The immune system and cardiac repair

Pharmacological Research 58, 88-111 DOI: 10.1016/j.phrs.2008.06.007

Citation Report

#	Article	IF	CITATIONS
1	The Inflammatory Response and Cardiac Repair After Myocardial Infarction. Korean Circulation Journal, 2009, 39, 393.	1.9	58
2	Oxytocin: Old Hormone, New Drug. Pharmaceuticals, 2009, 2, 168-183.	3.8	20
3	Cardiac repair and regeneration: the Rubik's cube of cell therapy for heart disease. DMM Disease Models and Mechanisms, 2009, 2, 344-358.	2.4	76
4	Myocardial tissue engineering: the quest for the ideal myocardial substitute. Expert Review of Cardiovascular Therapy, 2009, 7, 921-928.	1.5	24
5	The cannabinoid receptor type 2 promotes cardiac myocyte and fibroblast survival and protects against ischemia/reperfusionâ€induced cardiomyopathy. FASEB Journal, 2009, 23, 2120-2130.	0.5	116
6	Interleukin-1α stimulates proinflammatory cytokine expression in human cardiac myofibroblasts. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H1117-H1127.	3.2	116
7	Apoptosis predominates in nonmyocytes in heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H785-H791.	3.2	65
8	Adhesion and transcellular migration of neutrophils and B lymphocytes on fibroblasts. Experimental Cell Research, 2009, 315, 2192-2206.	2.6	27
9	Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction. Journal of Cellular and Molecular Medicine, 2009, 13, 3485-3496.	3.6	214
10	Neutrophil activation precedes myocardial injury in patients with acute myocardial infarction. Free Radical Biology and Medicine, 2009, 47, 79-83.	2.9	63
11	Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Molecular Medicine, 2009, 1, 303-314.	6.9	557
12	Characterization of the inflammatory and fibrotic response in a mouse model of cardiac pressure overload. Histochemistry and Cell Biology, 2009, 131, 471-481.	1.7	226
13	The role of IL-1 in the pathogenesis of heart disease. Archivum Immunologiae Et Therapiae Experimentalis, 2009, 57, 165-176.	2.3	258
14	Polyunsaturated fatty acids and cardiovascular disease. Cellular and Molecular Life Sciences, 2009, 66, 3277-3288.	5.4	45
15	Mesenchymal Stem Cells Promote Matrix Metalloproteinase Secretion by Cardiac Fibroblasts and Reduce Cardiac Ventricular Fibrosis After Myocardial Infarction. Stem Cells, 2009, 27, 2734-2743.	3.2	233
16	Translational Mini-Review Series on Immunology of Vascular Disease: Mechanisms of vascular inflammation and remodelling in systemic vasculitis. Clinical and Experimental Immunology, 2009, 156, 395-404.	2.6	48
17	New inhibitors of the complement system inspired in K76-COOH. A SAR study of filifolinol derivatives through modifications of the C3′ position. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6172-6175.	2.2	14
18	Induction of the CXC Chemokine Interferon-Î ³ -Inducible Protein 10 Regulates the Reparative Response Following Myocardial Infarction. Circulation Research, 2009, 105, 973-983.	4.5	113

#	Article	IF	CITATIONS
19	Heart-Infiltrating Prominin-1 ⁺ /CD133 ⁺ Progenitor Cells Represent the Cellular Source of Transforming Growth Factor β–Mediated Cardiac Fibrosis in Experimental Autoimmune Myocarditis. Circulation Research, 2009, 105, 462-470.	4.5	90
20	Stem cell therapy for cardiac repair: benefits and barriers. Expert Reviews in Molecular Medicine, 2009, 11, e20.	3.9	109
22	The role of nuclear factor kappa B and nitric oxide interaction in heart remodelling. Journal of Hypertension, 2010, 28, S39-S44.	0.5	11
23	Cardiovascular Effects of Oxytocin Infusion in a Porcine Model of Myocardial Infarct. Journal of Cardiovascular Pharmacology, 2010, 55, 74-82.	1.9	14
24	The future of regenerating the myocardium. Current Opinion in Cardiology, 2010, 25, 575-582.	1.8	17
25	Pharmacologic Inhibition of Myeloid Differentiation Factor 88 (MyD88) Prevents Left Ventricular Dilation and Hypertrophy After Experimental Acute Myocardial Infarction in the Mouse. Journal of Cardiovascular Pharmacology, 2010, 55, 385-390.	1.9	55
26	The ATP-Binding Cassette Transporter BCRP1/ABCG2 Plays a Pivotal Role in Cardiac Repair After Myocardial Infarction Via Modulation of Microvascular Endothelial Cell Survival and Function. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 2128-2135.	2.4	37
27	Genetic Engineering of Mesenchymal Stem Cells and Its Application in Human Disease Therapy. Human Gene Therapy, 2010, 21, 1513-1526.	2.7	136
28	Proteasome inhibitors and cardiac cell growth. Cardiovascular Research, 2010, 85, 321-329.	3.8	53
29	Anti-inflammatory effect of oxytocin in rat myocardial infarction. Basic Research in Cardiology, 2010, 105, 205-218.	5.9	118
30	Mechanisms of failed apoptotic cell clearance by phagocyte subsets in cardiovascular disease. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 1124-1136.	4.9	63
31	The Paradoxical Role of Inflammation in Cardiac Repair and Regeneration. Journal of Cardiovascular Translational Research, 2010, 3, 410-416.	2.4	71
32	Galectin-3 in Cardiac Remodeling and Heart Failure. Current Heart Failure Reports, 2010, 7, 1-8.	3.3	192
33	Cardiac microvascular endothelial cells express and release nerve growth factor but not fibroblast growth factor-2. In Vitro Cellular and Developmental Biology - Animal, 2010, 46, 469-476.	1.5	9
34	Matricellular proteins: from homeostasis to inflammation, cancer, and metastasis. Cancer and Metastasis Reviews, 2010, 29, 295-307.	5.9	207
35	The role of inflammatory and fibrogenic pathways in heart failure associated with aging. Heart Failure Reviews, 2010, 15, 415-422.	3.9	123
36	TNFα in atherosclerosis, myocardial ischemia/reperfusion and heart failure. , 2010, 127, 295-314.		371
37	Improved arterial spin labeling after myocardial infarction in mice using cardiac and respiratory gated look-locker imaging with fuzzy C-means clustering. Magnetic Resonance in Medicine, 2010, 63, 648-657.	3.0	56

#	Article	IF	CITATIONS
38	Bioactive Scaffolds for Engineering Vascularized Cardiac Tissues. Macromolecular Bioscience, 2010, 10, 1286-1301.	4.1	41
39	Early combined treatment with sildenafil and adipose-derived mesenchymal stem cells preserves heart function in rat dilated cardiomyopathy. Journal of Translational Medicine, 2010, 8, 88.	4.4	36
40	Tumour necrosis factorâ€like weak inducer of apoptosis (TWEAK) and its receptor Fn14 during cardiac remodelling in rats. Acta Physiologica, 2010, 199, 11-22.	3.8	38
41	Downregulation of oxytocin receptors in right ventricle of rats with monocrotalineâ€induced pulmonary hypertension. Acta Physiologica, 2010, 200, 147-158.	3.8	16
42	The cardio-protective properties of NCX-6550, a nitric oxide donating pravastatin, in the mouse. Microcirculation, 2010, 17, 417-26.	1.8	5
43	Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Research, 2010, 20, 510-518.	12.0	471
44	Inflammation in Cardiovascular Diseases. , 0, , 317-328.		0
45	Smad3 Signaling Critically Regulates Fibroblast Phenotype and Function in Healing Myocardial Infarction. Circulation Research, 2010, 107, 418-428.	4.5	315
46	Genetic Modification of Mesenchymal Stem Cells Overexpressing CCR1 Increases Cell Viability, Migration, Engraftment, and Capillary Density in the Injured Myocardium. Circulation Research, 2010, 106, 1753-1762.	4.5	212
47	Myocardial Ischemia/Reperfusion Injury Is Mediated by Leukocytic Toll-Like Receptor-2 and Reduced by Systemic Administration of a Novel Anti–Toll-Like Receptor-2 Antibody. Circulation, 2010, 121, 80-90.	1.6	319
48	Hyperglycaemia protects the heart after myocardial infarction: aspects of programmed cell survival and cell death. European Journal of Heart Failure, 2010, 12, 659-667.	7.1	62
49	Human cardiac explant-conditioned medium: soluble factors and cardiomyogenic effect on mesenchymal stem cells. Experimental Biology and Medicine, 2010, 235, 1015-1024.	2.4	20
50	Interleukinâ€1β modulation using a genetically engineered antibody prevents adverse cardiac remodelling following acute myocardial infarction in the mouse. European Journal of Heart Failure, 2010, 12, 319-322.	7.1	102
51	Attenuation of myocardial injury in mice with functional deletion of the circadian rhythm gene mPer2. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H1088-H1095.	3.2	41
53	Prognostic Value of Circulating Dead Monocytes in Patients with Acute ST-Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. Cardiology, 2010, 117, 131-139.	1.4	6
54	Does indoxyl sulfate, a uraemic toxin, have direct effects on cardiac fibroblasts and myocytes?. European Heart Journal, 2010, 31, 1771-1779.	2.2	256
55	Mitogen-Activated Protein Kinase Signaling in the Heart: Angels Versus Demons in a Heart-Breaking Tale. Physiological Reviews, 2010, 90, 1507-1546.	28.8	610
56	Skeletal myoblasts for cardiac repair. Regenerative Medicine, 2010, 5, 919-932.	1.7	90

CIT		~ ~ ~	Dee	ODT
CH.	AH	ON.	KEF	ORT

#	Article	IF	CITATIONS
57	Les cellules médullaires traitées par onde de choc améliorent la fonction ventriculaire gauche après infarctus du myocarde chez le lapin. Annales De Chirurgie Vasculaire, 2010, 24, 882-895.	0.0	0
58	Stem Cell Therapy for the Treatment of Acute Myocardial Infarction. Cardiology Clinics, 2010, 28, 127-138.	2.2	6
59	The role of monocytes in atherosclerotic coronary artery disease. Annals of Medicine, 2010, 42, 394-403.	3.8	108
60	Immunologic and Inflammatory Reactions to Exogenous Stem Cells. Journal of the American College of Cardiology, 2010, 56, 1693-1700.	2.8	43
61	Immunosuppression with an interleukin-2 fusion protein leads to improved LV function in experimental ischemic cardiomyopathy. International Immunopharmacology, 2010, 10, 207-212.	3.8	18
62	Extracellular matrix roles during cardiac repair. Life Sciences, 2010, 87, 391-400.	4.3	89
63	Overexpression of phosphoinositide-3-kinase class II alpha enhances mesenchymal stem cell survival in infarcted myocardium. Biochemical and Biophysical Research Communications, 2010, 402, 272-279.	2.1	26
64	The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. Journal of Molecular and Cellular Cardiology, 2010, 48, 504-511.	1.9	450
65	Intracardiac renin–angiotensin system and myocardial repair/remodeling following infarction. Journal of Molecular and Cellular Cardiology, 2010, 48, 483-489.	1.9	69
66	CCR5 Signaling Suppresses Inflammation and Reduces Adverse Remodeling of the Infarcted Heart, Mediating Recruitment of Regulatory T Cells. American Journal of Pathology, 2010, 176, 2177-2187.	3.8	257
67	Shock Wave-Pretreated Bone Marrow Cells Further Improve Left Ventricular Function After Myocardial Infarction in Rabbits. Annals of Vascular Surgery, 2010, 24, 809-821.	0.9	20
68	From multimarker approach to multiplex assays in acute coronary syndromes: What are we searching for?. Acute Cardiac Care, 2010, 12, 18-24.	0.2	2
69	Low-Level Laser Irradiation Alters Cardiac Cytokine Expression Following Acute Myocardial Infarction: A Potential Mechanism for Laser Therapy. Photomedicine and Laser Surgery, 2011, 29, 391-398.	2.0	33
70	New Targets to Treat the Structural Remodeling of the Myocardium. Journal of the American College of Cardiology, 2011, 58, 1833-1843.	2.8	147
71	Regenerating the Heart. , 2011, , .		2
72	Innate immune signaling in cardiac ischemia. Nature Reviews Cardiology, 2011, 8, 292-300.	13.7	278
73	Therapeutic regulation of cardiac fibroblast function: targeting stress-activated protein kinase pathways. Future Cardiology, 2011, 7, 673-691.	1.2	22
74	Human cardiac fibroblasts express ICAM-1, E-selectin and CXC chemokines in response to proinflammatory cytokine stimulation. International Journal of Biochemistry and Cell Biology, 2011, 43, 1450-1458.	2.8	45

#	Article	IF	CITATIONS
75	Epicatechin attenuates doxorubicin-induced brain toxicity: Critical role of TNF-α, iNOS and NF-κB. Brain Research Bulletin, 2011, 86, 22-28.	3.0	82
76	Intra-coronary administration of cyclosporine limits infarct size, attenuates remodeling and preserves left ventricular function in porcine acute anterior infarction. International Journal of Cardiology, 2011, 147, 79-87.	1.7	36
77	Autologous bone marrow cell implantation attenuates left ventricular remodeling and improves heart function in porcine myocardial infarction: An echocardiographic, six-month angiographic, and molecular–cellular study. International Journal of Cardiology, 2011, 150, 156-168.	1.7	40
78	DITPA, A Thyroid Hormone Analog, Reduces Infarct Size and Attenuates the Inflammatory Response Following Myocardial Ischemia. Journal of Surgical Research, 2011, 171, 379-385.	1.6	12
79	Alpha-1 antitrypsin inhibits caspase-1 and protects from acute myocardial ischemia–reperfusion injury. Journal of Molecular and Cellular Cardiology, 2011, 51, 244-251.	1.9	127
80	Stem Cell Therapy in Myocardial Infarction Clinical Point of View and the Results of the REANIMA Study (REgenerAtion of Myocardium with boNe Marrow Mononuclear Cells in MyocArdial) Tj ETQq1 1 0.784314	4 rgBT /Ove	erloæk 10 Tf 50
81	MicroRNAs, Innate Immunity and Ventricular Rupture in Human Myocardial Infarction. Disease Markers, 2011, 31, 259-265.	1.3	32
82	Histone Deacetylase Inhibition Enhances Self Renewal and Cardioprotection by Human Cord Blood-Derived CD34+ Cells. PLoS ONE, 2011, 6, e22158.	2.5	21
83	Neuregulin1 as Novel Therapy for Heart Failure. Current Pharmaceutical Design, 2011, 17, 1808-1817.	1.9	20
84	Phosphatidylinositol 3-Kinase Isoforms as Novel Drug Targets. Current Drug Targets, 2011, 12, 1056-1081.	2.1	38
85	Molecular mapping of the regenerative niche in a murine model of myocardial infarction. International Journal of Molecular Medicine, 2011, 29, 479-84.	4.0	7
86	Early Erythropoietin Therapy Attenuates Remodeling and Preserves Function of Left Ventricle in Porcine Myocardial Infarction. Journal of Investigative Medicine, 2011, 59, 574-586.	1.6	14
87	Coronary Artery Ligation and Intramyocardial Injection in a Murine Model of Infarction. Journal of Visualized Experiments, 2011, , .	0.3	31
88	Intramyocardial administration of chimeric ephrinA1â€Fc promotes tissue salvage following myocardial infarction in mice. Journal of Physiology, 2011, 589, 1725-1740.	2.9	46
89	Cardiomyocyte Mineralocorticoid Receptor Function Post Myocardial Infarction. Trends in Cardiovascular Medicine, 2011, 21, 42-47.	4.9	9
90	Free heme is a danger signal inducing expression of proinflammatory proteins in cultured cells derived from normal rat hearts. Molecular Immunology, 2011, 48, 1191-1202.	2.2	24
91	SDF-1α as a therapeutic stem cell homing factor in myocardial infarction. , 2011, 129, 97-108.		192
92	TNFα in myocardial ischemia/reperfusion, remodeling and heart failure. Heart Failure Reviews, 2011, 16, 49-69.	3.9	207

#	Article	IF	CITATIONS
93	Mesenchymal Stem Cells for Cardiovascular Regeneration. Cardiovascular Drugs and Therapy, 2011, 25, 349-362.	2.6	43
94	Secretome of apoptotic peripheral blood cells (APOSEC) confers cytoprotection to cardiomyocytes and inhibits tissue remodelling after acute myocardial infarction: a preclinical study. Basic Research in Cardiology, 2011, 106, 1283-1297.	5.9	85
95	Emerging MRI Methods in Translational Cardiovascular Research. Journal of Cardiovascular Translational Research, 2011, 4, 477-492.	2.4	29
96	Molecular Imaging of Healing After Myocardial Infarction. Current Cardiovascular Imaging Reports, 2011, 4, 63-76.	0.6	13
97	Effect of Intracoronary Delivery of Autologous Bone Marrow Mononuclear Cells 2 to 3 Weeks Following Acute Myocardial Infarction on Left Ventricular Function. JAMA - Journal of the American Medical Association, 2011, 306, 2110.	7.4	377
98	Syndecan-4 Prevents Cardiac Rupture and Dysfunction After Myocardial Infarction. Circulation Research, 2011, 108, 1328-1339.	4.5	92
99	The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19725-19730.	7.1	501
100	Distinct Effects of Leukocyte and Cardiac Phosphoinositide 3-Kinase γ Activity in Pressure Overload–Induced Cardiac Failure. Circulation, 2011, 123, 391-399.	1.6	65
101	Donor Myocardial Infarction Impairs the Therapeutic Potential of Bone Marrow Cells by an Interleukin-1–Mediated Inflammatory Response. Science Translational Medicine, 2011, 3, 100ra90.	12.4	53
102	Lack of Fibronectin-EDA Promotes Survival and Prevents Adverse Remodeling and Heart Function Deterioration After Myocardial Infarction. Circulation Research, 2011, 108, 582-592.	4.5	149
103	Blunting Half of the Double-Edged Sword. Circulation Research, 2011, 109, 1196-1198.	4.5	1
104	Novel Role of Platelets in Mediating Inflammatory Responses and Ventricular Rupture or Remodeling Following Myocardial Infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 834-841.	2.4	101
105	Experimental myocardial infarction triggers canonical Wnt signaling and endothelial-to-mesenchymal transition. DMM Disease Models and Mechanisms, 2011, 4, 469-483.	2.4	237
106	Secreted Frizzled-Related Protein-1 Improves Postinfarction Scar Formation Through a Modulation of Inflammatory Response. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, e80-7.	2.4	61
107	Potential Role of Nuclear Factor <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="bold">κB in Diabetic Cardiomyopathy. Mediators of Inflammation, 2011, 2011, 1-9.</mml:mi </mml:math 	3.0	139
108	Macrophages modulate cardiac function in lipotoxic cardiomyopathy. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H1366-H1373.	3.2	39
109	CC chemokine CCL5 plays a central role impacting infarct size and post-infarction heart failure in mice. European Heart Journal, 2012, 33, 1964-1974.	2.2	107
110	Regulatory Role of Dendritic Cells in Postinfarction Healing and Left Ventricular Remodeling. Circulation, 2012, 125, 1234-1245.	1.6	251

#	Article	IF	CITATIONS
111	Myocardial infarction impairs renal function, induces renal interstitial fibrosis, and increases renal KIM-1 expression: implications for cardiorenal syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H1884-H1893.	3.2	71
112	Na ⁺ /Ca ²⁺ exchanger-1 protects against systolic failure in the Akita ^{ins2} model of diabetic cardiomyopathy via a CXCR4/NF-κB pathway. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H353-H367.	3.2	37
113	Regulation of the Inflammatory Response in Cardiac Repair. Circulation Research, 2012, 110, 159-173.	4.5	940
114	Optimizing Dynamic Interactions between a Cardiac Patch and Inflammatory Host Cells. Cells Tissues Organs, 2012, 195, 171-182.	2.3	34
115	Deleterious Effect of the ILâ€23/ILâ€17A Axis and γÎ⊤ Cells on Left Ventricular Remodeling After Myocardial Infarction. Journal of the American Heart Association, 2012, 1, e004408.	3.7	127
116	Immunophenotypic Alterations in Resident Immune Cells and Myocardial Fibrosis in the Aging Rhesus Macaque (<i>Macaca mulatta</i>) Heart. Toxicologic Pathology, 2012, 40, 637-646.	1.8	15
117	Myocardial Infarction Triggers Chronic Cardiac Autoimmunity in Type 1 Diabetes. Science Translational Medicine, 2012, 4, 138ra80.	12.4	64
118	Regression of cardiac hypertrophy by granulocyte colony-stimulating factor-stimulated interleukin-1β synthesis. European Heart Journal, 2012, 33, 595-605.	2.2	38
119	Value and Level of Galectin-3 in Acute Myocardial Infarction Patients Undergoing Primary Percutaneous Coronary Intervention. Journal of Atherosclerosis and Thrombosis, 2012, 19, 1073-1082.	2.0	78
120	Hypothermia and percutaneous coronary intervention during acute myocardial infarction. Interventional Cardiology, 2012, 4, 235-243.	0.0	5
121	Tenascin-C in Cardiovascular Tissue Remodeling. Circulation Journal, 2012, 76, 2513-2520.	1.6	95
122	C/EBP Transcription Factors Mediate Epicardial Activation During Heart Development and Injury. Science, 2012, 338, 1599-1603.	12.6	193
123	Effect of the Use and Timing of Bone Marrow Mononuclear Cell Delivery on Left Ventricular Function After Acute Myocardial Infarction. JAMA - Journal of the American Medical Association, 2012, 308, 2380-9.	7.4	357
124	Treatment With OPN-305, a Humanized Anti–Toll-Like Receptor-2 Antibody, Reduces Myocardial Ischemia/Reperfusion Injury in Pigs. Circulation: Cardiovascular Interventions, 2012, 5, 279-287.	3.9	95
125	Regulation of adverse remodelling by osteopontin in a genetic heart failure model. European Heart Journal, 2012, 33, 1954-1963.	2.2	80
126	The innate immune response in reperfused myocardium. Cardiovascular Research, 2012, 94, 276-283.	3.8	224
127	Spiked-in Pulsed in Vivo Labeling Identifies a New Member of the CCN Family in Regenerating Newt Hearts. Journal of Proteome Research, 2012, 11, 4693-4704.	3.7	32
128	Endogenous migration modulators as parent compounds for the development of novel cardiovascular and antiâ€inflammatory drugs. British Journal of Pharmacology, 2012, 165, 2044-2058.	5.4	2

#	Article	IF	CITATIONS
129	Cardiac mTOR protects the heart against ischemia-reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H75-H85.	3.2	123
130	NOX5 Expression Is Increased in Intramyocardial Blood Vessels and Cardiomyocytes after Acute Myocardial Infarction in Humans. American Journal of Pathology, 2012, 180, 2222-2229.	3.8	53
131	Interactions between the extracellular matrix and inflammation during viral myocarditis. Immunobiology, 2012, 217, 503-510.	1.9	23
133	Intra-coronary administration of tacrolimus markedly attenuates infarct size and preserves heart function in porcine myocardial infarction. Journal of Inflammation, 2012, 9, 21.	3.4	14
134	Internalization of paramagnetic phosphatidylserine-containing liposomes by macrophages. Journal of Nanobiotechnology, 2012, 10, 37.	9.1	28
135	Impact of obesity control on circulating level of endothelial progenitor cells and angiogenesis in response to ischemic stimulation. Journal of Translational Medicine, 2012, 10, 86.	4.4	24
136	Selection of reference genes in different myocardial regions of an in vivo ischemia/reperfusion rat model for normalization of antioxidant gene expression. BMC Research Notes, 2012, 5, 124.	1.4	29
137	Nonesterified fatty acids modify inflammatory response and eicosanoid biosynthesis in bovine endothelial cells. Journal of Dairy Science, 2012, 95, 5011-5023.	3.4	49
138	Cell Biology of Ischemia/Reperfusion Injury. International Review of Cell and Molecular Biology, 2012, 298, 229-317.	3.2	1,543
139	Thrombospondin-4, tumour necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor Fn14: Novel extracellular matrix modulating factors in cardiac remodelling. Annals of Medicine, 2012, 44, 793-804.	3.8	17
140	The Extracellular Matrix Modulates Fibroblast Phenotype and Function in the Infarcted Myocardium. Journal of Cardiovascular Translational Research, 2012, 5, 837-847.	2.4	94
141	Phosphoinositides and Disease. Current Topics in Microbiology and Immunology, 2012, , .	1.1	2
143	Personalizing biomarker strategies in heart failure with galectin-3. Future Cardiology, 2012, 8, 885-894.	1.2	21
144	Resident Cardiac Immune Cells and Expression of the Ectonucleotidase Enzymes CD39 and CD73 after Ischemic Injury. PLoS ONE, 2012, 7, e34730.	2.5	90
145	Therapeutic Effects of Astragaloside IV on Myocardial Injuries: Multi-Target Identification and Network Analysis. PLoS ONE, 2012, 7, e44938.	2.5	62
146	The Periodontal Pathogen Aggregatibacter Actinomycetemcomitans Deteriorates Ventricular Remodeling After Myocardial Infarction in Mice. International Heart Journal, 2012, 53, 253-256.	1.0	18
147	5.2 Integrin function in heart fibrosis: mechanical strain, transforming growth factor-beta 1 activation, and collagen glycation. , 2012, , 406-431.		0
149	Matricellular Proteins in Cardiac Adaptation and Disease. Physiological Reviews, 2012, 92, 635-688.	28.8	368

#	Article	IF	Citations
150	Novel therapeutic approaches to post-infarction remodelling. Cardiovascular Research, 2012, 94, 293-303.	3.8	101
151	Anti-inflammatory mechanisms and therapeutic opportunities in myocardial infarct healing. Journal of Molecular Medicine, 2012, 90, 361-369.	3.9	57
152	Phenotypic and Functional Alterations on Inflammatory Peripheral Blood Cells After Acute Myocardial Infarction. Journal of Cardiovascular Translational Research, 2012, 5, 309-320.	2.4	19
153	Increased interleukinâ€1β levels are associated with left ventricular hypertrophy and remodelling following acute ST segment elevation myocardial infarction treated by primary percutaneous coronary intervention. Journal of Internal Medicine, 2012, 272, 267-276.	6.0	72
154	Post-infarct cardiac rupture: Recent insights on pathogenesis and therapeutic interventions. , 2012, 134, 156-179.		86
155	Antiâ€inflammatory treatment in patients after percutaneous coronary intervention: another potential use for berberine?. Clinical and Experimental Pharmacology and Physiology, 2012, 39, 404-405.	1.9	3
156	Adiponectin elevation by telmisartan ameliorates ischaemic myocardium in zucker diabetic fatty rats with metabolic syndrome. Diabetes, Obesity and Metabolism, 2012, 14, 320-328.	4.4	17
157	The Giant Danio (<i>D. Aequipinnatus</i>) as A Model of Cardiac Remodeling and Regeneration. Anatomical Record, 2012, 295, 234-248.	1.4	50
158	Regulatory T cells ameliorate cardiac remodeling after myocardial infarction. Basic Research in Cardiology, 2012, 107, 232.	5.9	237
159	Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nature Reviews Molecular Cell Biology, 2013, 14, 529-541.	37.0	431
160	Persistence of apoptosis and inflammatory responses in the heart and bone marrow of mice following whole-body exposure to 28Silicon (28Si) ions. Radiation and Environmental Biophysics, 2013, 52, 339-350.	1.4	52
161	Mediators of inflammation after cardiac ischemia: The role of invariant natural killer T (iNKT) cells. Journal of Molecular and Cellular Cardiology, 2013, 63, 118-121.	1.9	0
162	P2Y2 receptor agonist with enhanced stability protects the heart from ischemic damage in vitro and in vivo. Purinergic Signalling, 2013, 9, 633-642.	2.2	34
163	Cardiac Muscle Tissue Engineering. , 2013, , 1262-1276.		1
164	Myocardial remote ischemic preconditioning: From pathophysiology to clinical application. Revista Portuguesa De Cardiologia (English Edition), 2013, 32, 893-904.	0.2	13
165	Mimicking the endogenous current of injury improves post-infarct cardiac remodeling. Medical Hypotheses, 2013, 81, 521-523.	1.5	8
166	Effects of Interleukin-1 Blockade With Anakinra on Adverse Cardiac Remodeling and Heart Failure After Acute Myocardial Infarction [from the Virginia Commonwealth University-Anakinra Remodeling Trial (2) (VCU-ART2) Pilot Study]. American Journal of Cardiology, 2013, 111, 1394-1400.	1.6	308
167	Effector Mechanisms of Rejection. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a015461-a015461.	6.2	129

#	Article	IF	CITATIONS
168	Targeting inflammatory pathways in myocardial infarction. European Journal of Clinical Investigation, 2013, 43, 986-995.	3.4	170
169	Fibroblasts in post-infarction inflammation and cardiac repair. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 945-953.	4.1	227
170	Isolation and analysis of single cells from the mouse heart. Journal of Immunological Methods, 2013, 393, 74-80.	1.4	41
171	Fibronectin is deposited by injury-activated epicardial cells and is necessary for zebrafish heart regeneration. Developmental Biology, 2013, 382, 427-435.	2.0	214
172	Passive targeting of lipidâ€based nanoparticles to mouse cardiac ischemia–reperfusion injury. Contrast Media and Molecular Imaging, 2013, 8, 117-126.	0.8	28
173	Macrophages modulate the viability and growth of human mesenchymal stem cells. Journal of Cellular Biochemistry, 2013, 114, 220-229.	2.6	211
174	Stem cell transplantation as a therapy for cardiac fibrosis. Journal of Pathology, 2013, 229, 347-354.	4.5	49
175	Ephrin–Eph signaling as a potential therapeutic target for the treatment of myocardial infarction. Medical Hypotheses, 2013, 80, 738-744.	1.5	21
176	Heart failure biomarkers in patients with dilated cardiomyopathy. International Journal of Cardiology, 2013, 168, 2404-2410.	1.7	43
177	Fibrocytes are associated with the fibrosis of coronary heart disease. Pathology Research and Practice, 2013, 209, 36-43.	2.3	17
178	Localized targeting of biomaterials following myocardial infarction: A foundation to build on. Trends in Cardiovascular Medicine, 2013, 23, 301-311.	4.9	9
179	Pré-condicionamento isquémico remoto do miocárdio: dos mecanismos fisiopatológicos à aplicação na prática clÃnica. Revista Portuguesa De Cardiologia, 2013, 32, 893-904.	0.5	15
180	Human Pericytes for Ischemic Heart Repair. Stem Cells, 2013, 31, 305-316.	3.2	202
181	Impact of Notch Signaling on Inflammatory Responses in Cardiovascular Disorders. International Journal of Molecular Sciences, 2013, 14, 6863-6888.	4.1	72
182	Targeting cell death in the reperfused heart: Pharmacological approaches for cardioprotection. International Journal of Cardiology, 2013, 165, 410-422.	1.7	103
183	An ultra-low dose of tetrahydrocannabinol provides cardioprotection. Biochemical Pharmacology, 2013, 85, 1626-1633.	4.4	37
184	When Stemness Meets Engineering: Towards "Niche―Control of Stem Cell Functions for Enhanced Cardiovascular Regeneration. , 2013, , 457-473.		0
185	Thymosin β4-sulfoxide attenuates inflammatory cell infiltration and promotes cardiac wound healing. Nature Communications, 2013, 4, 2081.	12.8	66

#	Article	IF	CITATIONS
186	Innate immune response after acute myocardial infarction and pharmacomodulatory action of tacrolimus in reducing infarct size and preserving myocardial integrity. Journal of Biomedical Science, 2013, 20, 82.	7.0	25
188	CD13 is essential for inflammatory trafficking and infarct healing following permanent coronary artery occlusion in mice. Cardiovascular Research, 2013, 100, 74-83.	3.8	27
189	Mesenchymal Stem Cell Therapy for Cardiac Inflammation: Immunomodulatory Properties and the Influence of Toll-Like Receptors. Mediators of Inflammation, 2013, 2013, 1-13.	3.0	94
190	Lack of specificity of fibroblast-specific protein 1 in cardiac remodeling and fibrosis. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H1363-H1372.	3.2	161
191	Cardiac output, at rest and during exercise, before and during myocardial ischemia, reperfusion, and infarction in conscious mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 304, R286-R295.	1.8	31
192	Complement C3c as a Biomarker in Heart Failure. Mediators of Inflammation, 2013, 2013, 1-7.	3.0	25
193	Effect of carvedilol on cardiomyocyte apoptosis in a rat model of myocardial infarction: A role for toll-like receptor 4. Indian Journal of Pharmacology, 2013, 45, 458.	0.7	26
194	Extracorporeal cardiac shock wave therapy ameliorates myocardial fibrosis by decreasing the amount of fibrocytes after acute myocardial infarction in pigs. Coronary Artery Disease, 2013, 24, 509-515.	0.7	24
195	Biomimetic Platforms for Tissue Engineering. Israel Journal of Chemistry, 2013, 53, 767-776.	2.3	1
196	Cardiac resident nestin ⁺ cells participate in reparative vascularisation. Journal of Cellular Physiology, 2013, 228, 1844-1853.	4.1	22
197	Galectinâ€3 and left ventricular reverse remodelling after surgical mitral valve repair. European Journal of Heart Failure, 2013, 15, 1011-1018.	7.1	24
198	Adiponectin protects against Toll-like receptor 4-mediated cardiac inflammation and injury. Cardiovascular Research, 2013, 99, 422-431.	3.8	61
199	Use of Stem Cells in Heart Failure Treatment: Where We Stand and Where We Are Going. Methodist DeBakey Cardiovascular Journal, 2021, 9, 195.	1.0	12
200	Hypoxia Immunity, Metabolism, and Hyperthermia. Conference Papers in Medicine, 2013, 2013, 1-5.	0.6	0
201	Diseases Concomitant With Asthma in Middle-Aged and Elderly Subjects in Korea: A Population-Based Study. Allergy, Asthma and Immunology Research, 2013, 5, 16.	2.9	28
202	New Insights in Research About Acute Ischemic Myocardial Injury and Inflammation. Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry, 2013, 12, 47-54.	1.1	10
203	Role of innate immunity in cardiac inflammation after myocardial infarction. Frontiers in Bioscience - Scholar, 2013, S5, 86-104.	2.1	20
204	^{Î2} -arrestin2 in Infiltrated Macrophages Inhibits Excessive Inflammation after Myocardial Infarction. PLoS ONE, 2013, 8, e68351.	2.5	55

#	Article	IF	Citations
 205	Effect of Tacrolimus on Myocardial Infarction Is Associated with Inflammation, ROS, MAP Kinase and Akt Pathways in Mini-Pigs. Journal of Atherosclerosis and Thrombosis, 2013, 20, 9-22.	2.0	36
206	Rho-Kinase Activation in Leukocytes Plays a Pivotal Role in Myocardial Ischemia/Reperfusion Injury. PLoS ONE, 2014, 9, e92242.	2.5	36
207	Pro-Inflammatory Mediation of Myoblast Proliferation. PLoS ONE, 2014, 9, e92363.	2.5	82
208	Selective Migration of Subpopulations of Bone Marrow Cells along an SDF-1 <i>α</i> and ATP Gradient. Bone Marrow Research, 2014, 2014, 1-10.	1.7	5
209	The role of oxytocin in cardiovascular regulation. Brazilian Journal of Medical and Biological Research, 2014, 47, 206-214.	1.5	93
210	Intra-Coronary Administration of Tacrolimus Prior to First-Balloon Inflation Attenuates Infarct Size and Improves Left Ventricular Function in Patients with ST-segment Elevation Myocardial Infarction (COAT-STEMI) Undergoing Primary Coronary Intervention. Journal of Clinical Trials, 2014, 04, .	0.1	0
211	Prompt Bone Marrow-Derived Mesenchymal Stem Cell Therapy Enables Early Porcine Heart Function Recovery from Acute Myocardial Infarction. International Heart Journal, 2014, 55, 362-371.	1.0	18
212	Inhibition of dipeptidyl peptidase-IV enzyme activity protects against myocardial ischemia-reperfusion injury in rats. Journal of Translational Medicine, 2014, 12, 357.	4.4	33
213	Short-Term Disruption of Diurnal Rhythms After Murine Myocardial Infarction Adversely Affects Long-Term Myocardial Structure and Function. Circulation Research, 2014, 114, 1713-1722.	4.5	95
214	Cardiovascular toxicity biomarkers. , 2014, , 199-215.		5
215	Interleukin-13 Deficiency Aggravates Healing and Remodeling in Male Mice After Experimental Myocardial Infarction. Circulation: Heart Failure, 2014, 7, 822-830.	3.9	74
216	Deletion of the EphA2 receptor exacerbates myocardial injury and the progression of ischemic cardiomyopathy. Frontiers in Physiology, 2014, 5, 132.	2.8	12
217	Fabrication of self-assembling peptide nanofiber hydrogels for myocardial repair. RSC Advances, 2014, 4, 53801-53811.	3.6	22
218	Leucocyte expression of complement C5a receptors exacerbates infarct size after myocardial reperfusion injury. Cardiovascular Research, 2014, 103, 521-529.	3.8	41
219	Induction of the calcineurin variant CnAβ1 after myocardial infarction reduces post-infarction ventricular remodelling by promoting infarct vascularization. Cardiovascular Research, 2014, 102, 396-406.	3.8	24
220	Ca <scp>M</scp> Kinase <scp>II</scp> mediates maladaptive postâ€infarct remodeling and proâ€inflammatory chemoattractant signaling but not acute myocardial ischemia/reperfusion injury. EMBO Molecular Medicine, 2014, 6, 1231-1245.	6.9	94
221	Expression of dual Nucleotides/Cysteinyl‣eukotrienes Receptor <scp>GPR</scp> 17 in early trafficking of cardiac stromal cells after myocardial infarction. Journal of Cellular and Molecular Medicine, 2014, 18, 1785-1796.	3.6	18
222	Deficiency of Ataxia Telangiectasia Mutated Kinase Delays Inflammatory Response in the Heart Following Myocardial Infarction. Journal of the American Heart Association, 2014, 3, e001286.	3.7	23

#	Article	IF	CITATIONS
223	A theoretical timeline for myocardial infarction: immunohistochemical evaluation and western blot quantification for Interleukin-15 and Monocyte chemotactic protein-1 as very early markers. Journal of Translational Medicine, 2014, 12, 188.	4.4	45
224	The tell-tale heart: molecular and cellular responses to childhood anthracycline exposure. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1379-H1389.	3.2	20
225	Therapeutic Potential of Tacrolimus on Acute Myocardial Infarction in Minipigs: Analysis with Serial Cardiac Magnetic Resonance and Changes at Histological and Protein Levels. BioMed Research International, 2014, 2014, 1-13.	1.9	1
226	The Immune System and the Remodeling Infarcted Heart. Journal of Cardiovascular Pharmacology, 2014, 63, 185-195.	1.9	137
227	Polymeric scaffolds for cardiac tissue engineering: requirements and fabrication technologies. Polymer International, 2014, 63, 2-11.	3.1	81
228	Molecular imaging of myocardial infarction. Basic Research in Cardiology, 2014, 109, 397.	5.9	26
229	<scp>d</scp> -limonene suppresses doxorubicin-induced oxidative stress and inflammation via repression of COX-2, iNOS, and NFήB in kidneys of Wistar rats. Experimental Biology and Medicine, 2014, 239, 465-476.	2.4	94
230	Differential roles of cardiac and leukocyte derived macrophage migration inhibitory factor in inflammatory responses and cardiac remodelling post myocardial infarction. Journal of Molecular and Cellular Cardiology, 2014, 69, 32-42.	1.9	52
231	Systemic toll-like receptor and interleukin-18 pathway activation in patients with acute ST elevation myocardial infarction. Journal of Molecular and Cellular Cardiology, 2014, 67, 94-102.	1.9	23
232	Anti-Inflammatory Strategies for Ventricular Remodeling Following ST-Segment Elevation Acute Myocardial Infarction. Journal of the American College of Cardiology, 2014, 63, 1593-1603.	2.8	234
233	Interleukin-6 Signaling, Soluble Glycoprotein 130, and Inflammation in Heart Failure. Current Heart Failure Reports, 2014, 11, 146-155.	3.3	42
234	The inflammatory response in myocardial injury, repair, and remodelling. Nature Reviews Cardiology, 2014, 11, 255-265.	13.7	1,094
235	Novel therapeutic strategies for cardioprotection. , 2014, 144, 60-70.		64
236	Cardiac fibroblasts protect cardiomyocytes against lethal ischemia–reperfusion injury. Journal of Molecular and Cellular Cardiology, 2014, 68, 56-65.	1.9	62
237	Cardiotoxicity of systemic agents used in breast cancer. Breast, 2014, 23, 317-328.	2.2	49
238	Delineating the roles of neutrophils and macrophages in zebrafish regeneration models. International Journal of Biochemistry and Cell Biology, 2014, 56, 92-106.	2.8	76
239	RP105 deficiency aggravates cardiac dysfunction after myocardial infarction in mice. International Journal of Cardiology, 2014, 176, 788-793.	1.7	21
240	A straightforward guide to the basic science behind cardiovascular cell-based therapies. Heart, 2014, 100, 1153-1157.	2.9	18

#	Article	IF	CITATIONS
241	Up-regulation of heme oxygenase-1 after infarct initiation reduces mortality, infarct size and left ventricular remodeling: experimental evidence and proof of concept. Journal of Translational Medicine, 2014, 12, 89.	4.4	21
242	Bone marrow-derived mesenchymal stromal cells improve vascular regeneration and reduce leukocyte-endothelium activation in critical ischemic murine skin in a dose-dependent manner. Cytotherapy, 2014, 16, 1345-1360.	0.7	22
243	Thymosin-β ₄ prevents cardiac rupture and improves cardiac function in mice with myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H741-H751.	3.2	39
244	Dynamic Changes in Myocardial Matrix and Relevance to Disease. Circulation Research, 2014, 114, 916-927.	4.5	109
245	Modulators of complement activation: a patent review (2008 – 2013). Expert Opinion on Therapeutic Patents, 2014, 24, 665-686.	5.0	10
246	Monocyte subset accumulation in the human heart following acute myocardial infarction and the role of the spleen as monocyte reservoir. European Heart Journal, 2014, 35, 376-385.	2.2	210
247	Effects of interleukin-1 on cardiac fibroblast function: Relevance to post-myocardial infarction remodelling. Vascular Pharmacology, 2014, 60, 1-7.	2.1	50
248	The pathogenesis of cardiac fibrosis. Cellular and Molecular Life Sciences, 2014, 71, 549-574.	5.4	1,164
249	Fanning the flames to regenerate the heart. Journal of Clinical Investigation, 2014, 124, 961-964.	8.2	4
250	miRNome in myocardial infarction: Future directions and perspective. World Journal of Cardiology, 2014, 6, 939.	1.5	14
251	Cell therapy to regenerate the ischemic heart. , 2014, , 118-137.		4
252	DTU I isolates of <i>Trypanosoma cruzi</i> induce upregulation of Galectin-3 in murine myocarditis and fibrosis. Parasitology, 2014, 141, 849-858.	1.5	23
253	Galectin-3 level and the severity of cardiac diastolic dysfunction using cellular and animal models and clinical indices. Scientific Reports, 2015, 5, 17007.	3.3	56
254	Galectin-3 in heart failure pathology – "another brick in the wall�. Acta Cardiologica, 2015, 70, 323-331.	0.9	23
255	Baicalin inhibits inflammation and attenuates myocardial ischaemic injury by aryl hydrocarbon receptor. Journal of Pharmacy and Pharmacology, 2015, 67, 1756-1764.	2.4	24
256	Confocal Laser Scanning Microscope, Raman Microscopy and Western Blotting to Evaluate Inflammatory Response after Myocardial Infarction. Current Vascular Pharmacology, 2015, 13, 78-90.	1.7	4
257	The Meaning of Different Forms of Structural Myocardial Injury, Immune Response and Timing of Infarct Necrosis and Cardiac Repair. Current Vascular Pharmacology, 2015, 13, 6-19.	1.7	21
258	Cardiac Oxidative Stress and Inflammatory Cytokines Response after Myocardial Infarction. Current Vascular Pharmacology, 2015, 13, 26-36.	1.7	220

#	Article	IF	CITATIONS
259	Elevated Plasma IL-38 Concentrations in Patients with Acute ST-Segment Elevation Myocardial Infarction and Their Dynamics after Reperfusion Treatment. Mediators of Inflammation, 2015, 2015, 1-10.	3.0	35
260	Relationship of Genetic Polymorphisms of the Chemokine, CCL5, and Its Receptor, CCR5, with Coronary Artery Disease in Taiwan. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-8.	1.2	10
261	Kidney Injury Molecule-1 and Cardiovascular Diseases: From Basic Science to Clinical Practice. BioMed Research International, 2015, 2015, 1-10.	1.9	38
262	Editorial (Thematic Issue: Measuring Myocyte Oxidative Stress and Targeting Cytokines to Evaluate) Tj ETQq1 1 Pharmacology, 2015, 13, 3-5.	0.784314 r 1.7	gBT /Overlo 14
263	Myocardial healing requires Reg3Î ² -dependent accumulation of macrophages in the ischemic heart. Nature Medicine, 2015, 21, 353-362.	30.7	141
264	Activation in M1 but not M2 Macrophages Contributes to Cardiac Remodeling after Myocardial Infarction in Rats: a Critical Role of the Calcium Sensing Receptor/NRLP3 Inflammasome. Cellular Physiology and Biochemistry, 2015, 35, 2483-2500.	1.6	86
265	Galectin-3 is expressed in the myocardium very early post–myocardial infarction. Cardiovascular Pathology, 2015, 24, 213-223.	1.6	47
266	The Role of Inflammation in Myocardial Infarction. , 2015, , 39-65.		4
267	Cardioprotective effects and pharmacokinetic properties of a controlled release formulation of a novel hydrogen sulfide donor in rats with acute myocardial infarction. Bioscience Reports, 2015, 35, .	2.4	18
268	Calpastatin overexpression impairs postinfarct scar healing in mice by compromising reparative immune cell recruitment and activation. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1883-H1893.	3.2	20
269	The cardiac repair benefits of inflammation do not persist: evidence from mast cell implantation. Journal of Cellular and Molecular Medicine, 2015, 19, 2751-2762.	3.6	13
270	Transforming growth factor β1 signaling coincides with epithelial–mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation in the development of adenomyosis in mice. Human Reproduction, 2016, 31, dev314.	0.9	84
271	Cardiac regeneration: epicardial mediated repair. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20152147.	2.6	23
272	Atrial remodeling, fibrosis, and atrial fibrillation. Trends in Cardiovascular Medicine, 2015, 25, 475-484.	4.9	218
273	The Inflammasome in Myocardial Injury and Cardiac Remodeling. Antioxidants and Redox Signaling, 2015, 22, 1146-1161.	5.4	129
274	Post-myocardial Infarct Inflammation and the Potential Role of Cell Therapy. Cardiovascular Drugs and Therapy, 2015, 29, 59-73.	2.6	22
275	Macrophages Modulate Engineered Human Tissues for Enhanced Vascularization and Healing. Annals of Biomedical Engineering, 2015, 43, 616-627.	2.5	64
276	Cellular Immunity and Cardiac Remodeling After Myocardial Infarction: Role of Neutrophils, Monocytes, and Macrophages. Current Heart Failure Reports, 2015, 12, 247-254.	3.3	33

#	Article	IF	CITATIONS
277	Combined therapy with shock wave and autologous bone marrow-derived mesenchymal stem cells alleviates left ventricular dysfunction and remodeling through inhibiting inflammatory stimuli, oxidative stress & enhancing angiogenesis in a swine myocardial infarction model. International Journal of Cardiology, 2015, 193, 69-83.	1.7	46
278	Thymosin β4: multiple functions in protection, repair and regeneration of the mammalian heart. Expert Opinion on Biological Therapy, 2015, 15, 163-174.	3.1	27
279	Cardiac mTOR rescues the detrimental effects of diet-induced obesity in the heart after ischemia-reperfusion. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H1530-H1539.	3.2	34
280	Cardiac Autoimmunity as a Novel Biomarker, Mediator, and Therapeutic Target of Heart Disease in Type 1 Diabetes. Current Diabetes Reports, 2015, 15, 30.	4.2	15
281	Challenges in identifying the best source of stem cells for cardiac regeneration therapy. Stem Cell Research and Therapy, 2015, 6, 26.	5.5	85
282	Acute inflammation stimulates a regenerative response in the neonatal mouse heart. Cell Research, 2015, 25, 1137-1151.	12.0	123
283	Myocardial infarction models in NOD/Scid mice for cell therapy research: permanent ischemia vs ischemia–reperfusion. SpringerPlus, 2015, 4, 336.	1.2	16
284	BLT1 antagonist LSN2792613 reduces infarct size in a mouse model of myocardial ischaemia–reperfusion injury. Cardiovascular Research, 2015, 108, 367-376.	3.8	19
285	Role of Mesenchymal Stem Cells, Macrophages, and Biomaterials During Myocardial Repair. , 2015, , 1-15.		0
286	Hyaluronic acid-serum hydrogels rapidly restore metabolism of encapsulated stem cells and promote engraftment. Biomaterials, 2015, 73, 1-11.	11.4	30
288	Ex vivo paracrine properties of cardiac tissue: Effects of chronic heart failure. Journal of Heart and Lung Transplantation, 2015, 34, 839-848.	0.6	9
289	Multipotent Mesenchymal Stromal Cell-Based Therapies: Regeneration Versus Repair. , 2015, , 3-16.		1
290	Role of interleukin-6 in regulation of immune responses to remodeling after myocardial infarction. Heart Failure Reviews, 2015, 20, 25-38.	3.9	49
291	Targeting Macrophage Subsets for Infarct Repair. Journal of Cardiovascular Pharmacology and Therapeutics, 2015, 20, 36-51.	2.0	75
292	How Biomaterials Can Influence Various Cell Types in the Repair and Regeneration of the Heart after Myocardial Infarction. Frontiers in Bioengineering and Biotechnology, 2016, 4, 62.	4.1	20
293	Intravenous administration of xenogenic adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes markedly reduced brain infarct volume and preserved neurological function in rat after acute ischemic stroke. Oncotarget, 2016, 7, 74537-74556.	1.8	191
294	Nanoâ€Enabled Approaches for Stem Cellâ€Based Cardiac Tissue Engineering. Advanced Healthcare Materials, 2016, 5, 1533-1553.	7.6	50
295	Paracrine Engineering of Human Explant-Derived Cardiac Stem Cells to Over-Express Stromal-Cell Derived Factor 11± Enhances Myocardial Repair. Stem Cells, 2016, 34, 1826-1835.	3.2	27

#	Article	IF	CITATIONS
296	Biomarkers and Cancer Therapy-Related Cardiac Dysfunction. Current Cardiovascular Risk Reports, 2016, 10, 1.	2.0	0
297	Toll-like receptor 9 prevents cardiac rupture after myocardial infarction in mice independently of inflammation. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H1485-H1497.	3.2	38
298	Ischemia/Reperfusion. , 2016, 7, 113-170.		537
299	Is Myocardial Fibrosis a New Frontier for Discovery in Cardiotoxicity Related to the Administration of Anthracyclines?. Circulation: Cardiovascular Imaging, 2016, 9, .	2.6	17
300	Interleukinâ€37 and Dendritic Cells Treated With Interleukinâ€37 Plus Troponin I Ameliorate Cardiac Remodeling After Myocardial Infarction. Journal of the American Heart Association, 2016, 5, .	3.7	44
301	Combination of adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes for protecting kidney from acute ischemia–reperfusion injury. International Journal of Cardiology, 2016, 216, 173-185.	1.7	188
302	Recent advancements in understanding endogenous heart regeneration—insights from adult zebrafish and neonatal mice. Seminars in Cell and Developmental Biology, 2016, 58, 34-40.	5.0	30
303	Expression and function of toll-like receptor 4 and inflammasomes in cardiac fibroblasts and myofibroblasts: IL-1β synthesis, secretion, and degradation. Molecular Immunology, 2016, 74, 96-105.	2.2	45
304	Update on cardiotoxicity of anti ancer treatments. European Journal of Clinical Investigation, 2016, 46, 264-284.	3.4	65
305	Cellular recruitment in myocardial ischaemia/reperfusion injury. European Journal of Clinical Investigation, 2016, 46, 590-601.	3.4	82
307	Therapeutic angiogenesis: angiogenic growth factors for ischemic heart disease. Future Cardiology, 2016, 12, 585-599.	1.2	28
308	Altered collagen turnover in factor VIIIâ€deficient rats with hemophilic arthropathy identifies potential novel serological biomarkers in hemophilia. Journal of Thrombosis and Haemostasis, 2016, 14, 2419-2429.	3.8	16
309	Ultrasound-targeted microbubble destruction enhances delayed BMC delivery and attenuates post-infarction cardiac remodelling by inducing engraftment signals. Clinical Science, 2016, 130, 2105-2120.	4.3	11
310	Cardiac fibroblast cytokine profiles induced by proinflammatory or profibrotic stimuli promote monocyte recruitment and modulate macrophage M1/M2 balance in vitro. Journal of Molecular and Cellular Cardiology, 2016, 101, 69-80.	1.9	51
311	Inflammation and Inflammatory Cells in Myocardial Infarction and Reperfusion Injury: A Double-Edged Sword. Clinical Medicine Insights: Cardiology, 2016, 10, CMC.S33164.	1.8	148
312	Increase in cholinergic modulation with pyridostigmine induces anti-inflammatory cell recruitment soon after acute myocardial infarction in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R697-R706.	1.8	34
313	Sulforaphane effects on postinfarction cardiac remodeling in rats: modulation of redox-sensitive prosurvival and proapoptotic proteins. Journal of Nutritional Biochemistry, 2016, 34, 106-117.	4.2	25
314	Tissue Engineering Strategies for Myocardial Regeneration: Acellular Versus Cellular Scaffolds?. Tissue Engineering - Part B: Reviews, 2016, 22, 438-458.	4.8	83

#	Article	IF	CITATIONS
315	Inflammatory markers in ST-elevation acute myocardial infarction. European Heart Journal: Acute Cardiovascular Care, 2016, 5, 382-395.	1.0	72
316	Animal models of myocardial infarction: Mainstay in clinical translation. Regulatory Toxicology and Pharmacology, 2016, 76, 221-230.	2.7	46
317	Blockage of KCa3.1 and Kv1.3 channels of the B lymphocyte decreases the inflammatory monocyte chemotaxis. International Immunopharmacology, 2016, 31, 266-271.	3.8	12
318	Mast cells promote proliferation and migration and inhibit differentiation of mesenchymal stem cells through PDGF. Journal of Molecular and Cellular Cardiology, 2016, 94, 32-42.	1.9	37
319	FDC-PET reveals improved cardiac regeneration and attenuated adverse remodelling following Sitagliptin + G-CSF therapy after acute myocardial infarction. European Heart Journal Cardiovascular Imaging, 2016, 17, 136-145.	1.2	20
320	Cardiac antibody production to self-antigens in children and adolescents during and following the correction of severe diabetic ketoacidosis. Autoimmunity, 2016, 49, 188-196.	2.6	14
321	Loss of the LIM-only protein Fhl2 impairs inflammatory reaction and scar formation after cardiac ischemia leading to better hemodynamic performance. Life Sciences, 2016, 151, 348-358.	4.3	8
322	Polyurethanes for cardiac applications. , 2016, , 387-416.		9
323	Inflammatory and fibrotic responses of cardiac fibroblasts to myocardial damage associated molecular patterns (DAMPs). Journal of Molecular and Cellular Cardiology, 2016, 94, 189-200.	1.9	163
324	Inflammation as a therapeutic target in myocardial infarction: learning from past failures to meet future challenges. Translational Research, 2016, 167, 152-166.	5.0	120
325	TRAIL facilitates cytokine expression and macrophage migration during hypoxia/reoxygenation via ER stress-dependent NF-κB pathway. Molecular Immunology, 2017, 82, 123-136.	2.2	12
326	Aggravated myocardial infarction-induced cardiac remodeling and heart failure in histamine-deficient mice. Scientific Reports, 2017, 7, 44007.	3.3	30
327	Notch signalling restricts inflammation and <i>serpine1</i> in the dynamic endocardium of the regenerating zebrafish heart. Development (Cambridge), 2017, 144, 1425-1440.	2.5	91
328	Toll-like receptor 2 dominance over Toll-like receptor 4 in stressful conditions for its detrimental role in the heart. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H1238-H1247.	3.2	22
329	Peripheral Blood Cytokine Levels After Acute Myocardial Infarction. Circulation Research, 2017, 120, 1947-1957.	4.5	33
330	IL-10 improves cardiac remodeling after myocardial infarction by stimulating M2 macrophage polarization and fibroblast activation. Basic Research in Cardiology, 2017, 112, 33.	5.9	278
331	Macrophages. Results and Problems in Cell Differentiation, 2017, , .	0.7	8
332	Macrophages' Role in Tissue Disease and Regeneration. Results and Problems in Cell Differentiation, 2017, 62, 245-271.	0.7	26

	CITATION	Report	
#	Article	IF	CITATIONS
333	Corydalis hendersonii Hemsl. protects against myocardial injury by attenuating inflammation and fibrosis via NF-κB and JAK2-STAT3 signaling pathways. Journal of Ethnopharmacology, 2017, 207, 174-183.	4.1	29
334	Pathophysiologic role of ischemia reperfusion injury: A review. Journal of Indian College of Cardiology, 2017, 7, 97-104.	0.1	10
335	The Content of Multipotent Stromal Cells in 3-4.5-Month Heterotopic Bone Marrow Transplants of CBA Mice Subjected to a Single Exposure to Osteogenic Stimuli (Curettage, BMP-2) or Antigens (S.) Tj ETQq0	00rgBaT/O	verbock 10 Tf
336	Sema3A promotes the resolution of cardiac inflammation after myocardial infarction. Basic Research in Cardiology, 2017, 112, 42.	5.9	62
337	Conformational and thermal characterization of left ventricle remodeling post-myocardial infarction. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1500-1509.	3.8	10
338	Aggravated Postinfarct Heart Failure in Type 2 Diabetes Is Associated with Impaired Mitophagy and Exaggerated Inflammasome Activation. American Journal of Pathology, 2017, 187, 2659-2673.	3.8	48
339	A neuropeptide, Substance-P, directly induces tissue-repairing M2 like macrophages by activating the PI3K/Akt/mTOR pathway even in the presence of IFNγ. Scientific Reports, 2017, 7, 9417.	3.3	91
340	Pathological Effects of Exosomes in Mediating Diabetic Cardiomyopathy. Advances in Experimental Medicine and Biology, 2017, 998, 113-138.	1.6	32
341	Role of cardiac inflammation in right ventricular failure. Cardiovascular Research, 2017, 113, 1441-1452.	3.8	58
342	Prognostic Value of Serial Galectinâ€3 Measurements in Patients With Acute Heart Failure. Journal of the American Heart Association, 2017, 6, .	3.7	24
343	Circulating Biomarkers to Identify Responders in Cardiac Cell therapy. Scientific Reports, 2017, 7, 4419.	3.3	18
344	Properties and Immune Function of Cardiac Fibroblasts. Advances in Experimental Medicine and Biology, 2017, 1003, 35-70.	1.6	12
345	Mechanistic insights into the vascular effects of blueberries: Evidence from recent studies. Molecular Nutrition and Food Research, 2017, 61, 1600271.	3.3	41
346	Feeling the right force: How to contextualize the cell mechanical behavior in physiologic turnover and pathologic evolution of the cardiovascular system. , 2017, 171, 75-82.		23
347	Immunohistochemical detection of early myocardial infarction: a systematic review. International Journal of Legal Medicine, 2017, 131, 411-421.	2.2	34
348	A comparison in therapeutic efficacy of several time points of intravenous StemBell administration in a rat model of acute myocardial infarction. Cytotherapy, 2017, 19, 131-140.	0.7	7
349	The Roles of Hypoxia Signaling in the Pathogenesis of Cardiovascular Diseases. Journal of Atherosclerosis and Thrombosis, 2017, 24, 884-894.	2.0	157
350	GALECTIN-3: A NOVEL BIOMARKER FOR THE PROGNOSIS OF HEART FAILURE. Medicine and Pharmacy Reports, 2017, 90, 129-132.	0.4	27

#	Article	IF	Citations
351	Differential expression profiles of long non-coding RNAs as potential biomarkers for the early diagnosis of acute myocardial infarction. Oncotarget, 2017, 8, 88613-88621.	1.8	20
352	Biochemical markers of type 2 diabetes as a late complication of myocardial infarction: a case-control study. Archives of Medical Science, 2017, 2, 311-320.	0.9	10
353	Inflammatory Response During Myocardial Infarction. Advances in Clinical Chemistry, 2018, 84, 39-79.	3.7	26
354	Isoflurane post-conditioning influences myocardial infarct healing in rats. Biotechnic and Histochemistry, 2018, 93, 354-363.	1.3	4
355	Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction. Microbiome, 2018, 6, 66.	11.1	185
356	Deciphering microvascular changes after myocardial infarction through 3D fully automated image analysis. Scientific Reports, 2018, 8, 1854.	3.3	15
357	Noninvasive Immunometabolic Cardiac Inflammation Imaging Using Hyperpolarized Magnetic Resonance. Circulation Research, 2018, 122, 1084-1093.	4.5	64
358	Neutrophil to lymphocyte ratio as a predictor of myocardial damage and cardiac dysfunction in acute coronary syndrome patients. Integrative Medicine Research, 2018, 7, 192-199.	1.8	39
359	Myeloid receptor CD36 is required for early phagocytosis of myocardial infarcts and induction of Nr4a1â€dependent mechanisms of cardiac repair. FASEB Journal, 2018, 32, 254-264.	0.5	45
360	Gene expression and levels of IL-6 and TNFα in PBMCs correlate with severity and functional class in patients with chronic heart failure. Irish Journal of Medical Science, 2018, 187, 359-368.	1.5	28
361	TIME Trial: Effect of Timing of Stem Cell Delivery Following ST-Elevation Myocardial Infarction on the Recovery of Global and Regional Left Ventricular Function. Circulation Research, 2018, 122, 479-488.	4.5	50
362	Heparan sulfate potentiates leukocyte adhesion on cardiac fibroblast by enhancing Vcam-1 and Icam-1 expression. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 831-842.	3.8	29
363	Association of miR-223 expression with myocardial ischemia/reperfusion injury: new insight for the role of miR-223 in inflammatory response. Non-coding RNA Investigation, 0, 2, 18-18.	0.6	0
364	Epigenetics in Cardiac Fibrosis. JACC Basic To Translational Science, 2018, 3, 704-715.	4.1	75
365	Toll-like Receptors Signaling Pathways as a Potential Therapeutic Target in Cardiovascular Disease. Current Pharmaceutical Design, 2018, 24, 1887-1898.	1.9	19
366	Stress Coping Strategies in the Heart: An Integrated View. Frontiers in Cardiovascular Medicine, 2018, 5, 168.	2.4	17
367	Therapeutic Targets for Treatment of Heart Failure: Focus on GRKs and β-Arrestins Affecting βAR Signaling. Frontiers in Pharmacology, 2018, 9, 1336.	3.5	23
368	Combined Therapy with SS31 and Mitochondria Mitigates Myocardial Ischemia-Reperfusion Injury in Rats. International Journal of Molecular Sciences, 2018, 19, 2782.	4.1	42

#	Article	IF	CITATIONS
369	Design of electrospun fibrous patches for myocardium regeneration. , 2018, , 221-250.		3
370	Docosahexaenoic acid induces changes in microglia/macrophage polarization after spinal cord injury in rats. Acta Histochemica, 2018, 120, 741-747.	1.8	13
371	Expression and function of TLR4- induced B1R bradykinin receptor on cardiac fibroblasts. Toxicology and Applied Pharmacology, 2018, 351, 46-56.	2.8	14
372	IL (Interleukin)-10–STAT3–Galectin-3 Axis Is Essential for Osteopontin-Producing Reparative Macrophage Polarization After Myocardial Infarction. Circulation, 2018, 138, 2021-2035.	1.6	138
373	The Antioxidant Activity of Pistachios Reduces Cardiac Tissue Injury of Acute Ischemia/Reperfusion (I/R) in Diabetic Streptozotocin (STZ)-Induced Hyperglycaemic Rats. Frontiers in Pharmacology, 2018, 9, 51.	3.5	35
374	New Paradigms in Cell Therapy. Circulation Research, 2018, 123, 138-158.	4.5	105
375	Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 2018, 9, 7204-7218.	1.8	2,597
376	Ataxia telangiectasia mutated kinase deficiency impairs the autophagic response early during myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H48-H57.	3.2	10
377	Role of cytokines and inflammation in heart function during health and disease. Heart Failure Reviews, 2018, 23, 733-758.	3.9	186
378	Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Molecular Aspects of Medicine, 2019, 65, 70-99.	6.4	538
379	Efferocytosis and Atherosclerosis: Regulation of Phagocyte Function by MicroRNAs. Trends in Endocrinology and Metabolism, 2019, 30, 672-683.	7.1	40
380	Characterization of heart macrophages in rhesus macaques as a model to study cardiovascular disease in humans. Journal of Leukocyte Biology, 2019, 106, 1241-1255.	3.3	8
381	Core-Shell Polymer-Based Nanoparticles Deliver miR-155-5p to Endothelial Cells. Molecular Therapy - Nucleic Acids, 2019, 17, 210-222.	5.1	16
382	Increased circulating IgG levels, myocardial immune cells and IgG deposits support a role for an immune response in pre―and endâ€stage heart failure. Journal of Cellular and Molecular Medicine, 2019, 23, 7505-7516.	3.6	26
383	Effects of polarized macrophages on the in vitro gene expression after Co-Culture of human pluripotent stem cell-derived cardiomyocytes. Journal of Immunology and Regenerative Medicine, 2019, 4, 100018.	0.4	4
384	β-Caryophyllene as a Potential Protective Agent Against Myocardial Injury: The Role of Toll-Like Receptors. Molecules, 2019, 24, 1929.	3.8	43
385	Hypercholesterolemia affects cardiac function, infarct size and inflammation in APOE*3-Leiden mice following myocardial ischemia-reperfusion injury. PLoS ONE, 2019, 14, e0217582.	2.5	13
386	GSK3β inhibition and canonical Wnt signaling in mice hearts after myocardial ischemic damage. PLoS ONE, 2019, 14, e0218098.	2.5	20

ARTICLE IF CITATIONS Introduction to ischemia–reperfusion injury., 2019, , 1-39. 387 3 Identification of timeâ€'series differentially expressed genes and pathways associated with heart failure post‑myocardial infarction using integrated bioinformatics analysis. Molecular Medicine Reports, 388 2.4 2019, 19, 5281-5290. <i>N</i>-acetyl-seryl-aspartyl-lysyl-proline treatment protects heart against excessive myocardial 389 1.4 6 injury and heart failure in mice. Canadian Journal of Physiology and Pharmacology, 2019, 97, 753-765. Dynamic Profile of CD4⁺ T-Cell-Associated Cytokines/Chemokines following Murine 390 Myocardial Infarction/Reperfusion. Mediators of Inflammation, 2019, 2019, 1-19. Healing of Myocardial Infarction., 2019, , 151-169. 391 0 MK5 haplodeficiency decreases collagen deposition and scar size during post-myocardial infarction wound repair. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, 3.2 H1281-H1296. 393 Inflammation and fibrosis in murine models of heart failure. Basic Research in Cardiology, 2019, 114, 19. 5.9 234 Lipopolysaccharides Improve Mesenchymal Stem Cell-Mediated Cardioprotection by MyD88 and stat3 Signaling in a Mouse Model of Cardiac Ischemia/Reperfusion Injury. Stem Cells and Development, 2019, 394 2.1 16 28, 620-631. Pioglitazone strengthen therapeutic effect of adipose-derived regenerative cells against ischemic 395 cardiomyopathy through enhanced expression of adiponectin and modulation of macrophage 6.8 17 phenotype. Cardiovascular Diabetology, 2019, 18, 39. Use of Multifactorial Treatments to Address the Challenge of Translating Experimental Myocardial 4.1 Infarct Reduction Strategies. International Journal of Molecular Sciences, 2019, 20, 1449. Three in a Box: Understanding Cardiomyocyte, Fibroblast, and Innate Immune Cell Interactions to 397 2.4 43 Orchestrate Cardiac Repair Processes. Frontiers in Cardiovascular Medicine, 2019, 6, 32. PARG regulates the proliferation and differentiation of DCs and Ti¿1⁄2cells via PARP/NFâ€ÎºB in tumour 2.6 metastases of colon carcinoma. Oncology Reports, 2019, 41, 2657-2666. Functionalization of soft materials for cardiac repair and regeneration. Critical Reviews in 399 9.0 3 Biotechnology, 2019, 39, 451-468. Cardiovascular Toxicity Biomarkers., 2019, , 209-228. The role of CD27-CD70 signaling in myocardial infarction and cardiac remodeling. International 401 1.7 6 Journal of Cardiology, 2019, 278, 210-216. Low serum levels of CCL2 are associated with worse prognosis in patients with Acute Coronary Syndrome: 2-year survival analysis. Biomedicine and Pharmacotherapy, 2019, 109, 1411-1416. Wnt/\hat{l}^2 -catenin in ischemic myocardium: interactions and signaling pathways as a therapeutic target. 403 3.9 30 Heart Failure Reviews, 2019, 24, 411-419. Naringenin prevents doxorubicin-induced toxicity in kidney tissues by regulating the oxidative and 404 2.1 inflammatory insult in Wistar rats. Archives of Physiology and Biochemistry, 2020, 126, 300-307.

#	Article	IF	CITATIONS
405	Immunohistochemistry in the Detection of Early Myocardial Infarction: Systematic Review and Analysis of Limitations Because of Autolysis and Putrefaction. Applied Immunohistochemistry and Molecular Morphology, 2020, 28, 95-102.	1.2	11
406	Turning regenerative technologies into treatment to repair myocardial injuries. Journal of Cellular and Molecular Medicine, 2020, 24, 2704-2716.	3.6	29
407	ROS-responsive polyurethane fibrous patches loaded with methylprednisolone (MP) for restoring structures and functions of infarcted myocardium in vivo. Biomaterials, 2020, 232, 119726.	11.4	87
408	Nitrite Improves Heart Regeneration in Zebrafish. Antioxidants and Redox Signaling, 2020, 32, 363-377.	5.4	12
409	Mechanisms for the transition from physiological to pathological cardiac hypertrophy. Canadian Journal of Physiology and Pharmacology, 2020, 98, 74-84.	1.4	97
410	Interleukinâ€38 alleviates cardiac remodelling after myocardial infarction. Journal of Cellular and Molecular Medicine, 2020, 24, 371-384.	3.6	30
411	ALCAM predicts future cardiovascular death in acute coronary syndromes: Insights from the PLATO trial. Atherosclerosis, 2020, 293, 35-41.	0.8	5
412	Stimulant Abuse in Burn Patients Is Associated With an Increased Use of Hospital Resources. Journal of Burn Care and Research, 2020, 41, 921-925.	0.4	1
413	Effects on cardiac function, remodeling and inflammation following myocardial ischemia–reperfusion injury or unreperfused myocardial infarction in hypercholesterolemic APOE*3-Leiden mice. Scientific Reports, 2020, 10, 16601.	3.3	14
414	Galectin-3 and acute heart failure: genetic polymorphisms, plasma level, myocardial fibrosis and 1-year outcomes. Biomarkers in Medicine, 2020, 14, 943-954.	1.4	8
415	Emerging roles of neutrophil-borne S100A8/A9 in cardiovascular inflammation. Pharmacological Research, 2020, 161, 105212.	7.1	30
416	Butylphthalide has an Anti-Inflammatory Role in Spinal Cord Injury by Promoting Macrophage/Microglia M2 Polarization via p38 Phosphorylation. Spine, 2020, 45, E1066-E1076.	2.0	11
417	Tenascin-C in cardiac disease: a sophisticated controller of inflammation, repair, and fibrosis. American Journal of Physiology - Cell Physiology, 2020, 319, C781-C796.	4.6	45
418	Interleukin-36 Cytokine/Receptor Signaling: A New Target for Tissue Fibrosis. International Journal of Molecular Sciences, 2020, 21, 6458.	4.1	16
419	Therapeutic Effects of Specialized Pro-Resolving Lipids Mediators on Cardiac Fibrosis via NRF2 Activation. Antioxidants, 2020, 9, 1259.	5.1	19
420	Scaffolds and Extracellular Vesicles as a Promising Approach for Cardiac Regeneration after Myocardial Infarction. Pharmaceutics, 2020, 12, 1195.	4.5	11
421	Cardiac tissue remodeling in healthy aging: the road to pathology. American Journal of Physiology - Cell Physiology, 2020, 319, C166-C182.	4.6	24
422	Angiotensin-converting enzyme inhibitor treatment early after myocardial infarction attenuates acute cardiac and neuroinflammation without effect on chronic neuroinflammation. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 1757-1768	6.4	29

#	Article	IF	CITATIONS
423	Riluzole improves functional recovery after acute spinal cord injury in rats and may be associated with changes in spinal microglia/macrophages polarization. Neuroscience Letters, 2020, 723, 134829.	2.1	18
424	Altered NK cell receptor repertoire and function of natural killer cells in patients with acute myocardial infarction: A three-month follow-up study. Immunobiology, 2020, 225, 151909.	1.9	12
425	Mesenchymal Stem Cells Promote the Resolution of Cardiac Inflammation After Ischemia Reperfusion Via Enhancing Efferocytosis of Neutrophils. Journal of the American Heart Association, 2020, 9, e014397.	3.7	22
426	Human monocytes subjected to ischaemia/reperfusion inhibit angiogenesis and wound healing in vitro. Cell Proliferation, 2020, 53, e12753.	5.3	10
427	TLR4 Cross-Talk With NLRP3 Inflammasome and Complement Signaling Pathways in Alzheimer's Disease. Frontiers in Immunology, 2020, 11, 724.	4.8	174
428	Fibrosis in Arrhythmogenic Cardiomyopathy: The Phantom Thread in the Fibro-Adipose Tissue. Frontiers in Physiology, 2020, 11, 279.	2.8	15
429	The pivotal roles of exosomes derived from endogenous immune cells and exogenous stem cells in myocardial repair after acute myocardial infarction. Theranostics, 2021, 11, 1046-1058.	10.0	67
430	Cadherin-11 and cardiac fibrosis: A common target for a common pathology. Cellular Signalling, 2021, 78, 109876.	3.6	13
432	Identification of SLED1 as a Potential Predictive Biomarker and Therapeutic Target of Post-Infarct Heart Failure by Bioinformatics Analyses. International Heart Journal, 2021, 62, 23-32.	1.0	3
433	Phosphodiesterase-5a Knock-out Suppresses Inflammation by Down-Regulating Adhesion Molecules in Cardiac Rupture Following Myocardial Infarction. Journal of Cardiovascular Translational Research, 2021, 14, 816-823.	2.4	6
434	A Three-Dimensional Microfluidic Device for Monitoring Cancer and Chemotherapy-Associated Platelet Activation. ACS Omega, 2021, 6, 3164-3172.	3.5	1
435	Network pharmacology-based analysis in determining the mechanisms of Huoxin pill in protecting against myocardial infarction. Pharmaceutical Biology, 2021, 59, 1189-1200.	2.9	7
436	A double-edged sword of immuno-microenvironment in cardiac homeostasis and injury repair. Signal Transduction and Targeted Therapy, 2021, 6, 79.	17.1	95
437	Large- and Medium-sized Arteries Remaining in Transmural Scar Distal to Permanent Coronary Ligation Undergo Neointimal Hyperplasia and Inward Remodeling. Journal of Histochemistry and Cytochemistry, 2021, 69, 321-338.	2.5	1
438	Immune-Related Genes: Potential Regulators and Drug Therapeutic Targets in Hypertrophic Cardiomyopathy. Journal of Nanomaterials, 2021, 2021, 1-14.	2.7	1
439	Myocardial Infarction Induces Cardiac Fibroblast Transformation within Injured and Noninjured Regions of the Mouse Heart. Journal of Proteome Research, 2021, 20, 2867-2881.	3.7	16
440	Interleukin-1 blockade with RPH-104 in patients with acute ST-elevation myocardial infarction: study design and rationale. Journal of Translational Medicine, 2021, 19, 169.	4.4	3
441	Systematic Understanding of Pathophysiological Mechanisms of Oxidative Stress-Related Conditions—Diabetes Mellitus, Cardiovascular Diseases, and Ischemia–Reperfusion Injury. Frontiers in Cardiovascular Medicine, 2021, 8, 649785.	2.4	14

ARTICLE IF CITATIONS Cholinergic stimulation with pyridostigmine modulates a heart-spleen axis after acute myocardial 442 3.3 5 infarction in spontaneous hypertensive rats. Scientific Reports, 2021, 11, 9563. The role of interleukin-10 family members in cardiovascular diseases. International Immunopharmacology, 2021, 94, 107475. 443 3.8 Tenascin-C in Heart Diseasesâ€"The Role of Inflammation. International Journal of Molecular Sciences, 444 4.1 21 2021, 22, 5828. Phosphorylcholine antibodies restrict infarct size and left ventricular remodelling by attenuating the unreperfused postâ€ischaemic inflammatory response. Journal of Cellular and Molecular Medicine, 445 2021, 25, 7772-7782 The effect of immune cellâ€derived exosomes in the cardiac tissue repair after myocardial infarction: 446 Molecular mechanisms and preâ€clinical evidence. Journal of Cellular and Molecular Medicine, 2021, 25, 3.6 15 6500-6510. Single-cell transcriptomic analyses of cardiac immune cells reveal that Rel-driven CD72-positive 3.8 macrophages induce cardiomyocyte injury. Cardiovascular Research, 2022, 118, 1303-1320. The Conditioned Medium of Lactobacillus rhamnoides GG Regulates Microglia/Macrophage Polarization and Improves Functional Recovery after Spinal Cord Injury in Rats. BioMed Research International, 2021, 2021, 1-13. 448 1.9 3 Reynoutrin Improves Ischemic Heart Failure in Rats Via Targeting S100A1. Frontiers in Pharmacology, 3.5 10 2021, 12, 703962. Acute regional changes in myocardial strain may predict ventricular remodelling after myocardial 450 3.3 5 infarction in a large animal model. Scientific Reports, 2021, 11, 18322. Cortical bone stem cells modify cardiac inflammation after myocardial infarction by inducing a novel macrophage phenotype. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, 3.2 H684-H701. Construction and Analysis of a ceRNA Network in Cardiac Fibroblast During Fibrosis Based on in vivo 452 7 2.3and in vitro Data. Frontiers in Genetics, 2020, 11, 503256. Complement System Activation in Cardiac and Skeletal Muscle Pathology: Friend or Foe?. Advances in 1.6 Experimental Medicine and Biology, 2013, 735, 207-218. Reactive Oxygen and Nitrogen Species in Cardiovascular Differentiation of Stem Cells., 2010, , 61-85. 454 1 Tissue Engineering Strategies for Cardiac Regeneration., 2011, , 443-475. Phosphoinositides and Cardiovascular Diseases. Current Topics in Microbiology and Immunology, 456 1.1 6 2012, 362, 43-60. Phosphorylcholine Antibodies Preserve Cardiac Function and Reduce Infarct Size by Attenuating the Post-Ischémic Inflammatory Response. JACC Basic To Translational Science, 2020, 5, 1228-1239. Understanding the mechanisms that determine extracellular matrix remodeling in the infarcted 458 3.4 12 myocardium. Biochemical Society Transactions, 2019, 47, 1679-1687. Pharmacological Modulation of Cardiac Remodeling after Myocardial Infarction. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-11.

#	Article	IF	CITATIONS
460	Cardiac myofibroblast engulfment of dead cells facilitates recovery after myocardial infarction. Journal of Clinical Investigation, 2016, 127, 383-401.	8.2	107
461	Clinical Proteomics Identifies Urinary CD14 as a Potential Biomarker for Diagnosis of Stable Coronary Artery Disease. PLoS ONE, 2015, 10, e0117169.	2.5	24
462	Apoptosis signal-regulating kinase 1 inhibition attenuates cardiac hypertrophy and cardiorenal fibrosis induced by uremic toxins: Implications for cardiorenal syndrome. PLoS ONE, 2017, 12, e0187459.	2.5	26
463	Early kinetics of serum Interleukine-17A and infarct size in patients with reperfused acute ST-elevated myocardial infarction. PLoS ONE, 2017, 12, e0188202.	2.5	14
464	Relationship between deep venous thrombosis and inflammatory cytokines in postoperative patients with malignant abdominal tumors. Brazilian Journal of Medical and Biological Research, 2014, 47, 1003-1007.	1.5	19
466	Disruption of Circadian Rhythms and Sleep on Critical Illness and the Impact on Cardiovascular Events. Current Pharmaceutical Design, 2015, 21, 3505-3511.	1.9	50
467	Tracking the Mesenchymal Stem Cell Fate After Transplantation Into the Infarcted Myocardium. Current Stem Cell Research and Therapy, 2013, 8, 284-291.	1.3	9
468	Imaging inflammation after myocardial infarction: implications for prognosis and therapeutic guidance. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2020, 64, 35-50.	0.7	3
469	Clinical and genetic factors determining target lesions of patients with arterial hypertension among Mountain Shoria population. Systemic Hypertension, 2017, 14, 42-50.	0.6	2
470	Chemokines and cardiac fibrosis. Frontiers in Bioscience - Scholar, 2009, S1, 391-405.	2.1	90
471	Ataxia-Telangiectasia mutated kinase: Role in myocardial remodeling. Journal of Rare Diseases Research & Treatment, 2017, 2, 32-37.	1.1	10
472	MicroRNAs, innate immunity and ventricular rupture in human myocardial infarction. Disease Markers, 2011, 31, 259-65.	1.3	24
473	Role of Cardiac Macrophages on Cardiac Inflammation, Fibrosis and Tissue Repair. Cells, 2021, 10, 51.	4.1	159
475	GCSF Partially Repairs Heart Damage Induced by Repetitive β-adrenergic Stimulation in Mice: Potential Role of the Mobilized Bone Marrow-derived Cells. International Journal of Pharmacology, 2016, 12, 689-700.	0.3	2
476	Comparative study of galectin-3 and B-type natriuretic peptide as biomarkers for the diagnosis of heart failure. Journal of Geriatric Cardiology, 2014, 11, 79-82.	0.2	24
477	Disentangling the Mechanisms of Radiation-Induced Heart Disease in the Treatment of Breast Cancer. Translational Medicine (Sunnyvale, Calif), 2015, 05, .	0.4	1
478	Ischemia/reperfusion injury: The role of immune cells. World Journal of Cardiology, 2010, 2, 325.	1.5	56
479	Impact of conditioning hyperglycemic on myocardial infarction rats: Cardiac cell survival factors. World Journal of Cardiology, 2014, 6, 449.	1.5	8

#	Article	IF	CITATIONS
480	Innate immune receptors in heart failure: Side effect or potential therapeutic target?. World Journal of Cardiology, 2014, 6, 791.	1.5	11
481	Impact of Reactive Oxygen and Reactive Nitrogen Species for Stem Cell Mobilization, Function and Cardiovascular Differentiation. , 0, , .		1
482	Heart Regeneration in Adult Mammals after Myocardial Damage. Acta Cardiologica Sinica, 2018, 34, 115-123.	0.2	11
483	Role of Lysosomal Cathepsins in Post-Myocardial Infarction Remodeling. North American Journal of Medicine & Science, 2011, 4, 173.	3.8	2
484	The Roles of Macrophages in Heart Regeneration and Repair After Injury. Frontiers in Cardiovascular Medicine, 2021, 8, 744615.	2.4	13
485	Myocardial Cell Death and Regeneration. , 2011, , 66-80.		1
486	Inflammation and Immunity as Targets for Drug Therapy in Acute Coronary Syndrome. , 2011, , 271-288.		0
487	Negative Regulators of Inflammation as Endogenous Protective Mechanisms in Postinfarction Remodeling. , 2013, , 313-330.		0
488	Role of Inflammation and Matrix Proteinases in Cardiac Remodeling Following Stress and Injury. , 2013, , 179-200.		0
489	Application of Molecular Imaging in Transgenic Animals. Advanced Topics in Science and Technology in China, 2013, , 661-670.	0.1	0
490	Aging-Associated Alterations in Myocardial Inflammation and Fibrosis: Pathophysiological Perspectives and Clinical Implications. , 2014, , 361-375.		0
492	Association of clinical and genetic factors with left ventricular hypertrophy in hypertension among the indigenous population Mountain Shoria. Systemic Hypertension, 2015, 12, 11-17.	0.6	0
493	Sulforaphane and Atherosclerosis. , 2016, , 1-19.		0
494	Correlations between microRNAs and their target genes in skeletal myoblasts cell therapy for myocardial infarction. Annals of Translational Medicine, 2016, 4, 292-292.	1.7	0
496	Sulforaphane and Atherosclerosis. Reference Series in Phytochemistry, 2017, , 319-337.	0.4	0
497	Cardiac MRI Assessment of Mouse Myocardial Infarction and Regeneration. Methods in Molecular Biology, 2021, 2158, 81-106.	0.9	2
498	Cardiac Troponin Elevation After Long-Distance Cycling is Associated with Oxidative Stress and Exercise Intensity: An Observational Study. Asian Journal of Sports Medicine, 2020, 11, .	0.3	1
499	NÃveis Elevados de Netrina-1 e IL-1β em Mulheres Idosas com SCA: Pior Prognóstico no Acompanhamento de Dois Anos. Arquivos Brasileiros De Cardiologia, 2020, 114, 507-514.	0.8	4

#	Article	IF	CITATIONS
500	Current status of cardiac regenerative medicine; An update on point of view to cell therapy application. Journal of Cardiovascular and Thoracic Research, 2020, 12, 256-268.	0.9	2
502	Aging and Cardiac Fibrosis. , 2011, 2, 158-173.		201
504	Mixed serum-deprived and normal adipose-derived mesenchymal stem cells against acute lung ischemia-reperfusion injury in rats. American Journal of Translational Research (discontinued), 2015, 7, 209-31.	0.0	16
505	Gender disparity in the role of TLR2 in post-ischemic myocardial inflammation and injury. International Journal of Clinical and Experimental Medicine, 2015, 8, 10537-47.	1.3	6
506	Ataxia-Telangiectasia Mutated Kinase: Role in Myocardial Remodeling. , 2017, 2, 32-37.		3
507	Early administration of cold water and adipose derived mesenchymal stem cell derived exosome effectively protects the heart from ischemia-reperfusion injury. American Journal of Translational Research (discontinued), 2019, 11, 5375-5389.	0.0	9
508	Atractylodesin III maintains mitochondrial function and inhibits caspase-3 activity to reverse apoptosis of cardiomyocytes in AMI rats. International Journal of Clinical and Experimental Pathology, 2019, 12, 198-204.	0.5	6
509	Association of blood pressure in the first-week of hospitalization and long-term mortality in patients with acute left ventricular myocardial infarction. International Journal of Cardiology, 2022, 349, 18-26.	1.7	7
510	Tissue distribution and transcriptional regulation of CCN5 in the heart after myocardial infarction. Journal of Cell Communication and Signaling, 2022, 16, 377-395.	3.4	3
511	Type 2 innate immunity drives distinct neonatal immune profile conducive for heart regeneration. Theranostics, 2022, 12, 1161-1172.	10.0	6
512	Screening for Regulatory Network of miRNA–Inflammation, Oxidative Stress and Prognosis-Related mRNA in Acute Myocardial Infarction: An in silico and Validation Study. International Journal of General Medicine, 2022, Volume 15, 1715-1731.	1.8	6
513	Early Protective Role of Inflammation in Cardiac Remodeling and Heart Failure: Focus on TNFα and Resident Macrophages. Cells, 2022, 11, 1249.	4.1	22
514	Resuscitating the Field of Cardiac Regeneration: Seeking Answers from Basic Biology. Advanced Biology, 2022, 6, 2101133.	2.5	0
515	Elevated Expression of TLR2 in Aging Hearts Exacerbates Cardiac Inflammatory Response and Adverse Remodeling Following Ischemia and Reperfusion Injury. Frontiers in Immunology, 2022, 13, 891570.	4.8	4
520	In vivo Visualization of M2 Macrophages in the Myocardium After Myocardial Infarction (MI) Using 68Ga-NOTA-Anti-MMR Nb: Targeting Mannose Receptor (MR, CD206) on M2 Macrophages. Frontiers in Cardiovascular Medicine, 2022, 9, 889963.	2.4	7
521	Immune and Inflammatory Networks in Myocardial Infarction: Current Research and Its Potential Implications for the Clinic. International Journal of Molecular Sciences, 2022, 23, 5214.	4.1	18
522	Effects of IL-38 on Macrophages and Myocardial Ischemic Injury. Frontiers in Immunology, 2022, 13, .	4.8	8
523	Evidence of Failed Resolution Mechanisms in Arrhythmogenic Inflammation, Fibrosis and Right Heart Disease. Biomolecules, 2022, 12, 720.	4.0	4

#	Article	IF	CITATIONS
524	Modulation of Tissue Microenvironment Following Myocardial Infarction. Advanced NanoBiomed Research, 0, , 2200005.	3.6	2
525	Human Heart Anoxia and Reperfusion Tissue (HEART) Model for the Rapid Study of Exosome Bound miRNA Expression As Biomarkers for Myocardial Infarction. Small, 2022, 18, .	10.0	13
526	Combined therapy with dapagliflozin and entresto offers an additional benefit on improving the heart function in rat after ischemia-reperfusion injury. Biomedical Journal, 2023, 46, 100546.	3.1	4
527	Toll-Like Receptor 4: A Promising Therapeutic Target for Alzheimer's Disease. Mediators of Inflammation, 2022, 2022, 1-20.	3.0	15
528	Cardiac fibrosis in oncologic therapies. Current Opinion in Physiology, 2022, 29, 100575.	1.8	6
529	Tenascin-C: A Key Regulator in Angiogenesis during Wound Healing. Biomolecules, 2022, 12, 1689.	4.0	7
530	Increased angiogenesis parallels cardiac tissue remodelling in experimental acute Trypanosoma cruzi infection. Memorias Do Instituto Oswaldo Cruz, 0, 117, .	1.6	1
531	Propionate alleviated post-infarction cardiac dysfunction by macrophage polarization in a rat model. International Immunopharmacology, 2023, 115, 109618.	3.8	3
532	The characteristic of resident macrophages and their therapeutic potential for myocardial infarction. Current Problems in Cardiology, 2022, , 101570.	2.4	0
533	Epigenetic regulations in inflammatory diseases. , 2023, , 585-613.		0
534	Extracellular vesicles mediate biological information delivery: A double-edged sword in cardiac remodeling after myocardial infarction. Frontiers in Pharmacology, 0, 14, .	3.5	5
535	Progress on role of ion channels of cardiac fibroblasts in fibrosis. Frontiers in Physiology, 0, 14, .	2.8	4
536	Plantâ€Đerived Biomaterials and Their Potential in Cardiac Tissue Repair. Advanced Healthcare Materials, 2023, 12, .	7.6	1
537	Inflammaging: mechanisms and role in the cardiac and vasculature. Trends in Endocrinology and Metabolism, 2023, 34, 373-387.	7.1	4
538	Cardiac Microvascular Endothelial Cells and Pressure Overload-Induced Cardiac Fibrosis. Cardiac and Vascular Biology, 2023, , 229-264.	0.2	0
539	Mechanobiology of Cardiac Fibroblasts in Cardiac Remodeling. Cardiac and Vascular Biology, 2023, , 101-120.	0.2	0
540	XAV939 Improves the Prognosis of Myocardial Infarction by Blocking the Wnt/β-Catenin Signalling Pathway. Applied Biochemistry and Biotechnology, 2024, 196, 605-615.	2.9	1
541	Effects of Puerarinâ€Loaded Tetrahedral Framework Nucleic Acids on Osteonecrosis of the Femoral Head. Small, 2023, 19, .	10.0	10

#	Article	IF	CITATIONS
542	Endogenous interleukin-22 prevents cardiac rupture after myocardial infarction in mice. PLoS ONE, 2023, 18, e0286907.	2.5	0
543	IL-27 promotes cardiac fibroblast activation and aggravates cardiac remodeling post myocardial infarction. Heliyon, 2023, 9, e17099.	3.2	0
544	Neutrophil-Derived S100A8/A9 in Cardiovascular Disease and Beyond. Current Pharmacology Reports, 0, , .	3.0	0
545	Multifaced roles of desmoplastic reaction and fibrosis in pancreatic cancer progression: Current understanding and future directions. Cancer Science, 2023, 114, 3487-3495.	3.9	2
546	Identification of crucial genes related to heart failure based on GEO database. BMC Cardiovascular Disorders, 2023, 23, .	1.7	0
547	Cooling Down Inflammation in the Cardiovascular System via the Nicotinic Acetylcholine Receptor. Journal of Cardiovascular Pharmacology, 2023, , .	1.9	0
548	Two decades of heart regeneration research: Cardiomyocyte proliferation and beyond. WIREs Mechanisms of Disease, 2024, 16, .	3.3	1
549	The Role of Selected Epigenetic Pathways in Cardiovascular Diseases as a Potential Therapeutic Target. International Journal of Molecular Sciences, 2023, 24, 13723.	4.1	1
550	New treatment methods for myocardial infarction. Frontiers in Cardiovascular Medicine, 0, 10, .	2.4	1
551	Sex Influences the Safety and Therapeutic Efficacy of Cardiac Nanomedicine Technologies. Small, 0, , .	10.0	0
552	Potential of rosmarinic acid from Orthosiphon aristatus extract for inflammatory induced diseases and its mechanisms of action. Life Sciences, 2023, 333, 122170.	4.3	0
553	The role of cardiac resident macrophage in cardiac aging. Aging Cell, 2023, 22, .	6.7	2
554	Cytokines as drivers: Unraveling the mechanisms of epithelial-mesenchymal transition in COVID-19 lung fibrosis. Biochemical and Biophysical Research Communications, 2023, 686, 149118.	2.1	2
555	Vascular Growth Factor Inhibition with Bevacizumab Improves Cardiac Electrical Alterations and Fibrosis in Experimental Acute Chagas Disease. Biology, 2023, 12, 1414.	2.8	0
556	CXCR4/CXCL12 axis: "old―pathway as "novel―target for antiâ€inflammatory drug discovery. Medicinal Research Reviews, 2024, 44, 1189-1220.	10.5	1
557	CB2 Cannabinoid Receptor as a Potential Target in Myocardial Infarction: Exploration of Molecular Pathogenesis and Therapeutic Strategies. International Journal of Molecular Sciences, 2024, 25, 1683.	4.1	0
558	Inflammation as the nexus: exploring the link between acute myocardial infarction and chronic obstructive pulmonary disease. Frontiers in Cardiovascular Medicine, 0, 11, .	2.4	0
559	Japanese Traditional Herbal Medicine, Rikkunshito, Partially Suppresses Inflammatory Responses in Myocardial Ischemia/Reperfusion Injury. Cureus, 2024, , .	0.5	0

		CITATION REPORT	
#	Article	IF	CITATIONS
560	Inflammatory Responses in Myocardial Infarction and its Therapeutic Drugs. , 2024, , 231-254.		0