0.9	7
455	Stem Cell Therapy for Heart Failure. Heart Failure Clinics, 2015, 11, 275-286.	1.0	18
456	Extending Flaps Lifts an Infarcted Heart Toward Repair. Molecular Therapy, 2015, 23, 223-225.	3.7	1
457	Engineering Cardiovascular Regeneration. Current Stem Cell Reports, 2015, 1, 67-78.	0.7	0
458	Challenges in identifying the best source of stem cells for cardiac regeneration therapy. Stem Cell Research and Therapy, 2015, 6, 26.	2.4	85
459	Circumferential esophageal replacement using a tube-shaped tissue-engineered substitute: An experimental study in minipigs. Surgery, 2015, 158, 266-277.	1.0	35
460	Stem cells in the management of advanced heart failure. Current Opinion in Cardiology, 2015, 30, 179-185.	0.8	9
461	Cardiac stem cell therapy: Have we put too much hype in which cell type to use?. Heart Failure Reviews, 2015, 20, 613-619.	1.7	6
462	Evolving targeted therapies for right ventricular failure. Expert Opinion on Biological Therapy, 2015, 15, 1263-1283.	1.4	2
463	Immunobiology of Fibrin-Based Engineered Heart Tissue. Stem Cells Translational Medicine, 2015, 4, 625-631.	1.6	10
464	Effect of Autologous Bone Marrow Cell Transplantation Combined with Off-Pump Coronary Artery Bypass Grafting on Cardiac Function in Patients with Chronic Myocardial Infarction. Cardiology, 2015, 130, 27-33.	0.6	10
465	Exogenous connexin43â€expressing autologous skeletal myoblasts ameliorate mechanical function and electrical activity of the rabbit heart after experimental infarction. International Journal of Experimental Pathology, 2015, 96, 42-53.	0.6	12
466	Translational aspects of cardiac cell therapy. Journal of Cellular and Molecular Medicine, 2015, 19, 1757-1772.	1.6	24
467	Myocardial infarction: stem cell transplantation for cardiac regeneration. Regenerative Medicine, 2015, 10, 1025-1043.	0.8	38
468	Stem cell therapy for heart failure: Out with the new and in with the old?. Journal of Thoracic and Cardiovascular Surgery, 2015, 150, 1035-1037.	0.4	3
470	Cardiac stem cells: translation to human studies. Biophysical Reviews, 2015, 7, 127-139.	1.5	13

#	Article	IF	CITATIONS
471	Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: a translational experience. European Heart Journal, 2015, 36, 743-750.	1.0	137
472	The war against heart failure: the Lancet lecture. Lancet, The, 2015, 385, 812-824.	6.3	646
473	Biomaterials for Cardiac Regeneration. , 2015, , .		5
474	Drug and cell delivery for cardiac regeneration. Advanced Drug Delivery Reviews, 2015, 84, 85-106.	6.6	170
475	Cellâ€based therapies for cardiac disease: a cellular therapist's perspective. Transfusion, 2015, 55, 441-451.	0.8	31
476	Use of Stem Cells in Ischemic Heart Disease. , 2016, , 43-47.		3
477	Short- and long-term outcomes of intramyocardial implantation of autologous bone marrow-derived cells for the treatment of ischaemic heart disease. Interactive Cardiovascular and Thoracic Surgery, 2016, 24, ivw412.	0.5	3
479	Critical Roles of Reactive Oxygen Species in Age-Related Impairment in Ischemia-Induced Neovascularization by Regulating Stem and Progenitor Cell Function. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-14.	1.9	12
480	Pharmacological Therapy in the Heart as an Alternative to Cellular Therapy: A Place for the Brain Natriuretic Peptide?. Stem Cells International, 2016, 2016, 1-18.	1.2	15
481	Cell Therapy in Ischemic Heart Disease: Interventions That Modulate Cardiac Regeneration. Stem Cells International, 2016, 2016, 1-16.	1.2	22
482	Cellular Therapy for Heart Failure. Current Cardiology Reviews, 2016, 12, 195-215.	0.6	23
483	Transformation to Inducible Pluripotent Stem Cells. , 2016, , 243-265.		0
485	Materializing Heart Regeneration: Biomimicry of Key Observations in Cell Transplantation Therapies and Natural Cardiac Regeneration. Journal of Molecular and Engineering Materials, 2016, 04, 1640002.	0.9	0
486	Stem Cell Therapies as a Support for Cardiac Regeneration. , 2016, , 725-741.		0
487	Stem cell-based therapy: Improving myocardial cell delivery. Advanced Drug Delivery Reviews, 2016, 106, 104-115.	6.6	36
488	Low-Intensity Pulsed Ultrasound Enhances Angiogenesis and Ameliorates Left Ventricular Dysfunction in a Mouse Model of Acute Myocardial Infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1220-1229.	1.1	70
489	Regenerative Medicine - from Protocol to Patient. , 2016, , .		2
490	Arrhythmogenesis: a Roadblock to Cardiac Stem Cell Therapy. Current Treatment Options in Cardiovascular Medicine, 2016, 18, 61.	0.4	2

#	Article	IF	CITATIONS
491	Apoptosis-Resistant Cardiac Progenitor Cells Modified With Apurinic/Apyrimidinic Endonuclease/Redox Factor 1 Gene Overexpression Regulate Cardiac Repair After Myocardial Infarction. Stem Cells Translational Medicine, 2016, 5, 1067-1078.	1.6	21
492	Electrical effects of stem cell transplantation for ischaemic cardiomyopathy: friend or foe?. Journal of Physiology, 2016, 594, 2511-2524.	1.3	8
493	Stem Cell Therapy for the Heart: Blind Alley or Magic Bullet?. Journal of Cardiovascular Translational Research, 2016, 9, 405-418.	1.1	24
494	Adult Stem Cell Therapy and Heart Failure, 2000 to 2016. JAMA Cardiology, 2016, 1, 831.	3.0	248
495	Development of Therapeutics for Heart Failure. Circulation: Heart Failure, 2016, 9, .	1.6	0
496	Human iPS Cell-Derived Cardiac Tissue Sheets: a Platform for Cardiac Regeneration. Current Treatment Options in Cardiovascular Medicine, 2016, 18, 65.	0.4	8
497	New strategies for improving stem cell therapy in ischemic heart disease. Heart Failure Reviews, 2016, 21, 737-752.	1.7	34
498	Striated muscle function, regeneration, and repair. Cellular and Molecular Life Sciences, 2016, 73, 4175-4202.	2.4	71
499	Cellular cardiomyoplasty into infracted swine's hearts by retrograde infusion through the venous coronary sinus: An experimental study. Cardiovascular Revascularization Medicine, 2016, 17, 262-271.	0.3	8
500	Application of Biomaterials in Cardiac Repair and Regeneration. Engineering, 2016, 2, 141-148.	3.2	74
501	Fetal heart extract facilitates the differentiation of human umbilical cord blood-derived mesenchymal stem cells into heart muscle precursor cells. Cytotechnology, 2016, 68, 645-658.	0.7	12
502	More Than Tiny Sacks. Circulation Research, 2016, 118, 330-343.	2.0	159
503	Current State of Stem Cell Therapy for Ischemic Heart Disease. Current Cardiology Reports, 2016, 18, 17.	1.3	10
504	A Large-Scale Investigation of Hypoxia-Preconditioned Allogeneic Mesenchymal Stem Cells for Myocardial Repair in Nonhuman Primates. Circulation Research, 2016, 118, 970-983.	2.0	154
505	Stem cell-based therapies to promote angiogenesis in ischemic cardiovascular disease. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H455-H465.	1.5	90
506	Stem cells and exosomes in cardiac repair. Current Opinion in Pharmacology, 2016, 27, 19-23.	1.7	63
507	Allogeneic cardiosphere-derived cells for myocardial regeneration: current progress and recent results. Future Cardiology, 2016, 12, 87-100.	0.5	16
508	Stem cells in clinical practice for cardiovascular diseases. Polish Annals of Medicine, 2016, 23, 49-56.	0.3	2

#	Article	IF	CITATIONS
509	Human myoblast transplantation in mice infarcted heart alters the expression profile of cardiac genes associated with left ventricle remodeling. International Journal of Cardiology, 2016, 202, 710-721.	0.8	10
511	Exploring pericyte and cardiac stem cell secretome unveils new tactics for drug discovery. , 2017, 171, 1-12.		27
512	Safety, feasibility and effectiveness of first inâ€human administration of muscleâ€derived stem/progenitor cells modified with connexinâ€43 gene for treatment of advanced chronic heart failure. European Journal of Heart Failure, 2017, 19, 148-157.	2.9	26
514	Therapeutic Application of Adult Stem Cells in the Heart. Methods in Molecular Biology, 2017, 1553, 249-264.	0.4	5
515	Cardiovascular Bio-Engineering: Current State of the Art. Journal of Cardiovascular Translational Research, 2017, 10, 180-193.	1.1	17
516	Effects of Transendocardial Stem Cell Injection on Ventricular Proarrhythmia in Patients with Ischemic Cardiomyopathy: Results from the POSEIDON and TAC-HFT Trials. Stem Cells Translational Medicine, 2017, 6, 1366-1372.	1.6	22
517	Restoring heart function and electrical integrity: closing the circuit. Npj Regenerative Medicine, 2017, 2, 9.	2.5	44
518	Concurrent Isolation of 3 Distinct Cardiac Stem Cell Populations From a Single Human Heart Biopsy. Circulation Research, 2017, 121, 113-124.	2.0	52
519	The Future of Heart Transplantation. , 2017, , 237-248.		0
520	Ccl2/Ccr2 signalling recruits a distinct fetal microchimeric population that rescues delayed maternal wound healing. Nature Communications, 2017, 8, 15463.	5.8	34
521	5. The skeletal muscle stem cells: biology and use in regenerative medicine. , 2017, , 111-128.		0
522	Dinaciclib potently suppresses MCL-1 and selectively induces the cell death in human iPS cells without affecting the viability of cardiac tissue. Scientific Reports, 2017, 7, 45577.	1.6	15
523	Phase I Clinical Trial of Autologous Stem Cell–Sheet Transplantation Therapy for Treating Cardiomyopathy. Journal of the American Heart Association, 2017, 6, .	1.6	142
524	Clinical Guide to Heart Transplantation. , 2017, , .		8
526	Stem Cell Therapy for Ischemic Heart Disease. Stem Cells in Clinical Applications, 2017, , 165-195.	0.4	1
527	Road to Heart Regeneration with Induced Pluripotent Stem Cells. Stem Cells in Clinical Applications, 2017, , 137-152.	0.4	0
529	Past and Future of Cell-Based Heart Repair. Cardiac and Vascular Biology, 2017, , 1-17.	0.2	0
530	Stem Cells in Regenerative Cardiology. Advances in Experimental Medicine and Biology, 2017, 1079, 37-53.	0.8	8

#	Article	IF	CITATIONS
531	Heart regeneration and repair after myocardial infarction: translational opportunities for novel therapeutics. Nature Reviews Drug Discovery, 2017, 16, 699-717.	21.5	245
532	Cell Therapy for Ischemic Heart Disease. , 2017, , 81-98.		0
533	Myocardial Tissue Engineering for Regenerative Applications. Current Cardiology Reports, 2017, 19, 78.	1.3	29
534	Translational cardiac stem cell therapy: advancing from first-generation to next-generation cell types. Npj Regenerative Medicine, 2017, 2, 17.	2.5	113
535	Surface-modified polymers for cardiac tissue engineering. Biomaterials Science, 2017, 5, 1976-1987.	2.6	26
536	Stem cells in cardiovascular diseases: turning bad days into good ones. Drug Discovery Today, 2017, 22, 1730-1739.	3.2	7
539	Cellular mechanisms underlying cardiac engraftment of stem cells. Expert Opinion on Biological Therapy, 2017, 17, 1127-1143.	1.4	30
540	Adverse Remodeling and Reverse Remodeling After Myocardial Infarction. Current Cardiology Reports, 2017, 19, 71.	1.3	147
541	Hydrogel based approaches for cardiac tissue engineering. International Journal of Pharmaceutics, 2017, 523, 454-475.	2.6	112
542	8. "Paracrining―the heart with stem cells. , 2017, , 176-203.		1
544	Human Cardiomyocyte Progenitor Cells in Co-culture with Rat Cardiomyocytes Form a Pro-arrhythmic Substrate: Evidence for Two Different Arrhythmogenic Mechanisms. Frontiers in Physiology, 2017, 8, 797.	1.3	3
545	6.16 Biomaterials for Cardiac Cell Transplantation â ⁻ †. , 2017, , 273-287.		0
546	3D Bioprinting and In Vitro Cardiovascular Tissue Modeling. Bioengineering, 2017, 4, 71.	1.6	57
547	Cell Therapies in Cardiomyopathy: Current Status of Clinical Trials. Analytical Cellular Pathology, 2017, 2017, 1-20.	0.7	28
548	Global position paper on cardiovascular regenerative medicine. European Heart Journal, 2017, 38, 2532-2546.	1.0	133
549	Cellular therapies for chronic ischemic heart failure. Hellenic Journal of Cardiology, 2018, 59, 78-90.	0.4	3
550	Biological Bases of Cardiac Function and the Pro-regenerative Potential of Stem Cells in the Treatment of Myocardial Disorder. , 2018, , 79-108.		1
551	Regenerative Medicine/Cardiac Cell Therapy: Adult/Somatic Progenitor Cells. Thoracic and Cardiovascular Surgeon, 2018, 66, 042-052.	0.4	2

#	Article	IF	CITATIONS
552	Heart Regeneration with Stem Cell Therapies. , 2018, , 469-483.		0
553	Combining Stem Cell Therapy for Advanced Heart Failure and Ventricular Assist Devices: A Review. ASAIO Journal, 2018, 64, e80-e87.	0.9	5
554	Autologous Myoblasts for the Treatment of Fecal Incontinence. Annals of Surgery, 2018, 267, 443-450.	2.1	49
555	Cell therapy for heart disease after 15 years: Unmet expectations. Pharmacological Research, 2018, 127, 77-91.	3.1	53
556	Stem Cell Therapy: A New Therapeutic Option for Cardiovascular Diseases. Journal of Cellular Biochemistry, 2018, 119, 95-104.	1.2	131
557	Emerging Therapies for Congestive Heart Failure. Clinical Pharmacology and Therapeutics, 2018, 103, 77-87.	2.3	8
558	Endothelial and cardiac progenitor cells for cardiovascular repair: A controversial paradigm in cell therapy. , 2018, 181, 156-168.		102
559	Myocardial regenerative therapy using a scaffold-free skeletal-muscle-derived cell sheet in patients with dilated cardiomyopathy even under a left ventricular assist device: a safety and feasibility study. Surgery Today, 2018, 48, 200-210.	0.7	47
560	Cardiac Cell Culture Technologies. , 2018, , .		2
561	Biological therapies targeting arrhythmias: are cells and genes the answer?. Expert Opinion on Biological Therapy, 2018, 18, 237-249.	1.4	0
562	Aligned ovine diaphragmatic myoblasts overexpressing human connexin-43 seeded on poly (l-lactic) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5
563	In the heart of the in vivo reprogramming. Stem Cell Investigation, 2018, 5, 38-38.	1.3	1
564	Into the Heart: What Contributions to Cardiac Regeneration?. Fundamental Biomedical Technologies, 2018, , 181-194.	0.2	0
565	Biomaterials for Stem Cell Therapy for Cardiac Disease. Advances in Experimental Medicine and Biology, 2018, 1064, 181-193.	0.8	4
566	Therapeutic Cardiac Patches for Repairing the Myocardium. Advances in Experimental Medicine and Biology, 2018, 1144, 1-24.	0.8	19
567	Using cell-seeded electrospun patch for myocardial injury: in-vitro and in rat model. , 2018, 2018, 5338-5341.		8
568	Effects of cardiosphere-derived cell transplantation on cardiac mitochondrial oxygen consumption after myocardial infarction in rats. Biomedicine and Pharmacotherapy, 2018, 108, 883-892.	2.5	8
569	A Path Forward for Regenerative Medicine. Circulation Research, 2018, 123, 495-505.	2.0	6

#	Article	IF	CITATIONS
570	Pretreatment with an angiotensin II receptor blocker abolished ameliorating actions of adipose-derived stem cell sheets on cardiac dysfunction and remodeling after myocardial infarction. Regenerative Therapy, 2018, 9, 79-88.	1.4	10
571	Stem Cell Applications for Treatment of Cancer and Autoimmune Diseases: Its Promises, Obstacles, and Future Perspectives. Technology in Cancer Research and Treatment, 2018, 17, 153303381880691.	0.8	18
572	Mechanical Circulatory Support and Stem Cellâ€Based Heart Treatment in Europe—2018 Clinical Update. Artificial Organs, 2018, 42, 871-878.	1.0	4
573	Interfacial tissue engineering of heart regenerative medicine based on soft cell-porous scaffolds. Journal of Thoracic Disease, 2018, 10, S2333-S2345.	0.6	18
574	Cell-Based Therapies for Cardiac Regeneration: A Comprehensive Review of Past and Ongoing Strategies. International Journal of Molecular Sciences, 2018, 19, 3194.	1.8	44
575	Adult Stem Cells for Regenerative Therapy. Progress in Molecular Biology and Translational Science, 2018, 160, 1-22.	0.9	74
576	Cell Therapy for Heart Regeneration: Learning from the Past to Build a Brighter Future. Stem Cells Translational Medicine, 2018, 7, 702-704.	1.6	9
577	Optimal Delivery Strategy for Stem Cell Therapy in Patients with Ischemic Heart Disease. , 0, , .		2
578	4. Myoblasts provide safe and effective treatments for hereditary muscular dystrophies, cardiomyopathies, type 2 diabetes, solid tumors, and aging. , 2018, , 71-97.		4
579	OBSOLETE: Heart Regeneration with Stem Cell Therapies. , 2018, , .		0
580	CD34+ stem cell treatment for knee osteoarthritis: a treatment and rehabilitation algorithm. Journal of Rehabilitation Medicine Clinical Communications, 2018, 1, 1000012.	0.6	5
581	Retrograde Cellular Cardiomyoplasty Through the Coronary Sinus. An Experimental Study on Swines. American Journal of Cardiology, 2018, 121, e3-e4.	0.7	0
582	Current Progress in the Rejuvenation of Aging Stem/Progenitor Cells for Improving the Therapeutic Effectiveness of Myocardial Repair. Stem Cells International, 2018, 2018, 1-9.	1.2	13
583	Cardiac Stem Cells: A Plethora of Potential Therapies for Myocardial Regeneration Within Reach. , 2018, , 135-171.		1
584	Can We Engineer a Human Cardiac Patch for Therapy?. Circulation Research, 2018, 123, 244-265.	2.0	121
585	Clinical Studies of Cell Therapy in Cardiovascular Medicine. Circulation Research, 2018, 123, 266-287.	2.0	129
586	Cell-Based Therapy in Cardiac Regeneration. Circulation Research, 2018, 123, 132-137.	2.0	67
587	Therapeutic Use of Stem Cells for Myocardial Infarction. Bioengineering, 2018, 5, 28.	1.6	57

#	Article	IF	CITATIONS
588	Overexpression of Cx43 in cells of the myocardial scar: Correction of post-infarct arrhythmias through heterotypic cell-cell coupling. Scientific Reports, 2018, 8, 7145.	1.6	31
589	Cell therapy trials for heart regeneration — lessons learned and future directions. Nature Reviews Cardiology, 2018, 15, 659-671.	6.1	200
590	Stem Cell Therapy in Heart Diseases – Cell Types, Mechanisms and Improvement Strategies. Cellular Physiology and Biochemistry, 2018, 48, 2607-2655.	1.1	159
591	Stem cell and gene-based approaches for cardiac repair. , 2018, , 31-96.		1
592	Functional Relevance of Macrophage-mediated Inflammation to Cardiac Regeneration. Chonnam Medical Journal, 2018, 54, 10.	0.5	5
593	Therapeutic approaches for cardiac regeneration and repair. Nature Reviews Cardiology, 2018, 15, 585-600.	6.1	268
594	A mechanistic roadmap for the clinical application of cardiac cell therapies. Nature Biomedical Engineering, 2018, 2, 353-361.	11.6	77
595	Cardiac Stem Cells. , 2019, , 247-272.		2
596	From Bench to Clinic: Translation of Cardiovascular Tissue Engineering Products to Clinical Applications. , 2019, , 125-140.		0
597	Circulatory support and stem cell therapy in the management of advanced heart failure: a concise review of available evidence. Regenerative Medicine, 2019, 14, 585-593.	0.8	2
599	Cardiac Patch-Based Therapies of Ischemic Heart Injuries. , 2019, , 141-171.		1
600	Paracrine Heart Repair Comes of Age. Canadian Journal of Cardiology, 2019, 35, 1278-1280.	0.8	0
601	On the Road to Regeneration: "Tools―and "Routes―Towards Efficient Cardiac Cell Therapy for Ischemic Cardiomyopathy. Current Cardiology Reports, 2019, 21, 133.	1.3	12
602	A metaâ€analysis of arrhythmia endpoints in randomized controlled trials of transendocardial stem cell injections for chronic ischemic heart disease. Journal of Cardiovascular Electrophysiology, 2019, 30, 2492-2500.	0.8	3
603	Effect of human thymus adipose tissue-derived mesenchymal stem cells on myocardial infarction in rat model. Regenerative Therapy, 2019, 11, 192-198.	1.4	5
604	β-Adrenergic Blocker, Carvedilol, Abolishes Ameliorating Actions of Adipose-Derived Stem Cell Sheets on Cardiac Dysfunction and Remodeling After Myocardial Infarction. Circulation Journal, 2019, 83, 2282-2291.	0.7	7
605	Transendocardial CD34+ Cell Therapy does not Increase the Risk of Ventricular Arrhythmias in Patients with Chronic Heart Failure. Cell Transplantation, 2019, 28, 856-863.	1.2	2
606	CD34+ Stem Cells: Promising Roles in Cardiac Repair and Regeneration. Canadian Journal of Cardiology, 2019, 35, 1311-1321.	0.8	23

		CITATION R	EPORT	
#	Article		IF	CITATIONS
607	Cell Therapy for Heart Disease: Ready for Prime Time or Lost in Translation?. , 2019, , 35	5-376.		0
608	Local pharmacological induction of angiogenesis: Drugs for cells and cells as drugs. Adv Delivery Reviews, 2019, 146, 126-154.	anced Drug	6.6	13
609	Pluripotent Stem Cell-Derived Cardiomyocyte Transplantation for Heart Disease Treatm Cardiology Reports, 2019, 21, 73.	ent. Current	1.3	26
610	A comprehensive, multiscale framework for evaluation of arrhythmias arising from cell t the whole post-myocardial infarcted heart. Scientific Reports, 2019, 9, 9238.	herapy in	1.6	21
611	Insights From 10-Year Outcomes of Mesenchymal Stem Cell Transplantation in Heart Fa Circulation Journal, 2019, 83, 1446-1448.	ailure Patients.	0.7	1
612	Effect of stem cell transplantation on patients with ischemic heart failure: a systematic meta-analysis of randomized controlled trials. Stem Cell Research and Therapy, 2019, 1	review and 0, 125.	2.4	15
613	Cardiac fibrosis: potential therapeutic targets. Translational Research, 2019, 209, 121-2	137.	2.2	118
614	Beyond pharmacological treatment: an insight into therapies that target specific aspect failure pathophysiology. Lancet, The, 2019, 393, 1045-1055.	ts of heart	6.3	48
615	Sonoporation-based labeling of mesenchymal stem cells with polymeric MRI contrast ag live-cell tracking. Polymer Journal, 2019, 51, 685-692.	gents for	1.3	4
616	The exosomes carry new hope for cardiac regeneration. Non-coding RNA Investigation,	2019, 3, 27-27.	0.6	0
617	Function Follows Form ― A Review of Cardiac Cell Therapy ―. Circulation Journal,	2019, 83, 2399-2412.	0.7	40
618	Advances of Stem Cell Therapy to Treat Heart Failure. Nano LIFE, 2019, 09, 1941002.		0.6	1
619	Stem Cells: The Game Changers of Human Cardiac Disease Modelling and Regenerative International Journal of Molecular Sciences, 2019, 20, 5760.	Medicine.	1.8	20
620	Stem Cells in Cardiovascular Medicine: Historical Overview and Future Prospects. Cells,	2019, 8, 1530.	1.8	32
621	Cardiac Tissue Engineering. , 2019, , 3-33.			4
622	Stem cells as therapy for heart disease: iPSCs, ESCs, CSCs, and skeletal myoblasts. Bior Pharmacotherapy, 2019, 109, 304-313.	nedicine and	2.5	73
623	Stem Cell Therapies in Cardiovascular Disease. Journal of Cardiothoracic and Vascular A 2019, 33, 209-222.	nesthesia,	0.6	54
624	Stem cell therapy in heart failure: Where do we stand today?. Biochimica Et Biophysica Molecular Basis of Disease, 2020, 1866, 165489.	Acta -	1.8	28

ARTICLE IF CITATIONS # Intramyocardial Bone Marrow Stem Cells in Patients Undergoing Cardiac Surgical Revascularization. 625 0.7 15 Annals of Thoracic Surgery, 2020, 109, 1142-1149. Stem Cell-Based and Gene Therapies in Heart Failure., 2020, , 599-607.e3. 627 Cardiac regeneration., 2020, , 119-144. 0 Toward the Goal of Human Heart Regeneration. Cell Stem Cell, 2020, 26, 7-16. 628 114 Robust Cardiac Regeneration: Fulfilling the Promise of Cardiac Cell Therapy. Clinical Therapeutics, 629 1.1 7 2020, 42, 1857-1879. Strategies for immune regulation in iPS cell-based cardiac regenerative medicine. Inflammation and Regeneration, 2020, 40, 36. 1.5 Synthetic mRNA Encoding VEGF-A in Patients Undergoing Coronary Artery Bypass Grafting: Design of a 631 1.8 76 Phase 2a Clinical Trial. Molecular Therapy - Methods and Clinical Development, 2020, 18, 464-472. Stem Cells and Their Cardiac Derivatives for Cardiac Tissue Engineering and Regenerative Medicine. 2.5 Antioxidants and Redox Signaling, 2021, 35, 143-162. First-in-human PeriCord cardiac bioimplant: Scalability and GMP manufacturing of an allogeneic 633 2.7 27 engineered tissue graft. EBioMedicine, 2020, 54, 102729. 634 Enhancing myocardial repair with CardioClusters. Nature Communications, 2020, 11, 3955. 5.8 Growth factor therapy for cardiac repair: an overview of recent advances and future directions. 635 1.5 18 Biophysical Reviews, 2020, 12, 805-815. Stem Cell Therapy for Acute Myocardial Infarctions. Cardiology in Review, 2020, 28, 140-147. 636 0.6 Hydrojet-based delivery of footprint-free iPSC-derived cardiomyocytes into porcine myocardium. 637 1.6 4 Scientific Reports, 2020, 10, 16787. Cells, Materials, and Fabrication Processes for Cardiac Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2020, 8, 955. Reduced graphene oxide facilitates biocompatibility of alginate for cardiac repair. Journal of Bioactive 639 0.8 22 and Compatible Polymers, 2020, 35, 363-377. Manufacturing autologous myoblast for regenerative medicine applications. Cytotechnology, 2020, 640 72,605-614. Scaffolds and Extracellular Vesicles as a Promising Approach for Cardiac Regeneration after 641 2.0 11 Myocardial Infarction. Pharmaceutics, 2020, 12, 1195. Mesenchymal and Induced Pluripotent Stem Cells-Derived Extracellular Vesicles: The New Frontier for 642 1.8 Regenerative Medicine?. Cells, 2020, 9, 1163.

#	Article	IF	Citations
643	Recent technological advancements in stem cell research for targeted therapeutics. Drug Delivery and Translational Research, 2020, 10, 1147-1169.	3.0	8
644	Clinical cardiovascular medicine and lessons learned from cancer nanotechnology. , 2020, , 187-195.		0
645	Toward Cardiac Regeneration: Combination of Pluripotent Stem Cell-Based Therapies and Bioengineering Strategies. Frontiers in Bioengineering and Biotechnology, 2020, 8, 455.	2.0	49
646	Systemic and local delivery of mesenchymal stem cells for heart renovation: Challenges and innovations. European Journal of Pharmacology, 2020, 876, 173049.	1.7	40
647	In vivo stem cell tracking using scintigraphy in a canine model of DMD. Scientific Reports, 2020, 10, 10681.	1.6	6
649	Cardiac Regeneration and Repair: From Mechanisms to Therapeutic Strategies. Learning Materials in Biosciences, 2020, , 187-211.	0.2	3
650	Toward the realization of cardiac regenerative medicine using pluripotent stem cells. Inflammation and Regeneration, 2020, 40, 1.	1.5	62
651	Key Success Factors for Regenerative Medicine in Acquired Heart Diseases. Stem Cell Reviews and Reports, 2020, 16, 441-458.	1.7	17
652	New treatment strategy for severe heart failure: combination of ventricular assist device and regenerative therapy. Journal of Artificial Organs, 2021, 24, 1-5.	0.4	4
653	Highly specific, quantitative polymerase chain reaction probe for the quantification of human cells in cynomolgus monkeys. Drug Metabolism and Pharmacokinetics, 2021, 36, 100359.	1.1	3
654	The quest of cell surface markers for stem cell therapy. Cellular and Molecular Life Sciences, 2021, 78, 469-495.	2.4	12
655	Regenerating the heart: The past, present, & future. , 2021, , 121-131.		0
656	Myocyte-specific enhancer factor 2c triggers transdifferentiation of adipose tissue-derived stromal cells into spontaneously beating cardiomyocyte-like cells. Scientific Reports, 2021, 11, 1520.	1.6	7
657	Molecular Imaging of Stem Cell Therapy in Ischemic Cardiomyopathy. , 2021, , 1245-1259.		0
658	Two-Year Heart Failure Study with Allogeneic Myoblast Transplantation. Open Journal of Regenerative Medicine, 2021, 10, 1-18.	0.5	5
659	Application of Cell, Tissue, and Biomaterial Delivery in Cardiac Regenerative Therapy. ACS Biomaterials Science and Engineering, 2021, 7, 1000-1021.	2.6	11
660	A double-edged sword of immuno-microenvironment in cardiac homeostasis and injury repair. Signal Transduction and Targeted Therapy, 2021, 6, 79.	7.1	95
661	Abdominal obesity and ten-year prognosis of patients with myocardial infarction. Complex Issues of Cardiovascular Diseases, 2021, 10, 26-39.	0.3	1

36

#	Article	IF	CITATIONS
662	Cardiac Cell Therapy for Heart Repair: Should the Cells Be Left Out?. Cells, 2021, 10, 641.	1.8	20
663	Stem Cells in Cardiovascular Diseases: 30,000-Foot View. Cells, 2021, 10, 600.	1.8	7
664	Esm1 and Stc1 as Angiogenic Factors Responsible for Protective Actions of Adipose-Derived Stem Cell Sheets on Chronic Heart Failure After Rat Myocardial Infarction. Circulation Journal, 2021, 85, 657-666.	0.7	13
665	Regenerative Medicine Approaches in Bioengineering Female Reproductive Tissues. Reproductive Sciences, 2021, 28, 1573-1595.	1.1	10
666	Stem cell therapy for heart failure: Medical breakthrough, or dead end?. World Journal of Stem Cells, 2021, 13, 236-259.	1.3	14
668	Long-term outcomes of autologous skeletal myoblast cell-sheet transplantation for end-stage ischemic cardiomyopathy. Molecular Therapy, 2021, 29, 1425-1438.	3.7	19
669	Navigating the Crossroads of Cell Therapy and Natural Heart Regeneration. Frontiers in Cell and Developmental Biology, 2021, 9, 674180.	1.8	4
670	Targeted Myocardial Restoration with Injectable Hydrogels—In Search of The Holy Grail in Regenerating Damaged Heart Tissue. Biomedicines, 2021, 9, 595.	1.4	2
671	Combining stem cells in myocardial infarction: The road to superior repair?. Medicinal Research Reviews, 2022, 42, 343-373.	5.0	23
672	Next generation of heart regenerative therapies: progress and promise of cardiac tissue engineering. Npj Regenerative Medicine, 2021, 6, 30.	2.5	49
673	Proteomic and Glyco(proteo)mic tools in the profiling of cardiac progenitors and pluripotent stem cell derived cardiomyocytes: Accelerating translation into therapy. Biotechnology Advances, 2021, 49, 107755.	6.0	6
674	Clinical Outcomes of Autologous Stem Cell–Patch Implantation for Patients With Heart Failure With Nonischemic Dilated Cardiomyopathy. Journal of the American Heart Association, 2021, 10, e008649.	1.6	9
675	Intramyocardial delivery of human cardiac stem cell spheroids with enhanced cell engraftment ability and cardiomyogenic potential for myocardial infarct repair. Journal of Controlled Release, 2021, 336, 499-509.	4.8	15
676	Stem cells and regenerative medicine in sport science. Emerging Topics in Life Sciences, 2021, 5, 563-573.	1.1	2
677	Bioactive Scaffolds in Stem Cell-Based Therapies for Myocardial Infarction: a Systematic Review and Meta-Analysis of Preclinical Trials. Stem Cell Reviews and Reports, 2022, 18, 2104-2136.	1.7	6
678	Electrophysiological engineering of heart-derived cells with calcium-dependent potassium channels improves cell therapy efficacy for cardioprotection. Nature Communications, 2021, 12, 4963.	5.8	5
679	Stem cell therapies in cardiac diseases: Current status and future possibilities. World Journal of Stem Cells, 2021, 13, 1231-1247.	1.3	12
680	Recent Advances in Cardiac Tissue Engineering for the Management of Myocardium Infarction. Cells, 2021, 10, 2538.	1.8	19

#	Article	IF	CITATIONS
681	Highly feasible procedure for laparoscopic transplantation of cell sheets under pneumoperitoneum in porcine model. Surgical Endoscopy and Other Interventional Techniques, 2022, 36, 3911-3919.	1.3	2
682	Pluripotent stem cell-derived mesenchymal stromal cells improve cardiac function and vascularity after myocardial infarction. Cytotherapy, 2021, 23, 1074-1084.	0.3	16
683	Cell Sheets for Cardiac Tissue Engineering. Reference Series in Biomedical Engineering, 2021, , 81-99.	0.1	0
684	Induced pluripotent stem cells for treatment of heart failure. , 2021, , 205-223.		0
685	Cardiomyocyte Induction and Regeneration for Myocardial Infarction Treatment: Cell Sources and Administration Strategies. Advanced Healthcare Materials, 2020, 9, e2001175.	3.9	21
686	Percutaneous Cell Therapy for Acute and Chronic Cardiac Disease. , 2014, , 173-192.		1
687	Stem Cell Transplantation to the Heart. Pancreatic Islet Biology, 2011, , 279-297.	0.1	1
688	Cell Therapy for Cardiovascular Disorders. , 2011, , 159-218.		1
689	Cellular Cardiomyoplasty: Its Past, Present, and Future. Methods in Molecular Biology, 2013, 1036, 1-17.	0.4	6
690	Cellular Therapy for Ischemic Heart Disease: An Update. Advances in Experimental Medicine and Biology, 2019, 1201, 195-213.	0.8	18
691	Safety, Regulatory, and Ethical Issues of Human Studies. , 2015, , 309-323.		1
693	The Role of Redox Signalling in Cardiovascular Regeneration. , 2019, , 19-37.		2
694	Nanofiber composites in cardiac tissue engineering. , 2017, , 411-453.		3
695	REGENERATIVE MEDICINE AND STEM CELL THERAPEUTICS. , 2009, , 1317-1331.		1
697	Allogenic Skeletal Myoblast Transplantation in Acute Myocardial Infarction Model Rats. Transplantation, 2011, 91, 425-431.	0.5	7
698	STEM CELL THERAPY FOR MYOCARDIAL REGENERATION: THE CHINESE EXPERIENCE. , 2011, , 457-480.		2
699	A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates. Journal of Clinical Investigation, 2010, 120, 1125-1139.	3.9	287
700	Myocardial Tissue Engineering. , 0, , .		2

#	Article	lF	CITATIONS
701	Myocardial bioprosthesis: Mimicking nature. Drugs of the Future, 2013, 38, 475.	0.0	3
702	Increased Angiogenesis and Improved Left Ventricular Function after Transplantation of Myoblasts Lacking the MyoD Gene into Infarcted Myocardium. PLoS ONE, 2012, 7, e41736.	1.1	13
703	Cardiac Repair and Regeneration: The Value of Cell Therapies. European Cardiology Review, 2016, 11, 43.	0.7	30
704	Myoblast transplantation improves cardiac function after myocardial infarction through attenuating inflammatory responses. Oncotarget, 2017, 8, 68780-68794.	0.8	10
705	Regenerative Approaches to Post-Myocardial Infarction Heart Failure. Current Pharmaceutical Design, 2014, 20, 1930-1940.	0.9	9
706	Stem Cell Therapy in Heart Diseases: A Review of Selected New Perspectives,Practical Considerations and Clinical Applications. Current Cardiology Reviews, 2011, 7, 201-212.	0.6	40
707	Adult Stem Cell Therapy for Cardiac Repair in Patients After Acute Myocardial Infarction Leading to Ischemic Heart Failure: An Overview of Evidence from the Recent Clinical Trials. Current Cardiology Reviews, 2017, 13, 223-231.	0.6	35
708	Cellular Cardiomyoplasty Using Skeletal Muscle Stem Cells. The Open Surgery Journal, 2015, 9, 1-8.	0.7	1
709	Skeletal Muscle-Derived Stem Cells: Implications for Cell-Mediated Therapies. Medicina (Lithuania), 2011, 47, 469.	0.8	49
710	Cell and gene therapy for arrhythmias: Repair of cardiac conduction damage. Journal of Geriatric Cardiology, 2011, 8, 147-158.	0.2	6
711	Cardiac MR imaging: current status and future direction. Cardiovascular Diagnosis and Therapy, 2015, 5, 290-310.	0.7	71
712	Stem and Progenitor Cell Therapies for Cardiovascular Disease. Journal of Cell Science & Therapy, 2011, 2, .	0.3	2
713	Critical appraisal of stem cell therapy in peripheral arterial disease: Do current scientific breakthroughs offer true promise or false hope?. Journal of Biomedical Science and Engineering, 2014, 07, 75-85.	0.2	4
714	From bench to bedside, work in cell-based myocardial regeneration therapy. Journal of Biomedical Science and Engineering, 2014, 07, 86-103.	0.2	1
715	From state-of-the-art cell therapy to endogenous cardiac repair. EuroIntervention, 2017, 13, 760-772.	1.4	7
716	Skeletal myoblasts for myocardial regeneration in patients with congestive heart failure: where have all the answers gone?. EuroIntervention, 2011, 6, 789-793.	1.4	1
717	Final results of a phase IIa, randomised, open-label trial to evaluate the percutaneous intramyocardial transplantation of autologous skeletal myoblasts in congestive heart failure patients: the SEISMIC trial. EuroIntervention, 2011, 6, 805-812.	1.4	106
718	Value of MR contrast media in image-guided body interventions. World Journal of Radiology, 2012, 4, 1.	0.5	6

#	Article	IF	CITATIONS
719	Stem cells as therapy for cardiac disease — a review. Folia Histochemica Et Cytobiologica, 2011, 49, 13-25.	0.6	14
720	Encouraging Experience with Intracardiac Transplantation of Unselected Autologous Bone Marrow Cells Concomitant with Coronary Artery Bypass Surgery after Myocardial Infarction. Annals of Thoracic and Cardiovascular Surgery, 2011, 17, 383-389.	0.3	3
721	Is Stem Cell Therapy an Answer to Heart Failure: A Literature Search. Cureus, 2019, 11, e5959.	0.2	10
722	Molecular Imaging of Human Skeletal Myoblasts (huSKM) in Mouse Post-Infarction Myocardium. International Journal of Molecular Sciences, 2021, 22, 10885.	1.8	2
723	Current Status of Stem Cell Therapy and Nanofibrous Scaffolds in Cardiovascular Tissue Engineering. Regenerative Engineering and Translational Medicine, 0, , 1.	1.6	2
724	å¿fç‹å†ç"Ÿã«ãҌ҇ӑ҉ã,‹æ–°â¥ãªå¹¹ç~efžæªã®æŽ¢ç´¢:åۥ種ç‹è,‰ç"±æ¥çµ"織幹ç~efžã®æ¯"è¼f(3.å¿fç‹å†ç"Ÿã	®æœ€è;'â	[®] ǿ€²æ©,≪
725	自己ç‹èм2ç~èfžã,·ãf¼ãf^ã,'用ã,ã¥å¿fç«å†ç"Ÿç™,法(3.å¿fç«å†ç"Ÿã®æœ€è¿'ã®é€2æ©,<特集>第72回a	œ-⊖¥æœ¬	循環噓å
726	Cell Therapy for Cardiovascular Disease. , 2009, , 131-151.		2
727	Cellular Cardiomyoplasty Using Different Stem Cells in a Single Center. The Open Cardiovascular and Thoracic Surgery Journal, 2009, 1, 12-20.	0.1	0
728	Muscle Regeneration: Research for the Treatment of Fecal Incontinence. Journal of the Korean Society of Coloproctology, 2010, 26, 1.	0.2	3
729	Molecular Imaging of Gene Expression and Cell Therapy. , 2010, , 723-737.		0
730	Myocardial Cell-Based Regeneration in Heart Failure. , 2010, , 409-427.		0
731	Stem Cell-based Replacement Tissue for Heart Repair. , 2010, , 273-295.		0
732	Opportunities and Challenges of Stem Cell Therapy. , 2010, , 153-165.		0
733	Regenerating Mechanical Function In Vivo with Skeletal Myoblasts. , 2011, , 201-217.		0
734	Clinical application of stem cell in cardiovascular diseases. Journal of the Korean Medical Association, 2011, 54, 462.	0.1	0
735	Stem Cell Based Cardioregeneration and Adipose Tissue. , 2011, , 141-154.		0
736	Myocardial Cell Death and Regeneration. , 2011, , 66-80.		1

#	Article	IF	CITATIONS
737	Methods of Cell Delivery for Cardiac Repair. , 2011, , 479-498.		0
738	Stem cells in myocardial injury. , 2011, , 385-392.		0
739	Isolation and Characterization of the SSEA-1+ Progenitor Cells from the Human Embryonic Heart. Journal of Cytology & Histology, 2011, 02, .	0.1	2
740	Cardiac Muscle Engineering: Strategies to Deliver Stem Cells to the Damaged Site. , 0, , .		0
741	Therapeutic Approaches in Regenerative Medicine of Cardiovascular Diseases: From Bench to Bedside. , 0, , .		0
742	Innovations in Twenty-First Century Cardiovascular Medicine. , 2012, , 509-523.		2
743	Mouse Models of Congenital Heart Disease. , 2012, 02, .		0
745	Cardiac Effects of Experimental Intravenous Bone Marrow Cell Transplantation after Myocardial Infarction. Annals of Thoracic and Cardiovascular Surgery, 2012, 18, 452-457.	0.3	1
749	Potential Uses of Cord Blood in Cardiac Surgery. Journal of Blood Transfusion, 2012, 2012, 1-5.	3.3	0
750	Biomaterials and Stem Cells for Myocardial Repair. , 2012, , 345-366.		0
753	Stem Cells and Regenerative Medicine for Treating Damaged Myocardium. , 2012, , 1-24.		0
754	Stem Cell Therapy for Ischemic Heart Disease. , 2013, , 449-465.		2
755	Cardiovascular Cell Therapy. , 2013, , 753-766.		0
756	Optimizing Stem Cell Therapy for Cardiac Repair Following a Myocardial Infarction. , 2013, , 513-524.		0
757	Adipose Tissue-Derived Mesenchymal Stem Cell and Angiogenesis in Ischemic Heart Disease. , 2013, , 285-311.		1
758	Cell-Based Therapy for Cardiovascular Injury. , 2013, , 207-224.		0
759	Cardiac Resident Stem Cells: Work (Still) in Progress. Journal of Stem Cell Research & Therapy, 2013, s, .	0.3	0
760	Regenerative Chimerism Bioengineered Through Stem Cell Reprogramming. , 2013, , 505-528.		0

#	ARTICLE	IF	CITATIONS
762	Angiogenesis in Myocardial Ischemia. , 2013, , 261-283.		2
763	Cardiac Cell Therapy for Ischemic Heart Disease. , 2013, , 229-257.		0
764	Stem Cell Therapy to Treat Heart Failureâ [~] †. , 2014, , .		0
765	Cell Therapies in Cardiology. Pancreatic Islet Biology, 2014, , 79-93.	0.1	0
766	Stem Cell Therapy for Cardiac Tissue Regeneration Post-myocardial Infarction. , 2014, , 105-115.		0
767	Bioengineering for Stem Cell-Based Cardiac Regeneration. Journal of Stem Cell Research & Therapy, 2014, 04, .	0.3	1
768	Clinical Gene and Stem Cell Therapy in Patients with Acute and Chronic Myocardial Ischemia. , 2014, , 143-167.		0
769	Examination of bone marrow mesenchymal stem cells seeded onto poly(3-hydroxybutyrate-co-3-hydroxybutyrate) biological materials for myocardial patch. El Mednifico Journal, 2014, 2, 70.	0.1	0
770	Cardiac Stem Cell Therapy: An Overview. Cardiovascular Journal, 2010, 3, 66-80.	0.0	0
771	XIAP expression attenuated myocardial injury in aging hearts after myocardial ischemia and reperfusion in mice model. American Journal of BioMedicine, 2014, 2, 400-421.	0.0	0
772	Clinical Trials Using Cell-based Therapy in Ischemic Heart Diseases - A Decade's Efforts. Journal of Vascular Medicine & Surgery, 2015, 03, .	0.1	0
773	New model for cardiomyocyte sheet transplantation using a virus-cell fusion technique. World Journal of Stem Cells, 2015, 7, 883.	1.3	1
774	Myocardial Infarction: Cell Therapy for Cardiac Regeneration. Journal of Heart Health, 2015, 1, .	0.4	0
775	Recent Advances in Image-Based Stem-Cell Labeling and Tracking, and Scaffold-Based Organ Development in Cardiovascular Disease. Recent Patents on Medical Imaging, 2015, 4, 110-126.	0.1	1
776	C-Kit Positive Cells from Failing Human Hearts: Role of Culturing Media on Cardiomyogenic Potentials. Journal of Cardiovascular Medicine and Cardiology, 0, , 021-028.	0.1	0
777	Image Guidance in Stem Cell Therapeutics: Unfolding the Blindfold. Current Drug Targets, 2015, 16, 658-671.	1.0	0
779	Signature of Responders—Lessons from Clinical Samples. , 2016, , 445-460.		0
780	Retrograde Coronary Sinus Delivery for Cardiac Cell Therapy. , 2016. , 289-293.		0

#	ARTICLE	IF	CITATIONS
781	Musculoskeletal Stem Cells. , 2016, , 315-343.		0
783	Regenerative Medicine for Cardiovascular Diseases. Journal of the Nihon University Medical Association, 2016, 75, 67-69.	0.0	0
784	Myocardial Repair: Biomaterials and Stem Cells for. , 0, , 5027-5038.		0
785	Regenerative Chimerism Bioengineered Through Stem Cell Reprogramming. , 2016, , 41-64.		0
786	Disease Prevention and Alleviation by Human Myoblast Transplantation. Open Journal of Regenerative Medicine, 2016, 05, 25-43.	0.5	6
787	OPCAB Combined Regenerative Surgery. , 2016, , 227-233.		0
788	Current Perspectives on Methods for Administering Human Pluripotent Stem Cell-Derived Cells for Myocardial Repair. , 2016, , 297-308.		0
789	Functional Assays and Future Perspectives in Derivation of Cardiomyocytes from Stem Cells. Nihon Shoni Junkanki Gakkai Zasshi = Pediatric Cardiology and Cardiac Surgery, 2016, 32, 397-408.	0.0	0
790	World's First Myoblast Treatment of Human Cancer Found Safe and Efficacious. Open Journal of Regenerative Medicine, 2017, 06, 1-16.	0.5	3
791	State of the Art in Cardiomyocyte Transplantation. Cardiac and Vascular Biology, 2017, , 177-218.	0.2	2
792	Stem Cell Therapy in Heart Failure. , 2017, , 727-747.		1
793	Angiogenic Therapy for Ischemic Cardiomyopathy with Cell Sheet Technology. , 2017, , 99-108.		0
794	Stem Cells and Myocardial Repair. , 2018, , 91-91.		0
795	Cardiac Remodeling and Regeneration. , 2018, , 284-292.		0
796	Contemporary Perspective on Myocardial Regeneration Therapy in Children with Cardiomyopathy. Nihon Shoni Junkanki Gakkai Zasshi = Pediatric Cardiology and Cardiac Surgery, 2018, 34, 121-127.	0.0	0
798	Stem Cell Therapy to Treat Heart Failure. , 2019, , 286-303.		0
799	Current Status of Regenerative Medicine for Heart Failure and Expectations for Cardiac Rehabilitation. The Japanese Journal of Rehabilitation Medicine, 2019, 56, 711-716.	0.0	0
801	Stem Cells and the Future of Heart Transplantation. Organ and Tissue Transplantation, 2020, , 483-500.	0.0	1

#	Article	IF	CITATIONS
802	Cell Sheets for Cardiac Tissue Engineering. , 2020, , 1-19.		0
803	Engineered Extracellular Vesicles And Nanoparticles: Promising Tools For Disease Treatment. Archives of the Balkan Medical Union, 2020, 55, 203-205.	0.1	0
804	Marrow-derived stromal cells for cardiac regeneration. , 2020, , 193-216.		0
805	Stem Cells and the Future of Heart Transplantation. Organ and Tissue Transplantation, 2020, , 1-19.	0.0	0
806	Stem Cell Therapy to Improve Acute Myocardial Infarction Remodeling. , 2021, , 299-329.		0
807	Translational development of mesenchymal stem cell therapy for cardiovascular diseases. Texas Heart Institute Journal, 2009, 36, 145-7.	0.1	20
808	Cardiac cell repair therapy: a clinical perspective. Mayo Clinic Proceedings, 2009, 84, 876-92.	1.4	54
809	Cellular retrograde cardiomyoplasty and relaxin therapy for postischemic myocardial repair in a rat model. Texas Heart Institute Journal, 2012, 39, 488-99.	0.1	16
810	Current Status and Perspectives in Stem Cell Therapy for Heart. Acta Cardiologica Sinica, 2014, 30, 382-94.	0.1	0
811	Image-guided stem cells with functionalized self-assembling peptide nanofibers for treatment of acute myocardial infarction in a mouse model. American Journal of Translational Research (discontinued), 2017, 9, 3723-3731.	0.0	11
812	Functional Assessment of Pluripotent and Mesenchymal Stem Cell Derived Secretome in Heart Disease. , 2019, 2, 29-36.		2
813	Production of functional cardiomyocytes and cardiac tissue from human induced pluripotent stem cells for regenerative therapy. Journal of Molecular and Cellular Cardiology, 2022, 164, 83-91.	0.9	15
814	α1-Adrenergic receptor mediates adipose-derived stem cell sheet-induced protection against chronic heart failure after myocardial infarction in rats. Hypertension Research, 2022, 45, 283-291.	1.5	2
815	Stem-Cell-Based Cardiac Regeneration: Is There a Place For Optimism in the Future?. , 2021, , 119-134.		1
817	Impact of procedural variability and study design quality on the efficacy of cell-based therapies for heart failure - a meta-analysis. PLoS ONE, 2022, 17, e0261462.	1.1	0
818	Electrospun Fiber-Coated Human Amniotic Membrane: A Potential Angioinductive Scaffold for Ischemic Tissue Repair. International Journal of Molecular Sciences, 2022, 23, 1743.	1.8	3
821	Optimal Delivery Route of Mesenchymal Stem Cells for Cardiac Repair: The Path to Good Clinical Practice. Advances in Experimental Medicine and Biology, 2022, , 1.	0.8	1
822	Unraveling the Mystery of Regenerative Medicine in the Treatment of Heart Failure. , 2022, , 1-40.		0

#	Article	IF	CITATIONS
823	Stem Cell Therapy: Significance and Applications of Stem Cell Products in Tissue Engineering and Regenerative Medicine. , 2022, , 1-21.		0
824	Heart regeneration: 20 years of progress and renewed optimism. Developmental Cell, 2022, 57, 424-439.	3.1	28
825	A Novel, Cell-Free Therapy to Enter Our Hearts: The Potential Role of Small EVs in Prevention and Treatment of CVD. International Journal of Molecular Sciences, 2022, 23, 3662.	1.8	4
826	Human Muse cells reduce myocardial infarct size and improve cardiac function without causing arrythmias in a swine model of acute myocardial infarction. PLoS ONE, 2022, 17, e0265347.	1.1	8
827	An Overview of the Molecular Mechanisms Associated with Myocardial Ischemic Injury: State of the Art and Translational Perspectives. Cells, 2022, 11, 1165.	1.8	39
828	Endogenous Opioids and Their Role in Stem Cell Biology and Tissue Rescue. International Journal of Molecular Sciences, 2022, 23, 3819.	1.8	6
829	Cardiac Remodeling and Repair: Recent Approaches, Advancements, and Future Perspective. International Journal of Molecular Sciences, 2021, 22, 13104.	1.8	16
830	Regenerative Cardiac Pharmacology: Translating Stem Cell Biology into Therapeutic Solutions. , 0, , 252-269.		Ο
832	Signaling cascades in the failing heart and emerging therapeutic strategies. Signal Transduction and Targeted Therapy, 2022, 7, 134.	7.1	18
833	Stem Cell Therapy in Heart Disease: Limitations and Future Possibilities. Acta Medica Okayama, 2020, 74, 185-190.	0.1	1
834	Stem Cell Differentiation into Cardiomyocytes: Current Methods and Emerging Approaches. Stem Cell Reviews and Reports, 2022, 18, 2566-2592.	1.7	14
836	Scalable manufacturing of clinicalâ€grade differentiated cardiomyocytes derived from humanâ€induced pluripotent stem cells for regenerative therapy. Cell Proliferation, 2022, 55, e13248.	2.4	6
838	Direct reprogramming of adult adipose-derived regenerative cells toward cardiomyocytes using six transcriptional factors. IScience, 2022, 25, 104651.	1.9	3
839	The Progress of Stem Cell Therapy in Myocardial-Infarcted Heart Regeneration: Cell Sheet Technology. Tissue Engineering and Regenerative Medicine, 2022, 19, 969-986.	1.6	5
840	Myoblast Therapies Constitute a Safe and Efficacious Platform Technology of Regenerative Medicine for the Human Health Industry. , 2022, , 1-66.		2
841	Regenerative Therapy for Chronic Heart Failure: Prospects for the Use of Cellular and Acellular Technologies. Russian Archives of Internal Medicine, 2022, 12, 293-301.	0.0	1
842	Healing the Broken Hearts: A Glimpse on Next Generation Therapeutics. Hearts, 2022, 3, 96-116.	0.4	1
843	Intervention effects of traditional Chinese medicine on stem cell therapy of myocardial infarction. Frontiers in Pharmacology, 0, 13, .	1.6	1

~		_
	ION	
CITAL		NEFORT

#	ARTICLE	IF	CITATIONS
844	Animal Models and Methods of Myocardial Infarction Induction and the Role of Tissue Engineering in the Regeneration of Damaged Myocardium. Current Stem Cell Research and Therapy, 2023, 18, 676-689.	0.6	0
845	Unraveling the Mystery of Regenerative Medicine in the Treatment of Heart Failure. , 2022, , 471-509.		Ο
846	Myoblast Therapies Constitute a Safe and Efficacious Platform Technology of Regenerative Medicine for the Human Health Industry. , 2022, , 625-690.		0
847	Therapeutic Uses of Stem Cells for Heart Failure: Hype or Hope. , 2022, , 511-544.		0
848	Intracoronary transplantation of pluripotent stem cell-derived cardiomyocytes: Inefficient procedure for cardiac regeneration. Journal of Molecular and Cellular Cardiology, 2023, 174, 77-87.	0.9	7
849	An Approach That Brings Out the Potential of Regenerative Therapies in Heart Failure. Circulation Journal, 2023, , .	0.7	0
850	Regenerative Therapy for Heart Failure. The Japanese Journal of Rehabilitation Medicine, 2022, 59, 1014-1019.	0.0	0
851	New Opportunities in Heart Failure with Preserved Ejection Fraction: From Bench to Bedside… and Back. Biomedicines, 2023, 11, 70.	1.4	1
852	Cardiac cell therapies for the treatment of acute myocardial infarction in mice: systematic review and meta-analysis. Cytotherapy, 2023, 25, 640-652.	0.3	3
853	Unlocking the Pragmatic Potential of Regenerative Therapies in Heart Failure with Next-Generation Treatments. Biomedicines, 2023, 11, 915.	1.4	5
854	Cardiac Regenerative Therapy Using Human Pluripotent Stem Cells for Heart Failure: A State-of-the-Art Review. Journal of Cardiac Failure, 2023, 29, 503-513.	0.7	0
860	Cardiac Reprogramming with Stem Cells: An Advanced Therapeutic Strategy in Advanced Heart Failure. , 2023, , 23-64.		0
861	Human Myoblast Genome Therapy and the Regenerative Heart. , 2023, , 307-347.		0
864	Entwicklung von Stammzellen in der kardio-regenerativen Therapie. , 2023, , 103-130.		0
867	Regeneration des Herzens auf der Grundlage von Stammzellen: Gibt es einen Platz für Optimismus in der Zukunft?. , 2023, , 131-148.		0
868	Myogenic Cardiac Regeneration: Clinical Studies Using Skeletal Myoblasts. , 2023, , 1-37.		0
870	Stem cell therapeutic approaches and signaling pathways in rheumatoid arthritis and osteoarthritis. , 2024, , 415-436.		0
877	Silk for cardiac tissue engineering. , 2024, , 567-600.		0

ARTICLE

IF CITATIONS