Polymers from Renewable Resources: A Challenge for the Materials

Macromolecules 41, 9491-9504 DOI: 10.1021/ma801735u

Citation Report

#	Article	IF	CITATIONS
1	Effect of surface esterification with octenyl succinic anhydride on hydrophilicity of corn starch films. Journal of Applied Polymer Science, 2009, 114, 940-947.	1.3	28
2	Environmental biodegradation of synthetic polymers I. Test methodologies and procedures. TrAC - Trends in Analytical Chemistry, 2009, 28, 1057-1072.	5.8	144
3	Homogeneous modification of carbon nanotubes with cellulose acetate. Chinese Chemical Letters, 2009, 20, 1376-1380.	4.8	8
4	Surface esterification of corn starch films: Reaction with dodecenyl succinic anhydride. Carbohydrate Polymers, 2009, 78, 888-893.	5.1	57
5	Fusible, Elastic, and Biodegradable Polyesters of 2-Pyrone-4,6-Dicarboxylic Acid (PDC). Polymer Journal, 2009, 41, 1111-1116.	1.3	30
6	Controlled Polymerization of a Cyclic Diene Prepared from the Ring-Closing Metathesis of a Naturally Occurring Monoterpene. Journal of the American Chemical Society, 2009, 131, 7960-7961.	6.6	84
8	Raw and Renewable Polymers. Handbook of Environmental Chemistry, 2009, , 55-80.	0.2	4
9	Materials from renewable resources based on furan monomers and furan chemistry: work in progress. Journal of Materials Chemistry, 2009, 19, 8656.	6.7	224
10	ARGET ATRP for Versatile Grafting of Cellulose Using Various Monomers. ACS Applied Materials & Interfaces, 2009, 1, 2651-2659.	4.0	149
14	Green Chemistry: Principles and Practice. Chemical Society Reviews, 2010, 39, 301-312.	18.7	3,379
15	Improvement of UV stability and mechanical properties of biopolyesters through the addition of β-carotene. Polymer Degradation and Stability, 2010, 95, 2162-2168.	2.7	55
16	Environmental and resource aspects of sustainable biocomposites. Polymer Degradation and Stability, 2010, 95, 2147-2161.	2.7	147
17	Olive stone as a renewable source of biopolyols. Industrial Crops and Products, 2010, 32, 7-12.	2.5	84
18	Polymers and copolymers from fatty acid-based monomers. Industrial Crops and Products, 2010, 32, 97-104.	2.5	38
19	Chitin- and chitosan-anchored methyltrioxorhenium: An innovative approach for selective heterogeneous catalytic epoxidations of olefins. Journal of Catalysis, 2010, 276, 412-422.	3.1	23
20	Lignin as Renewable Raw Material. ChemSusChem, 2010, 3, 1227-1235.	3.6	785
21	Vegetable oilâ€based thermosetting polymers. European Journal of Lipid Science and Technology, 2010, 112, 87-96.	1.0	150
23	Rapid Soybean Oil Copolymers Synthesis by Microwaveâ€Assisted Cationic Polymerization. Macromolecular Chemistry and Physics, 2010, 211, 801-808.	1.1	10

#	Article	IF	CITATIONS
24	Modification of Polysaccharides Through Controlled/Living Radical Polymerization Grafting—Towards the Generation of High Performance Hybrids. Macromolecular Rapid Communications, 2010, 31, 1751-1772.	2.0	141
25	Biomass into chemicals: Conversion of sugars to furan derivatives by catalytic processes. Applied Catalysis A: General, 2010, 385, 1-13.	2.2	719
26	Microstructure and properties of polyurethanes derived from castor oil. Polymer Degradation and Stability, 2010, 95, 2175-2184.	2.7	140
27	The polymerization products of epoxidized oleic acid and epoxidized methyl oleate with cis-1,2-cyclohexanedicarboxylic anhydride and triethylamine as the initiator: Chemical structures, thermal and electrical properties. Materials Science and Engineering C, 2010, 30, 951-962.	3.8	34
28	Syntheses of 5-hydroxymethylfurfural and levoglucosan by selective dehydration of glucose using solid acid and base catalysts. Applied Catalysis A: General, 2010, 383, 149-155.	2.2	177
29	Miscanthus sinensis fractionation by different reagents. Chemical Engineering Journal, 2010, 156, 49-55.	6.6	58
30	Combined organosolv and ultrafiltration lignocellulosic biorefinery process. Chemical Engineering Journal, 2010, 157, 113-120.	6.6	99
31	Foams from non-aqueous systems. Current Opinion in Colloid and Interface Science, 2010, 15, 359-364.	3.4	66
32	A novel strategy to functionalize carbon nanotubes with cellulose acetate using triazines as intermediated functional groups. Carbohydrate Polymers, 2010, 79, 775-782.	5.1	22
33	Influence of surface esterification with alkenyl succinic anhydrides on mechanical properties of corn starch films. Carbohydrate Polymers, 2010, 82, 1010-1013.	5.1	28
34	Inhomogeneity in the drying process of gelatin film formation: NMR microscopy and relaxation study. Chemical Physics Letters, 2010, 485, 343-347.	1.2	19
35	Reversible click chemistry at the service of macromolecular materials. 2. Thermoreversible polymers based on the Dielsâ€Alder reaction of an Aâ€B furan/maleimide monomer. Journal of Polymer Science Part A, 2010, 48, 2053-2056.	2.5	64
36	Biorenewable Multiphase Polymers. MRS Bulletin, 2010, 35, 194-200.	1.7	12
37	Materials from Renewable Resources. MRS Bulletin, 2010, 35, 187-193.	1.7	32
38	Synthesis and Characterization of Hybrid Biopolymers of L-lactic Acid and 2-Pyrone-4,6-dicarboxylic Acid. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 47, 564-570.	1.2	14
39	Oleic and Undecylenic Acids as Renewable Feedstocks in the Synthesis of Polyols and Polyurethanes. Polymers, 2010, 2, 440-453.	2.0	87
40	Effect of Diisocyanate Structure on Thermal Properties and Microstructure of Polyurethanes Based on Polyols Derived from Renewable Resources. , 2010, , .		0
41	Surface Energy and Wettability of Spin-Coated Thin Films of Lignin Isolated from Wood. Langmuir, 2010, 26, 5484-5490.	1.6	125

#	Article	IF	CITATIONS
42	Biorenewable polyethylene terephthalate mimics derived from lignin and acetic acid. Green Chemistry, 2010, 12, 1704.	4.6	196
43	Renewable Rosin Acid-Degradable Caprolactone Block Copolymers by Atom Transfer Radical Polymerization and Ring-Opening Polymerization. Macromolecules, 2010, 43, 8747-8754.	2.2	85
44	Rapid Approach to Biobased Telechelics through Two One-Pot Thiolâ^'Ene Click Reactions. Biomacromolecules, 2010, 11, 1646-1653.	2.6	99
45	Furans as offspring of sugars and polysaccharides and progenitors of a family of remarkable polymers: a review of recent progress. Polymer Chemistry, 2010, 1, 245-251.	1.9	264
46	Synthetic Polymers from Readily Available Monosaccharides. Topics in Current Chemistry, 2010, 295, 147-176.	4.0	39
47	Polymerization of Naturally Renewable Methylene Butyrolactones by Half-Sandwich Indenyl Rare Earth Metal Dialkyls with Exceptional Activity. Macromolecules, 2010, 43, 9328-9336.	2.2	41
48	Oxypropylation of Rapeseed Cake Residue Generated in the Biodiesel Production Process. Industrial & Engineering Chemistry Research, 2010, 49, 1526-1529.	1.8	31
49	Well-Defined Polymers from Biosourced Monomers: The Case of 2-(Methacryloyloxy)ethyl Tiglate. Macromolecules, 2010, 43, 1411-1415.	2.2	17
50	AAB-Sequence Living Radical Chain Copolymerization of Naturally Occurring Limonene with Maleimide: An End-to-End Sequence-Regulated Copolymer. Journal of the American Chemical Society, 2010, 132, 10003-10005.	6.6	248
51	Ring-Opening Polymerization of Lactides Catalyzed by Natural Amino-Acid Based Zinc Catalysts. Inorganic Chemistry, 2010, 49, 2360-2371.	1.9	177
52	Plant Oils as Platform Chemicals for Polyurethane Synthesis: Current State-of-the-Art. Biomacromolecules, 2010, 11, 2825-2835.	2.6	387
53	α-Oligofurans. Journal of the American Chemical Society, 2010, 132, 2148-2150.	6.6	246
54	Structureâ^'Properties Relationship of Biosourced Stereocontrolled Polytriazoles from Click Chemistry Step Growth Polymerization of Diazide and Dialkyne Dianhydrohexitols. Biomacromolecules, 2010, 11, 2797-2803.	2.6	53
55	Challenges for Natural Monomers and Polymers: Novel Design Strategies and Engineering to Develop Advanced Polymers. Designed Monomers and Polymers, 2010, 13, 87-121.	0.7	78
57	Living Polymerization of Naturally Renewable Butyrolactone-Based Vinylidene Monomers by Ambiphilic Silicon Propagators. Macromolecules, 2010, 43, 4902-4908.	2.2	92
58	Carbohydrates in Sustainable Development II. Topics in Current Chemistry, 2010, , .	4.0	6
59	Solubility in CO2 and carbonation studies of epoxidized fatty acid diesters: towards novel precursors for polyurethane synthesis. Green Chemistry, 2010, 12, 2205.	4.6	143
60	Tamarind seed xyloglucan – a thermostable high-performance biopolymer from non-food feedstock. Journal of Materials Chemistry, 2010, 20, 4321.	6.7	50

#	Article	IF	CITATIONS
61	Brillouin Light Scattering Investigation of the Mechanical Properties of Layer-by-Layer Assembled Cellulose Nanocrystal Films. Macromolecules, 2010, 43, 9541-9548.	2.2	34
62	Dinuclear Silylium-enolate Bifunctional Active Species: Remarkable Activity and Stereoselectivity toward Polymerization of Methacrylate and Renewable Methylene Butyrolactone Monomers. Journal of the American Chemical Society, 2011, 133, 13674-13684.	6.6	70
63	Degradable Rosin-Ester–Caprolactone Graft Copolymers. Biomacromolecules, 2011, 12, 2171-2177.	2.6	105
64	Cinchona Alkaloids as Stereoselective Organocatalysts for the Partial Kinetic Resolution Polymerization of <i>rac</i> -Lactide. Macromolecules, 2011, 44, 4116-4124.	2.2	70
66	DFT investigations on the ring-opening polymerization of cyclic carbonates catalyzed by zinc-{β-diiminate} complexes. Polymer Chemistry, 2011, 2, 2564.	1.9	21
67	Aliphatic polycarbonates and poly(ester carbonate)s from fatty acid derived monomers. Polymer Chemistry, 2011, 2, 2796.	1.9	26
68	Small band gap copolymers based on furan and diketopyrrolopyrrole for field-effect transistors and photovoltaic cells. Journal of Materials Chemistry, 2011, 21, 1600-1606.	6.7	148
69	Ring-opening polymerization of an O-carboxyanhydride monomer derived from l-malic acid. Polymer Chemistry, 2011, 2, 2204.	1.9	71
71	Acyclic dienemetathesis: a versatile tool for the construction of defined polymer architectures. Chemical Society Reviews, 2011, 40, 1404-1445.	18.7	262
72	Towards "green―electronic materials. α-Oligofurans as semiconductors. Chemical Communications, 2011, 47, 1976-1978.	2.2	196
73	Click synthesis and adhesive properties of novel biomass-based polymers from lignin-derived stable metabolic intermediate. Polymer Journal, 2011, 43, 648-653.	1.3	23
74	Benzotriazole containing conjugated polymers for multipurpose organic electronic applications. Polymer Chemistry, 2011, 2, 1029-1043.	1.9	139
75	The irruption of polymers from renewable resources on the scene of macromolecular science and technology. Green Chemistry, 2011, 13, 1061.	4.6	610
76	Synthesis of Terpene-Based Polymers. Advances in Polymer Science, 2011, , 151-190.	0.4	55
77	Synthesis, Structure, and Theoretical Calculations of 1H-3,7-Difurylcyclopenta[3,4-d]pyridazine. Heterocycles, 2011, 83, 1275.	0.4	7
78	Room temperature cationic polymerization of β-pinene using modified AlCl3 catalyst: toward sustainable plastics from renewable biomass resources. Green Chemistry, 2011, 13, 2362.	4.6	66
79	Reversible click chemistry at the service of macromolecular materials. Polymer Chemistry, 2011, 2, 1713.	1.9	48
81	Polysaccharides from Wastes of Vegetable Industrial Processing: New Opportunities for Their Eco-Friendly Re-Use. , 0, , .		24

#	Article	IF	Citations
82	Synthesis and characterization of aluminum complexes incorporating Schiff base ligands derived from pyrrole-2-carboxaldehyde. Main Group Chemistry, 2011, 10, 127-140.	0.4	6
83	Characterization and biodegradability of polyester bioplastic-based green renewable composites from agricultural residues. Polymer Degradation and Stability, 2011, 97, 64-64.	2.7	11
84	What is vital (and not vital) to advance economically-competitive biofuels production. Process Biochemistry, 2011, 46, 2091-2110.	1.8	99
85	Preparation and characterization of rigid polyurethane foam prepared from sugar-cane bagasse polyol. Materials Chemistry and Physics, 2011, 129, 301-307.	2.0	139
86	Polyol production by chemical modification of date seeds. Industrial Crops and Products, 2011, 34, 1035-1040.	2.5	76
87	TEMPO-mediated oxidation of lignocellulosic fibers from date palm leaves. Carbohydrate Polymers, 2011, 86, 1445-1450.	5.1	44
88	Chapter 2. Synthetic Green Polymers from Renewable Monomers. RSC Green Chemistry, 2011, , 22-78.	0.0	1
89	The Emergence of Renewable and Sustainable Polymers. ACS Symposium Series, 2011, , 1-10.	0.5	8
90	Ozonolysis of Canola Oil: A Study of Product Yields and Ozonolysis Kinetics in Different Solvent Systems. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 689-705.	0.8	42
91	Synthesis and properties of bioâ€based polyurethanes bearing hydroxy groups derived from alditols. Journal of Polymer Science Part A, 2011, 49, 976-985.	2.5	26
92	Polybenzoxazines from renewable diphenolic acid. Journal of Polymer Science Part A, 2011, 49, 1219-1227.	2.5	111
93	Synthesis of poly(2â€furyloxirane) with high molecular weight and improved regioregularity using macrocyclic ether as a cocatalyst to potassium <i>tert</i> â€butoxide. Journal of Polymer Science Part A, 2011, 49, 1434-1442.	2.5	2
94	Anionic polymerization of MMA and renewable methylene butyrolactones by resorbable potassium salts. Journal of Polymer Science Part A, 2011, 49, 2008-2017.	2.5	43
95	Novel suberinâ€based biopolyesters: From synthesis to properties. Journal of Polymer Science Part A, 2011, 49, 2281-2291.	2.5	48
96	Combining renewable gum rosin and lignin: Towards hydrophobic polymer composites by controlled polymerization. Journal of Polymer Science Part A, 2011, 49, 3728-3738.	2.5	145
97	Synthesis and characterization of poly(2,5â€furan dicarboxylate)s based on a variety of diols. Journal of Polymer Science Part A, 2011, 49, 3759-3768.	2.5	305
98	Celluloseâ€based graft copolymers with controlled architecture prepared in a homogeneous phase. Journal of Polymer Science Part A, 2011, 49, 4353-4367.	2.5	25
99	Novel materials based on chitosan and cellulose. Polymer International, 2011, 60, 875-882.	1.6	89

#	Article	IF	CITATIONS
100	"Click―Synthesis of Fatty Acid Derivatives as Fastâ€Degrading Polyanhydride Precursors. Macromolecular Rapid Communications, 2011, 32, 1343-1351.	2.0	27
101	Waterâ€Free Synthesis of Polyurethane Foams Using Highly Reactive Diisocyanates Derived from 5â€Hydroxymethylfurfural. Macromolecular Rapid Communications, 2011, 32, 1373-1378.	2.0	23
102	Celluloseâ€Based Sustainable Polymers: State of the Art and Future Trends. Macromolecular Rapid Communications, 2011, 32, 1299-1311.	2.0	153
103	Polyalkylenehydroxybenzoates (PAHBs): Biorenewable Aromatic/Aliphatic Polyesters from Lignin. Macromolecular Rapid Communications, 2011, 32, 1386-1392.	2.0	119
104	A Green Approach for the Synthesis and Thiolâ€ene Modification of Alkene Functio1489lized Poly(2â€oxazoline)s. Macromolecular Rapid Communications, 2011, 32, 1484-1489.	2.0	51
105	Tetrazineâ€Norbornene Click Reactions to Functionalize Degradable Polymers Derived from Lactide. Macromolecular Rapid Communications, 2011, 32, 1362-1366.	2.0	51
106	Intrinsically Microporous Polyesters From Betulin – Toward Renewable Materials for Gas Separation Made From Birch Bark. Macromolecular Rapid Communications, 2011, 32, 1846-1851.	2.0	31
107	Poly(2â€oxazoline)s based on fatty acids. European Journal of Lipid Science and Technology, 2011, 113, 59-71.	1.0	33
108	Isohexide Derivatives from Renewable Resources as Chiral Building Blocks. ChemSusChem, 2011, 4, 599-603.	3.6	76
109	Chemistry, functionality, and coating performance of biobased copolycarbonates from 1,4:3,6â€dianhydrohexitols. Journal of Applied Polymer Science, 2011, 121, 1450-1463.	1.3	51
110	Rapid intercalation of sustainable resourceâ€based linseed oil fatty amide—A polymer precursor in cloisite® 93A by microwaveâ€assisted method. Journal of Applied Polymer Science, 2011, 121, 2317-2323.	1.3	6
111	Phosphorusâ€containing soybeanâ€oil copolymers: Crossâ€metathesis of fatty acid derivatives as an alternative to phosphorusâ€containing reactive flame retardants. Journal of Applied Polymer Science, 2011, 122, 1649-1658.	1.3	31
112	Effect of diisocyanate structure on the properties and microstructure of polyurethanes based on polyols derived from renewable resources. Journal of Applied Polymer Science, 2011, 122, 3677-3685.	1.3	75
114	Beyond Petrochemicals: The Renewable Chemicals Industry. Angewandte Chemie - International Edition, 2011, 50, 10502-10509.	7.2	464
115	Nanosized Vanadium, Tungsten and Molybdenum Oxide Clusters Grown in Porous Chitosan Microspheres as Promising Hybrid Materials for Selective Alcohol Oxidation. Chemistry - A European Journal, 2011, 17, 7940-7946.	1.7	46
116	Di(n-butyl) itaconate end-functionalized polymers: Synthesis by group transfer polymerization and solution characterization. European Polymer Journal, 2011, 47, 816-822.	2.6	21
117	The preparation of novel nanofilled polymer composites using poly(l-lactic acid) and protein fibers. European Polymer Journal, 2011, 47, 1279-1283.	2.6	25
118	Efficient synthesis of hydroxyl functioned polyesters from natural polyols and sebacic acid. Chinese Chemical Letters, 2011, 22, 635-638.	4.8	15

#	Article	IF	CITATIONS
119	Synthesis, structure, and electronic study of some group VII furoyl substituted complexes. Journal of Organometallic Chemistry, 2011, 696, 2220-2227.	0.8	5
120	Synthesis and characterization of biodegradable-cum-crosslinkable well-defined polyesters via chain-growth polycondensation in solid–liquid phase. Polymer Degradation and Stability, 2011, 96, 1029-1038.	2.7	5
121	Mechanical, morphological and biodegradation studies of microwave processed nanostructured blends of some bio-based oil epoxies with poly (vinyl alcohol). Polymer Degradation and Stability, 2011, 96, 33-42.	2.7	25
122	Comb-like ionomers from sustainable resources: Copolymers of itaconic anhydride-co-stearyl methacrylate. Polymer, 2011, 52, 2764-2771.	1.8	4
123	Tailor-made starch-based conjugates containing well-defined poly(vinyl acetate) and its derivative poly(vinyl alcohol). EXPRESS Polymer Letters, 2011, 5, 535-544.	1.1	22
125	The societal significance of catalysis and the growing practical importance of single-site heterogeneous catalysts. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 1884-1903.	1.0	65
126	Application of Atomic Force Microscopy in Natural Polymers. Nanoscience and Technology, 2012, , 249-290.	1.5	0
127	Biobased Polymeric Materials Prepared from Cotton Byproducts. ACS Symposium Series, 2012, , 47-62.	0.5	1
128	Synthesis, Structure, and Theoretical Calculations of a Furan-Based Molecular Wire, N-[4-(2-Furanylmethyleneamino)benzylidene]furan-2-amine. Heterocycles, 2012, 85, 821.	0.4	0
129	Facile synthesis of environmental friendly halogen-free microporous terpolymer from renewable source with enhanced physical properties. Designed Monomers and Polymers, 2012, 15, 587-600.	0.7	10
130	Synthesis of Novel Hexathiolated Squalene and Its Thiol-Ene Photopolymerization with Unsaturated Monomers. Green and Sustainable Chemistry, 2012, 02, 62-70.	0.8	16
131	Olefin Metathesis of Renewable Platform Chemicals. Topics in Organometallic Chemistry, 2012, , 1-44.	0.7	31
132	Evaluation of the biomass fractionation capability of the ultrafiltration permeate: A learning project for chemical engineering students. Education for Chemical Engineers, 2012, 7, e241-e246.	2.8	1
133	Crystal structures of poly(l-lactide)–CO2 complex and its emptied form. Polymer, 2012, 53, 4262-4271.	1.8	37
134	Mechanistic Insights into the Kinetic and Regiochemical Control of the Thiol-Promoted Catalytic Synthesis of Diphenolic Acid. ACS Catalysis, 2012, 2, 2700-2704.	5.5	38
135	Interplay Between Viscoelastic and Chemical Tunings in Fatty-Acid-Based Polyester Adhesives: Engineering Biomass toward Functionalized Step-Growth Polymers and Soft Networks. Biomacromolecules, 2012, 13, 1933-1944.	2.6	47
136	Interfaces in Cross-Linked and Grafted Bacterial Cellulose/Poly(Lactic Acid) Resin Composites. Journal of Polymers and the Environment, 2012, 20, 916-925.	2.4	39
137	Novel polyurethane produced from canola oil based poly(ether ester) polyols: Synthesis, characterization and properties. European Polymer Journal, 2012, 48, 2097-2106.	2.6	111

#	Article	IF	CITATIONS
138	Enzymatic hydrolysates of corn stover pretreated by a N-methylpyrrolidone–ionic liquid solution for microbial lipid production. Green Chemistry, 2012, 14, 1202.	4.6	65
139	Catalyzing carbonization of poly(l-lactide) by nanosized carbon black combined with Ni2O3 for improving flame retardancy. Journal of Materials Chemistry, 2012, 22, 19974.	6.7	83
140	Oleic Acid and Undecylenic Acid as Platform Chemicals for Thermoplastic Polyurethanes. ACS Symposium Series, 2012, , 269-280.	0.5	3
141	Di-cobalt(ii) catalysts for the copolymerisation of CO2 and cyclohexene oxide: support for a dinuclear mechanism?. Chemical Science, 2012, 3, 1245.	3.7	117
142	Stereoselectivity in Metallocene-Catalyzed Coordination Polymerization of Renewable Methylene Butyrolactones: From Stereo-random to Stereo-perfect Polymers. Journal of the American Chemical Society, 2012, 134, 7278-7281.	6.6	56
143	Tin-containing silicates: structure–activity relations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 2000-2016.	1.0	149
144	On the Polymerization Behavior of Telomers: Metathesis versus Thiol–Ene Chemistry. Macromolecules, 2012, 45, 1866-1878.	2.2	30
145	Thermoplastic Elastomers Derived from Menthide and Tulipalin A. Biomacromolecules, 2012, 13, 3833-3840.	2.6	122
146	Thermal Mobility of β- <i>O</i> -4-Type Artificial Lignin. Biomacromolecules, 2012, 13, 867-872.	2.6	43
147	Design and Preparation of a Novel Cross-Linkable, High Molecular Weight, and Bio-Based Elastomer by Emulsion Polymerization. Macromolecules, 2012, 45, 6830-6839.	2.2	81
148	Biobased Pressure-Sensitive Adhesive Derived from Epoxidized and Dihydroxylated Oleate with Phosphoric Acid and Its Chemical Pathways. ACS Symposium Series, 2012, , 15-26.	0.5	0
149	New Degradable Alternating Copolymers from Naturally Occurring Aldehydes: Well-Controlled Cationic Copolymerization and Complete Degradation. Macromolecules, 2012, 45, 4060-4068.	2.2	29
150	Toward an alternative compatibilizer for PLA/cellulose composites: Grafting of xyloglucan with PLA. Carbohydrate Polymers, 2012, 89, 1038-1043.	5.1	39
151	Adhesion and micromechanical deformation processes in PLA/CaSO4 composites. Carbohydrate Polymers, 2012, 89, 759-767.	5.1	28
152	Compatible blends of thermoplastic starch and hydrolyzed ethylene-vinyl acetate copolymers. Carbohydrate Polymers, 2012, 90, 34-40.	5.1	33
153	Stress-transfer in microfibrillated cellulose reinforced poly(lactic acid) composites using Raman spectroscopy. Composites Part A: Applied Science and Manufacturing, 2012, 43, 1145-1152.	3.8	51
154	Thermoresponsive Aggregation Behavior of Triterpene–Poly(ethylene oxide) Conjugates in Water. Macromolecular Bioscience, 2012, 12, 1272-1278.	2.1	12
155	Biobasedâ€waterborne homopolymers from oleic acid derivatives. Journal of Polymer Science Part A, 2012, 50, 4628-4637.	2.5	33

ARTICLE IF CITATIONS # Transforming polylactide into valueâ€added materials. Journal of Polymer Science Part A, 2012, 50, 156 2.5 91 4814-4822. Ring-Opening Polymerization of Cyclic Esters., 2012, , 761-778. 158 Mono-, Di-, and Oligosaccharides as Precursors for Polymer Synthesis. , 2012, , 59-82. 10 Synthesis and crystallinity of poly(butylene 2,5-furandicarboxylate). Polymer, 2012, 53, 4145-4151. 1.8 159 Synthesis of pH-sensitive micelles from linseed oil using atom transfer radical polymerisation (ATRP). 160 1.8 12 Pólymer, 2012, 53, 4344-4352. Synthesis of renewable plasticizer alcohols by formal anti-Markovnikov hydration of terminal branched chain alkenes via a borane-free oxidation/reduction sequence. Green Chemistry, 2012, 14, 4.6 2450. 162 Graduate Theses and Dissertations., 2012, , 63-79. 13 Functional galactomannan platform from convenient esterification in imidazolium-based ionic 24 liquids. Polymer Chemistry, 2012, 3, 538-546. Triblock copolymers from lactide and telechelic poly(cyclohexene carbonate). Polymer Chemistry, 164 1.9 113 2012, 3, 1196. Synthesis of Some Novel Blends of Polylactide with Polylactide-b-Poly (ethylene glycol) Block 1.2 Copolymers. Journal of Macromolecular Science - Pure and Applied Chemistry, 2012, 49, 164-170. Methyl 10-undecenoate as a raw material for the synthesis of renewable semi-crystalline polyesters 167 1.9 58 and poly(ester-amide)s. Polymer Chemistry, 2012, 3, 2842. Solvent-Free Synthesis of Modified Pectin Compounds Promoted by Microwave Irradiation. Molecules, 2012, 17, 12234-12242. TEMPO-Mediated Oxidation of Lignocellulosic Fibers from Date Palm Leaves: Effect of the Oxidation 170 3 on the Processing by RTM Process and Properties of Epoxy Based Composites., 0,,. A series of furanâ \in aromatic polyesters synthesized via direct esterification method based on renewable resources. Journal of Polymer Science Part A, 2012, 50, 1026-1036. 171 2.5 295 Facile incorporation of natural carboxylic acids into polymers via polymerization of protic ionic 172 2.522 liquids. Journal of Polymer Science Part A, 2012, 50, 1049-1053. Original diols from sunflower and ricin oils: Synthesis, characterization, and use as polyurethane building blocks. Journal of Polymer Science Part A, 2012, 50, 1766-1782. Transformation of macromonomers into ringâ€opening polymerization macroinitiators: A detailed 174 2.55 initiation efficiency study. Journal of Polymer Science Part Á, 2012, 50, 2366-2377. Preparation of polymer nanoparticles from renewable biobased furfuryl alcohol and maleic anhydride by stabilizerâ€free dispersion polymerization. Journal of Polymer Science Part A, 2012, 50, 3606-3617.

#	Article	IF	CITATIONS
176	Benzooxadiazaoleâ€based D–A–D coâ€oligomers: Synthesis and electropolymerization. Journal of Polymer Science Part A, 2012, 50, 3996-4003.	2.5	25
177	Polycyanurate networks from anethole dimers: Synthesis and characterization. Journal of Polymer Science Part A, 2012, 50, 4127-4136.	2.5	42
178	UCST and LCST phase behavior of poly(trimethylene ether) glycol in water. Journal of Polymer Science Part A, 2012, 50, 4311-4315.	2.5	14
179	The copolymerization reactivity of diols with 2,5-furandicarboxylic acid for furan-based copolyester materials. Journal of Materials Chemistry, 2012, 22, 3457.	6.7	165
180	Structure and Morphology of New Bioâ€Based Thermoplastic Polyurethanes Obtained From Dimeric Fatty Acids. Macromolecular Materials and Engineering, 2012, 297, 777-784.	1.7	62
181	Synthesis and Structures of Tridentate Ketoiminate Zinc Complexes That Act As <scp> </scp> -Lactide Ring-Opening Polymerization Catalysts. Organometallics, 2012, 31, 4133-4141.	1.1	79
182	Semicrystalline Polyesters Based on a Novel Renewable Building Block. Macromolecules, 2012, 45, 5069-5080.	2.2	78
183	Viscosity, pH, and moisture effect in the porosity of poly(furfuryl alcohol). Journal of Applied Polymer Science, 2013, 128, 1680-1686.	1.3	24
184	Biomassâ€Based Polyols through Oxypropylation Reaction. ChemSusChem, 2012, 5, 1358-1368.	3.6	68
185	From Vegetable Oils to Polyurethanes: Synthetic Routes to Polyols and Main Industrial Products. Polymer Reviews, 2012, 52, 38-79.	5.3	423
186	Hydroxyl telechelic building blocks from fatty acid methyl esters for the synthesis of poly(ester/amide urethane)s with versatile properties. Polymer Chemistry, 2012, 3, 2583.	1.9	31
187	Synthesis of Polylactide-b-Poly (Dimethyl Siloxane) Block Copolymers and Their Blends with Pure Polylactide. Journal of Polymers and the Environment, 2012, 20, 477-484.	2.4	20
188	Synthesis and properties of regio-regular poly(2-furyloxirane) using tri-isobutyl aluminium as catalyst. Journal of Polymer Research, 2012, 19, 1.	1.2	0
189	Plasticized xyloglucan for improved toughness—Thermal and mechanical behaviour. Carbohydrate Polymers, 2012, 87, 2532-2537.	5.1	23
190	Post-crosslinking modification of thermoplastic starch/PVA blend films by using sodium hexametaphosphate. Carbohydrate Polymers, 2012, 89, 473-477.	5.1	58
191	Conversion of fructose into 5-hydroxymethylfurfural (HMF) and its derivatives promoted by inorganic salt in alcohol. Carbohydrate Research, 2012, 350, 20-24.	1.1	130
192	Low density polyethylene composites containing cellulose pulp fibers. Composites Part B: Engineering, 2012, 43, 1873-1880.	5.9	67
193	Copolymerization of glycolic, d,l-lactic and d,l-2-hydroxybutyric acid mixtures present in kraft black liquors. European Polymer Journal, 2012, 48, 774-778.	2.6	12

#	Article	IF	Citations
194	Photocrosslinkable acid urethane dimethacrylates from renewable natural oil and their use in the design of silver/gold polymeric nanocomposites. Reactive and Functional Polymers, 2012, 72, 252-259.	2.0	20
195	Chitosan–montmorillonite bio-based aerogel hybrid microspheres. Microporous and Mesoporous Materials, 2012, 152, 208-213.	2.2	57
196	Synthesis, characterization and degradation of well-defined crosslinkable aliphatic polyesters end-capped by biomesogenic units. Polymer Degradation and Stability, 2012, 97, 185-191.	2.7	2
197	Novel photocrosslinkable and biodegradable polyester from bio-renewable resource. Polymer Degradation and Stability, 2012, 97, 578-583.	2.7	18
198	Lipase/esterase-catalyzed synthesis of aliphatic polyesters via polycondensation: A review. Process Biochemistry, 2012, 47, 1027-1036.	1.8	84
199	<i>ansa</i> â€Rareâ€Earthâ€Metal Catalysts for Rapid and Stereoselective Polymerization of Renewable Methylene Methylbutyrolactones. Chemistry - A European Journal, 2012, 18, 3345-3354.	1.7	31
200	Synthesis of Renewable Bisphenols from Creosol. ChemSusChem, 2012, 5, 206-210.	3.6	80
201	Properties of Reversible Diels–Alder Furan/Maleimide Polymer Networks as Function of Crosslink Density. Macromolecular Chemistry and Physics, 2012, 213, 157-165.	1.1	130
202	Acyclic Triene Metathesis Polymerization of <i>Plukenetia Conophora</i> Oil: Branched Polymers by Direct Polymerization of Renewable Resources. Macromolecular Chemistry and Physics, 2012, 213, 87-96.	1.1	20
203	Effect of postcrosslinking modification with glutaraldehyde on the properties of thermoplastic starch/poly(vinyl alcohol) blend films. Journal of Applied Polymer Science, 2012, 124, 3774-3781.	1.3	18
204	Thermomechanical analysis of the tannins of Acacia Nilotica spp. Nilotica as a rapid tool for the evaluation of wood–based adhesives. Journal of Thermal Analysis and Calorimetry, 2012, 107, 709-716.	2.0	16
205	Dynamic mechanical and thermal properties of the composites of thermoplastic starch and lanthanum hydroxide nanoparticles. Journal of Applied Polymer Science, 2013, 127, 699-709.	1.3	7
206	Glycerol and esterified products of palmitic acid as a mixed plasticizer for thermoplastic tapioca starch. Polymer Engineering and Science, 2013, 53, 134-145.	1.5	3
207	Advances in Elastomers II. Advanced Structured Materials, 2013, , .	0.3	15
208	Structure–properties relationship of fatty acid-based thermoplastics as synthetic polymer mimics. Polymer Chemistry, 2013, 4, 5472.	1.9	183
209	Furan-based poly(esteramide)s by bulk copolycondensation. European Polymer Journal, 2013, 49, 1852-1860.	2.6	31
210	Nanocomposites of aliphatic polyesters: An overview of the effect of different nanofillers on enzymatic hydrolysis and biodegradation of polyesters. Polymer Degradation and Stability, 2013, 98, 1908-1928.	2.7	101
211	Polyurethane Prepared from Neem Oil Polyesteramides for Self-Healing Anticorrosive Coatings. Industrial & Engineering Chemistry Research, 2013, 52, 10189-10197.	1.8	100

#	Article	IF	CITATIONS
212	Sweet Solution for Sticky Problems: Chemoreological Design of Self-Adhesive Gel Materials Derived From Lipid Biofeedstocks and Adhesion Tailoring via Incorporation of Isosorbide. Macromolecules, 2013, 46, 3395-3405.	2.2	48
213	High Tg thermosetting resins from resveratrol. Polymer Chemistry, 2013, 4, 3859.	1.9	64
214	Kinetic study of Diels–Alder reaction involving in maleimide–furan compounds and linear polyurethane. Polymer Bulletin, 2013, 70, 2319-2335.	1.7	78
215	Self-healing bio-based furan polymers cross-linked with various bis-maleimides. Polymer, 2013, 54, 5351-5357.	1.8	117
216	Sustainable Poly(lactide- <i>b</i> -butadiene) Multiblock Copolymers with Enhanced Mechanical Properties. Macromolecules, 2013, 46, 7387-7398.	2.2	97
217	Sprayâ€processable thiazolothiazoleâ€based copolymers with altered donor groups and their electrochromic properties. Journal of Polymer Science Part A, 2013, 51, 3901-3906.	2.5	30
218	Synthesis of partially biobased polymer-bearing reactive epoxy groups in the side chains by radical copolymerization of limonene oxide with methyl acrylate. Polymer Bulletin, 2013, 70, 1113-1123.	1.7	10
219	Thermal and dynamic mechanical properties of bio-based poly(furfuryl alcohol)/sisal whiskers nanocomposites. Polymer Bulletin, 2013, 70, 1265-1276.	1.7	40
220	HMF derivatives as platform molecules: aqueous Baylis–Hillman reaction of glucosyloxymethyl-furfural towards new biobased acrylates. RSC Advances, 2013, 3, 17649.	1.7	23
221	The influence of the metal (Al, Cr and Co) and the substituents of the porphyrin in controlling the reactions involved in the copolymerization of propylene oxide and cyclic anhydrides by porphyrin metal(III) complexes. Polymer, 2013, 54, 2639-2646.	1.8	81
222	Poly([1,4]Dithiino[2,3â€ <i>c</i>]Furan): The Synthesis, Electrochemistry, and Optoelectronic Properties of a Furanâ€Containing Polymer. Macromolecular Rapid Communications, 2013, 34, 1330-1334.	2.0	7
223	Periodically Functionalized and Grafted Copolymers via 1:2-Sequence-Regulated Radical Copolymerization of Naturally Occurring Functional Limonene and Maleimide Derivatives. Macromolecules, 2013, 46, 5473-5482.	2.2	86
224	Linear and branched polyester resins based on dimethyl-2,5-furandicarboxylate for coating applications. European Polymer Journal, 2013, 49, 3188-3198.	2.6	58
225	Hydrophobic Polymers from Food Waste: Resources and Synthesis. Polymer Reviews, 2013, 53, 627-694.	5.3	74
226	Homogeneous modification of sugarcane bagasse with maleic anhydride in 1-butyl-3-methylimidazolium chloride without any catalysts. Industrial Crops and Products, 2013, 46, 380-385.	2.5	35
227	Solution Processable Benzooxadiazole and Benzothiadiazole Based D-A-D Molecules with Chalcogenophene: Field Effect Transistor Study and Structure Property Relationship. ACS Applied Materials & Interfaces, 2013, 5, 12460-12468.	4.0	41
228	A nonâ€phosgene process to homopolycarbonate and copolycarbonates of isosorbide using dimethyl carbonate: Synthesis, characterization, and properties. Journal of Polymer Science Part A, 2013, 51, 1387-1397.	2.5	105
231	Synthesis and photovoltaic properties of new conjugated polymers based on di(2-furyl)thiazolo[5,4-d]thiazole and benzo[1,2-b:4,5-bâ€2]dithiophene. Polymer, 2013, 54, 1098-1105.	1.8	21

#	Article	IF	CITATIONS
232	Chiral and achiral (imino)phenoxy-based cationic group 4 non-metallocene complexes as catalysts for polymerization of renewable α-methylene-γ-butyrolactones. Dalton Transactions, 2013, 42, 9263.	1.6	33
233	High strength films with gas-barrier fabricated from chitin solution dissolved at low temperature. Journal of Materials Chemistry A, 2013, 1, 1867-1874.	5.2	144
234	Highly recoverable rosin-based shape memory polyurethanes. Journal of Materials Chemistry A, 2013, 1, 3263.	5.2	87
235	Novel cellulose-based composites based on nanofibrillated plant and bacterial cellulose: recent advances at the University of Aveiro – a review. Holzforschung, 2013, 67, 603-612.	0.9	31
236	Fully Isohexide-Based Polyesters: Synthesis, Characterization, and Structure–Properties Relations. Macromolecules, 2013, 46, 384-394.	2.2	97
237	Renewable Polyols for Polyurethane Synthesis via Thiolâ€ene/yne Couplings of Plant Oils. Macromolecular Chemistry and Physics, 2013, 214, 415-422.	1.1	43
238	Catalytic Conversion of Furfural into a 2,5â€Furandicarboxylic Acidâ€Based Polyester with Total Carbon Utilization. ChemSusChem, 2013, 6, 47-50.	3.6	102
239	Green Polymer Chemistry and Bioâ€based Plastics: Dreams and Reality. Macromolecular Chemistry and Physics, 2013, 214, 159-174.	1.1	542
240	Progress in Renewable Polymers from Natural Terpenes, Terpenoids, and Rosin. Macromolecular Rapid Communications, 2013, 34, 8-37.	2.0	553
241	Synthesis and characterization of novel renewable polyesters based on 2,5â€furandicarboxylic acid and 2,3â€butanediol. Journal of Polymer Science Part A, 2013, 51, 890-898.	2.5	113
242	The study of mechanical behavior and flame retardancy of castor oil phosphate-based rigid polyurethane foam composites containing expanded graphite and triethyl phosphate. Polymer Degradation and Stability, 2013, 98, 2784-2794.	2.7	146
243	Gas transfer properties of wheat gluten coated paper adapted to eMAP of fresh parsley. Journal of Food Engineering, 2013, 119, 362-369.	2.7	13
244	Bio-based Thermosetting Polymers from Vegetable Oils. Journal of Renewable Materials, 2013, 1, 3-27.	1.1	57
245	Investigation of thermo-reversibility of polymer crosslinked by reversible covalent bonds through torque measurement. Polymer Testing, 2013, 32, 353-358.	2.3	5
246	Bio-Based Furan Polymers with Self-Healing Ability. Macromolecules, 2013, 46, 1794-1802.	2.2	304
247	Hybrid clay mineral-carbon nanotube-PLA nanocomposite films. Preparation and photodegradation effect on their mechanical, thermal and electrical properties. Applied Clay Science, 2013, 71, 49-54.	2.6	72
248	Novel fatty acid based di-isocyanates towards the synthesis of thermoplastic polyurethanes. European Polymer Journal, 2013, 49, 823-833.	2.6	142
249	Synthesis and structures of tridentate ketoiminate zinc complexes bearing trifluoromethyl substituents that act as l-lactide ring opening polymerization initiators. Dalton Transactions, 2013, 42, 5573.	1.6	44

#	Article	IF	CITATIONS
250	Controlled Polymerization of Next-Generation Renewable Monomers and Beyond. Macromolecules, 2013, 46, 1689-1712.	2.2	437
251	Reversible click chemistry at the service of macromolecular materials. Part 4: Diels–Alder non-linear polycondensations involving polyfunctional furan and maleimide monomers. Polymer Chemistry, 2013, 4, 1364-1371.	1.9	39
252	Polyterpenes by ring opening metathesis polymerization of caryophyllene and humulene. Green Chemistry, 2013, 15, 1112.	4.6	44
253	d-Glucose-derived PET copolyesters with enhanced Tg. Polymer Chemistry, 2013, 4, 3524.	1.9	55
254	Anionic polymerization of biomassâ€derived furfuryl methacrylate: Controlling polymer tacticity and thermoreversibility. Journal of Polymer Science Part A, 2013, 51, 2793-2803.	2.5	15
255	Atomic Force Microscopy Observation of Polylactide Stereocomplex Edge-On Crystals in Thin Films: Effects of Molecular Weight on Lamellar Curvature. ACS Macro Letters, 2013, 2, 355-360.	2.3	34
256	Newspaper fiber-reinforced thermoplastic starch biocomposites obtained by melt processing: Evaluation of the mechanical, thermal and water sorption properties. Industrial Crops and Products, 2013, 44, 300-305.	2.5	42
257	Fully Green Elastomer Composites. Advanced Structured Materials, 2013, , 155-181.	0.3	1
258	Synthesis and characterization of a novel rosin-based monomer: free-radical polymerization and epoxy curing. Green Materials, 2013, 1, 105-113.	1.1	15
259	Preparation and characterization of high-solid polyurethane coating systems based on vegetable oil derived polyols. Progress in Organic Coatings, 2013, 76, 1151-1160.	1.9	137
260	Preparation, characterization and biodegradability of crosslinked tea plant-fibre-reinforced polyhydroxyalkanoate composites. Polymer Degradation and Stability, 2013, 98, 1473-1480.	2.7	29
261	The furan/maleimide Diels–Alder reaction: A versatile click–unclick tool in macromolecular synthesis. Progress in Polymer Science, 2013, 38, 1-29.	11.8	576
262	Group transfer polymerization of biobased monomers. European Polymer Journal, 2013, 49, 761-767.	2.6	19
263	New copolyesters derived from terephthalic and 2,5-furandicarboxylic acids: A step forward in the development of biobased polyesters. Polymer, 2013, 54, 513-519.	1.8	136
264	Advances in selective catalytic transformation of ployols to value-added chemicals. Chinese Journal of Catalysis, 2013, 34, 492-507.	6.9	53
265	The State of the Art of Polymers from RenewableÂResources. , 2013, , 71-85.		7
266	Oligofuran-containing molecules for organic electronics. Journal of Materials Chemistry C, 2013, 1, 4358.	2.7	77
267	Synthesis and self-assembly of amphiphilic polymers based on polyoxazoline and vegetable oil derivatives. Polymer Chemistry, 2013, 4, 1445-1458.	1.9	24

#	Article	IF	CITATIONS
268	Guest-Induced Crystal-to-Crystal Transitions of Poly(<scp>l</scp> -lactide) Complexes. Journal of Physical Chemistry B, 2013, 117, 385-397.	1.2	50
269	Synthesis, Structure, and Properties of Alternating and Random Poly(styrene- <i>b</i> -butadiene) Multiblock Copolymers. Macromolecules, 2013, 46, 4529-4539.	2.2	89
270	A straightforward double coupling of furan moieties onto epoxidized triglycerides: synthesis of monomers based on two renewable resources. Green Chemistry, 2013, 15, 1514.	4.6	29
271	Effect of long-term and short-term dynamic mechanical evaluation of networks based on urethane and soybean oil. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 17, 317-326.	1.5	10
272	Synthesis, Characterization, and Cure Chemistry of Renewable Bis(cyanate) Esters Derived from 2-Methoxy-4-Methylphenol. Biomacromolecules, 2013, 14, 771-780.	2.6	84
273	Influence of the Bioâ€Based Epoxy Prepolymer Structure on Network Properties. Macromolecular Materials and Engineering, 2013, 298, 1209-1219.	1.7	27
274	Morphology, interfacial interaction, and properties of a novel bioelastomer reinforced by silica and carbon black. Journal of Applied Polymer Science, 2013, 129, 1546-1554.	1.3	20
275	Understanding the Mechanism of Polymerization of ε-Caprolactone Catalyzed by Aluminum Salen Complexes. Inorganic Chemistry, 2013, 52, 13692-13701.	1.9	76
276	Biosourced Amphiphilic Degradable Elastomers of Poly(glycerol sebacate): Synthesis and Network and Oligomer Characterization. Macromolecules, 2013, 46, 622-630.	2.2	35
277	Synthesis of polyols and polyurethanes from vegetable oils–kinetic and characterization. Journal of Polymer Research, 2013, 20, 1.	1.2	24
278	Thermoplastic polyurethanes from renewable resources: effect of soft segment chemical structure and molecular weight on morphology and final properties. Polymer International, 2013, 62, 106-115.	1.6	131
279	Vegetableâ€based buildingâ€blocks for the synthesis of thermoplastic renewable polyurethanes and polyesters. European Journal of Lipid Science and Technology, 2013, 115, 61-75.	1.0	41
280	Tensile Strength and Water Absorption Behavior of Recycled Jute-Epoxy Composites. Journal of Renewable Materials, 2013, 1, 279-288.	1.1	14
281	Phase behavior, interaction and properties of acetic acid lignin-containing polyurethane films coupled with aminopropyltriethoxy silane. EXPRESS Polymer Letters, 2013, 7, 443-455.	1.1	22
282	Preparation and Characterization of Novel Naturally Renewable Resin Acid Based Monomer. Advanced Materials Research, 0, 712-715, 139-146.	0.3	3
283	Vegetable oil-derived epoxy monomers and polymer blends: A comparative study with review. EXPRESS Polymer Letters, 2013, 7, 272-292.	1.1	145
284	Thermoreversible nonlinear dielsâ€alder polymerization of furan/plant oil monomers. Journal of Polymer Science Part A, 2013, 51, 2260-2270.	2.5	43
285	Tunable Thermoresponsive Pyrrolidoneâ€Based Polymers from Pyroglutamic Acid, a Bioâ€Derived Resource. Macromolecular Rapid Communications, 2013, 34, 447-451.	2.0	8

# 287	ARTICLE Renewable source-based polyurethane coatings by using monoglycerides of vegetable oils and its modification by nano TiO ₂ . Pigment and Resin Technology, 2013, 42, 353-361.	IF 0.5	Citations 9
288	The Influence of Heat Treatment on the Properties of Breeding Bio-Container. Applied Mechanics and Materials, 0, 341-342, 119-123.	0.2	0
289	Renewable rosin fatty acid polyesters: the effect of backbone structure on thermal properties. Green Materials, 2013, 1, 96-104.	1.1	11
290	Anticandidal activity of cobalt containing sunflower oilâ€based polymer. Polymer Engineering and Science, 2013, 53, 2650-2658.	1.5	3
291	Thermoplastic Starch-based Composites Reinforced with Rape Fibers: Water Uptake and Thermomechanical Properties. BioResources, 2013, 8, .	0.5	16
292	Stability of SG1 nitroxide towards unprotected sugar and lithium salts: a preamble to cellulose modification by nitroxide-mediated graft polymerization. Beilstein Journal of Organic Chemistry, 2013, 9, 1589-1600.	1.3	6
293	Combination of Esterified Kraft Lignin and MAPE as Coupling Agent for Bark/HDPE Composites. Journal of Materials Science Research, 2013, 3, .	0.1	2
294	Synthesis and Characterization of All Renewable Resources Based Branched Polyester: <i>Poly</i> (2,5-furandicarboxylic acid- <i>co</i> glycerol). ISRN Polymer Science, 2013, 2013, 1-4.	0.3	15
295	Preparation and Structural Properties of Free Films from Rapeseed Oil-Based Rigid Polyurethane-Montmorillonite Nanocomposites. International Journal of Polymer Science, 2013, 2013, 1-8.	1.2	13
296	Nanoparticles from renewable polymers. Frontiers in Chemistry, 2014, 2, 49.	1.8	82
297	Rheological Behaviour of Dehydrated Castor Oil Epoxy (Dcoe) Blend with Polymethylmethacrylate (Pmma). Polymers From Renewable Resources, 2014, 5, 91-98.	0.8	0
298	Furans. , 2014, , 93-110.		7
299	Synthesis and characterization of fully biobased aromatic polyols – oxybutylation of condensed tannins towards new macromolecular architectures. RSC Advances, 2014, 4, 61564-61572.	1.7	27
300	Electronic Properties of Amyloid βâ€Based Peptide Filaments with Different Nonâ€Natural Heterocyclic Side Chains. Israel Journal of Chemistry, 2014, 54, 703-707.	1.0	15
301	Lipidic polyols using thiolâ€ene/yne strategy for crosslinked polyurethanes. Journal of Polymer Science Part A, 2014, 52, 1597-1606.	2.5	23
302	Aerobic Oxidation of Hydroxymethylfurfural and Furfural by Using Heterogeneous Co _{<i>x</i>} O _{<i>y</i>} –N@C Catalysts. ChemSusChem, 2014, 7, 3334-3340.	3.6	104
303	Carbonyldiimidazoleâ€accelerated efficient cure of epoxidized soybean oil with dicyandiamide. Journal of Polymer Science Part A, 2014, 52, 375-382.	2.5	16
304	Diglycerolâ€Based Polyesters: Melt Polymerization with Hydrophobic Anhydrides. ChemSusChem, 2014, 7, 2923-2929.	3.6	43

#	Article	IF	CITATIONS
305	Elaboration of novel biosourced AA-BB polyamides with dangling chains from methyl ricinoleate. European Journal of Lipid Science and Technology, 2014, 116, n/a-n/a.	1.0	7
307	Surfactant-Free Miniemulsion Polymerization of a Bio-Based Oleic Acid Derivative Monomer. Macromolecular Reaction Engineering, 2014, 8, 434-441.	0.9	13
308	Effect of irradiation on the composition and thermal properties of softwood kraft lignin and styrene grafted lignin. Journal of Applied Polymer Science, 2014, 131, .	1.3	21
309	Rigid Polyurethane Foam Thermal Insulation Protected with Mineral Intumescent Mat. Autex Research Journal, 2014, 14, 259-269.	0.6	48
310	Dual guar/ionic liquid gels and biohybrid material thereof: Rheological investigation. Carbohydrate Polymers, 2014, 102, 932-940.	5.1	11
311	Applying the Principles of Green Chemistry to Polymer Production Technology. Macromolecular Reaction Engineering, 2014, 8, 7-28.	0.9	132
312	Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomaterialia, 2014, 10, 1692-1704.	4.1	452
313	Streamlining the conversion of biomass to polyesters: bicyclic monomers with continuous flow. Green Chemistry, 2014, 16, 1774-1783.	4.6	23
314	Eco-friendly preparation of 5-hydroxymethylfurfural from sucrose using ion-exchange resins. Chemical Engineering Science, 2014, 109, 244-250.	1.9	27
315	Thermoâ€Mechanical and Antibacterial Properties of Soybean Oilâ€Based Cationic Polyurethane Coatings: Effects of Amine Ratio and Degree of Crosslinking. Macromolecular Materials and Engineering, 2014, 299, 1042-1051.	1.7	39
316	Investigation on hydrophobic modification of bamboo flour surface by means of atom transfer radical polymerization method. Wood Science and Technology, 2014, 48, 289-299.	1.4	13
317	Renewable Source Based Nonâ€biodegradable Polyurethane Coatings from Polyesteramide Prepared in Oneâ€Pot Using Oleic Acid. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 1055-1063.	0.8	23
318	αâ€Oligofurans: An Emerging Class of Conjugated Oligomers for Organic Electronics. Angewandte Chemie - International Edition, 2014, 53, 2546-2555.	7.2	155
319	Synthesis of waterâ€soluble allylâ€functionalized oligochitosan and its modification by thiol–ene addition in water. Journal of Polymer Science Part A, 2014, 52, 39-48.	2.5	29
320	A novel transesterification system to rapidly synthesize cellulose aliphatic esters. Cellulose, 2014, 21, 581-594.	2.4	26
322	Dinuclear Zinc–Nâ€Heterocyclic Carbene Complexes for Either the Controlled Ringâ€Opening Polymerization of Lactide or the Controlled Degradation of Polylactide Under Mild Conditions. ChemCatChem, 2014, 6, 1357-1367.	1.8	33
324	The role of catalysis in the synthesis of polyurethane foams based on renewable raw materials. Catalysis Today, 2014, 223, 148-156.	2.2	69
326	Water-soluble hemicelluloses for high humidity applications – enzymatic modification of xyloglucan for mechanical and oxygen barrier properties. Green Chemistry, 2014, 16, 1904-1910.	4.6	34

#	Article	IF	CITATIONS
327	Thermoplastic polyurethane elastomers from bio-based poly(δ-decalactone) diols. Polymer Chemistry, 2014, 5, 3231-3237.	1.9	49
328	Integration of renewable cellulose and rosin towards sustainable copolymers by "grafting from― ATRP. Green Chemistry, 2014, 16, 1854.	4.6	78
329	Aliphatic Polyester Block Polymers: Renewable, Degradable, and Sustainable. Accounts of Chemical Research, 2014, 47, 2390-2396.	7.6	496
330	A Highâ€Performance Renewable Thermosetting Resin Derived from Eugenol. ChemSusChem, 2014, 7, 1964-1969.	3.6	88
331	Characterization and bacterial adhesion of chitosan-perfluorinated acid films. Colloids and Surfaces B: Biointerfaces, 2014, 114, 201-208.	2.5	3
332	Renewable β-methylstyrenes for bio-based heat-resistant styrenic copolymers: radical copolymerization enhanced by fluoroalcohol and controlled/living copolymerization by RAFT. Polymer Chemistry, 2014, 5, 3182-3189.	1.9	40
333	Sustainable route to methyl-9-hydroxononanoate (polymer precursor) by oxidative cleavage of fatty acid methyl ester from rapeseed oil. Green Chemistry, 2014, 16, 96-101.	4.6	31
334	Sustainable cycloolefin polymer from pine tree oil for optoelectronics material: living cationic polymerization of β-pinene and catalytic hydrogenation of high-molecular-weight hydrogenated poly(β-pinene). Polymer Chemistry, 2014, 5, 3222-3230.	1.9	79
335	Thermoplastic shape-memory polyurethanes based on natural oils. Smart Materials and Structures, 2014, 23, 025033.	1.8	31
336	Matrices from vegetable oils, cashew nut shell liquid, and other relevant systems for biocomposite applications. Green Chemistry, 2014, 16, 1700-1715.	4.6	92
337	Homogeneous catalysis for the conversion of biomass and biomass-derived platform chemicals. Catalysis Science and Technology, 2014, 4, 1174-1196.	2.1	267
338	Sustainable thermoplastic elastomers derived from renewable cellulose, rosin and fatty acids. Polymer Chemistry, 2014, 5, 3170.	1.9	81
339	Bioplastics for Food Packaging. , 2014, , 353-368.		29
340	Organocatalysis in biorefining for biomass conversion and upgrading. Green Chemistry, 2014, 16, 964-981.	4.6	92
341	Polymerization of Nonfood Biomass-Derived Monomers to Sustainable Polymers. Topics in Current Chemistry, 2014, 353, 185-227.	4.0	10
342	Synthesis of Novel Sustainable Oligoamides Via Ringâ€Opening Polymerization of Lactams Based on (â^')â€Menthone. Macromolecular Chemistry and Physics, 2014, 215, 1654-1660.	1.1	39
343	At <scp>MYB</scp> 41 activates ectopic suberin synthesis and assembly in multiple plant species and cell types. Plant Journal, 2014, 80, 216-229.	2.8	172
344	Synthesis and Modifications of Epoxy Resins and Their Composites: A Review. Polymer-Plastics Technology and Engineering, 2014, 53, 1723-1758.	1.9	155

#	Article	IF	CITATIONS
345	Bio-based PBT copolyesters derived fromd-glucose: influence of composition on properties. Polymer Chemistry, 2014, 5, 3190-3202.	1.9	54
346	Facile and Efficient Synthesis of Cyclic Anhydrides from Dicarboxylic Acids. ACS Catalysis, 2014, 4, 3586-3589.	5.5	36
347	Valorization of Biorefinery Side-Stream Products: Combination of Humins with Polyfurfuryl Alcohol for Composite Elaboration. ACS Sustainable Chemistry and Engineering, 2014, 2, 2182-2190.	3.2	85
348	Synthesis and structures of bis-ligated zinc complexes supported by tridentate ketoimines that initiate <scp>l</scp> -lactide polymerization. Dalton Transactions, 2014, 43, 16498-16508.	1.6	36
349	Synthesis, Functionalization, and Controlled Degradation of High Molecular Weight Polyester from Itaconic Acid via ADMET Polymerization. Macromolecules, 2014, 47, 7707-7716.	2.2	84
350	Synthesis, characterization and properties of a bio-based elastomer: polymyrcene. RSC Advances, 2014, 4, 61343-61354.	1.7	98
351	Marriage of Furans and Vegetable Oils through Click Chemistry for the Preparation of Macromolecular Materials. Journal of Renewable Materials, 2014, 2, 2-12.	1.1	10
352	Synthesis of β-methyl-α-methylene-γ-butyrolactone from biorenewable itaconic acid. Organic Chemistry Frontiers, 2014, 1, 230.	2.3	37
353	High-speed organocatalytic polymerization of a renewable methylene butyrolactone by a phosphazene superbase. Polymer Chemistry, 2014, 5, 3261.	1.9	26
354	Nanomechanical properties of poly(trimethylene malonate) and poly(trimethylene itaconate) during hydrolytic degradation. Journal of Applied Polymer Science, 2014, 131, .	1.3	1
355	Bio-based chemicals from biorefining: lignin conversion and utilisation. , 2014, , 659-692.		15
356	Synthesis and Characterization of Poly(arylene ether sulfone) Kraft Lignin Heat Stable Copolymers. ACS Sustainable Chemistry and Engineering, 2014, 2, 264-271.	3.2	41
357	Optimizing the Performance of Conjugated Polymers in Organic Photovoltaic Cells by Traversing Group 16. Macromolecules, 2014, 47, 7253-7271.	2.2	162
358	Polyglyoxylates: A Versatile Class of Triggerable Self-Immolative Polymers from Readily Accessible Monomers. Journal of the American Chemical Society, 2014, 136, 10116-10123.	6.6	130
359	Preparing, Characterizing, and Evaluating Ammoniated Lignin Diesel from Papermaking Black Liquor. Energy & Fuels, 2014, 28, 3957-3963.	2.5	8
360	Recent Developments on Biobased Curing Agents: A Review of Their Preparation and Use. ACS Sustainable Chemistry and Engineering, 2014, 2, 2217-2236.	3.2	187
361	From fatty acid and lactone biobased monomers toward fully renewable polymer latexes. Journal of Polymer Science Part A, 2014, 52, n/a-n/a.	2.5	9
362	A formaldehyde-free binder for engineered wood products. Green Materials, 2014, 2, 2-10.	1.1	4

#	Article	IF	CITATIONS
363	Development of anticorrosive two pack polyurethane coatings based on modified fatty amide of Azadirachta indica Juss oil cured at room temperature – a sustainable resource. RSC Advances, 2014, 4, 17866-17872.	1.7	36
364	Original polyols based on organosolv lignin and fatty acids: new bio-based building blocks for segmented polyurethane synthesis. Green Chemistry, 2014, 16, 3958-3970.	4.6	126
365	Unusual C–C Bond Cleavage in the Formation of Amine-Bis(phenoxy) Group 4 Benzyl Complexes: Mechanism of Formation and Application to Stereospecific Polymerization. Organometallics, 2014, 33, 4118-4130.	1.1	10
366	Conversion of lactides into ethyl lactates and value-added products. Tetrahedron Letters, 2014, 55, 5286-5289.	0.7	29
368	Fractional Precipitation of Softwood Kraft Lignin: Isolation of Narrow Fractions Common to a Variety of Lignins. ACS Sustainable Chemistry and Engineering, 2014, 2, 959-968.	3.2	167
369	The use of hotâ€melt extruded corn starch matrices as drug carrier systems: A thermophysical characterization. Starch/Staerke, 2014, 66, 923-933.	1.1	2
370	Thermal behaviour of bis-benzoxazines derived from renewable feed stock 'vanillin'. Polymer Degradation and Stability, 2014, 109, 270-277.	2.7	56
371	An efficient and stable star-shaped plasticizer for starch: cyclic phosphazene with hydrogen bonding aminoethoxy ethanol side chains. Green Chemistry, 2014, 16, 4339-4350.	4.6	23
372	Polylactic Acid with Improved Heat Deflection Temperatures and Self-Healing Properties for Durable Goods Applications. ACS Applied Materials & Interfaces, 2014, 6, 18511-18516.	4.0	52
373	Modulation of furanic-sulfonated isophthalic copolyesters properties through diols units control. European Polymer Journal, 2014, 58, 207-217.	2.6	22
374	Partially biobased polyamphiphile-bearing reactive epoxy groups in the side chains and its application to the hydrogel. Polymer Bulletin, 2014, 71, 2421-2435.	1.7	8
375	Coordinative Chain Transfer Copolymerization and Terpolymerization of Conjugated Dienes. Macromolecules, 2014, 47, 4538-4547.	2.2	74
376	One-pot synthesis of biofoams from castor oil and cellulose microfibers for energy absorption impact materials. Cellulose, 2014, 21, 1723-1733.	2.4	12
377	Recent synthetic approaches and emerging bioâ€inspired strategies for the development of sustainable pressureâ€sensitive adhesives derived from renewable building blocks. Journal of Applied Polymer Science, 2014, 131, .	1.3	74
378	Novel catalysts for valorization of biomass to value-added chemicals and fuels. Journal of Chemical Sciences, 2014, 126, 403-413.	0.7	34
379	Biobased Thermosets. , 2014, , 577-622.		20
381	New prospects for the synthesis of N-alkyl phosphonate/phosphonic acid-bearing oligo-chitosan. RSC Advances, 2014, 4, 24042-24052.	1.7	27
382	Sustainable polymer latexes based on linoleic acid for coatings applications. Progress in Organic Coatings, 2014, 77, 1709-1714.	1.9	31

#	Article	IF	CITATIONS
383	Poly(mono-, bi- or trifuran): effect of oligomer chain length on the electropolymerization performances and polymer properties. RSC Advances, 2014, 4, 14001-14012.	1.7	32
384	Do bacterial cellulose membranes have potential in drug-delivery systems?. Expert Opinion on Drug Delivery, 2014, 11, 1113-1124.	2.4	66
385	Polymerization and curing kinetics of furan resins under conventional and microwave heating. Thermochimica Acta, 2014, 581, 92-99.	1.2	33
386	Synthesis and application of novel UV-curable hyperbranched methacrylates from renewable natural tannic acid. Progress in Organic Coatings, 2014, 77, 30-37.	1.9	63
387	Ageing of clay and clay–tannin geomaterials for building. Construction and Building Materials, 2014, 61, 114-119.	3.2	27
388	Novel semi-IPN based on crosslinked carboxymethyl starch and clay for the in vitro release of theophylline. International Journal of Biological Macromolecules, 2014, 67, 238-245.	3.6	26
389	Integration of lignin and acrylic monomers towards grafted copolymers by free radical polymerization. International Journal of Biological Macromolecules, 2014, 67, 483-489.	3.6	48
390	Naturally occurring phenolic sources: monomers and polymers. RSC Advances, 2014, 4, 21712-21752.	1.7	226
391	Bio-based bisfuran: synthesis, crystal structure, and low molecular weight amorphous polyester. Tetrahedron Letters, 2014, 55, 4141-4145.	0.7	15
392	Preparation of polyurethane foams using fractionated products in liquefied wood. Journal of Applied Polymer Science, 2014, 131, .	1.3	25
393	Attenuated Total Reflection Mid-Infrared (ATR-MIR) Spectroscopy and Chemometrics for the Identification and Classification of Commercial Tannins. Applied Spectroscopy, 2015, 69, 1243-1250.	1.2	24
396	From Epoxidized Linseed Oil to Bioresin: An Overall Approach of Epoxy/Anhydride Cross‣inking. ChemSusChem, 2015, 8, 1232-1243.	3.6	79
397	Preparation and Characterization of Fully Furanâ€Based Renewable Thermosetting Epoxyâ€Amine Systems. Macromolecular Chemistry and Physics, 2015, 216, 1441-1446.	1.1	66
398	Renewable Polymers Prepared from Vanillin and Its Derivatives. Macromolecular Chemistry and Physics, 2015, 216, 1816-1822.	1.1	61
399	Copolymerization as a Strategy to Combine Epoxidized Linseed Oil and Furfuryl Alcohol: The Design of a Fully Bioâ€Based Thermoset. ChemSusChem, 2015, 8, 4149-4161.	3.6	40
400	Efficient conversion of carbohydratesto ethoxymethylfurfural and levulinic acid ethyl ester under the catalysis of recyclable DMSO/BrÃ,nsted acids. Starch/Staerke, 2015, 67, 765-771.	1.1	17
401	Multifunctional Amphiphilic Nanoparticles Featuring (Bio)Degradable Core and Dualâ€Responsive Shell as Biomedical Platforms for Controlled Release. Macromolecular Chemistry and Physics, 2015, 216, 2287-2301.	1.1	7
402	Recent Progress in Sustainable Polymers Obtained from Cyclic Terpenes: Synthesis, Properties, and Application Potential. ChemSusChem, 2015, 8, 2455-2471.	3.6	138

#	Article	IF	CITATIONS
403	Organocatalytic Polymerization of Furfuryl Methacrylate and Postâ€Diels–Alder Click Reaction to Crossâ€Linked Materials. Macromolecular Chemistry and Physics, 2015, 216, 1421-1430.	1.1	17
404	Biobased Aliphatic Polyesters with DOPO Substituents for Enhanced Flame Retardancy. Macromolecular Chemistry and Physics, 2015, 216, 1447-1461.	1.1	20
405	Green and energy-efficient methods for the production of metallic nanoparticles. Beilstein Journal of Nanotechnology, 2015, 6, 2354-2376.	1.5	48
406	Mechanical Retention and Waterproof Properties of Bacterial Cellulose-Reinforced Thermoplastic Starch Biocomposites Modified with Sodium Hexametaphosphate. Materials, 2015, 8, 3168-3194.	1.3	10
407	Liquefied Wood as Inexpensive Precursor-Feedstock for Bio-Mediated Incorporation of (R)-3-Hydroxyvalerate into Polyhydroxyalkanoates. Materials, 2015, 8, 6543-6557.	1.3	37
408	Comparison of Precipitated Calcium Carbonate/Polylactic Acid and Halloysite/Polylactic Acid Nanocomposites. Journal of Nanomaterials, 2015, 2015, 1-11.	1.5	16
409	High bio-content polyurethane composites with urethane modified lignin as filler. Polymer, 2015, 69, 52-57.	1.8	105
410	A new route to polymeric materials derived from chitosan and natural rubber. Polymer Bulletin, 2015, 72, 2311-2330.	1.7	8
411	Poly(α-methylene-γ-valerolactone) 1. Sustainable monomer synthesis and radical polymerization studies. Polymer, 2015, 74, 262-271.	1.8	27
412	Synergistic Effects of Nucleating Agents and Plasticizers on the Crystallization Behavior of Poly(lactic acid). Molecules, 2015, 20, 1579-1593.	1.7	96
413	Controlled/living polymerization of renewable vinyl monomers into bio-based polymers. Polymer Journal, 2015, 47, 527-536.	1.3	98
414	Oxyalkylation of gambier tannin—Synthesis and characterization of ensuing biobased polyols. Industrial Crops and Products, 2015, 67, 295-304.	2.5	42
415	Synthesis of Bio-Based Poly(lactic acid-co-10-hydroxy decanoate) Copolymers with High Thermal Stability and Ductility. Polymers, 2015, 7, 468-483.	2.0	15
416	Smart chemical design incorporating umbelliferone as natural renewable resource toward the preparation of thermally stable thermosets materials based on benzoxazine chemistry. RSC Advances, 2015, 5, 97855-97861.	1.7	40
417	Green process for green materials: viable low-temperature lipase-catalysed synthesis of renewable telechelics in supercritical CO ₂ . Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20150073.	1.6	13
418	Photodegradation of Polyurethane Foam Obtained from Renewable Resource–Pulp Production Byproducts. Journal of Renewable Materials, 2015, 3, 19-27.	1.1	16
419	Multi-scale thermal stability of a hard thermoplastic protein-based material. Nature Communications, 2015, 6, 8313.	5.8	54
420	Synthesis of Fatty Acid-Based Polyesters and Their Blends with Poly(<scp> </scp> -lactide) as a Way To Tailor PLLA Toughness. ACS Sustainable Chemistry and Engineering, 2015, 3, 283-292.	3.2	58

#	Article	IF	CITATIONS
421	Thermophysical properties and biodegradation behavior of green composites made from polyhydroxybutyrate and potato peel waste fermentation residue. Industrial Crops and Products, 2015, 69, 91-103.	2.5	129
422	Photoinduced Development of Antibacterial Materials Derived from Isosorbide Moiety. Biomacromolecules, 2015, 16, 683-694.	2.6	33
423	Nanoporous Poly(Melamine Formaldehyde) Networks by Aqueous Dispersion Polycondensation—Synthesis and Adsorption Properties. Macromolecular Materials and Engineering, 2015, 300, 531-541.	1.7	13
424	From monomers to polymers from renewable resources: Recent advances. Progress in Polymer Science, 2015, 48, 1-39.	11.8	530
425	From Lignocellulosic Biomass to Furans via 5â€Acetoxymethylfurfural as an Alternative to 5â€Hydroxymethylfurfural. ChemSusChem, 2015, 8, 1179-1188.	3.6	45
426	Suberin: biosynthesis, regulation, and polymer assembly of a protective extracellular barrier. Plant Cell Reports, 2015, 34, 573-586.	2.8	225
427	UVâ€Absorbent Ligninâ€Based Multiâ€Arm Star Thermoplastic Elastomers. Macromolecular Rapid Communications, 2015, 36, 398-404.	2.0	96
428	Biobased Polyurethanes Prepared from Different Vegetable Oils. ACS Applied Materials & Interfaces, 2015, 7, 1226-1233.	4.0	264
429	Robust Amidation Transformation of Plant Oils into Fatty Derivatives for Sustainable Monomers and Polymers. Macromolecules, 2015, 48, 1320-1328.	2.2	90
430	Well-defined oligosaccharides by mild acidic hydrolysis of hemicelluloses. European Polymer Journal, 2015, 66, 190-197.	2.6	34
431	Biodegradation of Polymers (Bioassimilation, Biomineralization, Biodisintegration, Compost), Overview. , 2015, , 155-160.		1
432	Green chemistry for the cross-linking of photo-sensitive furan modified gelatin. Materials Letters, 2015, 160, 142-145.	1.3	15
433	Preparation of graphene oxide/bio-based elastomer nanocomposites through polymer design and interface tailoring. Polymer Chemistry, 2015, 6, 6140-6151.	1.9	33
434	Effect of donor strength of extended alkyl auxiliary groups on optoelectronic and charge transport properties of novel naphtha[2,1-b:6,5-b′]difuran derivatives: simple yet effective strategy. Journal of Molecular Modeling, 2015, 21, 199.	0.8	13
435	Biobased copolyesters from renewable resources: synthesis and crystallization behavior of poly(decamethylene sebacate-co-isosorbide sebacate). RSC Advances, 2015, 5, 42777-42788.	1.7	32
436	Development of PU Coatings from Neem Oil Based Alkyds Prepared by the Monoglyceride Route. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 733-741.	0.8	27
437	Corn starch-based graft copolymers prepared via ATRP at the molecular level. Polymer Chemistry, 2015, 6, 3480-3488.	1.9	54
438	Structure and Thermal Properties of Polyurethanes Synthesized from Cardanol Diol. Journal of Polymers and the Environment, 2015, 23, 216-226.	2.4	21

#	Article	IF	CITATIONS
439	New Copolyesters Containing Aliphatic and Bio-Based Furanic Units by Bulk Copolycondensation. Journal of Macromolecular Science - Pure and Applied Chemistry, 2015, 52, 365-373.	1.2	20
440	Furan–chitosan hydrogels based on click chemistry. Iranian Polymer Journal (English Edition), 2015, 24, 349-357.	1.3	20
443	Copolymerization of Limonene with <i>n</i> â€Butyl Acrylate. Macromolecular Reaction Engineering, 2015, 9, 339-349.	0.9	27
444	Thermal Degradation of Bio-nanocomposites. Engineering Materials, 2015, , 221-245.	0.3	3
445	Conducting polyfurans by electropolymerization of oligofurans. Chemical Science, 2015, 6, 360-371.	3.7	66
446	Synthesis and characterization of biobased polyurethane/SiO ₂ nanocomposites from natural Sapium sebiferum oil. RSC Advances, 2015, 5, 27097-27106.	1.7	28
447	Redefining biorefinery: the search for unconventional building blocks for materials. Chemical Society Reviews, 2015, 44, 5821-5835.	18.7	247
448	Synthesis and properties of a bio-based epoxy resin from 2,5-furandicarboxylic acid (FDCA). RSC Advances, 2015, 5, 15930-15939.	1.7	148
449	N-(furfural) chitosan hydrogels based on Diels–Alder cycloadditions and application as microspheres for controlled drug release. Carbohydrate Polymers, 2015, 128, 220-227.	5.1	71
450	Thermal Degradation of Polymer Blends, Composites and Nanocomposites. Engineering Materials, 2015, , .	0.3	17
451	Biobased Polymers. , 2015, , 118-124.		1
452	Synthesis and degradability of copolyesters of 2, 5-furandicarboxylic acid, lactic acid, and ethylene glycol. Polymer Degradation and Stability, 2015, 121, 100-104.	2.7	35
453	Design and preparation of natural layered silicate/bio-based elastomer nanocomposites with improved dispersion and interfacial interaction. Polymer, 2015, 79, 1-11.	1.8	29
454	Foamed lignin–silicone bio-composites by extrusion and then compression molding. Green Chemistry, 2015, 17, 4647-4656.	4.6	34
455	Polyesters derived from bio-based eugenol and 10-undecenoic acid: synthesis, characterization, and structure–property relationships. RSC Advances, 2015, 5, 85996-86005.	1.7	17
456	Bioadhesives: Chemistry and Mode of Operation. , 2015, , 98-105.		0
457	7. Bio-sourced polyolefins. , 2015, , 165-196.		1
458	Hydrolytic and enzymatic degradation of flexible polymer networks comprising fatty acid derivatives. Polymer Degradation and Stability, 2015, 120, 368-376.	2.7	18

#	Article	IF	CITATIONS
459	New insights into synthesis and oligomerization of ε-lactams derived from the terpenoid ketone (â^')-menthone. RSC Advances, 2015, 5, 77699-77705.	1.7	25
460	Direct copolycondensation of biobased elastomers based on lactic acid with tunable and versatile properties. Polymer Chemistry, 2015, 6, 8112-8123.	1.9	37
461	Organopolymerization of naturally occurring Tulipalin B: a hydroxyl-functionalized methylene butyrolactone. Organic Chemistry Frontiers, 2015, 2, 1625-1631.	2.3	12
462	Solvothermal liquefaction of microalgal Tetraselmis sp. biomass to prepare biopolyols by using PEG#400-blended glycerol. Algal Research, 2015, 12, 539-544.	2.4	31
463	Furan-bridged thiazolo [5,4-d]thiazole based D–π–A–π–D type linear chromophore for solution-processed bulk-heterojunction organic solar cells. RSC Advances, 2015, 5, 6286-6293.	1.7	22
464	Hydrogel synthesis by aqueous Dielsâ€Alder reaction between furan modified methacrylate and polyetheramineâ€based bismaleimides. Journal of Polymer Science Part A, 2015, 53, 699-708.	2.5	27
465	Novel vanillic acid-based poly(ether–ester)s: from synthesis to properties. Polymer Chemistry, 2015, 6, 797-804.	1.9	43
466	Isoselective 3,4-(co)polymerization of bio-renewable myrcene using NSN-ligated rare-earth metal precursor: an approach to a new elastomer. Chemical Communications, 2015, 51, 1039-1041.	2.2	77
467	Chitosan as a Sustainable Organocatalyst: A Concise Overview. ChemSusChem, 2015, 8, 217-244.	3.6	193
468	Semiâ€Aromatic Polyesters Based on a Carbohydrateâ€Derived Rigid Diol for Engineering Plastics. ChemSusChem, 2015, 8, 67-72.	3.6	46
469	NaOH catalyzed condensation reactions between levulinic acid and biomass derived furan-aldehydes in water. Industrial Crops and Products, 2015, 65, 546-549.	2.5	63
470	Hydrogels from dextran and soybean oil by UV photoâ€polymerization. Journal of Applied Polymer Science, 2015, 132, .	1.3	20
471	Synthesis and characterization of copolyanhydrides of carbohydrate-based galactaric acid and adipic acid. Carbohydrate Research, 2015, 402, 102-110.	1.1	10
472	Polymers Extracted from Biomass. , 2016, , .		1
473	Composite Coatings Based on Renewable Resources Synthesized by Advanced Laser Techniques. , 2016, , .		1
474	Chemicals From Renewable Sources. , 2016, , .		3
475	Optimized Synthesis According to One-Step Process of a Biobased Thermoplastic Polyacetal Derived from Isosorbide. Polymers, 2016, 8, 294.	2.0	11
476	Extrudability and Consolidation of Blends between CGM and DDGS. Advances in Materials Science and Engineering, 2016, 2016, 1-11.	1.0	1

#	Article	IF	CITATIONS
477	Microbial Production of Short Chain Fatty Acids from Lignocellulosic Biomass: Current Processes and Market. BioMed Research International, 2016, 2016, 1-15.	0.9	84
478	Enzymatic Synthesis of Biobased Polyesters and Polyamides. Polymers, 2016, 8, 243.	2.0	181
479	Bio-Based Polymers with Potential for Biodegradability. Polymers, 2016, 8, 262.	2.0	190
480	Sustainable Phenolic Fractions as Basis for Furfuryl Alcohol-Based Co-Polymers and Their Use as Wood Adhesives. Polymers, 2016, 8, 396.	2.0	34
481	Modelling Degradative Chain Transfer in <i>d</i> ‣imonene/2â€Ethylhexyl Acrylate Freeâ€Radical Copolymerization. Macromolecular Symposia, 2016, 360, 185-191.	0.4	3
482	Sustainable Chiral Polyamides with High Melting Temperature via Enhanced Anionic Polymerization of a Menthone-Derived Lactam. Macromolecular Rapid Communications, 2016, 37, 851-857.	2.0	39
483	Chitin Nanofibers as Reinforcing and Antimicrobial Agents in Carboxymethyl Cellulose Films: Influence of Partial Deacetylation. ACS Sustainable Chemistry and Engineering, 2016, 4, 4385-4395.	3.2	116
484	Semiâ€aromatic polyimide/Ag nanocomposite derived from vanillin. Journal of Applied Polymer Science, 2016, 133, .	1.3	8
485	Improvement of the mechanical behavior of bioplastic poly(lactic acid)/polyamide blends by reactive compatibilization. Journal of Applied Polymer Science, 2016, 133, .	1.3	44
486	An environmental application of functionalized chitosan: enhancement of the separation of the solid and liquid fractions of digestate from anaerobic digestion. Pure and Applied Chemistry, 2016, 88, 1155-1166.	0.9	4
488	Solid "Green" Polyurethanes Based on Rapeseed Oil Polyol and Modified with Glycerol and Microcellulose. Journal of Renewable Materials, 2016, 4, 266-274.	1.1	1
489	Biomass trans-anethole-based heat-resistant copolymer microspheres: Preparation and thermostability. Materials Today Communications, 2016, 9, 60-66.	0.9	11
490	Vegetable oils: a source of polyols for polyurethane materials. OCL - Oilseeds and Fats, Crops and Lipids, 2016, 23, D508.	0.6	53
491	Synthesis of renewable isosorbide-based monomer and preparation of the corresponding thermosets. Chinese Chemical Letters, 2016, 27, 875-878.	4.8	12
492	A facile and green route to terpene derived acrylate and methacrylate monomers and simple free radical polymerisation to yield new renewable polymers and coatings. Polymer Chemistry, 2016, 7, 2882-2887.	1.9	80
493	Preparation and properties of a novel bioâ€based and nonâ€crystalline engineering elastomer with high lowâ€temperature and oil resistance. Journal of Applied Polymer Science, 2016, 133, .	1.3	4
494	Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydrate Polymers, 2016, 150, 330-352.	5.1	248
495	Synthesis of an intrinsically flame retardant bio-based benzoxazine resin. Polymer, 2016, 97, 418-427.	1.8	62

#	Article	IF	CITATIONS
496	Sulfurâ€Limonene Polysulfide: A Material Synthesized Entirely from Industrial Byâ€Products and Its Use in Removing Toxic Metals from Water and Soil. Angewandte Chemie - International Edition, 2016, 55, 1714-1718.	7.2	240
497	Sulfurâ€Limonene Polysulfide: A Material Synthesized Entirely from Industrial Byâ€Products and Its Use in Removing Toxic Metals from Water and Soil. Angewandte Chemie, 2016, 128, 1746-1750.	1.6	29
498	Efficient and quantitative chemical transformation of vegetable oils to polyols through a thiol-ene reaction for thermoplastic polyurethanes. Industrial Crops and Products, 2016, 87, 78-88.	2.5	68
499	Acid catalyzed condensation of levulinic acid with glyoxylic acid: synthesis of 1-methyl-2,8-dioxabicyclo[3.3.0]oct-4-ene-3,7-dione. Tetrahedron Letters, 2016, 57, 2598-2600.	0.7	14
500	In Situ Nanofibrillar Networks Composed of Densely Oriented Polylactide Crystals as Efficient Reinforcement and Promising Barrier Wall for Fully Biodegradable Poly(butylene succinate) Composite Films. ACS Sustainable Chemistry and Engineering, 2016, 4, 2887-2897.	3.2	43
501	Isomerization-hydroboration-oxidation strategy: Access to long chain AB- and AA-type oleyl based monomers and polymers thereof. European Journal of Lipid Science and Technology, 2016, 118, 1620-1629.	1.0	3
502	Synthesis of reduction sensitive combâ€ŀike polyurethanes using click chemistry. Journal of Polymer Science Part A, 2016, 54, 3888-3900.	2.5	19
503	Photoinduced Metal-Free Atom Transfer Radical Polymerization of Biomass-Based Monomers. Macromolecules, 2016, 49, 7709-7717.	2.2	63
504	The Quest for Converting Biorenewable Bifunctional α-Methylene-γ-butyrolactone into Degradable and Recyclable Polyester: Controlling Vinyl-Addition/Ring-Opening/Cross-Linking Pathways. Journal of the American Chemical Society, 2016, 138, 14326-14337.	6.6	132
505	Design, preparation and properties of bio-based elastomer composites aiming at engineering applications. Composites Science and Technology, 2016, 133, 136-156.	3.8	50
506	Smart, Sustainable, and Ecofriendly Chemical Design of Fully Bioâ€Based Thermally Stable Thermosets Based on Benzoxazine Chemistry. ChemSusChem, 2016, 9, 1921-1928.	3.6	116
507	An optimisation-based framework for the conceptual design of reaction-separation processes. Chemical Engineering Research and Design, 2016, 113, 206-222.	2.7	29
508	An approach towards tailoring interfacial structures and properties of multiphase renewable thermoplastics from lignin–nitrile rubber. Green Chemistry, 2016, 18, 5423-5437.	4.6	38
509	New biosourced UV curable coatings based on isosorbide. Progress in Organic Coatings, 2016, 99, 393-399.	1.9	20
512	Terpene Based Sustainable Elastomer for Low Rolling Resistance and Improved Wet Grip Application: Synthesis, Characterization and Properties of Poly(styrene- <i>co</i> -myrcene). ACS Sustainable Chemistry and Engineering, 2016, 4, 5462-5474.	3.2	75
515	Novel fully biobased poly(butylene 2,5-furanoate/diglycolate) copolymers containing ether linkages: Structure-property relationships. European Polymer Journal, 2016, 81, 397-412.	2.6	88
516	Chitosan Hydrogel Structure Modulated by Metal Ions. Scientific Reports, 2016, 6, 36005.	1.6	78
517	Gelation process visualized by aggregation-induced emission fluorogens. Nature Communications, 2016, 7, 12033.	5.8	179

		CITATION REPORT		
#	Article		IF	CITATIONS
518	Shape-morphing composites with designed micro-architectures. Scientific Reports, 2016, 6,	27933.	1.6	84
519	Natural Self-grown Fashion From Bacterial Cellulose: A Paradigm Shift Design Approach In F Creation. Design Journal, 2016, 19, 837-855.	ashion	0.5	35
520	Progress in the synthesis of sustainable polymers from terpenes and terpenoids. Green Mat 4, 115-134.	erials, 2016,	1.1	89
521	Multicomponent Coupling Approach to Cross-Conjugated Polymers from Vanillin-Based Mo ACS Sustainable Chemistry and Engineering, 2016, 4, 6263-6267.	nomers.	3.2	33
522	Selfâ€Healing Properties of Protein Resin with Soy Protein Isolateâ€Loaded Poly(<scp>d,l</scp> â€lactideâ€ <i>co</i> â€glycolide) Microcapsules. Advanced Functional 4786-4796.	Materials, 2016, 26,	7.8	38
523	Green Synthesis of Inorganic–Organic Hybrid Materials: State of the Art and Future Persp European Journal of Inorganic Chemistry, 2016, 2016, 1135-1156.	ectives.	1.0	54
524	Synthesis and Preparation of Bioâ€Based ROMP Thermosets from Functionalized Renewabl Derivative. Macromolecular Chemistry and Physics, 2016, 217, 871-879.	e Isosorbide	1.1	23
525	Oneâ€pot synthesis of biodegradable and linear poly(ester amide)s based on renewable res Journal of Applied Polymer Science, 2016, 133, .	ources.	1.3	7
526	Lignin degradation and stability: Volatile Organic Compounds (VOCs) analysis throughout p Polymer Degradation and Stability, 2016, 130, 30-37.	processing.	2.7	13
527	Lignin and soy oil-derived polymeric biocomposites by "grafting from―RAFT polymeriza Chemistry, 2016, 18, 4974-4981.	ation. Green	4.6	72
528	Gelatinization and retrogradation phenomena in starch/montmorillonite nanocomposites p with different glycerol/water ratios. Carbohydrate Polymers, 2016, 151, 206-212.	lasticized	5.1	46
529	Tailor-made and chemically designed synthesis of coumarin-containing benzoxazines and th reactivity study toward their thermosets. Journal of Polymer Science Part A, 2016, 54, 1428	eir -1435.	2.5	40
530	Biodegradable unsaturated polyesters containing2,3-butanediol for engineering application Synthesis, characterization and performances. Polymer, 2016, 84, 343-354.	s:	1.8	21
531	High trans-1,4 (co)polymerization of β-myrcene and isoprene with an iminophosphonamide catalyst. Chinese Journal of Polymer Science (English Edition), 2016, 34, 104-110.	lanthanum	2.0	30
532	Cellulose acetate fibers prepared from different raw materials with rapid synthesis method. Carbohydrate Polymers, 2016, 137, 685-692.		5.1	88
533	Synthesis of Polyfuran and Thiophene-Furan Alternating Copolymers Using Catalyst-Transfe Polycondensation. ACS Macro Letters, 2016, 5, 332-336.	r	2.3	44
534	Towards sustainable polymeric nano-carriers and surfactants: facile low temperature enzym synthesis of bio-based amphiphilic copolymers in scCO ₂ . Polymer Chemistry, 2 2130-2142.		1.9	19
535	Using carbon dioxide and its sulfur analogues as monomers in polymer synthesis. Polymer, 2 406-431.	2016, 82,	1.8	90

#	Article	IF	CITATIONS
536	Starch-g-poly(benzyl methacrylate) copolymers. Journal of Thermal Analysis and Calorimetry, 2016, 124, 1309-1318.	2.0	27
537	Quantification of Nonanal and Oleic Acid Formed During the Ozonolysis of Vegetable Oil Free Fatty Acids or Fatty Acid Methyl Esters. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 303-310.	0.8	4
538	Fractionation of Industrial Softwood Kraft Lignin: Solvent Selection as a Tool for Tailored Material Properties. ACS Sustainable Chemistry and Engineering, 2016, 4, 2232-2242.	3.2	129
539	Amidation of triglycerides by amino alcohols and their impact on plant oil-derived polymers. Polymer Chemistry, 2016, 7, 2790-2798.	1.9	55
540	Decomposition mechanism of polyesters based on 2,5-furandicarboxylic acid and aliphatic diols with medium and long chain methylene groups. Polymer Degradation and Stability, 2016, 132, 127-136.	2.7	45
541	Preparation of vegetable oil-based polyols with controlled hydroxyl functionalities for thermoplastic polyurethane. European Polymer Journal, 2016, 78, 46-60.	2.6	95
542	Green Approach toward Sustainable Polymer: Synthesis and Characterization of Poly(myrcene- <i>co</i> -dibutyl itaconate). ACS Sustainable Chemistry and Engineering, 2016, 4, 2129-2141.	3.2	55
543	Fabrication and characterization of in situ graphene oxide reinforced high-performance shape memory polymeric nanocomposites from vegetable oil. RSC Advances, 2016, 6, 27648-27658.	1.7	16
544	Catalyst screening for the melt polymerization of isosorbide-based polycarbonate. Journal of Industrial and Engineering Chemistry, 2016, 37, 42-46.	2.9	64
545	Curcumin–malic acid based green copolymers for control of scale and microbiological growth applications in industrial cooling water treatment. Journal of Molecular Liquids, 2016, 214, 400-410.	2.3	27
546	Soybean oil-based thermosets with N -vinyl-2-pyrrolidone as crosslinking agent for hemp fiber composites. Composites Part A: Applied Science and Manufacturing, 2016, 82, 1-7.	3.8	28
547	(Bio)degradable polymers as a potential material for food packaging: studies on the (bio)degradation process of PLA/(R,S)-PHB rigid foils under industrial composting conditions. European Food Research and Technology, 2016, 242, 815-823.	1.6	37
548	Alternative Monomers Based on Lignocellulose and Their Use for Polymer Production. Chemical Reviews, 2016, 116, 1540-1599.	23.0	580
549	Preparation and properties of UV-curable multi-arms cardanol-based acrylates. Progress in Organic Coatings, 2016, 90, 126-131.	1.9	30
550	Syntheses of 5-Hydroxymethylfurfural Through Glucose Dehydration in Diphasic Solvent System on ZrO ₂ and SO ₄ ^{2â^'} /TiO ₂ -SiO ₂ Catalyst. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 177-184.	0.6	9
551	Synthetic Polymers from Sugar-Based Monomers. Chemical Reviews, 2016, 116, 1600-1636.	23.0	279
552	Progress of Polymers from Renewable Resources: Furans, Vegetable Oils, and Polysaccharides. Chemical Reviews, 2016, 116, 1637-1669.	23.0	610
553	The Effect of Dextran Molecular Weight on the Biodegradable Hydrogel with Oil, Synthesized by the Michael Addition Reaction. Advances in Polymer Technology, 2017, 36, 120-127.	0.8	8

#	Article	IF	CITATIONS
554	The dawn of chiral material development using saccharide-based helical polymers. Polymer Journal, 2017, 49, 355-362.	1.3	25
555	The synthesis and characterization of some group VII bromo-substituted furyl complexes. Inorganic and Nano-Metal Chemistry, 2017, 47, 973-977.	0.9	1
556	Preparation and Performance of Silica/Epoxy Group-Functionalized Biobased Elastomer Nanocomposite. Industrial & Engineering Chemistry Research, 2017, 56, 881-889.	1.8	37
557	Renewable resource modified polyol derived aliphatic hyperbranched polyurethane as a biodegradable and <scp>UV</scp> â€resistant smart material. Polymer International, 2017, 66, 839-850.	1.6	26
558	Shearâ€induced morphology changes in <i>N,N</i> ′â€dimethylacetamide/lithium chloride pretreated cellulose. Journal of Applied Polymer Science, 2017, 134, .	1.3	1
559	Advances in polymer precursors and bioâ€based polymers synthesized from 5â€hydroxymethylfurfural. Journal of Polymer Science Part A, 2017, 55, 1478-1492.	2.5	97
560	Exploring the Effect of Poly(propylene carbonate) Polyol in a Biobased Epoxy Interpenetrating Network. ACS Omega, 2017, 2, 611-617.	1.6	21
562	Facile conversion of plant oil (anethole) to a high-performance material. Polymer Chemistry, 2017, 8, 2010-2015.	1.9	37
563	Biosynthesis of Nanoparticles by Fungi: Large-Scale Production. , 2017, , 395-414.		5
564	Synthesis of bio-based polyurethane coatings from vegetable oil and dicarboxylic acids. Progress in Organic Coatings, 2017, 106, 87-95.	1.9	81
566	"Oneâ€pot―synthesis of crosslinked siliconeâ€containing macromolecular charring agent and its synergistic flame retardant poly(<scp>l</scp> ″actic acid) with ammonium polyphosphate. Polymers for Advanced Technologies, 2017, 28, 1409-1417.	1.6	17
567	Emergence of Sustainable Approaches for Functional Materials: Cashew Nut Shell Liquid and Other Relevant Crop-Based Renewable Resources. , 2017, , 1-17.		1
568	Lignin-based polymeric surfactants for emulsion polymerization. Polymer, 2017, 112, 418-426.	1.8	49
569	pH and reduction sensitive bio-based polyamides derived from renewable dicarboxylic acid monomers and cystine amino acid. International Journal of Polymer Analysis and Characterization, 2017, 22, 361-373.	0.9	8
572	Redox Control of Aluminum Ring-Opening Polymerization: A Combined Experimental and DFT Investigation. Macromolecules, 2017, 50, 1847-1861.	2.2	56
573	Photocatalytic Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran over Nb ₂ O ₅ under Visible Light. ACS Sustainable Chemistry and Engineering, 2017, 5, 3517-3523.	3.2	104
574	Crossing kingdoms: Using decellularized plants as perfusable tissue engineering scaffolds. Biomaterials, 2017, 125, 13-22.	5.7	264
575	A two-step efficient preparation of a renewable dicarboxylic acid monomer 5,5′-[oxybis(methylene)]bis[2-furancarboxylic acid] from <scp>d</scp> -fructose and its application in polyester synthesis. Green Chemistry, 2017, 19, 1570-1575.	4.6	26

#	Article	IF	CITATIONS
576	High-Performance Furan-Containing Conjugated Polymer for Environmentally Benign Solution Processing. ACS Applied Materials & amp; Interfaces, 2017, 9, 15652-15661.	4.0	46
577	Synthesis, characterization, and properties of petroleum-based methacrylate polymers derived from tricyclodecane for microelectronics and optoelectronics applications. Journal of Industrial and Engineering Chemistry, 2017, 53, 143-154.	2.9	8
578	Phenoxylated siloxane-based polymers via the Piersâ^'Rubinsztajn process. Polymer International, 2017, 66, 1324-1328.	1.6	13
579	Synthesis of multi-functional epoxides derived from limonene oxide and its application to the network polymers. Tetrahedron Letters, 2017, 58, 2438-2440.	0.7	16
580	Temperature induced multiple structure transformation and aggregation behaviors of amphiphilic acrylicpimaric acid polyglycol ester in water. Polymer, 2017, 118, 49-57.	1.8	5
581	<i>50th Anniversary Perspective</i> : There Is a Great Future in Sustainable Polymers. Macromolecules, 2017, 50, 3733-3749.	2.2	700
582	Synthesis of isohexide-di(ether-ene)s and ADMET polymerization. Green Materials, 2017, 5, 63-73.	1.1	4
583	Photocatalytic selective oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran on metal-free g-C3N4 under visible light irradiation. Molecular Catalysis, 2017, 436, 10-18.	1.0	87
584	Chemically recyclable polymers: a circular economy approach to sustainability. Green Chemistry, 2017, 19, 3692-3706.	4.6	557
585	Transfer of Biomatrix/Wood Cell Interactions to Hemicellulose-Based Materials to Control Water Interaction. Chemical Reviews, 2017, 117, 8177-8207.	23.0	50
586	Unique isodimorphism and isomorphism behaviors of even-odd poly(hexamethylene dicarboxylate) aliphatic copolyesters. Polymer, 2017, 115, 106-117.	1.8	36
587	Elastomers from Renewable Metathesized Palm Oil Polyols. ACS Sustainable Chemistry and Engineering, 2017, 5, 5793-5799.	3.2	24
588	Synthesis of isosorbide-based polycarbonates via melt polycondensation catalyzed by quaternary ammonium ionic liquids. Chinese Journal of Catalysis, 2017, 38, 908-917.	6.9	36
589	Catalytic Oxyfunctionalization of Methyl 10-undecenoate for the Synthesis of Step-Growth Polymers. Macromolecular Chemistry and Physics, 2017, 218, 1700153.	1.1	9
590	Hydrophobic structural modification of chitosan and its impact on nanoparticle synthesis – A physicochemical study. Carbohydrate Polymers, 2017, 173, 714-720.	5.1	25
591	Terpene based sustainable methacrylate copolymer series by emulsion polymerization: Synthesis and structureâ€property relationship. Journal of Polymer Science Part A, 2017, 55, 2639-2649.	2.5	31
592	Highly Planarized Naphthalene Diimide–Bifuran Copolymers with Unexpected Charge Transport Performance. Chemistry of Materials, 2017, 29, 5473-5483.	3.2	45
593	Structure-properties relationships in isosorbide-based polyacetals: Influence of linear or cyclic architecture on polymer physicochemical properties. European Polymer Journal, 2017, 93, 795-804.	2.6	13

#	Article	IF	CITATIONS
594	Ringâ€Opening Copolymerization of Styrene Oxide and Cyclic Anhydrides by using Highly Effective Zinc Amido–Oxazolinate Catalysts. ChemCatChem, 2017, 9, 1343-1348.	1.8	25
595	Anionic waterborne polyurethane-imide dispersions from cottonseed oil based ionic polyol. Industrial Crops and Products, 2017, 96, 132-139.	2.5	27
596	Biodegradability of polyesters comprising a bio-based monomer derived from furfural. Polymer Degradation and Stability, 2017, 146, 121-125.	2.7	24
597	Streamlined Synthesis of Biomonomers for Bioresourced Materials: Bisfuran Diacids, Diols, and Diamines via Common Bisfuran Dibromide Intermediates. Industrial & Engineering Chemistry Research, 2017, 56, 11380-11387.	1.8	5
598	Synthesis and characterization of polyurethane foams derived of fully renewable polyester polyols from sorbitol. European Polymer Journal, 2017, 97, 319-327.	2.6	34
599	Partially bioâ€based poly(amide imide)s by polycondensation of aromatic diacylhydrazides based on ligninâ€derived phenolic acids and aromatic dianhydrides: Synthesis, characterization, and computational studies. Journal of Polymer Science Part A, 2017, 55, 3636-3645.	2.5	15
600	Water-soluble chitosan-derived sustainable materials: towards filaments, aerogels, microspheres, and plastics. Soft Matter, 2017, 13, 7292-7299.	1.2	21
601	Cellulose laurate ester aerogel as a novel absorbing material for removing pollutants from organic wastewater. Cellulose, 2017, 24, 5069-5078.	2.4	10
602	Diffusion of modified vegetables oils in thermoplastic polymers. Materials Chemistry and Physics, 2017, 200, 107-120.	2.0	5
603	Surfactant properties of PEGylated lignins: Anomalous interfacial activities at low grafting density. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 530, 200-208.	2.3	19
604	Application of R.O.P. in polymerization of furanic oligoesters with cyclic esters: Synthesis, characterization and degradation. Journal of Macromolecular Science - Pure and Applied Chemistry, 2017, 54, 524-533.	1.2	1
605	Solution blow spun nanocomposites of poly(lactic acid)/cellulose nanocrystals from Eucalyptus kraft pulp. Carbohydrate Polymers, 2017, 174, 923-932.	5.1	31
606	Synthesis and Characterization of a Terpene-Based Sustainable Polymer: Poly-alloocimene. ACS Sustainable Chemistry and Engineering, 2017, 5, 7659-7669.	3.2	26
607	Fracture toughness and ductile characteristics of diglycidyl ether of bisphenol-A resins modified with biodegradable epoxidized linseed oil. Composites Part B: Engineering, 2017, 131, 144-152.	5.9	31
608	A photochromic prototype based on difurylperhydrocyclopentene with remarkable photoswitching behavior and in vivo application. Chemical Communications, 2017, 53, 9570-9573.	2.2	12
609	Chromophores from hexeneuronic acids: identification of HexA-derived chromophores. Cellulose, 2017, 24, 3671-3687.	2.4	23
610	Color and chemical constitution of natural dye henna (Lawsonia inermis L) and its application in the coloration of textiles. Journal of Cleaner Production, 2017, 167, 14-22.	4.6	78
612	Artificial hagfish protein fibers with ultra-high and tunable stiffness. Nanoscale, 2017, 9, 12908-12915.	2.8	24

#	Article	IF	CITATIONS
613	Cutin from agro-waste as a raw material for the production of bioplastics. Journal of Experimental Botany, 2017, 68, 5401-5410.	2.4	69
615	Humidityâ€Activated Shape Memory Effects on Thermoplastic Starch/EVA Blends and Their Compatibilized Nanocomposites. Macromolecular Chemistry and Physics, 2017, 218, 1700388.	1.1	19
616	Complete Depolymerization and Repolymerization of a Sugar Poly(orthoester). ChemSusChem, 2017, 10, 4829-4832.	3.6	7
617	Bio-based epoxidised oil for compatibilization and value addition of poly (vinyl chloride) (PVC) and poly(methyl methacrylate) (PMMA) in recycled blend. Journal of Polymer Research, 2017, 24, 1.	1.2	19
618	Benzo[1,2-b:4,5-bâ€2]difuran and furan substituted diketopyrrolopyrrole alternating copolymer for organic photovoltaics with high fill factor. Journal of Materials Chemistry A, 2017, 5, 15591-15600.	5.2	25
619	Renewable resource derived aliphatic hyperbranched polyurethane/aluminium hydroxide–reduced graphene oxide nanocomposites as robust, thermostable material with multi-stimuli responsive shape memory features. New Journal of Chemistry, 2017, 41, 8781-8790.	1.4	16
620	Use of stereocomplex crystallites for fully-biobased microcellular low-density poly(lactic acid) foams for green packaging. Chemical Engineering Journal, 2017, 327, 1151-1162.	6.6	112
621	Hyperbranched polyesters by polycondensation of fatty acid-based AB _n -type monomers. Green Chemistry, 2017, 19, 259-269.	4.6	38
622	Biobased Thermosets Prepared from Rigid Isosorbide and Flexible Soybean Oil Derivatives. ACS Sustainable Chemistry and Engineering, 2017, 5, 774-783.	3.2	84
623	Water adsorption characteristics of extruded blends of corn gluten meal and distillers dried grains with solubles. Food and Bioproducts Processing, 2017, 101, 110-117.	1.8	9
624	An overview on PET waste recycling for application in packaging. International Journal of Plastics Technology, 2017, 21, 1-24.	2.9	82
625	Effects of compound emulsifiers on properties of wood adhesive with high starch content. International Journal of Adhesion and Adhesives, 2017, 72, 92-97.	1.4	24
626	Structural and surface functionality changes in reticulated vitreous carbon produced from poly(furfuryl alcohol) with sodium hydroxide additions. Applied Surface Science, 2017, 394, 87-97.	3.1	17
627	New biosourced AA and AB monomers from 1,4:3,6-dianhydrohexitols, Isosorbide, Isomannide, and Isoidide. Designed Monomers and Polymers, 2017, 20, 221-233.	0.7	5
628	Precision synthesis of sustainable thermoplastic elastomers from lysineâ€derived monomers. Journal of Polymer Science Part A, 2017, 55, 349-355.	2.5	14
629	Crosslinkable poly(lactic acid)â€based materials: Biomassâ€derived solution for barrier coatings. Journal of Applied Polymer Science, 2017, 134, .	1.3	6
630	A study of mechanical properties of biobased epoxy network: Effect of addition of epoxidized soybean oil and poly(furfuryl alcohol). Journal of Applied Polymer Science, 2017, 134, .	1.3	14
632	Structural Characterization of Lignin Isolated from Wheat-Straw during the Alkali Cooking Process. BioResources, 2017, 12, .	0.5	4

#	Article	IF	CITATIONS
633	The Recent Developments in Biobased Polymers toward General and Engineering Applications: Polymers that are Upgraded from Biodegradable Polymers, Analogous to Petroleum-Derived Polymers, and Newly Developed. Polymers, 2017, 9, 523.	2.0	280
634	Biochemical Production and Separation of Carboxylic Acids for Biorefinery Applications. Fermentation, 2017, 3, 22.	1.4	105
635	Algae-Based Polyolefins. , 2017, , 499-529.		0
636	Renewable Polymers: Synthesis and Characterization of Poly(4-ketopimelic acid-glycerol). Journal of Renewable Materials, 2017, 5, 62-66.	1.1	9
637	The Study on Application of Biopolyols Obtained by Cellulose Biomass Liquefaction Performed with Crude Glycerol for the Synthesis of Rigid Polyurethane Foams. Journal of Polymers and the Environment, 2018, 26, 2546-2554.	2.4	38
638	Measurement of termite resistance of particleboard panels made from Eastern redcedar using nano particle added modified starch as binder. Measurement: Journal of the International Measurement Confederation, 2018, 120, 169-174.	2.5	4
639	Renewable polymers: Synthesis and characterization of poly(levulinic acid–pentaerythritol). Journal of Polymer Science Part A, 2018, 56, 955-958.	2.5	22
640	Catalyst-Free Epoxidation of Limonene to Limonene Dioxide. ACS Sustainable Chemistry and Engineering, 2018, 6, 5115-5121.	3.2	34
641	DFT studies on interaction between bimetallic [Au 2 M] clusters and cellobiose. Computational and Theoretical Chemistry, 2018, 1129, 26-36.	1.1	6
642	Catalytic metal-based systems for controlled statistical copolymerisation of lactide with a lactone. Polymer Chemistry, 2018, 9, 2517-2531.	1.9	68
643	Opening Furan for Tailoring Properties of Bioâ€based Poly(Furfuryl Alcohol) Thermoset. ChemSusChem, 2018, 11, 1805-1812.	3.6	41
644	Design of a Molecular Architecture via a Green Route for an Improved Silica Reinforced Nanocomposite using Bioresources. ACS Sustainable Chemistry and Engineering, 2018, 6, 6599-6611.	3.2	41
645	Effects of chain-extending stabilizer on bioplastic poly(lactic acid)/polyamide blends compatibilized by reactive extrusion. Polymer Degradation and Stability, 2018, 153, 118-129.	2.7	22
646	Vegetable Oils as a Chemical Platform. Gels Horizons: From Science To Smart Materials, 2018, , 125-152.	0.3	1
647	Elaboration and Characterization of Advanced Biobased Polyurethane Foams Presenting Anisotropic Behavior. Macromolecular Materials and Engineering, 2018, 303, 1700501.	1.7	16
648	Carboxymethyl cellulose-rosin gum hybrid nanoparticles: An efficient drug carrier. International Journal of Biological Macromolecules, 2018, 112, 390-398.	3.6	46
649	Functional soybean oil-based polyols as sustainable feedstocks for polyurethane coatings. Industrial Crops and Products, 2018, 113, 249-258.	2.5	57
650	Renewable thermoset polymers based on lignin and carbohydrate derived monomers. Green Chemistry, 2018, 20, 1131-1138.	4.6	65

#	Article	IF	CITATIONS
651	Polymer Gels. Gels Horizons: From Science To Smart Materials, 2018, , .	0.3	2
652	Biobased Dielsâ€Alder Engineered Network from Furfuryl Alcohol and Epoxy Resin: Preparation and Mechanoâ€Physical Characteristics. ChemistrySelect, 2018, 3, 40-46.	0.7	22
654	Inedible saccharides: a platform for CO ₂ capturing. Chemical Science, 2018, 9, 1088-1100.	3.7	39
655	A one-pot biomimetic synthesis of selectively functionalized lignins from monomers: a green functionalization platform. Green Chemistry, 2018, 20, 2651-2662.	4.6	15
656	Polymer engineering based on reversible covalent chemistry: A promising innovative pathway towards new materials and new functionalities. Progress in Polymer Science, 2018, 80, 39-93.	11.8	419
657	Novel Rigid Polyisocyanurate Foams from Synthesized Biobased Polyester Polyol with Enhanced Properties. ACS Sustainable Chemistry and Engineering, 2018, 6, 6577-6589.	3.2	22
658	Introduction of stereocomplex crystallites of PLA for the solid and microcellular poly(lactide)/poly(butylene adipate- <i>co</i> -terephthalate) blends. RSC Advances, 2018, 8, 11850-11861.	1.7	50
659	Synthesis and structures of aluminum ion-pair complexes that act as L- and racemic-lactide ring opening polymerization initiators. Polyhedron, 2018, 147, 94-105.	1.0	10
660	Sustainable Routes for the Synthesis of Renewable Heteroatom-Containing Chemicals. ACS Sustainable Chemistry and Engineering, 2018, 6, 5694-5707.	3.2	140
661	Polylactic acid incorporated polyfurfuryl alcohol bioplastics: thermal, mechanical and curing studies. Journal of Thermal Analysis and Calorimetry, 2018, 132, 1593-1600.	2.0	10
662	Synthesis and Characterization of Butyl Acrylate-based Graft Polymers with Thermo-responsive Branching Sites via the Diels-Alder Reaction of Furan/Maleimide. Chinese Journal of Polymer Science (English Edition), 2018, 36, 1011-1018.	2.0	8
663	Multifunctional Composite Ecomaterials and Their Impact on Sustainability. , 2018, , 1-31.		0
664	Synthesis of Bio-Based Polyamide/Acid-Functionalized Multiwalled Carbon Nanotube Nanocomposites Using Vanillin. Polymer-Plastics Technology and Engineering, 2018, 57, 1367-1376.	1.9	1
665	Sustainable rubbers and rubber additives. Journal of Applied Polymer Science, 2018, 135, 45701.	1.3	70
666	Poly(n-butyl acrylate)–Casein Nanocomposites as Promising Candidates for Packaging Films. Journal of Polymers and the Environment, 2018, 26, 2579-2587.	2.4	11
667	Naturally-Derived Amphiphilic Polystyrenes Prepared by Aqueous Controlled/Living Cationic Polymerization and Copolymerization of Vinylguaiacol with R–OH/BF3·OEt2. Polymers, 2018, 10, 1404.	2.0	10
668	Biobased Plastics for Food Packaging. , 2018, , .		5
669	Preparation and Characterization of Biobased Poly(Ethylene- 2,5-Furan Dicarboxylate)/Clay Nanocomposites. Nigerian Journal of Basic and Applied Sciences, 2018, 25, 114.	0.0	7

		15	C
#	ARTICLE Poly(ethylene 2,5-furandicarboxylate-mb-poly(tetramethylene glycol)) multiblock copolymers: From	IF	CITATIONS
670	high tough thermoplastics to elastomers. Polymer, 2018, 155, 89-98.	1.8	57
671	Effect of poly(butylenes succinate) on the microcellular foaming of polylactide using supercritical carbon dioxide. Journal of Polymer Research, 2018, 25, 1.	1.2	18
672	A comparative analysis of symmetric diketopyrrolopyrrole ored small conjugated molecules with aromatic flanks: From geometry to charge transport. Journal of Computational Chemistry, 2018, 39, 2526-2538.	1.5	7
673	Polymers from Renewable Resources. Polymers and Polymeric Composites, 2018, , 1-27.	0.6	0
674	Molecular self-assembly of copolymer from renewable phenols: new class of antimicrobial ointment base. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 2187-2200.	1.9	4
675	Bioremediation of Tannery Effluents for Sustainable Production of Leather in Uganda: Literature Review. Journal of Bioremediation & Biodegradation, 2018, 09, .	0.5	0
677	Enhanced Crystallization Properties of Poly(lactic acid) Nanocomposites Assisted by Poly(amidoamine) Functionalized Graphene Oxide. ECS Journal of Solid State Science and Technology, 2018, 7, M139-M144.	0.9	7
678	Lignin as Natural Antioxidant Capacity. , 0, , .		24
679	Effects of the Type of Catalyst on the Polymerisation Mechanism of Furfuryl Alcohol and its Resultant Properties. Chemistry Africa, 2018, 1, 187-197.	1.2	12
680	Biobased Poly(ethylene- <i>co</i> -hexamethylene 2,5-furandicarboxylate) (PEHF) Copolyesters with Superior Tensile Properties. Industrial & Engineering Chemistry Research, 2018, 57, 13094-13102.	1.8	43
681	Pinene: reichlich vorhandene und erneuerbare Bausteine für eine Vielzahl an nachhaltigen Polymeren. Angewandte Chemie, 2018, 130, 14560-14569.	1.6	10
682	Effect of chemical structure on the subglass relaxation dynamics of biobased polyesters as revealed by dielectric spectroscopy: 2,5-furandicarboxylic acid <i>vs. trans</i> -1,4-cyclohexanedicarboxylic acid. Physical Chemistry Chemical Physics, 2018, 20, 15696-15706.	1.3	49
683	Synthesis, surface properties and temperature dependence of phase separation of DSPE chains in ethanol solutions. New Journal of Chemistry, 2018, 42, 11192-11201.	1.4	2
684	Application of Chitin/Chitosan and Their Derivatives in the Papermaking Industry. Polymers, 2018, 10, 389.	2.0	77
685	Renewable polyols for advanced polyurethane foams from diverse biomass resources. Polymer Chemistry, 2018, 9, 4258-4287.	1.9	156
686	Analysis of chemical polymerization between functionalized MWCNT and poly(furfuryl alcohol) composite. Polimeros, 2018, 28, 15-22.	0.2	19
687	Biosynthesis of Medium- to Long-Chain α,ï‰-Diols from Free Fatty Acids Using CYP153A Monooxygenase, Carboxylic Acid Reductase, and E. coli Endogenous Aldehyde Reductases. Catalysts, 2018, 8, 4.	1.6	35
688	Chitosan Derivatives: Introducing New Functionalities with a Controlled Molecular Architecture for Innovative Materials. Polymers, 2018, 10, 342.	2.0	105

#	Article	IF	CITATIONS
689	Heteroatom and Side Chain Effects on the Optical and Photophysical Properties: Ultrafast and Nonlinear Spectroscopy of New Naphtho[1,2- <i>b</i> :5,6- <i>b</i> ′]difuran Donor Polymers. Journal of Physical Chemistry C, 2018, 122, 17049-17066.	1.5	20
690	Pinenes: Abundant and Renewable Building Blocks for a Variety of Sustainable Polymers. Angewandte Chemie - International Edition, 2018, 57, 14362-14371.	7.2	96
691	Production and characterization of ureaurethane elastomers with rapeseedâ€based polyol. Polymer International, 2018, 67, 1605-1614.	1.6	3
692	Impact Strength and Water Uptake Behaviors of Fully Bio-Based PA11-SGW Composites. Polymers, 2018, 10, 717.	2.0	19
693	Degradation kinetics of polyanethole: A newly synthesized green polymer. Materials Chemistry and Physics, 2018, 219, 468-477.	2.0	7
694	Cure behaviors of furfuryl alcohol/epoxy/methyltetrahydrophthalic anhydride and their enhanced mechanical and anti-acid properties of basalt fiber reinforced composites. Composites Part B: Engineering, 2018, 154, 263-271.	5.9	5
695	Radiation Grafting of Biopolymers and Synthetic Polymers. , 2018, , 205-250.		9
696	Tannic acid-induced crosslinking of epoxidized soybean oil for toughening poly(lactic acid) via dynamic vulcanization. Polymer, 2018, 148, 109-118.	1.8	44
697	Towards Sustainable Highâ€Performance Thermoplastics: Synthesis, Characterization, and Enzymatic Hydrolysis of Bisguaiacolâ€Based Polyesters. ChemSusChem, 2018, 11, 2529-2539.	3.6	63
699	Oleic acidâ€based poly(alkyl methacrylate) as bioâ€based viscosity control additive for mineral and vegetable oils. Polymer Engineering and Science, 2019, 59, E164.	1.5	9
700	Direct one-step synthesis of a formally fully bio-based polymer from cellulose and cinnamon flavor. Green Chemistry, 2019, 21, 4927-4931.	4.6	17
701	Molecular Structure Requirements. , 2019, , 37-72.		0
702	Copolymerization of vegetable oils and bio-based monomers with elemental sulfur: A new promising route for bio-based polymers. Sustainable Chemistry and Pharmacy, 2019, 13, 100158.	1.6	33
703	Redox Emulsion Polymerization of Terpenes: Mapping the Effect of the System, Structure, and Reactivity. Industrial & Engineering Chemistry Research, 2019, 58, 20946-20960.	1.8	35
704	Copper Complex: A Key Role in the Synthesis of Biocidal Polymer Coatings. Chemistry Africa, 2019, 2, 241-251.	1.2	5
705	Polylactic Acid-Based Nanocomposites: An Important Class of Biodegradable Composites. Materials Horizons, 2019, , 221-231.	0.3	1
706	Evaluation of degradation of furanic polyamides synthesized with different solvents. Polimeros, 2019, 29, .	0.2	8
707	Regulating tannic acid-crosslinked epoxidized soybean oil oligomers for strengthening and toughening bamboo fibers-reinforced poly(lactic acid) biocomposites. Composites Science and Technology, 2019, 181, 107709.	3.8	48

#	Article	IF	CITATIONS
708	Amorphous random copolymers of lacOCA and manOCA for the design of biodegradable polyesters with tuneable properties. European Polymer Journal, 2019, 118, 685-693.	2.6	3
709	Emulsion Polymerization of Dihydroeugenol-, Eugenol-, and Isoeugenol-Derived Methacrylates. Industrial & Engineering Chemistry Research, 2019, 58, 21155-21164.	1.8	27
710	Green Biopolymers and their Nanocomposites. Materials Horizons, 2019, , .	0.3	11
711	A review on the thermomechanical properties and biodegradation behaviour of polyesters. European Polymer Journal, 2019, 121, 109296.	2.6	143
712	Integrating transient and sacrificial bonds into biobased elastomers toward mechanical property enhancement and macroscopically responsive property. Polymer, 2019, 184, 121914.	1.8	20
713	Synthesis and characterization of thermally stable bio-based poly(ester amide)s from sustainable feedstock. European Polymer Journal, 2019, 120, 109228.	2.6	6
714	Dual bond synergy enhancement to mechanical and thermal properties of castor oil-based waterborne polyurethane composites. Polymer, 2019, 182, 121832.	1.8	25
715	Self-healing of â€~green' thermoset zein resins with irregular shaped waxy maize starch-based/poly(D,L-lactic-co-glycolic acid) microcapsules. Composites Science and Technology, 2019, 183, 107831.	3.8	12
716	Crosslinking network of bioâ€based bisâ€functional epoxides derived from <i>trans</i> â€limonene oxide. Journal of Polymer Science Part A, 2019, 57, 2466-2473.	2.5	9
717	Modification of wood-based materials by atom transfer radical polymerization methods. European Polymer Journal, 2019, 120, 109253.	2.6	34
718	Melt processing of PHBV for functional fibres: effect of additives on process parameters. Materials Research Express, 2019, 6, 115344.	0.8	3
719	Kinetics and mechanism of the solid-acid catalyzed one-pot conversion of d-fructose to 5, 5′-[oxybis(methylene)]bis[2-furaldehyde] in dimethyl sulfoxide. SN Applied Sciences, 2019, 1, 1.	1.5	5
720	Plants and plant-based polymers as scaffolds for tissue engineering. Green Chemistry, 2019, 21, 4839-4867.	4.6	131
721	Preparation and Single Crystal Structure Determination of the First Biobased Furan-Polydiacetylene Using Topochemical Polymerization. Crystals, 2019, 9, 448.	1.0	9
722	Polymerization of an AB-Type Benzoxazine Monomer toward Different Polybenzoxazine Networks: When Diels–Alder Reaction Meets Benzoxazine Chemistry in a Single-Component Resin. Macromolecules, 2019, 52, 7386-7395.	2.2	58
723	Biopolyester prepared using unsaturated betulin (betulinol) extracted from outer birch bark and dicarboxylic acid dichlorides and its thermal-induced crosslinking. European Polymer Journal, 2019, 113, 12-17.	2.6	12
724	Radical polymerization of biobased monomers in aqueous dispersed media. Green Chemistry, 2019, 21, 36-53.	4.6	69
725	Valencene as a naturally occurring sesquiterpene monomer for radical copolymerization with maleimide to induce concurrent 1:1 and 1:2 propagation. Polymer Degradation and Stability, 2019, 161, 183-190.	2.7	13

ARTICLE IF CITATIONS # Dissolution of cellulose in novel carboxylate-based ionic liquids and dimethyl sulfoxide mixed 726 2.6 45 solvents. European Polymer Journal, 2019, 113, 89-97. Sustainable Lignin for Carbon Fibers: Principles, Techniques, and Applications., 2019, , . 727 728 Chemistry and Structure of Lignin., 2019, , 1-50. 0 A fundamental understanding of whole biomass dissolution in ionic liquid for regeneration of fiber by solution-spinning. Green Chemistry, 2019, 21, 4354-4367. Biological properties of electrospun cellulose scaffolds from biomass. Journal of Biomaterials 730 1.9 6 Science, Polymer Edition, 2019, 30, 1399-1414. New Colorless and Transparent Poly(ether imide) Derived from a Biobased Plant Oil (Anethole): Synthesis and Properties. ACS Sustainable Chemistry and Engineering, 2019, 7, 11728-11734. 3.2 Ugi reaction-derived prolyl peptide catalysts grafted on the renewable polymer polyfurfuryl alcohol 732 for applications in heterogeneous enamine catalysis. Beilstein Journal of Organic Chemistry, 2019, 15, 1.3 4 1210-1216. Design and Synthesis of Bio-Based High-Performance Trioxazine Benzoxazine Resin via Natural 3.2 Renewable Résources. ACS Sustainable Chemistry and Engineering, 2019, 7, 9399-9407. Synergistic Effects of Cardanol- and High Oleic Soybean Oil Vinyl Monomers in Miniemulsion 734 3.2 16 Polymers. ACS Sustainable Chemistry and Engineering, 2019, 7, 9613-9621. Kinetic studies of biocatalyzed copolyesters of poly(butylene succinate) (PBS) containing fully 2.6 14 bio-based dilinoleic diol. European Polymer Journal, 2019, 116, 515-525. Some applications of natural polymeric materials in oilfield operations: a review. Journal of 736 1.2 24 Petroleum Exploration and Production, 2019, 9, 2297-2307. Renewable Terpene Derivative as a Biosourced Elastomeric Building Block in the Design of Functional Acrylic Copolymers. Biomacromolecules, 2019, 20, 2241-2251. Properties of natural fiber-reinforced biobased thermoset biocomposites: Effects of fiber type and 738 5.9 83 resin composition. Composites Part B: Engineering, 2019, 171, 87-95. Castor oil-derived water-based polyurethane coatings: Structure manipulation for property enhancement. Progress in Organic Coatings, 2019, 133, 198-205. Synthesis and Characterization of Novel Castor Oil-Based Polyol for Potential Applications in 740 1.1 5 Coatings. Journal of Renewable Materials, 2019, 7, 31-40. NMR Spectroscopic Study of Chemical Reactions in Mixtures Containing Oleic Acid, Formic Acid, and 741 1.8 Formoxystearic Acid. Indústrial & amp; Engineering Chemistry Research, 2019, 58, 5622-5630. Salen complexes of zirconium and hafnium: synthesis, structural characterization and polymerization 742 1.9 20 studies. Polymer Chemistry, 2019, 10, 3444-3460. Diselenide Bonds as an Alternative to Outperform the Efficiency of Disulfides in Self-Healing 743 Materials. Journal of Organic Chemistry, 2019, 84, 4200-4210.

#	Article	IF	CITATIONS
744	Are vinyl coupled furan derivatives better than vinyl coupled thiophene derivatives for optoelectronic applications? – Answers from DFT/TDDFT calculations. Computational Materials Science, 2019, 162, 60-68.	1.4	13
745	Synthesis and Characterization of Thermoresponsive Xylan Networks by Diels–Alder Reaction. ACS Applied Polymer Materials, 2019, 1, 856-866.	2.0	9
746	Solid-State Polymerization of Poly(Ethylene Furanoate) Biobased Polyester, III: Extended Study on Effect of Catalyst Type on Molecular Weight Increase. Polymers, 2019, 11, 438.	2.0	22
747	Polymers from Renewable Resources. Polymers and Polymeric Composites, 2019, , 45-71.	0.6	0
748	Towards sustainable thermoplastic woody materials prepared from continuous steam explosion followed by oxidation-reduction. Carbohydrate Polymers, 2019, 216, 322-330.	5.1	6
749	Synthesis, Characterization, and Biodegradability of Novel Fully Biobased Poly(decamethylene- <i>co</i> -isosorbide 2,5-furandicarboxylate) Copolyesters with Enhanced Mechanical Properties. ACS Sustainable Chemistry and Engineering, 2019, 7, 5501-5514.	3.2	41
751	Inspiration from a new lignin-derived phthalonitrile resin: Unique curing behavior, and thermal properties. European Polymer Journal, 2019, 121, 109351.	2.6	18
752	Modification of Poly(Ethylene 2,5-Furandicarboxylate) with Poly(Ethylene glycol) for Biodegradable Copolyesters with Good Mechanical Properties and Spinnability. Polymers, 2019, 11, 2105.	2.0	18
753	Sisal Fibers Reinforced Epoxidized Nonedible Oils Based Epoxy Green Composites and Its Potential Applications. Textile Science and Clothing Technology, 2019, , 73-102.	0.4	3
754	Plant Oil and Lignin-Derived Elastomers via Thermal Azide–Alkyne Cycloaddition Click Chemistry. ACS Sustainable Chemistry and Engineering, 2019, 7, 2593-2601.	3.2	46
755	Biobased Plasticizers from Carbohydrate-Derived 2,5-Bis(hydroxymethyl)furan. Industrial & Engineering Chemistry Research, 2019, 58, 1222-1228.	1.8	32
756	Balancing performance of epoxidized soybean oil (ESO)/poly(lactic acid) composites: Synergistic effects of carbon nanotubes and tannic acid-induced crosslinking of ESO. EXPRESS Polymer Letters, 2019, 13, 109-122.	1.1	4
757	1,3-Propanediol and its Application in Bio-Based Polyesters for Resin Applications. Chemistry Africa, 2019, 2, 215-221.	1.2	20
758	Dispersion Characteristics and Curing Behaviour of Waterborne UV Crosslinkable Polyurethanes Based on Renewable Dimer Fatty Acid Polyesters. Journal of Polymers and the Environment, 2019, 27, 189-197.	2.4	12
759	Lignin-Derived Porous Carbon Loaded with La(OH) ₃ Nanorods for Highly Efficient Removal of Phosphate. ACS Sustainable Chemistry and Engineering, 2019, 7, 758-768.	3.2	106
760	Sustainable selfâ€healing elastomers with thermoreversible network derived from biomass via emulsion polymerization. Journal of Polymer Science Part A, 2019, 57, 738-751.	2.5	21
761	Furfuryl Alcohol a Versatile, Eco-Sustainable Compound in Perspective. Chemistry Africa, 2019, 2, 223-239.	1.2	47
762	Studies about reactive ene-functionalized dextran derivatives for Thiol-ene click reactions. Reactive and Functional Polymers, 2019, 136, 66-74.	2.0	13

ARTICLE IF CITATIONS # A new use for glassy carbon: Development of LDPE/glassy carbon composites for antistatic packaging 763 1.3 26 applications. Journal of Applied Polymer Science, 2019, 136, 47204. Controlled Radical Copolymerization of Cinnamic Derivatives as Renewable Vinyl Monomers with Both Acrylic and Styrenic Substituents: Reactivity, Regioselectivity, Properties, and Functions. 764 2.6 Biomacrómolecules, 2019, 20, 192-203. From the synthesis and characterization of methacrylated fatty acid based precursors to shape 765 7 1.6 memory polymers. Polymer International, 2019, 68, 546-554. Environmentally benign bio-based waterborne polyesters: Synthesis, thermal- and bio-degradation 1.9 studies. Progress in Organic Coatings, 2019, 127, 419-428. Food Sweetener Saccharin in Binary Organocatalyst for Bulk Ringâ€Opening Polymerization of Lactide. 767 2.1 19 Advanced Synthesis and Catalysis, 2019, 361, 1335-1347. Synthesis of new high molecular weight phosphorylated chitosans for improving corrosion protection. Pure and Applied Chemistry, 2019, 91, 509-521. 768 Synthesis and characterization of high bio-based content unsaturated polyester resin for wood 769 coating from itaconic acid: Effect of various reactive diluents as an alternative to styrene. Journal of 1.3 22 Dispersion Science and Technology, 2019, 40, 756-765. Associating lattice cluster theory and application to modeling oleic acid + formic acid + 1.8 formoxystearic acid. AICHE Journal, 2019, 65, 783-791. Green ion-exchange bisfuranic polyamides by polycondensation with bio-based diamines. Green 771 1.1 4 Materials, 2020, 8, 24-31. Partially biobased polymers: The synthesis of polysilylethers via dehydrocoupling catalyzed by an 4.8 anionic iridium complex. Chinese Chemical Letters, 2020, 31, 1197-1200. Biorefinery Byproducts and Epoxy Biorenewable Monomers: A Structural Elucidation of Humins and 773 19 2.6 Triglycidyl Ether of Phloroglucinol Cross-Linking. Biomacromolecules, 2020, 21, 517-533. Making natural products from renewable feedstocks: back to the roots?. Natural Product Reports, 2020, 37, 380-424. 774 5.2 56 On the nitroxide mediated polymerization of methacrylates derived from bio-sourced terpenes in 775 1.9 24 miniemulsion, a step towards sustainable products. Pólymer Chemistry, 2020, 11, 1151-1160. Green solvent-processed organic electronic devices. Journal of Materials Chemistry C, 2020, 8, 15027-15047. 2.7 38 Preparation and characterization of cellulose/in situ generated silver nanoparticle composite films prepared using Pongamia pinnata leaf extract as a reducing and stabilizing agent. Inorganic and 777 0.9 4 Nano-Metal Chemistry, 2020, , 1-7. Myrcenol-Based Monomer for Carbanionic Polymerization: Functional Copolymers with Myrcene and 2.2 Bio-Based Graft Copolymers. Macromolecules, 2020, 53, 9008-9017. Synthesis of Biobased Long-Chain Polyesters by Acyclic Diene Metathesis Polymerization and Tandem 779 1.6 20 Hydrogenation and Depolymerization with Ethylené. ACS Omega, 2020, 5, 18301-18312. Development of New Polymers from <i>Thevetia peruviana</i> Oil. International Journal of Engineering Research in África, 2020, 48, 9-23.

			0
#	ARTICLE	IF	CITATIONS
781	Tapered Multiblock Copolymers Based on Farnesene and Styrene: Impact of Biobased Polydiene Architectures on Material Properties. Macromolecules, 2020, 53, 10397-10408.	2.2	44
783	Effect of anethole on the copolymerization of vinyl monomers. Polymer Chemistry, 2020, 11, 5630-5641.	1.9	7
784	Influence of Polylactide (PLA) Stereocomplexation on the Microstructure of PLA/PBS Blends and the Cell Morphology of Their Microcellular Foams. Polymers, 2020, 12, 2362.	2.0	20
785	Low Dielectric Polymers with High Thermostability Derived from Biobased Vanillin. ACS Sustainable Chemistry and Engineering, 2020, 8, 15013-15019.	3.2	35
786	Ultranarrow Bandgap Naphthalenediimideâ€Dialkylbifuranâ€Based Copolymers with Highâ€Performance Organic Thinâ€Film Transistors and Allâ€Polymer Solar Cells. Macromolecular Rapid Communications, 2020, 41, 2000144.	2.0	11
787	Current role and future developments of biopolymers in green and sustainable chemistry and catalysis. , 2020, , 131-154.		2
788	Tröger's Base (TB)-containing polyimide membranes derived from bio-based dianhydrides for gas separations. Journal of Membrane Science, 2020, 610, 118255.	4.1	31
789	Carbohydrates as Hard Segments for Sustainable Elastomers: Carbohydrates Direct the Self-Assembly and Mechanical Properties of Fully Bio-Based Block Copolymers. Macromolecules, 2020, 53, 5408-5417.	2.2	24
791	100th Anniversary of Macromolecular Science Viewpoint: Polymers from Lignocellulosic Biomass. Current Challenges and Future Opportunities. ACS Macro Letters, 2020, 9, 476-493.	2.3	105
793	Facile preparation of polycarbonates from bio-based eugenol and 2-methoxy-4-vinylphenol. Polymer Chemistry, 2020, 11, 5133-5139.	1.9	9
794	A Synchrotron in situ X-ray Study on the Multiple Melting Behaviors of Isomorphous Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(HB-co-HV)) with Middle HV Content. Chinese Journal of Polymer Science (English Edition), 2020, 38, 1015-1024.	2.0	4
795	Modification of poly(ethylene 2,5-furandicarboxylate) with aliphatic polycarbonate diols: 1. Randomnized copolymers with significantly improved ductility and high CO2 barrier performance. European Polymer Journal, 2020, 134, 109856.	2.6	14
796	Improvement in Toughness of Poly(ethylene 2,5-furandicarboxylate) by Melt Blending with Bio-based Polyamide11 in the Presence of a Reactive Compatibilizer. Chinese Journal of Polymer Science (English) Tj ETQqO	0 2.0 gBT /	Overlock 10
797	A Review of the Sustainable Approaches in the Production of Bio-based Polyurethanes and Their Applications in the Adhesive Field. Journal of Polymers and the Environment, 2020, 28, 749-774.	2.4	98
798	Sustainable and Biodegradable Copolymers from SO ₂ and Renewable Eugenol: A Novel Urea Fertilizer Coating Material with Superio Slow Release Performance. Macromolecules, 2020, 53, 936-945.	2.2	38
799	Ultrastructures and Mechanics of Annealed <i>Nephila clavipes</i> Major Ampullate Silk. Biomacromolecules, 2020, 21, 1186-1194.	2.6	4
800	AtMYB92 enhances fatty acid synthesis and suberin deposition in leaves of <i>Nicotiana benthamiana</i> . Plant Journal, 2020, 103, 660-676.	2.8	39
801	Biobased high-performance tri-furan functional bis-benzoxazine resin derived from renewable guaiacol, furfural and furfurylamine. European Polymer Journal, 2020, 131, 109706.	2.6	50

ARTICLE IF CITATIONS # Synthesis and characterization of neem (Azadirachta indica) seed oil-based alkyd resins for efficient 802 1.7 28 anticorrosive coating application. Polymer Bulletin, 2021, 78, 457-479. Effect of fibre surface coating on the mechanical properties of natural fibre-reinforced soil. 1.1 International Journal of Geotechnical Engineering, 2021, 15, 338-348. Bio-based monomers for UV-curable coatings: allylation of ferulic acid and investigation of 804 1.9 20 photocured thiol-ene network. Progress in Organic Coatings, 2021, 150, 105986. Design of water-soluble whole rice glutelin: The rendezvous of two rice subspecies, Japonica and Indica. Food Hydrocolloids, 2021, 110, 106148. Melt processing of nanocomposites of cellulose nanocrystals with biobased thermoplastic 806 1.3 8 polyurethane. Journal of Applied Polymer Science, 2021, 138, 50343. Facile strategy to improve thermal conductivity of anisotropic poly(butylene succinate) phosphorusa€containing ionomer films via compression molding. Polymers for Advanced Technologies, 1.6 2021, 32, 1194-1204. Synthesis and characterization of fully biobased polyesters with tunable branched architectures. 808 1.9 7 Polymer Chemistry, 2021, 12, 991-1001. The effect of THF and the chelating modifier DTHFP on the copolymerisation of Î2-myrcene and styrene: kinetics, microstructures, morphologies, and mechanical properties. Polymer Chemistry, 2021, 12, 809 1.9 4632-4642. Sustainability of Biodegradable Polymers for the Environment. Advances in Environmental 810 0.3 0 Engineering and Green Technologies Book Series, 2021, , 65-87. Exploring the Effects of Different Cross-Linkers on Lignin-Based Thermoset Properties and 3.2 Morphologies. ACS Sustainable Chemistry and Engineering, 2021, 9, 1692-1702. An amylopectin-enabled skin-mounted hydrogel wearable sensor. Journal of Materials Chemistry B, 812 43 2.9 2021, 9, 1082-1088. Properties of bio-based thermosetting composites synthesized from epoxidized soybean oil and 814 1.2 azo-cardanol benzoxazine. Journal of Polymer Research, 2021, 28, 1. A Short Review on the Synthesis of Polylactic Acid by Reactive Extrusion and Static Mixing Reaction 815 0.1 0 Techniques. Science of Ádvanced Matérials, 2021, 13, 181-187. Vanillin based polymers: V. <i>Poly</i>(hydrovanilloin–urethane). Polymers From Renewable Resources, 2021, 12, 35-45. 0.8 Natural fibre composites with furanic thermoset resins. Comparison between polyfurfuryl alcohol 817 1.5 8 and humins from sugar conversion. Composites Part C: Open Access, 2021, 4, 100109. Sustainable Myrcene-Based Elastomers via a Convenient Anionic Polymerization. Polymers, 2021, 13, 838. 24 Reinforcement of bioâ€based network polymer with wine pomace. Polymer Composites, 2021, 42, 819 2.39 2973-2981. Low carbon biodegradable polymer matrices for sustainable future. Composites Part C: Open Access, 1.5 34 2021, 4, 100111.

#	Article	IF	CITATIONS
821	Castor Oil-Based Bioplastics via Polyesterification: Synthesis, Characterization, and Functionalization. ACS Applied Polymer Materials, 2021, 3, 2054-2062.	2.0	5
822	Interface water-induced hydrophobic carbon chain unfolding in water. Communications in Theoretical Physics, 2021, 73, 055602.	1.1	8
823	Importance of suberin biopolymer in plant function, contributions to soil organic carbon and in the production of bio-derived energy and materials. Biotechnology for Biofuels, 2021, 14, 75.	6.2	19
825	Blending of cyclic carbonate based on soybean oil and glycerol: a non-isocyanate approach towards the synthesis of polyurethane with high performance. Journal of Polymer Research, 2021, 28, 1.	1.2	5
826	Synthesis of Bio-Based Aliphatic Polyesters from Plant Oils by Efficient Molecular Catalysis: A Selected Survey from Recent Reports. ACS Sustainable Chemistry and Engineering, 2021, 9, 5486-5505.	3.2	43
827	Roadmap to Biodegradable Plastics—Current State and Research Needs. ACS Sustainable Chemistry and Engineering, 2021, 9, 6170-6187.	3.2	112
828	Biobased latexes from natural oil derivatives. Industrial Crops and Products, 2021, 162, 113237.	2.5	8
829	Renewable Polyurethanes from Sustainable Biological Precursors. Biomacromolecules, 2021, 22, 1770-1794.	2.6	65
830	Ethylene Copolymerization with Limonene and Î ² -Pinene: New Bio-Based Polyolefins Prepared by Coordination Polymerization. Macromolecules, 2021, 54, 4693-4703.	2.2	12
831	Rheology of complex biobased quaternary blends: Poly(lactic acid) [poly(ethylene) Tj ETQq1 1 0.784314 rgBT /O	verlock 10 1.3	T <mark>f,</mark> 50 382 To
832	Potato peel phenolics as additives for developing active starch-based films with potential to pack smoked fish fillets. Food Packaging and Shelf Life, 2021, 28, 100644.	3.3	36
833	Biobased Poly(1,3-propylene 2,5-furandicarboxylate)-Carbon Nanotubes Nanocomposites with Enhanced Thermal, Mechanical Properties and Crystallization Behavior. Journal of Polymers and the Environment, 2022, 30, 555-561.	2.4	12
834	Improvement of Toughness and Mechanical Properties of Furfurylated Wood by Biosourced Epoxidized Soybean Oil. ACS Sustainable Chemistry and Engineering, 2021, 9, 8142-8155.	3.2	21
835	Role of the heat treatment of partial melt recrystallization method on microstructure change and toughness of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(HB-co-HV)]. Polymer, 2021, 228, 123874.	1.8	3
836	Rheology of Polymer Processing in Spain (1995–2020). Polymers, 2021, 13, 2314.	2.0	3
837	Polymer nanoparticles-preparations, applications and future insights: a concise review. Polymer-Plastics Technology and Materials, 0, , 1-29.	0.6	14
838	A green fabrication method of poly (lactic acid) perforated membrane via tuned crystallization and gas diffusion process. International Journal of Biological Macromolecules, 2021, 182, 1037-1046.	3.6	13
839	Anionic Polymerization of Terpene Monomers: New Options for Bio-Based Thermoplastic Elastomers. Macromolecules, 2021, 54, 7323-7336.	2.2	52

#	Article	IF	Citations
840	Synthesis and characterization of poly(linoleic-g-ε-caprolactone) graft copolymers via "click―reaction and ring-opening polymerization. Journal of Chemical Sciences, 2021, 133, 1.	0.7	2
841	Luminescent hybrid biocomposite films derived from animal skin waste. Carbon Trends, 2021, 4, 100059.	1.4	5
843	Improving dimensional stability of Populus cathayana wood by suberin monomers with heat treatment. IForest, 2021, 14, 313-319.	0.5	2
844	Boron-Doped α-Oligo- and Polyfurans: Highly Luminescent Hybrid Materials, Color-Tunable through the Doping Density. Macromolecules, 2021, 54, 7653-7665.	2.2	17
845	Development of Halogen Free Sustainable Polybenzoxazine Matrices and Composites for Flame Retardant Applications. , 0, , .		0
846	Synthesis of Semicrystalline Long Chain Aliphatic Polyesters by ADMET Copolymerization of Dianhydro-D-glucityl bis(undec-10-enoate) with 1,9-Decadiene and Tandem Hydrogenation. Catalysts, 2021, 11, 1098.	1.6	10
847	Sustainable polysaccharides from Malvaceae family: Structure and functionality. Food Hydrocolloids, 2021, 118, 106749.	5.6	5
848	Cu ₂ O uO/Chitosan Composites as Heterogeneous Catalysts for Benzylic Câ^'H Oxidation at Room Temperature. ChemCatChem, 2021, 13, 4833-4840.	1.8	4
849	Investigating the impact of regiochemistry in ester functionalized polyfurans. Journal of Polymer Science, 0, , .	2.0	2
850	Novel organic glass with superior optical properties based on dimethyl itaconate and diethyl itaconate. Polymer Testing, 2021, , 107363.	2.3	2
851	The role of lignin and lignin-based materials in sustainable construction – A comprehensive review. International Journal of Biological Macromolecules, 2021, 187, 624-650.	3.6	192
852	Molecular mobility investigation of the biobased Poly(ethylene vanillate) and Poly(propylene) Tj ETQq1 1 0.7843	14.rgBT /O 1.8	verlock 10 T
853	Biobased 2,5-furandicarboxylic acid (FDCA) and its emerging copolyesters' properties for packaging applications. European Polymer Journal, 2021, 160, 110778.	2.6	30
854	Chemical constitution of polyfurfuryl alcohol investigated by FTIR and Resonant Raman spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 262, 120090.	2.0	18
855	Rapid synthesis of diol homolog-based thermosets with tunable properties <i>via</i> ring-opening metathesis polymerization. Materials Advances, 2021, 2, 3671-3676.	2.6	4
856	Synthesis and characterization of biobased thermoplastic polyester elastomers containing Poly(butylene 2,5-furandicarboxylate). RSC Advances, 2021, 11, 14932-14940.	1.7	16
858	Microbial Products and Their Role in Soil Health and Sustainable Agriculture. Advances in Environmental Engineering and Green Technologies Book Series, 2021, , 181-204.	0.3	0
864	Biosynthesis of Nanoparticles by Fungi: Large-Scale Production. , 2016, , 1-20.		16

#	Article	IF	CITATIONS
865	Recent Developments in Catalytic Activation of Renewable Resources for Polymer Synthesis. Topics in Organometallic Chemistry, 2012, , 175-224.	0.7	35
866	Bio-based Hydrocarbon Polymers. , 2015, , 1-10.		1
867	Catalytic Production of 5-Hydroxymethylfurfural from Biomass and Biomass-Derived Sugars. Biofuels and Biorefineries, 2017, , 81-121.	0.5	4
868	Preparation and Characterization of Lignosulfonate–Acrylonitrile Copolymer as a Novel Carbon Fiber Precursor. ACS Sustainable Chemistry and Engineering, 2016, 4, 159-168.	3.2	60
869	1-Azidoethoxy-2,3,4,6-tetra-O-acetyl-β-D-glucoside. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o2651-o2651.	0.2	2
870	Lignin-Based Carbon Nanomaterials—The Future Scope. Materials Performance and Characterization, 2019, 8, 20180153.	0.2	4
871	Aluminium/iron reinforced polyfurfuryl alcohol resin as advanced biocomposites. AIMS Materials Science, 2016, 3, 908-915.	0.7	2
872	The Influence of Polyurethane Foam on the Insulation Characteristics of Mortar Pastes. Journal of Minerals and Materials Characterization and Engineering, 2017, 05, 49-61.	0.1	7
873	Divergent Process for C ₁₀ , C ₁₁ and C ₁₂ ï‰-Amino Acid and α,ï‰-Dicarboxylic Acid Monomers of Polyamides from Castor Oil as a Renewable Resource. Bulletin of the Korean Chemical Society, 2012, 33, 1873-1878.	1.0	8
874	Stereoregular Polymerization of Acyclic Terpenes. ChemPlusChem, 2022, 87, .	1.3	15
875	Innovations to decarbonize materials industries. Nature Reviews Materials, 2022, 7, 275-294.	23.3	57
876	Polyurethane films prepared with isophorone diisocyanate functionalized wheat starch. European Polymer Journal, 2021, 161, 110826.	2.6	8
877	Niche Position and Opportunities for Woody Biomass Conversion. RSC Green Chemistry, 2012, , 151-179.	0.0	0
878	Synthesis of Monomers for Polyamide-type TPEs from Oleic Acid. Elastomers and Composites, 2013, 48, 24-29.	0.1	0
879	SYNTHESIS AND CHARACTERATION OF POLY (ETHYLENE 2,5-FURANDICARBOXYLATE). Acta Polymerica Sinica, 2013, 013, 24-29.	0.0	0
880	Monosaccharides: Synthetic Polymers from. , 0, , 4867-4896.		0
881	Multifunctional Composite Ecomaterials and Their Impact on Sustainability. , 2019, , 3193-3222.		0
882	Modified tannins for alkyd based anticorrosive coatings. Materials Protection, 2019, 60, 81-95.	0.1	2

#	Article	IF	Citations
884	Biodegradability and Composite Coatings: Past, Present and Future Prospects. , 2020, , 399-415.		2
885	Furans and Their Benzo Derivatives: Structure. , 2020, , 190-190.		1
886	Investigation of Optical and Electrochemical Properties of Benzene Based Solution Processable 2,1,3-Benzooxadiazole Comprising Polymers. Journal of the Electrochemical Society, 2020, 167, 122505.	1.3	1
887	Ethylene/Myrcene Copolymers as New Bio-Based Elastomers Prepared by Coordination Polymerization Using Titanium Catalysts. Macromolecules, 2021, 54, 10049-10058.	2.2	7
888	Bio-Based Polymer Adhesive Material: Properties and Applications. , 2020, , .		0
889	Critical Points in Biopolymeric-Controlled Release Matrix Systems. Advances in Material Research and Technology, 2020, , 31-55.	0.3	0
890	A Glimpse of the World of Volatile Fatty Acids Production and Application: A review. Bioengineered, 2022, 13, 1249-1275.	1.4	43
892	Replacement of traditional unsaturated acid by bio-based itaconic acid in the preparation of isophthalic acid-based unsaturated polyester resin. Progress in Organic Coatings, 2020, 147, 105743.	1.9	10
893	Reversible Deactivation Radical Polymerization Mediated by Nitroxides and Green Chemistry. Polymer Science - Series C, 2021, 63, 126-143.	0.8	3
894	Optical Spectra of Oligofurans: A Theoretical Approach to the Transition Energies, Reorganization Energies, and the Vibronic Activity. Molecules, 2021, 26, 7163.	1.7	0
895	Furan resins. , 2022, , 83-95.		4
896	Thermosets from renewable sources. , 2022, , 679-718.		0
897	Thermal properties of biofiber-based polymer composites. , 2022, , 141-157.		0
898	Complexities of Regioselective Ring-Opening vs Transcarbonylation-Driven Structural Metamorphosis during Organocatalytic Polymerizations of Five-Membered Cyclic Carbonate Glucose Monomers. Jacs Au, 2022, 2, 515-521.	3.6	7
899	Preparation, physicochemical and pharmacological study of 10-hydroxycamptothecin solid dispersion with complexation agent – xylan-nonanoic acid amphiphilic conjugates. International Journal of Biological Macromolecules, 2022, 204, 224-233.	3.6	3
900	Furan Polymers: State of the Art and Perspectives. Macromolecular Materials and Engineering, 2022, 307, .	1.7	31
901	Effects of alkyl and phenyl-substituted 1,3-propanediols on the synthesis and properties of polyesters with 2,5-furandicarboxylic acid. Polymer, 2022, 242, 124584.	1.8	3
902	Bio-Based Aromatic Polyesters Reversibly Crosslinked via the Diels–Alder Reaction. Applied Sciences (Switzerland), 2022, 12, 2461.	1.3	5

#	ARTICLE	IF	CITATIONS
903	Polymeric Antioxidant <i>via</i> ROMP of Bioderived Tricyclic Oxanorbornene Based on Vanillin and Furfurylamine. ACS Applied Polymer Materials, 2022, 4, 2181-2188.	2.0	10
904	Hierarchical Nanocelluloseâ€Based Gel Polymer Electrolytes for Stable Na Electrodeposition in Sodium Ion Batteries. Small, 2022, 18, e2107183.	5.2	35
906	Controlled synthesis and closed-loop chemical recycling of biodegradable copolymers with composition-dependent properties. Science China Chemistry, 2022, 65, 943-953.	4.2	17
907	Polysaccharide-based, emulsion-templated, porous poly(urethane urea)s: Composition, catalysis, cell growth. European Polymer Journal, 2022, 169, 111140.	2.6	6
908	SPECIALTY NATURAL RUBBER LATEX FOAM: FOAMABILITY STUDY AND FABRICATION PROCESS. Rubber Chemistry and Technology, 2022, 95, 492-513.	0.6	11
909	Achieving flame retardancy and mechanical integrity via phosphites in bioâ€based resins. Journal of Polymer Science, 2022, 60, 726-735.	2.0	2
910	Reversible Crosslinking of Polymer/Metal-Ion Complexes for a Microfluidic Switch. ACS Omega, 2021, 6, 35297-35306.	1.6	2
911	Monomers and Macromolecular Materials from Renewable Resources: State of the Art and Perspectives. Molecules, 2022, 27, 159.	1.7	19
912	High-performance polyurethanes foams for automobile industry. , 2022, , 105-129.		2
913	Synthesis and enzymatic recycling of sugar-based bio-polyurethane foam. European Polymer Journal, 2022, 171, 111188.	2.6	4
915	Sustainability and Polyesters: Beyond Metals and Monomers to Function and Fate. Accounts of Chemical Research, 2022, 55, 1514-1523.	7.6	18
916	Closing the Carbon Loop in the Circular Plastics Economy. Macromolecular Rapid Communications, 2022, 43, .	2.0	21
917	Green Routes toward Cross-Linkable and Robust Elastomers Derived from Biobased Fumaric Acid. ACS Sustainable Chemistry and Engineering, 2022, 10, 7065-7077.	3.2	9
918	Synthesis of a Bio-based Epoxy-carboxy Network and Its Reinforcement with Lignocellulose Nanofiber. Chemistry Letters, 2022, 51, 622-624.	0.7	2
920	Synthesis of Terpene-Based Polymers. Advances in Polymer Science, 2012, , .	0.4	0
921	Living 3,4-Isoselective (Co)polymerization of Biobased β-Farnesene Catalyzed by Phosphine-Functionalized Fluorenyl Rare-Earth Metal Catalysts. Macromolecules, 2022, 55, 5049-5057.	2.2	9
922	Photoinduced Iron-Catalyzed ATRP of Renewable Monomers in Low-Toxicity Solvents: A Greener Approach. ACS Macro Letters, 2022, 11, 841-846.	2.3	25
923	Synthesis and Characterization of Novel Biobased Ion-Exchange Bisfuran Polyamides Prepared by Interfacial Polycondensation of Bisfuran Diamine Monomer and Sustainable Dicarboxylic Acid Derivatives. Journal of Polymers and the Environment, 0, , .	2.4	1

#	Article	IF	Citations
924	Renewable biomass resources to access halogen- and phosphorus-free flame retardant thermosets with ultra-low heat release capacity. Chemical Engineering Journal, 2022, 448, 137670.	6.6	32
925	Biodegradable copolyesters based on a "soft―isohexide building block with tunable viscoelasticity and self-adhesiveness. Polymer Chemistry, 2022, 13, 4511-4523.	1.9	2
926	Improving the Wet-Spinning and Drawing Processes of Poly(lactide)/Poly(ethylene furanoate) and Polylactide/Poly(dodecamethylene furanoate) Fiber Blends. Polymers, 2022, 14, 2910.	2.0	6
927	Poly(butylene succinate) (PBS): Materials, processing, and industrial applications. Progress in Polymer Science, 2022, 132, 101579.	11.8	82
928	Crossâ€linking reaction of diastereomeric bisâ€limonene oxide with polyhydric carboxylic acid. Journal of Applied Polymer Science, 0, , .	1.3	5
929	Bio-based poly(ester amide): mechanical, thermal and biodegradable behaviors. Journal of Polymer Research, 2022, 29, .	1.2	3
930	A facile method to synthesis of a highly acrylated epoxidized soybean oil with low viscosity: Combined experimental and computational approach. Polymer Testing, 2022, 115, 107727.	2.3	8
931	Thiol-ene biobased networks: Furan allyl derivatives for green coating applications. Progress in Organic Coatings, 2022, 173, 107203.	1.9	7
932	βâ€Myrcene Coordination Polymerization: Experimental and Kinetic Modeling Study. Macromolecular Reaction Engineering, 2023, 17, .	0.9	2
933	Effect of the biobased polyols chemical structure on high performance thermoset polyurethane properties. Polymer, 2022, 263, 125515.	1.8	9
934	Biodegradable Materials for Transient Organic Transistors. Advanced Functional Materials, 2023, 33, .	7.8	16
935	Circular Economy Potential of Microalgal Refinery. , 2022, , 219-250.		0
936	Supramolecular structure, relaxation behavior and free volume of bio-based poly(butylene) Tj ETQq0 0 0 rgBT /Ov	verlock 10 1.2	Tf 50 262 Td
937	Bio-Based Epoxy Resins of Epoxidized Soybean oil Cured with Salicylic acid Loaded with Chitosan: Evaluation of Physical–Chemical Properties. Journal of Polymers and the Environment, 2023, 31, 2566-2575.	2.4	10
938	Anionic Polymerization of the Terpene-Based Diene β-Ocimene: Complex Mechanism Due to Stereoisomer Reactivities. Macromolecules, 2023, 56, 664-677.	2.2	4
939	Molecular Dynamics of Polymyrcene: Rheology and Broadband Dielectric Spectroscopy on a Stockmayer Type A Polymer. Macromolecules, 2023, 56, 188-197.	2.2	3
940	Synthesis of Ethylene/Isoprene Copolymers Containing Cyclopentane/Cyclohexane Units as Unique Elastomers by Half-Titanocene Catalysts. Macromolecules, 2023, 56, 899-914.	2.2	3
941	Structure-property-function relationships of sustainable hydrogels. , 2023, , 79-111.		0

IF ARTICLE CITATIONS Biomass in Composite Materials., 2012, , 698-739. 942 1 Rational development of a unique family of renewable polymers. Frontiers of Materials Science, 2023, 943 1.1 17,. Click Synthesis of Triazole Polymers Based on Lignin-Derived Metabolic Intermediate and Their Strong 944 2.0 1 Adhesive Properties to Cu Plate. Polymers, 2023, 15, 1349. Topological network design toward highâ€performance vegetable oil–based elastomers. SusMat, 2023, 3, 945 320-333. Plantâ€Derived Biomaterials and Their Potential in Cardiac Tissue Repair. Advanced Healthcare Materials, 946 3.9 1 2023, 12, . Shear, Consolidation Characteristics and Carbon Footprint Analysis of Clayey Soil Blended with Calcium Lignosulphonate and Granite Sand for Earthen Dam Application. Sustainability, 2023, 15, 6117. 1.6 Vegetable oils based precursors: modifications and scope for futuristic bio-based polymeric materials. 948 1.2 3 Journal of Polymer Research, 2023, 30, . Synthesis of a novel multifunctional montmorillonite/L-malic-acid/curcumin/bacterial cellulose hybrid nanofilm with excellent heat insulation, antibacterial activity and cytocompatibility. Colloid 1.0 and Polymer Science, 2023, 301, 893-908. Polymeric Material from Plant Oil and Their Application., 2022, , 1-12. 954 0 Dehydrogenative silvlation of cellulose in ionic liquid. Green Chemistry, 2023, 25, 7062-7067. 4.6 Research Progress on the Solid Electrolyte of Solid-State Sodium-Ion Batteries. Electrochemical 970 13.10 Energy Reviews, 2024, 7, . Rubber and spherical tires., 2024, , 55-159. 974 0

CITATION REPORT

Other novel materials to manufacture bioplastics., 2024, , 77-109. 979