Death toll exceeded 70,000 in Europe during the summ

Comptes Rendus - Biologies 331, 171-178 DOI: 10.1016/j.crvi.2007.12.001

Citation Report

#	Article	IF	CITATIONS
1	Climate Change. American Journal of Preventive Medicine, 2008, 35, 527-538.	1.6	90
2	The impact of the 2003 summer heat wave and the 2005 late cold wave on the phytoplankton in the north-eastern English Channel. Comptes Rendus - Biologies, 2008, 331, 678-685.	0.1	30
3	Prevention and management of health hazards related to heatwaves. International Journal of Circumpolar Health, 2009, 68, 8-12.	0.5	59
4	Climate Disruption and Biodiversity. Current Biology, 2009, 19, R595-R601.	1.8	98
5	An updated assessment of the risks from climate change based on research published since the IPCC Fourth Assessment Report. Climatic Change, 2009, 97, 469-482.	1.7	122
6	Evaluating the impact of extreme temperature based indices in the 2003 heatwave excessive mortality in Portugal. Environmental Science and Policy, 2009, 12, 844-854.	2.4	52
7	Seasonal pattern of mortality and relationships between mortality and temperature-humidity index in dairy cows. Journal of Dairy Science, 2009, 92, 3781-3790.	1.4	173
8	Managing the health effects of climate change. Lancet, The, 2009, 373, 1693-1733.	6.3	2,195
9	Public health impact of global heating due to climate change: potential effects on chronic non-communicable diseases. International Journal of Public Health, 2010, 55, 97-103.	2.7	100
10	Monitoring of all-cause mortality in Belgium (Be-MOMO): a new and automated system for the early detection and quantification of the mortality impact of public health events. International Journal of Public Health, 2010, 55, 251-259.	1.0	14
11	Hsp-72, a candidate prognostic indicator of heatstroke. Cell Stress and Chaperones, 2010, 15, 593-603.	1.2	42
14	The impact of heat waves on mortality in 9 European cities: results from the EuroHEAT project. Environmental Health, 2010, 9, 37.	1.7	471
15	Minimising harm to older Victorians from heatwaves: A qualitative study of the role of communityâ€based health profession and carer organisations. Australasian Journal on Ageing, 2010, 29, 104-110.	0.4	7
16	The impact of climate change on mental health (but will mental health be discussed at Copenhagen?). Psychological Medicine, 2010, 40, 177-180.	2.7	68
17	Urban Form and Extreme Heat Events: Are Sprawling Cities More Vulnerable to Climate Change Than Compact Cities?. Environmental Health Perspectives, 2010, 118, 1425-1428.	2.8	367
18	Climate change, heat waves, and mortality projections for Chicago. Journal of Great Lakes Research, 2010, 36, 65-73.	0.8	126
19	How inequitable is the global distribution of responsibility, capability, and vulnerability to climate change: A comprehensive indicator-based assessment. Global Environmental Change, 2010, 20, 597-611.	3.6	254
20	The Hot Summer of 2010: Redrawing the Temperature Record Map of Europe. Science, 2011, 332, 220-224.	6.0	1,193

TATION REPO

ARTICLE IF CITATIONS # Climate Change, Noncommunicable Diseases, and Development: The Relationships and Common Policy 7.6 100 21 Opportunities. Annual Review of Public Health, 2011, 32, 133-147. Climatic effects of surface albedo geoengineering. Journal of Geophysical Research, 2011, 116, n/a-n/a. 3.3 Heat wave impact on morbidity and mortality in the elderly population: A review of recent studies. 23 1.0 382 Maturitas, 2011, 69, 99-105. Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land 24 338 surface temperatures. Remote Sensing of Environment, 2011, 115, 3175-3186. Toronto's Urban Heat Islandâ€"Exploring the Relationship between Land Use and Surface Temperature. 25 1.8 181 Remote Sensing, 2011, 3, 1251-1265. Local Heat Stroke Prevention Plans in Japan: Characteristics and Elements for Public Health Adaptation to Climate Change. International Journal of Environmental Research and Public Health, 1.2 2011, 8, 4563-4581. Climate change: present and future risks to health, and necessary responses. Journal of Internal Medicine, 2011, 270, 401-413. 27 2.7 273 The pathopysiology of heat stroke: an integrative view of the final common pathway. Scandinavian 28 1.3 Journal of Medicine and Science in Sports, 2011, 21, 742-748. 29 The economics (or lack thereof) of aerosol geoengineering. Climatic Change, 2011, 109, 719-744. 1.7 130 Avoiding the avoidable: Towards a European heat waves risk governance. International Journal of 1.3 Disaster Risk Science, 2011, 2, 1-14. Urban Health Inequities and the Added Pressure of Climate Change: An Action-Oriented Research 31 1.8 57 Agenda. Journal of Urban Health, 2011, 88, 886-895. Associations between air temperature and cardio-respiratory mortality in the urban area of Beijing, China: a time-series analysis. Environmental Health, 2011, 10, 51. An open source web application for the surveillance and prevention of the impacts on public health of extreme meteorological events: the SUPREME system. International Journal of Health Geographics, 33 1.2 23 2011, 10, 39. Adapting to climate change to sustain health. Wiley Interdisciplinary Reviews: Climate Change, 2011, 2, 3.6 271-282 Public perceptions and governance of controversial technologies to tackle climate change: nuclear power, carbon capture and storage, wind, and geoengineering. Wiley Interdisciplinary Reviews: 35 3.6 63 Climate Change, 2011, 2, 712-727. Satellite monitoring of summer heat waves in the Paris metropolitan area. International Journal of 185 Climatology, 2011, 31, 313-323. Assessing climate impacts of planning policiesâ€"An estimation for the urban region of Leipzig 37 4.4 82 (Germany). Environmental Impact Assessment Review, 2011, 31, 97-111. Long-term projections and acclimatization scenarios of temperature-related mortality in Europe. 38 5.8 124 Nature Communications, 2011, 2, 358.

#	Article	IF	CITATIONS
39	Confronting Uncertainty: Lessons from Rural Social Work. Australian Social Work, 2011, 64, 377-394.	0.7	15
41	Adapting to health impacts of climate change: a study of UNFCCC Annex I parties. Environmental Research Letters, 2011, 6, 044009.	2.2	80
42	The relationship between temperature and ambulance response calls for heat-related illness in Toronto, Ontario, 2005. Journal of Epidemiology and Community Health, 2011, 65, 829-831.	2.0	69
43	Rapid estimation of excess mortality: nowcasting during the heatwave alert in England and Wales in June 2011. Journal of Epidemiology and Community Health, 2012, 66, 866-868.	2.0	29
44	Hydration, morbidity, and mortality in vulnerable populations. Nutrition Reviews, 2012, 70, S152-S155.	2.6	48
45	Projected changes of extreme weather events in the eastern United States based on a high resolution climate modeling system. Environmental Research Letters, 2012, 7, 044025.	2.2	148
46	Tissue factor/factor VIIa pathway mediates coagulation activation in induced-heat stroke in the baboon. Critical Care Medicine, 2012, 40, 1229-1236.	0.4	40
47	Pathogenetic mechanisms of heatstroke and novel therapies. Critical Care, 2012, 16, .	2.5	4
48	A spatio-temporal index for heat vulnerability assessment. Environmental Monitoring and Assessment, 2012, 184, 7329-7342.	1.3	35
49	Electric fans for reducing adverse health impacts in heatwaves. , 2012, , CD009888.		35
50	How air pollution influences clinical management of respiratory diseases. A case-crossover study in Milan. Respiratory Research, 2012, 13, 95.	1.4	99
51	Personal cooling with phase change materials to improve thermal comfort from a heat wave perspective. Indoor Air, 2012, 22, 523-530.	2.0	144
52	Contrasting urban and rural heat stress responses to climate change. Geophysical Research Letters, 2012, 39, .	1.5	170
53	Effects of interactive vegetation phenology on the 2003 summer heat waves. Journal of Geophysical Research, 2012, 117, .	3.3	72
54	Nested highâ€resolution modeling of the impact of urbanization on regional climate in three vast urban agglomerations in China. Journal of Geophysical Research, 2012, 117, .	3.3	123
55	Temporal characteristics of thermal satellite images for urban heat stress and heat island mapping. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 74, 153-162.	4.9	57
56	The impact of future summer temperature on public health in Barcelona and Catalonia, Spain. International Journal of Biometeorology, 2012, 56, 1135-1144.	1.3	33
57	A decade of weather extremes. Nature Climate Change, 2012, 2, 491-496.	8.1	1,660

D

#	Article	IF	CITATIONS
58	Exploring the impact of climate on human longevity. Experimental Gerontology, 2012, 47, 660-671.	1.2	39
60	Temperature extremes in Europe: overview of their driving atmospheric patterns. Natural Hazards and Earth System Sciences, 2012, 12, 1671-1691.	1.5	77
61	Minimising harm from heatwaves: a survey of awareness, knowledge, and practices of health professionals and care providers in Victoria, Australia. International Journal of Public Health, 2012, 57, 297-304.	1.0	25
62	Changing trends of thermal extremes in Pakistan. Climatic Change, 2012, 113, 883-896.	1.7	44
63	Climate change and future temperature-related mortality in 15 Canadian cities. International Journal of Biometeorology, 2012, 56, 605-619.	1.3	84
64	Climate change: could it help develop â€~adaptive expertise'?. Advances in Health Sciences Education, 2012, 17, 211-224.	1.7	20
65	Model of the Regional Coupled Earth system (MORCE): Application to process and climate studies in vulnerable regions. Environmental Modelling and Software, 2012, 35, 1-18.	1.9	57
66	Excess male mortality and age-specific mortality trajectories under different mortality conditions: A lesson from the heat wave of summer 2003. Mechanisms of Ageing and Development, 2012, 133, 378-386.	2.2	36
67	Human activity and anomalously warm seasons in Europe. International Journal of Climatology, 2012, 32, 225-239.	1.5	36
68	The impact of extreme heat on morbidity in Milwaukee, Wisconsin. Climatic Change, 2012, 110, 959-976.	1.7	44
69	Long-term spatio-temporal social vulnerability variation considering health-related climate change parameters particularly affecting elderly. Natural Hazards, 2013, 68, 1371-1384.	1.6	16
70	Are heat warning systems effective?. Environmental Health, 2013, 12, 27.	1.7	70
71	Heat-Related Mortality. , 2013, , 95-103.		2
72	Evaluating the effectiveness of heat warning systems: systematic review of epidemiological evidence. International Journal of Public Health, 2013, 58, 667-681.	1.0	121
73	A New HadGEM3-A-Based System for Attribution of Weather- and Climate-Related Extreme Events. Journal of Climate, 2013, 26, 2756-2783.	1.2	121
74	Water, energy and food interactions—Challenges and opportunities. Frontiers of Environmental Science and Engineering, 2013, 7, 787-793.	3.3	59
75	The development of a heat wave vulnerability index for London, United Kingdom. Weather and Climate Extremes, 2013, 1, 59-68.	1.6	220
76	Staying cool in a changing climate: Reaching vulnerable populations during heat events. Global Environmental Change, 2013, 23, 475-484.	3.6	127

ARTICLE IF CITATIONS Spatial variability of frontal area index and its relationship with urban heat island intensity. 1.3 66 International Journal of Remote Sensing, 2013, 34, 885-896. Environmental justice at the heart of social work practice: Greening the profession. International 1.0 74 Journal of Social Welfare, 2013, 22, 431-439. Avoiding the Avoidable: Towards a European Heat Waves Risk Governance. IHDP-integrated Risk 0.1 4 Governance Project Series, 2013, , 119-144. Reduction of the urban cooling effects of an intensive green roof due to vegetation damage. Urban 2.4 79 Climate, 2013, 3, 40-55. Minimization of Heatwave Morbidity and Mortality. American Journal of Preventive Medicine, 2013, 44, 1.6 146 274-282. Wilderness Medical Society Practice Guidelines for the Prevention and Treatment of Heat-Related Illness. Wilderness and Environmental Medicine, 2013, 24, 351-361. 0.4 Identification of heat risk patterns in the U.S. National Capital Region by integrating heat stress and 4.8 114 related vulnerability. Environment International, 2013, 56, 65-77. The relationship between meteorological conditions and index acute coronary events in a global 0.8 clinical trial. International Journal of Cardiology, 2013, 168, 2315-2321. Social vulnerability assessment of the Cologne urban area (Germany) to heat waves: links to ecosystem services. International Journal of Disaster Risk Reduction, 2013, 6, 98-117. 1.8 97 Synergistic Interactions between Urban Heat Islands and Heat Waves: The Impact in Cities Is Larger than the Sum of Its Parts. Journal of Applied Meteorology and Climatology, 2013, 52, 2051-2064. Barriers in municipal climate change adaptation: Results from case studies using backcasting. Futures, 1.4 48 2013, 49, 9-21. Quantifying the prevalence of fuel poverty across the European Union. Energy Policy, 2013, 52, 563-572. 4.2 320 Human Bioclimatic Conditions, Trends, and Variability in the Athens University Campus, Greece. 0.6 27 Advances in Meteorology, 2013, 2013, 1-8. Regional Climate Projections of Extreme Heat Events in Nine Pilot Canadian Communities for Public Health Planning. Journal of Applied Meteorology and Climatology, 2013, 52, 2669-2698. An integrated assessment modeling framework for uncertainty studies in global and regional climate 1.3 46 change: the MIT IGSM-CAM (version 1.0). Geoscientific Model Development, 2013, 6, 2063-2085. Acute Fatal Effects of Short-Lasting Extreme Temperatures in Stockholm, Sweden. Epidemiology, 2013, 74 24, 820-829. Drought and the water–energy nexus in Texas. Environmental Research Letters, 2013, 8, 045033. 2.291

CITATION REPORT

95	Differences on the effect of heat waves on mortality by sociodemographic and urban landscape characteristics. Journal of Epidemiology and Community Health, 2013, 67, 519-525.	2.0	103
----	--	-----	-----

77

79

81

83

84

85

87

89

91

#	Article	IF	CITATIONS
96	Analysis of probabilistic climate projections: heat wave, overheating and adaptation. Journal of Building Performance Simulation, 2013, 6, 65-77.	1.0	7
97	Historic and future increase in the global land area affected by monthly heat extremes. Environmental Research Letters, 2013, 8, 034018.	2.2	299
98	Heat Waves, Incidence of Infectious Gastroenteritis, and Relapse Rates of Inflammatory Bowel Disease: A Retrospective Controlled Observational Study. American Journal of Gastroenterology, 2013, 108, 1480-1485.	0.2	31
99	Mind the Gap: Built Infrastructures, Sustainable Caring Relations, and Resilient Communities in Extreme Weather Events. Australian Social Work, 2013, 66, 204-217.	0.7	23
100	Greenhouse Gas Contribution on Climate Change. , 2013, , 26-61.		1
101	Extreme winds over Europe in the ENSEMBLES regional climate models. Atmospheric Chemistry and Physics, 2013, 13, 5163-5172.	1.9	24
102	Heat wave adaptations for UK dwellings and development of a retrofit toolkit. International Journal of Disaster Resilience in the Built Environment, 2013, 4, 269-286.	0.7	33
103	Heat Waves and Climate Change: Applying the Health Belief Model to Identify Predictors of Risk Perception and Adaptive Behaviours in Adelaide, Australia. International Journal of Environmental Research and Public Health, 2013, 10, 2164-2184.	1.2	114
104	Climate Change and Disaster Risk Management: Challenges and Opportunities. , 0, , 6-18.		0
106	Preparation of residential aged care services for extreme hot weather in Victoria, Australia. Australian Health Review, 2013, 37, 442.	0.5	6
107	Assessing "Dangerous Climate Change― Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature. PLoS ONE, 2013, 8, e81648.	1.1	448
108	Implementation of the Montreal Heat Response Plan During the 2010 Heat Wave. Canadian Journal of Public Health, 2013, 104, e96-e100.	1.1	32
109	Risk and uncertainty in hydrometeorological hazards. , 2013, , 100-150.		5
110	Aging and thermoregulation. The Journal of Physical Fitness and Sports Medicine, 2013, 2, 37-47.	0.2	33
111	Perceived Adverse Health Effects of Heat and Their Determinants in Deprived Neighbourhoods: A Cross-Sectional Survey of Nine Cities in Canada. International Journal of Environmental Research and Public Health, 2014, 11, 11028-11053.	1.2	23
112	Assessing Heat Health Risk for Sustainability in Beijing's Urban Heat Island. Sustainability, 2014, 6, 7334-7357.	1.6	86
113	Heat wave hazard modelling: Qatar case study. QScience Connect, 2014, , 9.	0.2	5
114	Heat Waves' Influence on Health: Some Uncertainties about Their Impact. Journal of Earth Science & Climatic Change, 2014, 05, .	0.2	2

#	Article	IF	CITATIONS
115	Assessment of CMIP5 climate models and projected temperature changes over Northern Eurasia. Environmental Research Letters, 2014, 9, 055007.	2.2	167
116	Ethical and Technical Challenges in Compensating for Harm Due to Solar Radiation Management Geoengineering. Ethics, Policy and Environment, 2014, 17, 157-174.	0.8	40
117	Introduction Vulnerability: a key determinant of risk and its importance for risk management and sustainability. , 2014, , ix-xiii.		9
118	Identifying Vulnerable Populations in Subtropical Brisbane, Australia: A Guide for Heatwave Preparedness and Health Promotion. ISRN Epidemiology, 2014, 2014, 1-12.	0.6	12
119	Do older adults experience greater thermal strain during heat waves?. Applied Physiology, Nutrition and Metabolism, 2014, 39, 292-298.	0.9	49
120	The impact of heatwaves on mortality in Australia: a multicity study. BMJ Open, 2014, 4, e003579.	0.8	80
121	Measuring the Co-Benefits of Climate Change Mitigation. Annual Review of Environment and Resources, 2014, 39, 549-582.	5.6	172
122	Vulnerability Assessment to Heat Waves, Floods, and Earthquakes Using the MOVE Framework. , 2014, , 91-124.		19
123	Seeing it coming: A complexity approach to disasters and humanitarian crises. Complexity, 2014, 19, 95-108.	0.9	4
124	Improving a pavement-watering method on the basis of pavement surface temperature measurements. Urban Climate, 2014, 10, 189-200.	2.4	30
125	Wilderness Medical Society Practice Guidelines for the Prevention and Treatment of Heat-Related Illness: 2014 Update. Wilderness and Environmental Medicine, 2014, 25, S55-S65.	0.4	28
126	Climate Change. JAMA - Journal of the American Medical Association, 2014, 312, 1565.	3.8	354
127	Model projected heat extremes and air pollution in the eastern Mediterranean and Middle East in the twenty-first century. Regional Environmental Change, 2014, 14, 1937-1949.	1.4	81
128	Heat Waves, Aging, and Human Cardiovascular Health. Medicine and Science in Sports and Exercise, 2014, 46, 1891-1899.	0.2	203
129	Impact of anthropogenic heat release on regional climate in three vast urban agglomerations in China. Advances in Atmospheric Sciences, 2014, 31, 363-373.	1.9	52
130	Does Belgrade (Serbia) need heat health warning system?. Disaster Prevention and Management, 2014, 23, 494-507.	0.6	6
131	The effect of pre-existing medical conditions on heat stroke during hot weather in South Korea. Environmental Research, 2014, 133, 246-252.	3.7	19
132	Vulnerability to the mortality effects of warm temperature in the districts of England and Wales. Nature Climate Change, 2014, 4, 269-273.	8.1	65

#	Article	IF	CITATIONS
133	Are European countries prepared for the next big heat-wave?. European Journal of Public Health, 2014, 24, 615-619.	0.1	60
134	Heat Waves, Human Health, and Climate Change. , 2014, , 447-453.		4
135	Heat waves and mortality in Frankfurt am Main, Germany, 2003–2013. Zeitschrift Fur Gerontologie Und Geriatrie, 2014, 47, 475-482.	0.8	20
136	The challenges posed by climate change to successful ageing. Zeitschrift Fur Gerontologie Und Geriatrie, 2014, 47, 468-474.	0.8	27
137	Evaluation of the plan for surveillance and controlling of the effects of heat waves in Madrid. International Journal of Biometeorology, 2014, 58, 1799-1802.	1.3	11
139	Historical global analysis of occurrences and human casualty of extreme temperature events (ETEs). Natural Hazards, 2014, 70, 1453-1505.	1.6	41
140	The impact of heatwaves on emergency department visits in Brisbane, Australia: a time series study. Critical Care, 2014, 18, R69.	2.5	37
141	Impacts of hot and cold spells differ for acute and chronic ischaemic heart diseases. BMC Public Health, 2014, 14, 480.	1.2	57
142	Predicting indoor heat exposure risk during extreme heat events. Science of the Total Environment, 2014, 490, 686-693.	3.9	96
143	Projections of heat waves with high impact on human health in Europe. Global and Planetary Change, 2014, 119, 71-84.	1.6	88
144	Urban vegetation for reducing heat related mortality. Environmental Pollution, 2014, 192, 275-284.	3.7	94
145	Exploring 167 years of vulnerability: An examination of extreme heat events in Australia 1844–2010. Environmental Science and Policy, 2014, 42, 33-44.	2.4	219
146	Xuebijing attenuates hypotension through the upregulation of angiotensin II type 1 receptor-associated protein 1 in rats suffering from heat stroke. International Journal of Molecular Medicine, 2014, 34, 1699-1705.	1.8	8
147	Can a spatial index of heat-related vulnerability predict emergency service demand in Australian capital cities?. International Journal of Emergency Services, 2014, 3, 6-33.	0.7	17
148	The effects of the 1996–2012 summer heat events on human mortality in Slovakia. Moravian Geographical Reports, 2015, 23, 58-70.	0.7	12
149	Influence of Climate Changes on Health (Review). Prilozi - Makedonska Akademija Na Naukite I Umetnostite Oddelenie Za Medicinski Nauki, 2015, 36, 119-125.	0.2	3
150	Blocking variability: Arctic Amplification versus Arctic Oscillation. Geophysical Research Letters, 2015, 42, 8586-8595.	1.5	59
151	NF-κB signaling is essential for resistance to heat stress-induced early stage apoptosis in human umbilical vein endothelial cells. Scientific Reports, 2015, 5, 13547.	1.6	41

#	Article	IF	CITATIONS
152	Assessing the impacts of droughts and heat waves at thermoelectric power plants in the United States using integrated regression, thermodynamic, and climate models. Energy Reports, 2015, 1, 193-203.	2.5	32
153	Changes in the Frequency and Intensity of Extreme Temperature Events and Human Health Concerns. Current Climate Change Reports, 2015, 1, 155-162.	2.8	71
154	Impact of tornadoes on hospital admissions for acute cardiovascular events. Thrombosis Research, 2015, 136, 907-910.	0.8	5
155	Investigation of Urban Air Temperature and Humidity Patterns during Extreme Heat Conditions Using Satellite-Derived Data. Journal of Applied Meteorology and Climatology, 2015, 54, 2245-2259.	0.6	11
156	Detecting synoptic warming trends across the <scp>US</scp> Midwest and implications to human health and heatâ€related mortality. International Journal of Climatology, 2015, 35, 85-96.	1.5	37
157	The effects of horizontal advection on the urban heat island in Birmingham and the West Midlands, United Kingdom during a heatwave. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 1429-1441.	1.0	70
158	Environmental Security is Homeland Security: Climate Disruption as the Ultimate Disaster Risk Multiplier. Risk, Hazards and Crisis in Public Policy, 2015, 6, 183-222.	1.4	14
159	Local trend disparities of European minimum and maximum temperature extremes. Geophysical Research Letters, 2015, 42, 6479-6484.	1.5	23
160	Landscapes of thermal inequity: disproportionate exposure to urban heat in the three largest US cities. Environmental Research Letters, 2015, 10, 115005.	2.2	78
162	The Effects of Climate Change on Patients With Chronic Lung Disease. Deutsches Ärzteblatt International, 2015, 112, 878-83.	0.6	33
163	Evaluating the Performance of a Climate-Driven Mortality Model during Heat Waves and Cold Spells in Europe. International Journal of Environmental Research and Public Health, 2015, 12, 1279-1294.	1.2	25
164	Community Trial on Heat Related-Illness Prevention Behaviors and Knowledge for the Elderly. International Journal of Environmental Research and Public Health, 2015, 12, 3188-3214.	1.2	24
165	The Construction and Validation of the Heat Vulnerability Index, a Review. International Journal of Environmental Research and Public Health, 2015, 12, 7220-7234.	1.2	103
166	On the Science-Policy Bridge: Do Spatial Heat Vulnerability Assessment Studies Influence Policy?. International Journal of Environmental Research and Public Health, 2015, 12, 13321-13349.	1.2	45
167	The Role of Vegetation in Mitigating Urban Land Surface Temperatures: A Case Study of Munich, Germany during the Warm Season. Sustainability, 2015, 7, 4689-4706.	1.6	125
168	The Performance of the National Weather Service Heat Warning System against Ground Observations and Satellite Imagery. Advances in Meteorology, 2015, 2015, 1-15.	0.6	8
169	The Health Effects of Climate Change in the WHO European Region. Climate, 2015, 3, 901-936.	1.2	23
170	Evaluation of mechanisms of hot and cold days in climate models over Central Europe. Environmental Research Letters, 2015, 10, 014002	2.2	21

#	Article	IF	CITATIONS
171	Implementation and comparison of a suite of heat stress metrics within the Community Land Model version 4.5. Geoscientific Model Development, 2015, 8, 151-170.	1.3	165
172	Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environmental Research Letters, 2015, 10, 124003.	2.2	418
173	Impact of climate change on the domestic indoor environment and associated health risks in the UK. Environment International, 2015, 85, 299-313.	4.8	187
174	Intensification of future severe heat waves in India and their effect on heat stress and mortality. Regional Environmental Change, 2015, 15, 569-579.	1.4	122
175	Heat protection behaviors and positive affect about heat during the 2013 heat wave in the United Kingdom. Social Science and Medicine, 2015, 128, 282-289.	1.8	43
176	Desert and Tropical Environment. , 2015, , 161-213.		2
177	"Cool" governance of a "hot" climate issue: public and private responsibilities for the protection of vulnerable citizens against extreme heat. Regional Environmental Change, 2015, 15, 1065-1079.	1.4	47
178	Reducting risk from urban heat island effects in cities. Natural Hazards, 2015, 77, 823-831.	1.6	12
179	An analysis of pavement heat flux to optimize the water efficiency of a pavement-watering method. Applied Thermal Engineering, 2015, 78, 658-669.	3.0	44
180	The impact of extremely high temperatures on mortality and mortality cost. International Journal of Environmental Health Research, 2015, 25, 277-287.	1.3	16
181	Understanding the impact of cascade effects of natural disasters on disaster relief operations. International Journal of Disaster Risk Reduction, 2015, 12, 350-356.	1.8	62
182	Hydrological drought explained. Wiley Interdisciplinary Reviews: Water, 2015, 2, 359-392.	2.8	834
183	Multidecadal Variability of the Summer Length in Europe*. Journal of Climate, 2015, 28, 5375-5388.	1.2	50
184	New climate and socio-economic scenarios for assessing global human health challenges due to heat risk. Climatic Change, 2015, 130, 505-518.	1.7	62
185	Temporal changes in extreme high temperature, heat waves and relevant disasters in Nanjing metropolitan region, China. Natural Hazards, 2015, 76, 1415-1430.	1.6	26
186	Rising heat wave trends in large US cities. Natural Hazards, 2015, 76, 1651-1665.	1.6	200
187	Comparisons of the Circulation Anomalies Associated with Extreme Heat in Different Regions of Eastern China. Journal of Climate, 2015, 28, 5830-5844.	1.2	93
188	Mapping the effects of urban heat island, housing, and age on excess heat-related mortality in London. Urban Climate, 2015, 14, 517-528.	2.4	105

#	Article	IF	CITATIONS
189	A Heat Vulnerability Index and Adaptation Solutions for Pittsburgh, Pennsylvania. Environmental Science & Technology, 2015, 49, 11303-11311.	4.6	74
190	Urban Heat: Towards Adapted German Cities?. Journal of Environmental Assessment Policy and Management, 2015, 17, 1550020.	4.3	17
191	Heat and cold waves trends in the Carpathian Region from 1961 to 2010. International Journal of Climatology, 2015, 35, 4197-4209.	1.5	100
192	Proteomic changes to the sarcoplasmic fraction of predominantly red or white muscle following acute heat stress. Journal of Proteomics, 2015, 128, 141-153.	1.2	41
193	Designing for comfort at high temperatures. Architectural Science Review, 2015, 58, 35-38.	1.1	5
194	Does vegetation mitigate the temperature in urban area or it follows the temperature of its surrounding?. , 2015, , .		0
195	Contrasting responses of urban and rural surface energy budgets to heat waves explain synergies between urban heat islands and heat waves. Environmental Research Letters, 2015, 10, 054009.	2.2	157
196	Income, energy expenditure and housing in Madrid: retrofitting policy implications. Building Research and Information, 2015, 43, 737-749.	2.0	30
197	Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nature Climate Change, 2015, 5, 46-50.	8.1	395
198	Regional climate model simulations of extreme air temperature in Greece. Abnormal or common records in the future climate?. Atmospheric Research, 2015, 152, 43-60.	1.8	44
199	Climate change impacts on extreme events in the United States: an uncertainty analysis. Climatic Change, 2015, 131, 67-81.	1.7	51
200	Characterizing joint effects of spatial extent, temperature magnitude and duration of heat waves and cold spells over Central Europe. International Journal of Climatology, 2015, 35, 1232-1244.	1.5	77
201	Expression of HSPs: an adaptive mechanism during long-term heat stress in goats (Capra hircus). International Journal of Biometeorology, 2015, 59, 1095-1106.	1.3	57
202	Climate change and the city: Building capacity for urban adaptation. Progress in Planning, 2015, 95, 1-66.	2.3	467
203	Impact of extreme high temperature on mortality and regional level definition of heat wave: A multi-city study in China. Science of the Total Environment, 2015, 505, 535-544.	3.9	113
204	A Difference-in-Differences Approach to Assess the Effect of a Heat Action Plan on Heat-Related Mortality, and Differences in Effectiveness According to Sex, Age, and Socioeconomic Status (Montreal, Quebec). Environmental Health Perspectives, 2016, 124, 1694-1699.	2.8	87
205	Global Association of Cold Spells and Adverse Health Effects: A Systematic Review and Meta-Analysis. Environmental Health Perspectives, 2016, 124, 12-22.	2.8	153
206	Magnitude and frequency of heat and cold waves in recent decades: the case of South America. Natural Hazards and Earth System Sciences, 2016, 16, 821-831.	1.5	44

#	Article	IF	CITATIONS
207	Montreal's Strategy for Hot Days: Evaluating the Effectiveness of One City's Heat Action Plan. Environmental Health Perspectives, 2016, 124, A207.	2.8	2
208	Hazard Identification—Natural Hazards. , 2016, , 129-170.		1
209	Advantages of using a fast urban boundary layer model as compared to a full mesoscale model to simulate the urban heat island of Barcelona. Geoscientific Model Development, 2016, 9, 4439-4450.	1.3	18
210	The Impact of Heatwaves on Community Morbidity and Healthcare Usage: A Retrospective Observational Study Using Real-Time Syndromic Surveillance. International Journal of Environmental Research and Public Health, 2016, 13, 132.	1.2	23
211	Evaluation of an Early-Warning System for Heat Wave-Related Mortality in Europe: Implications for Sub-seasonal to Seasonal Forecasting and Climate Services. International Journal of Environmental Research and Public Health, 2016, 13, 206.	1.2	39
212	Urban Heat Stress Vulnerability in the U.S. Southwest: The Role of Sociotechnical Systems. Sustainability, 2016, 8, 842.	1.6	20
213	Factors of subjective heat stress of urban citizens in contexts of everyday life. Natural Hazards and Earth System Sciences, 2016, 16, 977-994.	1.5	16
214	Human-Nature for Climate Action: Nature-Based Solutions for Urban Sustainability. Sustainability, 2016, 8, 254.	1.6	64
215	Using multiple disparate data sources to map heat vulnerability: Vancouver case study. Canadian Geographer / Geographie Canadien, 2016, 60, 356-368.	1.0	33
216	European seasonal mortality and influenza incidence due to winter temperature variability. Nature Climate Change, 2016, 6, 927-930.	8.1	28
217	Urban climate versus global climate change—what makes the difference for dengue?. Annals of the New York Academy of Sciences, 2016, 1382, 56-72.	1.8	76
218	Role of Large-Scale Circulation and Terrain in Causing Extreme Heat in Western North China. Journal of Climate, 2016, 29, 2511-2527.	1.2	18
219	Microscale mobile monitoring of urban air temperature. Urban Climate, 2016, 18, 58-72.	2.4	55
220	A Markov-switching model for heat waves. Annals of Applied Statistics, 2016, 10, .	0.5	11
221	The German drought monitor. Environmental Research Letters, 2016, 11, 074002.	2.2	108
222	Impact of high temperature on the mortality in summer of Wuhan, China. Environmental Earth Sciences, 2016, 75, 1.	1.3	6
223	Potential escalation of heat-related working costs with climate and socioeconomic changes in China. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4640-4645.	3.3	49
224	Study of the relationship between African ITCZ variability and an extreme heat wave on Egypt in summer 2015. Arabian Journal of Geosciences, 2016, 9, 1.	0.6	5

#	Article	IF	CITATIONS
225	Approaches for Building Community Resilience to Extreme Heat. Extreme Weather and Society, 2016, , 351-388.	1.4	5
226	Climate Change and the Health of Older People in Southeast Asia. Advances in Asian Human-Environmental Research, 2016, , 29-52.	0.7	5
227	Can the Excess Heat Factor Indicate Heatwave-Related Morbidity? A Case Study in Adelaide, South Australia. EcoHealth, 2016, 13, 100-110.	0.9	37
228	Detection of anthropogenic influence on the evolution of record-breaking temperatures over Europe. Climate Dynamics, 2016, 46, 2717-2735.	1.7	8
229	The relationship between neighbourhood tree canopy cover and heat-related ambulance calls during extreme heat events in Toronto, Canada. Urban Forestry and Urban Greening, 2016, 20, 180-186.	2.3	40
230	Predicting air temperature simultaneously for multiple locations in an urban environment: A bottom up approach. Applied Geography, 2016, 76, 62-74.	1.7	12
231	Respiratory Effects of Indoor Heat and the Interaction with Air Pollution in Chronic Obstructive Pulmonary Disease. Annals of the American Thoracic Society, 2016, 13, 2125-2131.	1.5	45
232	A Review of Recent Advances in Research on Extreme Heat Events. Current Climate Change Reports, 2016, 2, 242-259.	2.8	284
233	Using green infrastructure for urban climate-proofing: An evaluation of heat mitigation measures at the micro-scale. Urban Forestry and Urban Greening, 2016, 20, 305-316.	2.3	241
234	The largely unacknowledged impact of climate change on mental health. Bulletin of the Atomic Scientists, 2016, 72, 292-297.	0.2	74
235	Heatwave planning: community involvement in co-producing resilience. Building Research and Information, 2016, 44, 754-763.	2.0	4
236	Observations of urban heat island advection from a highâ€density monitoring network. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 2434-2441.	1.0	65
237	Improved seasonal prediction of the hot summer of 2003 over Europe through better representation of uncertainty in the land surface. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 79-90.	1.0	28
238	Application of 3-D Urbanization Index to Assess Impact of Urbanization on Air Temperature. Scientific Reports, 2016, 6, 24351.	1.6	7
239	Characterising the influence of atmospheric mixing state on Urban Heat Island Intensity using Radon-222. Atmospheric Environment, 2016, 147, 355-368.	1.9	14
240	The Health Impacts of Climate Change: A Continuing Medical Education Needs Assessment Framework. Journal of Continuing Education in the Health Professions, 2016, 36, 218-225.	0.4	19
241	Probabilistic extreme event attribution. , 0, , 37-46.		1
242	Attributing human mortality during extreme heat waves to anthropogenic climate change. Environmental Research Letters, 2016, 11, 074006.	2.2	264

#	Article	IF	CITATIONS
243	Food Policies' Roles on Nutrition Goals and Outcomes: Connecting of Food and Public Health Systems. , 2016, , 213-251.		1
244	The Changing Context of Hazard Extremes: Events, Impacts, and Consequences. Journal of Extreme Events, 2016, 03, 1671005.	1.2	10
245	Extreme Weather Events and their Consequences. Papers on Global Change IGBP, 2016, 23, 59-69.	0.2	19
246	Knowledge, Perception and Socioeconomic Vulnerability of Urban and Peri-urban Households to Heat Waves in Pakistan. Environmental Science and Engineering, 2016, , 191-202.	0.1	1
247	Heat, Human Performance, and Occupational Health: A Key Issue for the Assessment of Global Climate Change Impacts. Annual Review of Public Health, 2016, 37, 97-112.	7.6	348
248	Heat wave, electricity rationing, and trade-offs between environmental gains and economic losses: The example of Shanghai. Applied Energy, 2016, 184, 951-959.	5.1	12
249	Overly persistent circulation in climate models contributes to overestimated frequency and duration of heat waves and cold spells. Climate Dynamics, 2016, 46, 2805-2820.	1.7	21
250	Attribution of mortality to the urban heat island during heatwaves in the West Midlands, UK. Environmental Health, 2016, 15, 27. Nature based solutions for the contemporary city/Renaturing the city/Reflections on urban	1.7	157
251	landscapes, ecosystems services and nature-based solutions in cities/Multifunctional green infrastructure and climate change adaptation: brownfield greening as an adaptation strategy for vulnerable communities?/Delivering green infrastructure through planning: insights from practice in Fingal Ireland/Planning for biophilic cities: from theory to practice. Planning Theory and Practice	0.8	115
252	2016, 17, 267-300. Lower thermal sensation in normothermic and mildly hyperthermic older adults. European Journal of Applied Physiology, 2016, 116, 975-984.	1.2	12
253	The Roles of Radiative Forcing, Sea Surface Temperatures, and Atmospheric and Land Initial Conditions in U.S. Summer Warming Episodes. Journal of Climate, 2016, 29, 4121-4135.	1.2	36
254	Consideration of climate change impacts and adaptation in EIA practice — Perspectives of actors in Austria and Germany. Environmental Impact Assessment Review, 2016, 57, 78-88.	4.4	33
255	Detection and attribution of climate extremes in the observed record. Weather and Climate Extremes, 2016, 11, 17-27.	1.6	132
256	Modelling the correlation between building energy ratings and heat-related mortality and morbidity. Sustainable Cities and Society, 2016, 22, 29-39.	5.1	33
257	The Effects of Air Pollution and Temperature on COPD. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2016, 13, 372-379.	0.7	163
258	The worst heat waves to come. Nature Climate Change, 2016, 6, 128-129.	8.1	92
259	The application of the European heat wave of 2003 to Korean cities to analyze impacts on heat-related mortality. International Journal of Biometeorology, 2016, 60, 231-243.	1.3	12
260	Long-term variability of heat waves in Argentina and recurrence probability of the severe 2008 heat wave in Buenos Aires. Theoretical and Applied Climatology, 2016, 124, 679-689.	1.3	45

#	Article	IF	CITATIONS
261	Characterising vulnerability of the elderly to climate change in the Nordic region. Regional Environmental Change, 2016, 16, 43-58.	1.4	47
262	Overheating and passive habitability: indoor health and heat indices. Building Research and Information, 2016, 44, 1-19.	2.0	54
263	Human thermal perception related to Föhn winds due to Saharan dust outbreaks in Crete Island, Greece. Theoretical and Applied Climatology, 2017, 128, 635-647.	1.3	16
264	High resolution climate projections to assess the future vulnerability of European urban areas to climatological extreme events. Theoretical and Applied Climatology, 2017, 127, 667-683.	1.3	23
265	Heterogeneity in individual adaptation action: Modelling the provision of a climate adaptation public good in an empirically grounded synthetic population. Journal of Environmental Psychology, 2017, 52, 119-135.	2.3	2
266	Disaster risk, social vulnerability, and economic development. Disasters, 2017, 41, 324-351.	1.1	65
267	The extreme European summer of 2015 in a longâ€ŧerm perspective. International Journal of Climatology, 2017, 37, 943-962.	1.5	95
268	Thermal Control, Weather, and Aging. Current Environmental Health Reports, 2017, 4, 21-29.	3.2	35
269	Behavioral adaptation to heat-related health risks in cities. Energy and Buildings, 2017, 152, 823-829.	3.1	47
270	Spatially Explicit Mapping of Heat Health Risk Utilizing Environmental and Socioeconomic Data. Environmental Science & Technology, 2017, 51, 1498-1507.	4.6	61
271	Nonlinear relationship between extreme temperature and mortality in different temperature zones: A systematic study of 122 communities across the mainland of China. Science of the Total Environment, 2017, 586, 96-106.	3.9	50
274	How hard they hit? Perception, adaptation and public health implications of heat waves in urban and peri-urban Pakistan. Environmental Science and Pollution Research, 2017, 24, 10630-10639.	2.7	58
275	Co-occurrence of extremes in surface ozone, particulate matter, and temperature over eastern North America. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2854-2859.	3.3	131
276	Forecasting societies' adaptive capacities through a demographic metabolism model. Nature Climate Change, 2017, 7, 177-184.	8.1	48
277	Analysis and prediction of a catastrophic Indian coastal heat wave of 2015. Natural Hazards, 2017, 87, 395-414.	1.6	35
278	The effects of summer heat on academic achievement: A cohort analysis. Journal of Environmental Economics and Management, 2017, 83, 185-196.	2.1	51
279	Estimating heat wave-related mortality in Europe using singular spectrum analysis. Climatic Change, 2017, 142, 321-330.	1.7	30
280	Enhanced surface ozone during the heat wave of 2013 in Yangtze River Delta region, China. Science of the Total Environment, 2017, 603-604, 807-816.	3.9	156

#	Article	IF	CITATIONS
281	A review of current and future weather data for building simulation. Building Services Engineering Research and Technology, 2017, 38, 602-627.	0.9	128
282	Impacts of a Changing Climate on Economic Damages and Insurance. Economics of Disasters and Climate Change, 2017, 1, 95-110.	1.3	24
283	Climate variability and infectious diseases nexus: Evidence from Sweden. Infectious Disease Modelling, 2017, 2, 203-217.	1.2	34
285	Synoptic conditions during summertime temperature extremes in Alaska. International Journal of Climatology, 2017, 37, 3694-3713.	1.5	6
286	Attenuating the surface Urban Heat Island within the Local Thermal Zones through land surface modification. Journal of Environmental Management, 2017, 187, 239-252.	3.8	46
288	Global risk of deadly heat. Nature Climate Change, 2017, 7, 501-506.	8.1	887
289	Terpenes as Useful Markers in Differentiation of Natural Populations of Relict Pines <i>Pinus heldreichii</i> , <i> P</i> .Â <i>nigra</i> , and <i>P</i> .Â <i>peuce</i> . Chemistry and Biodiversity, 2017, 14, e1700093.	1.0	4
290	Thermal environment and sleep quality: A review. Energy and Buildings, 2017, 149, 101-113.	3.1	164
291	Long-term trend in ground-based air temperature and its responses to atmospheric circulation and anthropogenic activity in the Yangtze River Delta, China. Atmospheric Research, 2017, 195, 20-30.	1.8	25
292	Review of GHG emissions in Pakistan compared to SAARC countries. Renewable and Sustainable Energy Reviews, 2017, 80, 990-1016.	8.2	125
293	Thermal manikins controlled by human thermoregulation models for energy efficiency and thermal comfort research – A review. Renewable and Sustainable Energy Reviews, 2017, 78, 1315-1330.	8.2	63
294	Age Modulates Physiological Responses during Fan Use under Extreme Heat and Humidity. Medicine and Science in Sports and Exercise, 2017, 49, 2333-2342.	0.2	30
295	Global and regional changes in exposure to extreme heat and the relative contributions of climate and population change. Scientific Reports, 2017, 7, 43909.	1.6	79
296	Urban Heat Island Effect of Addis Ababa City: Implications of Urban Green Spaces for Climate Change Adaptation. Climate Change Management, 2017, , 539-552.	0.6	14
297	A Five-Steps Methodology to Design Communication Formats That Can Contribute to Behavior Change. SAGE Open, 2017, 7, 215824401769201.	0.8	13
298	Simulating the cooling effects of water spray systems in urban landscapes: A computational fluid dynamics study in Rotterdam, The Netherlands. Landscape and Urban Planning, 2017, 159, 85-100.	3.4	72
299	On the minimal thermal habitability conditions in low income dwellings in Spain for a new definition of fuel poverty. Building and Environment, 2017, 114, 344-356.	3.0	77
300	Exposure duration in overheating assessments: a retrofit modelling study. Building Research and Information, 2017, 45, 60-82.	2.0	23

#	Article	IF	CITATIONS
301	Overview and future challenges of nearly zero energy buildings (nZEB) design in Southern Europe. Energy and Buildings, 2017, 155, 439-458.	3.1	235
302	The Heat Exposure Integrated Deprivation Index (HEIDI): A data-driven approach to quantifying neighborhood risk during extreme hot weather. Environment International, 2017, 109, 42-52.	4.8	40
303	Exploring the effects of high temperature on mortality in four cities in the Philippines using various heat wave definitions in different mortality subgroups. Global Health Action, 2017, 10, 1368969.	0.7	9
304	Australia's Unprecedented Future Temperature Extremes Under Paris Limits to Warming. Geophysical Research Letters, 2017, 44, 9947-9956.	1.5	42
305	A Model of Exposure to Extreme Environmental Heat Uncovers the Human Transcriptome to Heat Stress. Scientific Reports, 2017, 7, 9429.	1.6	40
306	Surface heat assessment for developed environments: Probabilistic urban temperature modeling. Computers, Environment and Urban Systems, 2017, 66, 53-64.	3.3	14
307	The Impact of Cold Spells on the Incidence of Infectious Gastroenteritis and Relapse Rates of Inflammatory Bowel Disease: A Retrospective Controlled Observational Study. Inflammatory Intestinal Diseases, 2017, 2, 124-130.	0.8	8
308	Coupled CFD and building energy simulations for studying the impacts of building height topology and buoyancy on local urban microclimates. Urban Climate, 2017, 21, 278-305.	2.4	67
309	Dexmedetomidine Protects Against Multi-Organ Dysfunction Induced by Heatstroke via Sustaining The Intestinal Integrity. Shock, 2017, 48, 260-269.	1.0	24
310	Exploring the association between heat and mortality in Switzerland between 1995 and 2013. Environmental Research, 2017, 158, 703-709.	3.7	77
311	The Urban Heat Island: Implications for Health in a Changing Environment. Current Environmental Health Reports, 2017, 4, 296-305.	3.2	353
312	An Inter-comparison of Three Heat Wave Types in China during 1961–2010: Observed Basic Features and Linear Trends. Scientific Reports, 2017, 7, 45619.	1.6	77
313	Protecting and promoting population health in the context of climate and other global environmental changes. Anthropocene, 2017, 19, 1-12.	1.6	25
314	Methodology to separate urban from regional heat advection by use of the Weather Research and Forecasting mesoscale model. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 2016-2024.	1.0	6
315	Climate Change Effects on Respiratory Health: Implications for Nursing. Journal of Nursing Scholarship, 2017, 49, 644-652.	1.1	22
316	Household accessibility to heat refuges: Residential air conditioning, public cooled space, and walkability. Environment and Planning B: Urban Analytics and City Science, 2017, 44, 1036-1055.	1.0	69
317	Models of Pedestrian Adaptive Behaviour in Hot Outdoor Public Spaces. Procedia Computer Science, 2017, 108, 185-194.	1.2	17
318	Effects of Two Urban Development Strategies on Changes in the Land Surface Temperature: Infill versus Suburban New Town Development. Journal of the Urban Planning and Development Division, ASCE, 2017, 143, .	0.8	14

#	Article	IF	CITATIONS
319	Making Complexity Your Friend: Reframing Social Theory for the Anthropocene. Weather, Climate, and Society, 2017, 9, 687-699.	0.5	5
320	Influences of Boreal Summer Intraseasonal Oscillation on Heat Waves in Monsoon Asia. Journal of Climate, 2017, 30, 7191-7211.	1.2	76
321	Effects of extreme temperatures on cardiovascular emergency hospitalizations in a Mediterranean region: a self-controlled case series study. Environmental Health, 2017, 16, 32.	1.7	44
322	Spatiotemporal changes in frequency and intensity of high-temperature events in China during 1961–2014. Journal of Chinese Geography, 2017, 27, 1027-1043.	1.5	5
323	Major heat waves of 2003 and 2006 and health outcomes in Prague. Air Quality, Atmosphere and Health, 2017, 10, 183-194.	1.5	6
324	From Planning to Implementation? The Role of Climate Change Adaptation Plans to Tackle Heat Stress: A Case Study of Berlin, Germany. Journal of Planning Education and Research, 2017, 37, 385-396.	1.5	27
325	Anticipatory policymaking in global venues: Policy change, adaptation, and the UNFCCC. Futures, 2017, 92, 39-47.	1.4	10
326	Transit system design and vulnerability of riders to heat. Journal of Transport and Health, 2017, 4, 216-225.	1.1	11
327	Hyperthermia and cardiovascular strain during an extreme heat exposure in young versus older adults. Temperature, 2017, 4, 79-88.	1.7	80
328	Tackling the health impacts of climate change in the twenty-first century. Medicine, Conflict and Survival, 2017, 33, 306-318.	0.3	2
329	Who Is Feeling the Heat?: Vulnerabilities and Exposures to Heat StressIndividual, Social, and Housing Explanations. Nature and Culture, 2017, 12, 137-161.	0.3	13
332	Mortality Associated with High Ambient Temperatures, Heatwaves, and the Urban Heat Island in Athens, Greece. Sustainability, 2017, 9, 606.	1.6	84
333	Multiple Regression Analysis for Unmixing of Surface Temperature Data in an Urban Environment. Remote Sensing, 2017, 9, 684.	1.8	34
334	Development of the Korean Climate Change Vulnerability Assessment Tool (VESTAP)—Centered on Health Vulnerability to Heat Waves. Sustainability, 2017, 9, 1103.	1.6	17
335	Influence of the Ground Greening Configuration on the Outdoor Thermal Environment in Residential Areas under Different Underground Space Overburden Thicknesses. Sustainability, 2017, 9, 1656.	1.6	6
336	A Human-Centered Approach to Enhance Urban Resilience, Implications and Application to Improve Outdoor Comfort in Dense Urban Spaces. Buildings, 2017, 7, 113.	1.4	24
337	Heat Wave Vulnerability Mapping for India. International Journal of Environmental Research and Public Health, 2017, 14, 357.	1.2	58
338	Modeling the Effects of Urban Design on Emergency Medical Response Calls during Extreme Heat Events in Toronto, Canada. International Journal of Environmental Research and Public Health, 2017, 14, 778.	1.2	8

#	Article	IF	CITATIONS
339	Biometeorological Assessment of Mortality Related to Extreme Temperatures in Helsinki Region, Finland, 1972–2014. International Journal of Environmental Research and Public Health, 2017, 14, 944.	1.2	34
340	Setting Housing Standards to Improve Global Health. International Journal of Environmental Research and Public Health, 2017, 14, 1542.	1.2	25
341	Detecting and Attributing Health Burdens to Climate Change. Environmental Health Perspectives, 2017, 125, 085004.	2.8	129
342	The European 2015 drought from a climatological perspective. Hydrology and Earth System Sciences, 2017, 21, 1397-1419.	1.9	224
343	Urban Heat Island Intensification during Hot Spells—The Case of Paris during the Summer of 2003. Urban Science, 2017, 1, 3.	1.1	37
344	Tailoring Climate Parameters to Information Needs for Local Adaptation to Climate Change. Climate, 2017, 5, 25.	1.2	27
345	When It Rains, It Pours: Future Climate Extremes and Health. Annals of Global Health, 2018, 80, 332.	0.8	61
346	Climate Change and Health: Transcending Silos to Find Solutions. Annals of Clobal Health, 2018, 81, 445.	0.8	32
347	Synoptic characteristics, atmospheric controls, and long-term changes of heat waves over the Indochina Peninsula. Climate Dynamics, 2018, 51, 2707-2723.	1.7	26
348	Future heat-waves, droughts and floods in 571 European cities. Environmental Research Letters, 2018, 13, 034009.	2.2	242
349	Climate Change: From Science to Practice. Current Environmental Health Reports, 2018, 5, 170-178.	3.2	39
350	Medical diagnoses of heat wave-related hospital admissions in older adults. Preventive Medicine, 2018, 110, 81-85.	1.6	45
351	Projected Temperature-Related Years of Life Lost From Stroke Due To Global Warming in a Temperate Climate City, Asia. Stroke, 2018, 49, 828-834.	1.0	27
352	An Ensemble Covariance Framework for Quantifying Forced Climate Variability and Its Time of Emergence. Journal of Climate, 2018, 31, 4117-4133.	1.2	11
353	Relationships between teleconnection patterns and Turkish climatic extremes. Theoretical and Applied Climatology, 2018, 134, 1365-1386.	1.3	28
354	Anthropogenic warming exacerbates European soil moisture droughts. Nature Climate Change, 2018, 8, 421-426.	8.1	439
355	Climate Change and Increasing Risk of Extreme Heat. SpringerBriefs in Medical Earth Sciences, 2018, , 1-13.	0.3	1
356	Heat Exposure and the General Public: Health Impacts, Risk Communication, and Mitigation Measures. SpringerBriefs in Medical Earth Sciences, 2018, , 29-43.	0.3	3

#	Article	IF	CITATIONS
357	Urban Health. , 0, , 363-398.		3
358	Heatwave and elderly mortality: An evaluation of death burden and health costs considering short-term mortality displacement. Environment International, 2018, 115, 334-342.	4.8	107
359	Climate Change Effects on European Heat Waves and Human Health. , 2018, , 209-216.		2
360	Climate Impacts in Europe Under +1.5°C Global Warming. Earth's Future, 2018, 6, 264-285.	2.4	130
361	Risk perception of heat waves and its spatial variation in Nanjing, China. International Journal of Biometeorology, 2018, 62, 783-794.	1.3	16
362	Impacts of the Atlantic Multidecadal Variability on North American Summer Climate and Heat Waves. Journal of Climate, 2018, 31, 3679-3700.	1.2	57
363	Surveying of Heat waves Impact on the Urban Heat Islands: Case study, the Karaj City in Iran. Urban Climate, 2018, 24, 600-615.	2.4	26
364	Global, Regional, and Megacity Trends in the Highest Temperature of the Year: Diagnostics and Evidence for Accelerating Trends. Earth's Future, 2018, 6, 71-79.	2.4	81
365	Extreme Highâ€Temperature Events Over East Asia in 1.5°C and 2°C Warmer Futures: Analysis of NCAR CESM Lowâ€Warming Experiments. Geophysical Research Letters, 2018, 45, 1541-1550.	1.5	112
366	Spatial and temporal variations in extreme temperature in Central Asia. International Journal of Climatology, 2018, 38, e388.	1.5	54
367	Evaluation of green infrastructure effects on tropical Sri Lankan urban context as an urban heat island adaptation strategy. Urban Forestry and Urban Greening, 2018, 29, 212-222.	2.3	105
368	Complying with the demand of standardization in outdoor thermal comfort: a first approach to the Global Outdoor Comfort Index (GOCI). Building and Environment, 2018, 130, 104-119.	3.0	73
369	Computation of extreme heat waves in climate models using a large deviation algorithm. Proceedings of the United States of America, 2018, 115, 24-29.	3.3	104
370	Students' experience of sustainability: health as a lever for action. International Journal of Sustainability in Higher Education, 2018, 19, 498-517.	1.6	0
371	Urban water networks as an alternative source for district heating and emergency heat-wave cooling. Energy, 2018, 145, 79-87.	4.5	46
372	Assessing heat-related health risk in Europe via the Universal Thermal Climate Index (UTCI). International Journal of Biometeorology, 2018, 62, 1155-1165.	1.3	170
373	A building energy demand and urban land surface model. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 1572-1590.	1.0	13
374	Defining Single Extreme Weather Events in a Climate Perspective. Bulletin of the American Meteorological Society, 2018, 99, 1557-1568.	1.7	42

#	Article	IF	CITATIONS
375	Modeling a Tropical Urban Context with Green Walls and Green Roofs as an Urban Heat Island Adaptation Strategy. Procedia Engineering, 2018, 212, 691-698.	1.2	49
376	Extreme heat waves under 1.5 °C and 2 °C global warming. Environmental Research Letters, 2018, 13 054006.	' 2.2	262
377	Creating extreme weather time series through a quantile regression ensemble. Environmental Modelling and Software, 2018, 110, 28-37.	1.9	7
378	The impact of increasing urban surface albedo on outdoor summer thermal comfort within a university campus. Urban Climate, 2018, 24, 175-184.	2.4	74
379	Mortality and morbidity peaks modeling: An extreme value theory approach. Statistical Methods in Medical Research, 2018, 27, 1498-1512.	0.7	18
380	The causal impact of material productivity on macroeconomic competitiveness in the European Union. Environmental Economics and Policy Studies, 2018, 20, 17-46.	0.8	21
381	Climate change scenarios of heat waves in Central Europe and their uncertainties. Theoretical and Applied Climatology, 2018, 131, 1043-1054.	1.3	97
382	Simulations of local heat islands in Zürich with coupled CFD and building energy models. Urban Climate, 2018, 24, 340-359.	2.4	60
383	Multi-criterion model ensemble of CMIP5 surface air temperature over China. Theoretical and Applied Climatology, 2018, 132, 1057-1072.	1.3	26
384	Accounting for downscaling and model uncertainty in fine-resolution seasonal climate projections over the Columbia River Basin. Climate Dynamics, 2018, 50, 717-733.	1.7	40
385	Regional air–sea coupled model simulation for two types of extreme heat in North China. Climate Dynamics, 2018, 50, 2107-2120.	1.7	9
386	Outdoor thermal comfort by different heat mitigation strategies- A review. Renewable and Sustainable Energy Reviews, 2018, 81, 2011-2018.	8.2	195
387	The performance of multiple datasets in characterizing the changes of extreme air temperature over China during 1979 to 2012. Theoretical and Applied Climatology, 2018, 133, 619-632.	1.3	6
388	On the nonlinearity of spatial scales in extreme weather attribution statements. Climate Dynamics, 2018, 50, 2739-2752.	1.7	25
389	Extended-range forecasting of Chinese summer surface air temperature and heat waves. Climate Dynamics, 2018, 50, 2007-2021.	1.7	29
390	Examining human heat stress with remote sensing technology. GIScience and Remote Sensing, 2018, 55, 19-37.	2.4	22
391	Capability of the SMHIâ€RCA4 RCM driven by the ERAâ€Interim reanalysis to simulate heat waves in Argentina. International Journal of Climatology, 2018, 38, 483-496.	1.5	6
392	The impact of heat waves on surface urban heat island and local economy in Cluj-Napoca city, Romania. Theoretical and Applied Climatology, 2018, 133, 681-695.	1.3	34

#	Article	IF	CITATIONS
393	Assessing urban population vulnerability and environmental risks across an urban area during heatwaves – Implications for health protection. Science of the Total Environment, 2018, 610-611, 678-690.	3.9	105
394	Heat waves in Finland: present and projected summertime extreme temperatures and their associated circulation patterns. International Journal of Climatology, 2018, 38, 1393-1408.	1.5	27
395	Evaluation of major heat waves' mechanisms in EURO-CORDEX RCMs over Central Europe. Climate Dynamics, 2018, 50, 4249-4262.	1.7	40
396	What model resolution is required in climatological downscaling over complex terrain?. Atmospheric Research, 2018, 203, 68-82.	1.8	18
397	A National Scale Planning Tool for Agricultural Droughts in Germany. Advances in Chemical Pollution, Environmental Management and Protection, 2018, 3, 147-169.	0.3	3
398	Climatology and trends of the Euroâ€Mediterranean thermal bioclimate. International Journal of Climatology, 2018, 38, 3290-3308.	1.5	16
399	The August 2015 megaâ€heatwave in Poland in the context of past events. Weather, 2018, 73, 207-214.	0.6	28
400	Sky View Factor Calculation in Urban Context: Computational Performance and Accuracy Analysis of Two Open and Free GIS Tools. Climate, 2018, 6, 60.	1.2	49
401	The potential for climate engineering with stratospheric sulfate aerosol injections to reduce climate injustice. Journal of Global Ethics, 2018, 14, 353-368.	0.1	11
402	Spatial and temporal variations of summer hot days and heat waves and their relationships with largeâ€scale atmospheric circulations across Northeast China. International Journal of Climatology, 2018, 38, 5633-5645.	1.5	14
404	Effects of urbanization on increasing heat risks in South China. International Journal of Climatology, 2018, 38, 5551-5562.	1.5	22
405	OBSOLETE: Climate Change Effects on European Heat Waves and Human Health. , 2018, , .		0
406	Vulnerabilidad y riesgo como conceptos indisociables para el estudio del impacto del cambio climático en la salud. Research in Computing Science, 2018, 30, .	0.1	2
407	Experimental heatwaves compromise sperm function and cause transgenerational damage in a model insect. Nature Communications, 2018, 9, 4771.	5.8	163
408	Heatstroke. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 157, 531-545.	1.0	17
409	Building Resilience to Climate Change: Pilot Evaluation of the Impact of India's First Heat Action Plan on All-Cause Mortality. Journal of Environmental and Public Health, 2018, 2018, 1-8.	0.4	54
410	Epistemic uncertainties and natural hazard risk assessment – Part 1: A review of different natural hazard areas. Natural Hazards and Earth System Sciences, 2018, 18, 2741-2768.	1.5	45
411	Effects of Explicit Convection on Land Surface Air Temperature and Landâ€Atmosphere Coupling in the Thermal Feedback Pathway. Journal of Advances in Modeling Earth Systems, 2018, 10, 2376-2392.	1.3	4

#	Article	IF	Citations
412	Associations between ambient air temperature, low birth weight and small for gestational age in term neonates in southern Israel. Environmental Health, 2018, 17, 76.	1.7	25
413	Regional Climate Impacts of Stabilizing Global Warming at 1.5 K Using Solar Geoengineering. Earth's Future, 2018, 6, 230-251.	2.4	49
414	Impacts of Synoptic and Local Factors on Heat Wave Events Over Southeastern Region of Korea in 2015. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,081.	1.2	34
415	Optimization Design of Underground Space Overburden Thickness in a Residential Area Concerning Outdoor Thermal Environment Evaluation. Sustainability, 2018, 10, 3205.	1.6	3
418	Characteristics of Seawater. , 0, , 12-21.		0
419	Urban Ocean Characteristics. , 0, , 22-32.		0
420	Governing Dynamics. , 0, , 33-42.		0
421	Mass, Salt, and Temperature "Conservation― , 0, , 43-51.		0
422	Water Level Changes. , 0, , 52-71.		0
423	Estuarine and Coastal Ocean Flows. , 0, , 72-91.		0
424	Urban Meteorology. , 0, , 92-108.		0
425	Coastal Processes and Shoreline Modification. , 0, , 109-128.		0
426	Marine Pollution. , 0, , 129-146.		0
427	Coastal Extreme Events: The Risks and the Responses. , 0, , 147-166.		0
428	Coastal Ocean Observing Systems. , 0, , 167-183.		0
430	Cities and Water: Building Resilience. , 0, , 199-209.		0
432	Mobile Worlds: Choice at the Intersection of Demographic and Environmental Change. Annual Review of Environment and Resources, 2018, 43, 245-265.	5.6	15
433	Health and Disease. , 2018, , 268-279.		0

ARTICLE IF CITATIONS # Varying soil moistureâ€"atmosphere feedbacks explain divergent temperature extremes and precipitation 434 2.7 79 projections in central Europe. Earth System Dynamics, 2018, 9, 1107-1125. Mitigation of heat stress risks through building energy efficiency upgrade: a case study of Melbourne, Australia. Australian Journal of Civil Engineering, 2018, 16, 64-78. 0.6 Adaptation strategies for minimizing heat wave induced morbidity and its determinants. Sustainable 436 5.152 Cities and Society, 2018, 41, 95-103. Policy recommendations to increase urban heat stress resilience. Urban Climate, 2018, 25, 51-63. 2.4 A pavement-watering thermal model for SOLENE-microclimat: Development and evaluation. Urban 438 2.4 8 Climate, 2018, 25, 22-36. Characteristics of Heat Illness during Hajj: A Cross-Sectional Study. BioMed Research International, 439 2018, 2018, 1-6. Extreme heat-related mortality avoided under Paris Agreement goals. Nature Climate Change, 2018, 8, 440 8.1 33 551-553. Revisiting the recent European droughts from a long-term perspective. Scientific Reports, 2018, 8, 1.6 216 9499. Atmospheric Dynamics Leading to West European Summer Hot Temperatures Since 1851. Complexity, 442 0.9 26 2018, 2018, 1-10. 443 Net Zero Energy Buildings Performance Indicators and Thresholds., 2018, 53-85. Influence of blocking on Northern European and Western Russian heatwaves in large climate model 444 2.2 111 ensembles. Environmental Research Letters, 2018, 13, 054015. Quantifying excess deaths related to heatwaves under climate change scenarios: A multicountry time 232 series modelling study. PLoS Medicine, 2018, 15, e1002629. Extreme highâ€temperature event in southern China in 2016 and the possible role of crossâ€equatorial 446 1.5 17 flows. International Journal of Climatology, 2018, 38, 3579-3594. Possible Biological Mechanisms Linking Mental Health and Heatâ€"A Contemplative Review. International Journal of Environmental Research and Public Health, 2018, 15, 1515. 447 1.2 59 Heat-related mortality trends under recent climate warming in Spain: A 36-year observational study. 448 3.9 59 PLoS Medicine, 2018, 15, e1002617. Spatially explicit assessment of heat health risk by using multi-sensor remote sensing images and socioeconomic data in Yangtze River Delta, China. International Journal of Health Geographics, 2018, 1.2 44 17, 15. Future trends in ambient air pollution and climate in Germany – Implications for the indoor 450 3.033 environment. Building and Environment, 2018, 143, 661-670. How to Design a Park and Its Surrounding Urban Morphology to Optimize the Spreading of Cool Air?. 1.2 Climate, 2018, 6, 10.

		CITATION R	EPORT	
#	ARTICLE		IF	Citations
452	Evaluation and Modeling of Urban Heat Island Intensity in Basel, Switzerland. Climate,	2018, 6, 55.	1.2	38
453	General Practitioners' Perceptions of Heat Health Impacts on the Elderly in the Fac Change—A Qualitative Study in Baden-Württemberg, Germany. International Journ Research and Public Health, 2018, 15, 843.	e of Climate al of Environmental	1.2	27
454	Physiological and perceptual responses in the elderly to simulated daily living activities climatic conditions. Public Health, 2018, 161, 163-170.	in UK summer	1.4	19
455	Social impacts of occupational heat stress and adaptation strategies of workers: A nar synthesis of the literature. Science of the Total Environment, 2018, 643, 1542-1552.	rative	3.9	46
456	Towards a monitoring system of temperature extremes in Europe. Natural Hazards and Sciences, 2018, 18, 91-104.	l Earth System	1.5	36
457	Stable or fluctuating temperatures in winter: which is worse for your lungs?. Thorax, 20 902-903.	018, 73,	2.7	1
458	A wind tunnel study on three-dimensional buoyant flows in street canyons with differe and building lengths. Building and Environment, 2018, 143, 71-88.	nt roof shapes	3.0	59
459	Reduced cognitive function during a heat wave among residents of non-air-conditioned observational study of young adults in the summer of 2016. PLoS Medicine, 2018, 15,	d buildings: An e1002605.	3.9	79
460	Google search patterns monitoring the daily health impact of heatwaves in England: He findings compare to established syndromic surveillance systems from 2013 to 2017?. Research, 2018, 166, 707-712.	ow do the Environmental	3.7	10
461	A Model for the Impacts of Nuclear War. SSRN Electronic Journal, 0, , .		0.4	3
462	Changes in "hotter and wetter―events across China. Theoretical and Applied Clim 1387-1397.	iatology, 2018, 134,	1.3	3
463	Computing return times or return periods with rare event algorithms. Journal of Statist Mechanics: Theory and Experiment, 2018, 2018, 043213.	ical	0.9	27
464	Regional morbidity and mortality during heatwaves in South Australia. International Jou Biometeorology, 2018, 62, 1911-1926.	urnal of	1.3	36
465	Which pavement structures are best suited to limiting the UHI effect? A laboratory-sca Parisian pavement structures. Building and Environment, 2018, 144, 216-229.	le study of	3.0	33
466	Centennial Heat Wave Projections Over Pakistan Using Ensemble NEX GDDP Data Set. Environment, 2018, 2, 437-454.	Earth Systems and	3.0	23
467	Vulnerability to heatwaves and implications for public health interventions $\hat{a} \in A$ scopi Environmental Research, 2018, 166, 42-54.	ng review.	3.7	71
468	Thermal equity, public health and district cooling in hot climate cities. Proceedings of t of Civil Engineers: Municipal Engineer, 2018, 171, 163-172.	he Institution	0.4	6
469	Dysfunction of Iron Metabolism and Iron-Regulatory Proteins in the Rat Hippocampus A Stroke. Shock, 2019, 51, 780-786.	After Heat	1.0	12

#	Article	IF	CITATIONS
470	Prediction of summer hot extremes over the middle and lower reaches of the Yangtze River valley. Climate Dynamics, 2019, 52, 2943-2957.	1.7	20
471	Stochastic diffusion models to describe the evolution of annual heatwave statistics: A three-factor model with risk calculations. Science of the Total Environment, 2019, 646, 670-684.	3.9	9
472	Heat-related mortality during hot summers in Polish cities. Theoretical and Applied Climatology, 2019, 136, 1259-1273.	1.3	32
473	Tens of thousands additional deaths annually in cities of China between 1.5 °C and 2.0 °C warming. Nature Communications, 2019, 10, 3376.	5.8	105
474	Impact of heat waves on sex specific mortality in Novi Sad. AIP Conference Proceedings, 2019, , .	0.3	0
475	Cardiorespiratory effects of heatwaves: A systematic review and meta-analysis of global epidemiological evidence. Environmental Research, 2019, 177, 108610.	3.7	130
476	The Origin of Soil Moisture Evaporation "Regimes― Journal of Climate, 2019, 32, 6939-6960.	1.2	23
477	The summer 2018 heatwave in Finland. Weather, 2019, 74, 403-409.	0.6	31
478	Greening Actions and the Related Potential Impacts on Outdoor Comfort in a Dense Built Environment. IOP Conference Series: Earth and Environmental Science, 2019, 290, 012163.	0.2	2
479	Assessment of Different Methodologies for Mapping Urban Heat Vulnerability for Milan, Italy. IOP Conference Series: Earth and Environmental Science, 2019, 290, 012162.	0.2	4
481	Regional Temperature Response in Central Asia to National Committed Emission Reductions. International Journal of Environmental Research and Public Health, 2019, 16, 2661.	1.2	5
482	The Climate Change, Food Security and Human Health Nexus in Canada: A Framework to Protect Population Health. International Journal of Environmental Research and Public Health, 2019, 16, 2531.	1.2	40
483	Overview of Existing Heat-Health Warning Systems in Europe. International Journal of Environmental Research and Public Health, 2019, 16, 2657.	1.2	124
484	Economic Losses of Heat-Induced Reductions in Outdoor Worker Productivity: a Case Study of Europe. Economics of Disasters and Climate Change, 2019, 3, 191-211.	1.3	46
485	Heatwaves and hospitalizations due to hyperthermia in defined climate regions in the conterminous USA. Environmental Monitoring and Assessment, 2019, 191, 394.	1.3	18
486	Analysis of potential functional significance of microRNA‑3613‑3p in human umbilical vein endothelial cells affected by heat stress. Molecular Medicine Reports, 2019, 20, 1846-1856.	1.1	1
487	Ocean and atmosphere influence on the 2015 European heatwave. Environmental Research Letters, 2019, 14, 114035.	2.2	18
488	Excess Mortality in Istanbul during Extreme Heat Waves between 2013 and 2017. International Journal of Environmental Research and Public Health, 2019, 16, 4348.	1.2	36

#	Article	IF	CITATIONS
489	MI-Environment: Geospatial patterns and inequality of relative heat stress vulnerability in Michigan. Health and Place, 2019, 60, 102228.	1.5	12
490	Disproportionately higher exposure to urban heat in lower-income neighborhoods: a multi-city perspective. Environmental Research Letters, 2019, 14, 105003.	2.2	111
491	Impact of the warm summer 2015 on emergency hospital admissions in Switzerland. Environmental Health, 2019, 18, 66.	1.7	16
492	Knowledge, Attitude and Practice of Pilgrims Regarding Heat-Related Illnesses during the 2017 Hajj Mass Gathering. International Journal of Environmental Research and Public Health, 2019, 16, 3215.	1.2	14
493	Overheating in residential buildings: Challenges and opportunities. Indoor and Built Environment, 2019, 28, 1303-1306.	1.5	22
494	2018: The Hottest Summer in China and Possible Causes. Journal of Meteorological Research, 2019, 33, 577-592.	0.9	26
495	Differences in the impact of heat waves according to urban and peri-urban factors in Madrid. International Journal of Biometeorology, 2019, 63, 371-380.	1.3	28
496	Intermittent wetting clothing as a cooling strategy for body heat strain alleviation of vulnerable populations during a severe heatwave incident. Journal of Thermal Biology, 2019, 79, 33-41.	1.1	8
497	Future impacts of the reforestation policy on the atmospheric parameters in Ireland: a sensitivity study including heat discomfort impacts on humans and livestock. Personal and Ubiquitous Computing, 2019, 23, 707-721.	1.9	1
498	The impact of climate change and urban growth on urban climate and heat stress in a subtropical city. International Journal of Climatology, 2019, 39, 3013-3030.	1.5	30
500	Heat stress vulnerability and risk at the (super) local scale in six Brazilian capitals. Climatic Change, 2019, 154, 477-492.	1.7	43
501	Climate Change and the Kidney. Annals of Nutrition and Metabolism, 2019, 74, 38-44.	1.0	96
502	Wilderness Medical Society Clinical Practice Guidelines for the Prevention and Treatment of Heat Illness: 2019 Update. Wilderness and Environmental Medicine, 2019, 30, S33-S46.	0.4	44
503	Meteorological Factors and Seasonal Stroke Rates: A Four-year Comprehensive Study. Journal of Stroke and Cerebrovascular Diseases, 2019, 28, 2324-2331.	0.7	25
504	Surface Temperatures in the Urban Environment. , 2019, , 203-226.		1
505	Heat-health action plans in Europe: Challenges ahead and how to tackle them. Environmental Research, 2019, 176, 108548.	3.7	45
506	Climate change: swift action is needed to prevent millions of premature deaths, report warns. BMJ: British Medical Journal, 2019, 365, l4104.	2.4	1
508	Temporal changes in the effects of ambient temperatures on hospital admissions in Spain. PLoS ONE, 2019, 14, e0218262.	1.1	24

# 509	ARTICLE The Re-emergence of Solar Geoengineering. , 2019, , 75-121.	IF	CITATIONS 0
510	Compound hot droughts over China: Identification, risk patterns and variations. Atmospheric Research, 2019, 227, 210-219.	1.8	71
511	Recent Decadal Changes in Heat Waves over China: Drivers and Mechanisms. Journal of Climate, 2019, 32, 4215-4234.	1.2	43
512	Priorities for protecting health from climate change in the WHO European Region: recent regional activities. Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz, 2019, 62, 537-545.	7.2	15
513	Mapping Europe into local climate zones. PLoS ONE, 2019, 14, e0214474.	1.1	123
514	Assessing the Heat Vulnerability of Different Local Climate Zones in the Old Areas of a Chinese Megacity. Sustainability, 2019, 11, 2032.	1.6	26
515	Summer thermal comfort and overheating in the elderly. Building Services Engineering Research and Technology, 2019, 40, 426-445.	0.9	35
516	Energy poverty and indoor cooling: An overlooked issue in Europe. Energy and Buildings, 2019, 196, 21-29.	3.1	134
517	Overheating risk in Passivhaus dwellings. Building Services Engineering Research and Technology, 2019, 40, 446-469.	0.9	39
518	Downscaling climate change of mean climatology and extremes of precipitation and temperature: Application to a Mediterranean climate basin. International Journal of Climatology, 2019, 39, 4985-5005.	1.5	4
519	Assessment of modern hydroâ€meteorological hazards in a big city – identification for Warsaw. Meteorological Applications, 2019, 26, 500-510.	0.9	10
520	Adapting to the Effects of Climate Change in the Practice of Dermatology—A Call to Action. JAMA Dermatology, 2019, 155, 415.	2.0	9
521	Modulation of the urban boundaryâ€layer heat budget by a heatwave. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 1814-1831.	1.0	10
522	Temporal Characteristics of Heat Waves and Cold Spells and Their Links to Atmospheric Circulation in EURO-CORDEX RCMs. Advances in Meteorology, 2019, 2019, 1-13.	0.6	8
523	Verification of Heat Stress Thresholds for a Health-Based Heat-Wave Definition. Journal of Applied Meteorology and Climatology, 2019, 58, 1177-1194.	0.6	66
524	Potential benefits of cool roofs in reducing heat-related mortality during heatwaves in a European city. Environment International, 2019, 127, 430-441.	4.8	93
526	Can we sustain success in reducing deaths to extreme weather in a hotter world?. World Development Perspectives, 2019, 14, 100107.	0.8	7
527	Balancing Energy Efficiency and Heat Wave Resilience in Building Design. , 2019, , 329-349.		1

$\mathcal{O} = \mathcal{O}$	 D	_
	REDU	ND T
CITAT	NLFU	

#	Article	IF	CITATIONS
528	The role of sky view factor and urban street greenery in human thermal comfort and heat stress in a desert climate. Journal of Arid Environments, 2019, 166, 68-76.	1.2	66
529	Interaction of urban heat islands and heat waves under current and future climate conditions and their mitigation using green and cool roofs in New York City and Phoenix, Arizona. Environmental Research Letters, 2019, 14, 034002.	2.2	61
530	Projected near-term changes in three types of heat waves over China under RCP4.5. Climate Dynamics, 2019, 53, 3751-3769.	1.7	22
531	Assessing population vulnerability towards summer energy poverty: Case studies of Madrid and London. Energy and Buildings, 2019, 190, 132-143.	3.1	104
532	Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions. Applied Energy, 2019, 238, 696-720.	5.1	184
533	Evaluation of the Effect of Urban Redevelopment on Surface Urban Heat Islands. Remote Sensing, 2019, 11, 299.	1.8	67
534	Seven Dimensions of Disaster: The Sendai Framework and the Social Construction of Catastrophe. , 2019, , 17-51.		0
535	Heat Waves, the New Normal: Summertime Temperature Extremes Will Impact Animals, Ecosystems, and Human Communities. Physiology, 2019, 34, 86-100.	1.6	252
536	State-of-the-art global models underestimate impacts from climate extremes. Nature Communications, 2019, 10, 1005.	5.8	168
537	Effect of the Great Recession on regional mortality trends in Europe. Nature Communications, 2019, 10, 679.	5.8	39
538	Planning for Extreme Heat: A Review. Journal of Extreme Events, 2019, 06, 2050003.	1.2	36
540	Robust and resilient buildings: A framework for defining the protection against climate uncertainty. IOP Conference Series: Materials Science and Engineering, 2019, 609, 072068.	0.3	12
541	Climate change and epilepsy: Time to take action. Epilepsia Open, 2019, 4, 524-536.	1.3	4
542	Heat Health Prevention Measures and Adaptation in Older Populations—A Systematic Review. International Journal of Environmental Research and Public Health, 2019, 16, 4370.	1.2	16
543	Vulnerability and Adaptation to Extreme Heat in Odisha, India: A Community Based Comparative Study. International Journal of Environmental Research and Public Health, 2019, 16, 5065.	1.2	7
544	Changes of concurrent drought and heat extremes in the arid and semiâ€arid regions of China during 1961–2014. Atmospheric Science Letters, 2019, 20, e947.	0.8	14
545	The Effects of Land Use Zoning and Densification on Changes in Land Surface Temperature in Seoul. Sustainability, 2019, 11, 7056.	1.6	9
546	Heatwave and mortality in 31 major Chinese cities: Definition, vulnerability and implications. Science of the Total Environment, 2019, 649, 695-702.	3.9	195

#	Article	IF	CITATIONS
547	Designing public squares with green infrastructure to optimize human thermal comfort. Building and Environment, 2019, 149, 640-654.	3.0	105
548	Environmental public health risks in European metropolitan areas within the EURO-HEALTHY project. Science of the Total Environment, 2019, 658, 1630-1639.	3.9	39
549	Temporal changes in temperature-related mortality in Spain and effect of the implementation of a Heat Health Prevention Plan. Environmental Research, 2019, 169, 102-113.	3.7	48
550	Assessment of heat exposure in cities: Combining the dynamics of temperature and population. Science of the Total Environment, 2019, 655, 1-12.	3.9	31
551	Projection of temperatures and heat and cold waves for AragÃ ³ n (Spain) using a two-step statistical downscaling of CMIP5 model outputs. Science of the Total Environment, 2019, 650, 2778-2795.	3.9	18
552	A risk assessment of Europe's black truffle sector under predicted climate change. Science of the Total Environment, 2019, 655, 27-34.	3.9	31
553	Impact of heat on mortality and morbidity in low and middle income countries: A review of the epidemiological evidence and considerations for future research. Environmental Research, 2019, 171, 80-91.	3.7	147
554	The impact of heat mitigation strategies on the energy balance of a neighborhood in Los Angeles. Solar Energy, 2019, 177, 604-611.	2.9	41
555	Ranking European capitals by exposure to heat waves and cold waves. Urban Climate, 2019, 27, 388-402.	2.4	67
556	Urban Heat Island and Future Climate Change—Implications for Delhi's Heat. Journal of Urban Health, 2019, 96, 235-251.	1.8	36
558	Sub-seasonal to Seasonal Prediction of Weather Extremes. , 2019, , 365-386.		13
559	Association between heat stroke and ischemic heart disease: A national longitudinal cohort study in Taiwan. European Journal of Internal Medicine, 2019, 59, 97-103.	1.0	9
560	Loss of work productivity in a warming world: Differences between developed and developing countries. Journal of Cleaner Production, 2019, 208, 1219-1225.	4.6	22
561	Influence of changes in socioeconomic and climatic conditions on future heat-related health challenges in Europe. Clobal and Planetary Change, 2019, 172, 45-59.	1.6	58
562	Characterizing the atmospheric conditions during the 2010 heatwave in Rio de Janeiro marked by excessive mortality rates. Science of the Total Environment, 2019, 650, 796-808.	3.9	28
563	Towards establishing evidence-based guidelines on maximum indoor temperatures during hot weather in temperate continental climates. Temperature, 2019, 6, 11-36.	1.7	46
564	Stochastic generators of multi-site daily temperature: comparison of performances in various applications. Theoretical and Applied Climatology, 2019, 135, 811-824.	1.3	8
565	The Value of US Urban Tree Cover for Reducing Heat-Related Health Impacts and Electricity Consumption. Ecosystems, 2020, 23, 137-150.	1.6	30

#	Article	IF	CITATIONS
566	An early-stage analysis of climate-adaptive designs for multi-family buildings under future climate scenario: Case studies in Rome, Italy and Stockholm, Sweden. Journal of Building Engineering, 2020, 27, 100972.	1.6	17
567	Investigating urban heat island intensity in Istanbul. Theoretical and Applied Climatology, 2020, 139, 175-190.	1.3	32
568	Heatwaves, droughts, and fires: Exploring compound and cascading dry hazards at the pan-European scale. Environment International, 2020, 134, 105276.	4.8	148
569	Indoor temperature and health: a global systematic review. Public Health, 2020, 179, 9-17.	1.4	95
570	A lab experiment for optimizing the cooling efficiency and the watering rate of pavement-watering. Urban Climate, 2020, 31, 100543.	2.4	8
571	Comparison of methodologies for generation of future weather data for building thermal energy simulation. Energy and Buildings, 2020, 206, 109556.	3.1	34
572	Comparisons of hot summers in the Mediterranean and North China. Theoretical and Applied Climatology, 2020, 139, 915-922.	1.3	1
573	What individual and neighbourhood-level factors increase the risk of heat-related mortality? A case-crossover study of over 185,000 deaths in London using high-resolution climate datasets. Environment International, 2020, 134, 105292.	4.8	52
574	From "atmosfear―to climate action. Environmental Science and Policy, 2020, 105, 75-83.	2.4	27
576	Culture and cognition: Understanding public perceptions of risk and (in)action. IBM Journal of Research and Development, 2020, 64, 11:1-11:17.	3.2	2
577	Biometeorological conditions during an extreme heatwave event in Poland in August 2015. Weather, 2020, 75, 183-189.	0.6	19
578	Drought: Progress in broadening its understanding. Wiley Interdisciplinary Reviews: Water, 2020, 7, e1407.	2.8	79
579	Potential of Pan-European Seasonal Hydrometeorological Drought Forecasts Obtained from a Multihazard Early Warning System. Bulletin of the American Meteorological Society, 2020, 101, E368-E393.	1.7	25
580	Ambient temperature, birth rate, and birth outcomes: evidence from South Korea. Population and Environment, 2020, 41, 330-346.	1.3	13
581	Regional changes in extreme heat events in China under stabilized 1.5°C and 2.0°C global warming. Advances in Climate Change Research, 2020, 11, 198-209.	2.1	27
582	Mid-summer surface air temperature and its internal variability over China at 1.5°C and 2°C global warming. Advances in Climate Change Research, 2020, 11, 185-197.	2.1	16
583	Physiological factors characterizing heat-vulnerable older adults: A narrative review. Environment International, 2020, 144, 105909.	4.8	116
584	Intraurban social risk and mortality patterns during extreme heat events: A case study of Moscow, 2010-2017. Health and Place, 2020, 66, 102429.	1.5	16

#	Article	IF	CITATIONS
585	Assessment methods of urban microclimate and its parameters: A critical review to take the research from lab to land. Urban Climate, 2020, 34, 100690.	2.4	40
586	Urban ecology and human health: implications of urban heat island, air pollution and climate change nexus. , 2020, , 317-334.		39
587	Keeping the doctor away: promoting human health through slower travel. , 2020, , 129-167.		0
588	Which heatwave measure has higher predictive power to prevent health risks related to heat: EHF or GATO IV? – Evidence from modelling Lisbon mortality data from 1980 to 2016. Weather and Climate Extremes, 2020, 30, 100287.	1.6	3
589	Predicted impact of increasing average ambient temperature over the coming century on mortality from cardiovascular disease and stroke in the USA. Atherosclerosis, 2020, 313, 1-7.	0.4	10
590	How green is green enough? The changing landscape of financing a sustainable European economy. ERA Forum, 2020, 21, 155-170.	1.1	9
591	Global socioeconomic exposure of heat extremes under climate change. Journal of Cleaner Production, 2020, 277, 123275.	4.6	29
592	The giant step of tiny toes: youth impact on the securitization of climate change. IOP Conference Series: Earth and Environmental Science, 2020, 485, 012007.	0.2	4
593	Assessing the application and limitations of a standardised overheating risk-assessment methodology in a real-world context. Building and Environment, 2020, 181, 107070.	3.0	18
594	Overheating risk of a single-family detached house built at different ages under current and future climate in Canada. E3S Web of Conferences, 2020, 172, 02004.	0.2	2
595	Summer UTCI variability in Poland in the twenty-first century. International Journal of Biometeorology, 2021, 65, 1497-1513.	1.3	29
596	Relationship between the thermal condition of the Tibetan Plateau and precipitation over the region from eastern Ukraine to North Caucasus during summer. Theoretical and Applied Climatology, 2020, 142, 1379-1395.	1.3	8
597	Sources of Subseasonal Prediction Skill for Heatwaves over the Yangtze River Basin Revealed from Three S2S Models. Advances in Atmospheric Sciences, 2020, 37, 1435-1450.	1.9	17
598	Acclimation capacity and rate change through life in the zooplankton Daphnia. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200189.	1.2	9
599	Preparing for the Health Impacts of a Changing Climate. North Carolina Medical Journal, 2020, 81, 301-306.	0.1	0
600	Heat Extremes, Public Health Impacts, and Adaptation Policy in Germany. International Journal of Environmental Research and Public Health, 2020, 17, 7862.	1.2	27
601	Mortality and thermal environment (UTCI) in Poland—long-term, multi-city study. International Journal of Biometeorology, 2021, 65, 1529-1541.	1.3	42
602	Risk of extreme high fatalities due to weather and climate hazards and its connection to large-scale climate variability. Climatic Change, 2020, 162, 507-525.	1.7	17

#	Article	IF	CITATIONS
603	Increasing the broad-leaved tree fraction in European forests mitigates hot temperature extremes. Scientific Reports, 2020, 10, 14153.	1.6	32
604	Calor Extremo. North Carolina Medical Journal, 2020, 81, 311-314.	0.1	1
605	Responding to a global pandemic: Republic of Slovenia on maintaining physical activity during selfâ€isolation. Scandinavian Journal of Medicine and Science in Sports, 2020, 30, 1546-1548.	1.3	12
606	Changes in the Compound Drought and Extreme Heat Occurrence in the 1961–2018 Period at the European Scale. Water (Switzerland), 2020, 12, 3543.	1.2	18
607	Social and behavioral determinants of indoor temperatures in air-conditioned homes. Building and Environment, 2020, 183, 107187.	3.0	11
608	Distinct influences of large-scale circulation and regional feedbacks in two exceptional 2019 European heatwaves. Communications Earth & Environment, 2020, 1, .	2.6	46
609	Analysis of the heat budget of standard, cool and watered pavements under lab heat-wave conditions. Energy and Buildings, 2020, 228, 110455.	3.1	14
610	Quantitatively evaluating the effect of urbanization on heat waves in China. Science of the Total Environment, 2020, 731, 138857.	3.9	48
611	Using the theory of planned behavior to identify key beliefs underlying heat adaptation behaviors in elderly populations. Population and Environment, 2020, 41, 480-506.	1.3	18
612	The emergence of heat and humidity too severe for human tolerance. Science Advances, 2020, 6, eaaw1838.	4.7	355
613	Population exposure to extreme heat in China: Frequency, intensity, duration and temporal trends. Sustainable Cities and Society, 2020, 60, 102282.	5.1	29
614	Interdisciplinary Regional Collaboration for Public Health Adaptation to Climate Change in the Eastern Mediterranean. Bulletin of the American Meteorological Society, 2020, 101, E1685-E1689.	1.7	4
615	Is building energy simulation based on TMY representative: A comparative simulation study on doe reference buildings in Toronto with typical year and historical year type weather files. Energy and Buildings, 2020, 211, 109760.	3.1	31
616	Population exposure to concurrent daytime and nighttime heatwaves in Huai River Basin, China. Sustainable Cities and Society, 2020, 61, 102309.	5.1	26
617	London Plane trees (Platanus x acerifolia) before, during and after a heatwave: Losing leaves means less cooling benefit. Urban Forestry and Urban Greening, 2020, 54, 126746.	2.3	34
618	Night and day: The influence and relative importance of urban characteristics on remotely sensed land surface temperature. Remote Sensing of Environment, 2020, 247, 111861.	4.6	85
619	Developing a harmonized heat warning and information system for Ontario: a case study in collaboration. Canadian Journal of Public Health, 2020, 111, 426-432.	1.1	6
620	Observed changes in heat waves with different severities in China during 1961–2015. Theoretical and Applied Climatology, 2020, 141, 1529-1540.	1.3	33

#	Article	IF	CITATIONS
621	The Effect of Heat and Cold Waves on the Mortality of Persons with Dementia in Germany. Sustainability, 2020, 12, 3664.	1.6	8
622	The recordâ€breaking heat wave of June 2019 in Central Europe. Atmospheric Science Letters, 2020, 21, e964.	0.8	45
623	Heat Wave Variations Across China Tied to Global SST Modes. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031612.	1.2	21
624	Physical activity patterns in two differently characterised urban parks under conditions of summer heat. Environmental Science and Policy, 2020, 107, 56-65.	2.4	40
625	Performance of quick sequential organ failure assessment (qSOFA) score for prognosis of heat-related hospitalized patients. Heart and Lung: Journal of Acute and Critical Care, 2020, 49, 415-419.	0.8	4
626	The trend of heatwave events in the Northern Hemisphere. Physics and Chemistry of the Earth, 2020, 116, 102855.	1.2	14
627	Evidence-Based Landscape Architecture for Human Health and Well-Being. Sustainability, 2020, 12, 1360.	1.6	18
628	Characteristics and main influence factors of heat waves in <scp>Beijing–Tianjin–Shijiazhuang</scp> cities of northern China in recent 50 years. Atmospheric Science Letters, 2020, 21, e1001.	0.8	9
629	Learning to Chill: The Role of Design Schools and Professional Training to Improve Urban Climate and Urban Metabolism. Energies, 2020, 13, 2243.	1.6	2
630	Spectral Unmixing for Thermal Infrared Multi-Spectral Airborne Imagery over Urban Environments: Day and Night Synergy. Remote Sensing, 2020, 12, 1871.	1.8	3
631	Hotspots of extreme heat under global warming. Climate Dynamics, 2020, 55, 429-447.	1.7	39
632	Mapping Urban Heat Vulnerability of Extreme Heat in Hangzhou via Comparing Two Approaches. Complexity, 2020, 2020, 1-16.	0.9	9
633	Heat related mortality in the two largest Belgian urban areas: A time series analysis. Environmental Research, 2020, 188, 109848.	3.7	18
635	Predictors Associated with Health-Related Heat Risk Perception of Urban Citizens in Germany. International Journal of Environmental Research and Public Health, 2020, 17, 874.	1.2	21
636	A Comparative Study of the Physiological and Socio-Economic Vulnerabilities to Heat Waves of the Population of the Metropolis of Lyon (France) in a Climate Change Context. International Journal of Environmental Research and Public Health, 2020, 17, 1004.	1.2	24
637	Benefit of ozone observations from Sentinel-5P and future Sentinel-4 missions on tropospheric composition. Atmospheric Measurement Techniques, 2020, 13, 131-152.	1.2	12
638	Perception of Potential Health Risk of Climate Change and Utilization of Fans and Air Conditioners in a Representative Population of Hong Kong. International Journal of Disaster Risk Science, 2020, 11, 105-118.	1.3	12
639	Moist Heat Stress on a Hotter Earth. Annual Review of Earth and Planetary Sciences, 2020, 48, 623-655.	4.6	104

щ		15	CITATIONS
Ŧ	ARTICLE	IF	CHATIONS
640	Earth Data, 2020, 4, 128-141.	2.0	9
641	The Shading Envelope: A morphology for climate change mitigation. IOP Conference Series: Earth and Environmental Science, 2020, 410, 012010.	0.2	0
642	Exploring the Synergies between Urban Overheating and Heatwaves (HWs) in Western Sydney. Energies, 2020, 13, 470.	1.6	34
643	Extreme Temperature Events during 1960–2017 in the Arid Region of Northwest China: Spatiotemporal Dynamics and Associated Large-Scale Atmospheric Circulation. Sustainability, 2020, 12, 1198.	1.6	11
644	Cool pavements. , 2020, , 97-125.		6
645	Water colour and climate. Nature Climate Change, 2020, 10, 102-103.	8.1	1
646	Conspicuous temperature extremes over Southeast Asia: seasonal variations under 1.5°C and 2°C global warming. Climatic Change, 2020, 160, 343-360.	1.7	37
647	Modeling the effects of green alternative on heat island mitigation of a meso level town, West Bengal, India. Advances in Space Research, 2020, 65, 1789-1802.	1.2	27
648	Biorefinery of Chlorella sorokiniana using ultra sonication assisted liquid triphasic flotation system. Bioresource Technology, 2020, 303, 122931.	4.8	20
649	Performance of heat-health warning systems in Shanghai evaluated by using local heat-related illness data. Science of the Total Environment, 2020, 715, 136883.	3.9	14
650	The role of physical geographic parameters affecting past (1980–2010) and future (2020–2049) thermal stress in Iran. Natural Hazards, 2020, 102, 365-399.	1.6	10
651	Nexus of thermal resilience and energy efficiency in buildings: A case study of a nursing home. Building and Environment, 2020, 177, 106842.	3.0	40
652	Addressing Environmental Change through Emergent Integrated Environmental Observatories: A Case Study in the Czech Republic. Environments - MDPI, 2020, 7, 19.	1.5	3
653	Land use regression modeling of microscale urban air temperatures in greater Vancouver, Canada. Urban Climate, 2020, 32, 100636.	2.4	10
654	Observed heatwave changes in arid northwest China: Physical mechanism and long-term trend. Atmospheric Research, 2020, 242, 105009.	1.8	47
655	Climate change and health in Iran: a narrative review. Journal of Environmental Health Science & Engineering, 2020, 18, 367-378.	1.4	41
656	Vegetation feedbacks during drought exacerbate ozone air pollution extremes in Europe. Nature Climate Change, 2020, 10, 444-451.	8.1	96
657	Parameterization and Surface Data Improvements and New Capabilities for the Community Land Model Urban (CLMU). Journal of Advances in Modeling Earth Systems, 2020, 12, e2018MS001586.	1.3	27

#	Article	IF	CITATIONS
658	Heat warnings and avoidance behavior: evidence from a bike-sharing system. Environmental Economics and Policy Studies, 2021, 23, 1-28.	0.8	6
659	Towards climate resilient urban energy systems: a review. National Science Review, 2021, 8, nwaa134.	4.6	45
660	Heat wave characteristics, mortality and effect modification by temperature zones: a time-series study in 130 counties of China. International Journal of Epidemiology, 2021, 49, 1813-1822.	0.9	31
661	Changes of compound hot and dry extremes on different land surface conditions in China during 1957–2018. International Journal of Climatology, 2021, 41, E1085.	1.5	21
662	A single tree model to consistently simulate cooling, shading, and pollution uptake of urban trees. International Journal of Biometeorology, 2021, 65, 277-289.	1.3	33
663	The effect of global warming on mortality. Early Human Development, 2021, 155, 105222.	0.8	37
664	Using collective intelligence to enhance demand flexibility and climate resilience in urban areas. Applied Energy, 2021, 281, 116106.	5.1	27
665	Is Urban Heat Island intensity higher during hot spells and heat waves (Dijon, France, 2014–2019)?. Urban Climate, 2021, 35, 100747.	2.4	41
666	Smart wetting of permeable pavements as an evaporative-cooling measure for improving the urban climate during heat waves. Journal of Building Physics, 2021, 45, 36-66.	1.2	21
667	Temperature and rainfall extremes change under current and future global warming levels across Indian climate zones. Weather and Climate Extremes, 2021, 31, 100291.	1.6	42
668	Cardiovascular risks of climate change. Nature Reviews Cardiology, 2021, 18, 1-2.	6.1	82
669	Effect of urban expansion on atmospheric humidity in Beijing-Tianjin-Hebei urban agglomeration. Science of the Total Environment, 2021, 759, 144305.	3.9	27
670	Pharmaceuticals and the environment. Early Human Development, 2021, 155, 105218.	0.8	16
671	Water and thermal regime of extensive green roof test beds planted with sedum cuttings and sedum carpets. Journal of Soils and Sediments, 2021, 21, 2089-2101.	1.5	8
672	Different changes in dry and humid heat waves over <scp>China</scp> . International Journal of Climatology, 2021, 41, 1369-1382.	1.5	21
673	An analysis of urban form factors driving Urban Heat Island: the case of Izmir. Environment, Development and Sustainability, 2021, 23, 7835-7859.	2.7	22
674	Characteristics Analysis and Synoptic Features of Eventâ€Based Regional Heatwaves Over China. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033865.	1.2	9
675	Life Cycle Assessment of Residential Air Conditioners Considering the Benefits of Their Use: A Case Study in Indonesia. Energies, 2021, 14, 447.	1.6	13

#	Article	IF	Citations
676	Greenery as a mitigation and adaptation strategy to urban heat. Nature Reviews Earth & Environment, 2021, 2, 166-181.	12.2	183
677	Multi-Annual Changes in Heat Stress Occurrence and Its Circulation Conditions in the Polish–Saxon Border Region. Atmosphere, 2021, 12, 163.	1.0	8
679	Excess Mortality in England during the 2019 Summer Heatwaves. Climate, 2021, 9, 14.	1.2	8
680	Mortality attributable to heat and cold among the elderly in Sofia, Bulgaria. International Journal of Biometeorology, 2021, 65, 865-872.	1.3	19
681	Heat wave over Guntur region, India during 2008. AIP Conference Proceedings, 2021, , .	0.3	0
682	Heat-related illnesses in a mass gathering event and the necessity for newer diagnostic criteria: a field study. Environmental Science and Pollution Research, 2021, 28, 16682-16689.	2.7	6
683	Future Changes in Extreme High Temperature over China at 1.5°C–5°C Global Warming Based on CMIP6 Simulations. Advances in Atmospheric Sciences, 2021, 38, 253-267.	1.9	52
684	Future Heat Risk in South Asia and the Need for Ecosystem Mitigation. Disaster and Risk Research: GADRI Book Series, 2021, , 225-252.	0.1	1
685	Desert and tropical environments. , 2021, , 169-222.		0
686	A System Dynamics Model to Facilitate the Development of Policy for Urban Heat Island Mitigation. Urban Science, 2021, 5, 19.	1.1	3
687	DESIGNING PUBLIC SQUARES TO OPTIMIZE HUMAN OUTDOOR THERMAL COMFORT: A CASE STUDY IN SAFRANBOLU. , 2021, , 13-20.		1
688	Modulation of the Occurrence of Heatwaves over the Euro-Mediterranean Region by the Intensity of the Atlantic Multidecadal Variability. Journal of Climate, 2021, 34, 1099-1114.	1.2	15
689	The Spatial Transformation Process and Critical Time Node Detection in Global Extreme High Temperature Clusters. Earth and Space Science, 2021, 8, e2020EA001282.	1.1	0
690	Projecting heat-related excess mortality under climate change scenarios in China. Nature Communications, 2021, 12, 1039.	5.8	102
691	Governing heatwaves in Europe: comparing health policy and practices to better understand roles, responsibilities and collaboration. Health Research Policy and Systems, 2021, 19, 20.	1.1	8
692	A 41â€year bioclimatology of thermal stress in Europe. International Journal of Climatology, 2021, 41, 3934-3952.	1.5	22
693	Identification of how economic development affects energy use through a natural experiment. Journal of Environmental Economics and Policy, 2021, 10, 359-373.	1.5	0
694	Applying urban climate model in prediction mode—evaluation of MUKLIMO_3 model performance for Austrian cities based on the summer period of 2019. Theoretical and Applied Climatology, 2021, 144, 1181-1204.	1.3	13

#	Article	IF	CITATIONS
695	Recent European drought extremes beyond Common Era background variability. Nature Geoscience, 2021, 14, 190-196.	5.4	183
696	Virtual Screening of Cablin Patchouli Herb as a Treatment for Heat Stress: A Study Based on Network Pharmacology, Molecular Docking, and Experimental Verification. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-14.	0.5	2
697	Review of heat wave studies and related urban policies in South Asia. Urban Climate, 2021, 36, 100777.	2.4	25
698	Multidimensional analysis of global climate change: a review. Environmental Science and Pollution Research, 2021, 28, 24872-24888.	2.7	57
699	Estimating summertime heat stress in a tropical Indian city using Local Climate Zone (LCZ) framework. Urban Climate, 2021, 36, 100784.	2.4	32
701	Impact of different heat wave definitions on daily mortality in Bandafassi, Senegal. PLoS ONE, 2021, 16, e0249199.	1.1	20
703	The effect of Mitoquinol (MitoQ) on heat stressed skeletal muscle from pigs, and a potential confounding effect of biological sex. Journal of Thermal Biology, 2021, 97, 102900.	1.1	5
705	European Resuscitation Council Guidelines 2021: Cardiac arrest in special circumstances. Resuscitation, 2021, 161, 152-219.	1.3	364
706	Disentangling dynamical and thermodynamical contributions to the record-breaking heatwave over Central Europe in June 2019. Atmospheric Research, 2021, 252, 105446.	1.8	17
707	Salud urbana, confort térmico y acústico en espacios públicos exteriores, en el marco de las ciudades amigables con los mayores = Urban health, thermal and acoustic comfort in outdoor public spaces, in the framework of age-friendly cities. Cuadernos De Investigación UrbanÃstica, 2021, , 1.	0.1	0
708	Evolving heat waves characteristics challenge heat warning systems and prevention plans. International Journal of Biometeorology, 2021, 65, 1683-1694.	1.3	23
709	Heat Emergencies: Perceptions and Practices of Community Members and Emergency Department Healthcare Providers in Karachi, Pakistan: A Qualitative Study. International Journal of Environmental Research and Public Health, 2021, 18, 4736.	1.2	2
710	The old and the climate adaptation: Climate justice, risks, and urban adaptation plan. Sustainable Cities and Society, 2021, 67, 102755.	5.1	34
711	Identifying the dominant driving factors of heat waves in the North China Plain. Atmospheric Research, 2021, 252, 105458.	1.8	32
712	Small vegetated patches greatly reduce urban surface temperature during a summer heatwave in Adelaide, Australia. Landscape and Urban Planning, 2021, 209, 104046.	3.4	46
713	Fatalities associated with the severe weather conditions in the Czech Republic, 2000–2019. Natural Hazards and Earth System Sciences, 2021, 21, 1355-1382.	1.5	14
714	An intervention study of the rural elderly for improving exposure, risk perception and behavioral responses under high temperature. Environmental Research Letters, 2021, 16, 055029.	2.2	6
715	Very rare heat extremes: quantifying and understanding using ensemble re-initialization. Journal of Climate, 2021, , 1-46.	1.2	15

ARTICLE IF CITATIONS # A Literature Review of the Impacts of Heat Stress on Human Health across Africa. Sustainability, 2021, 1.6 9 716 13, 5312. Social Sensing of Heatwaves. Sensors, 2021, 21, 3717. 2.1 Examining the magnitude and perception of summertime overheating in London care homes. Building 718 0.9 7 Services Engineering Research and Technology, 2021, 42, 653-675. Challenges to Mitigating the Urban Health Burden of Mosquito-Borne Diseases in the Face of Climate 1.2 Change. International Journal of Environmental Research and Public Health, 2021, 18, 5035. Crowdsourced air temperatures contrast satellite measures of the urban heat island and its 720 4.7 120 mechanisms. Science Advances, 2021, 7, . Modeling lives saved from extreme heat by urban tree cover✰. Ecological Modelling, 2021, 449, 109553. 1.2 722 The upper temperature thresholds of life. Lancet Planetary Health, The, 2021, 5, e378-e385. 5.1 41 Construct validity and invariance assessment of the social impacts of occupational heat stress scale 724 3.9 (SIOHSS) among Ghanaian mining workers. Science of the Total Environment, 2021, 771, 144911. Impact of climate and population changes on the increasing exposure to summertime compound hot 725 3.9 31 extremes. Science of the Total Environment, 2021, 772, 145004. Seasonal prediction of European summer heatwaves. Climate Dynamics, 2022, 58, 2149-2166. 1.7 Heat waves and adaptation strategies in a mediterranean urban context. Environmental Research, 2021, 727 17 3.7 197, 111066. Increasing heat risk in China's urban agglomerations. Environmental Research Letters, 2021, 16, 064073. 728 2.2 Review article: Risk management framework of environmental hazards and extremes in Mediterranean 729 1.5 8 ecosystems. Natural Hazards and Earth System Sciences, 2021, 21, 1935-1954. Informing the planning of rotating power outages in heat waves through data analytics of connected 2.2 smart thermostats for residential buildings. Environmental Research Letters, 2021, 16, 074003. Perspectives on spatial representation of urban heat vulnerability. Science of the Total Environment, 731 3.9 23 2021, 774, 145634. Heatwaves in Southeast Asia and Their Changes in a Warmer World. Earth's Future, 2021, 9, 2.4 43 e2021EF001992. Heat Perception and Coping Strategies: A Structured Interview-Based Study of Elderly People in 734 1.2 11 Cologne, Germany. International Journal of Environmental Research and Public Health, 2021, 18, 7495. Evaluation of Tourism-Climate Conditions in the Region of KÅ,odzko Land (Poland). Atmosphere, 2021, 12,907.

#	Article	IF	CITATIONS
736	Projections of temperature-attributable mortality in Europe: a time series analysis of 147 contiguous regions in 16 countries. Lancet Planetary Health, The, 2021, 5, e446-e454.	5.1	59
737	A heat-health watch and warning system with extended season and evolving thresholds. BMC Public Health, 2021, 21, 1479.	1.2	11
739	Health effects from heat waves in France: an economic evaluation. European Journal of Health Economics, 2022, 23, 119-131.	1.4	25
740	Combining socio-economic and climate projections to assess heat risk. Climatic Change, 2021, 167, 1.	1.7	3
741	Changes in temperature and heat waves over Africa using observational and reanalysis data sets. International Journal of Climatology, 2022, 42, 1165-1180.	1.5	23
742	Myths and Issues about Sustainable Living. Sustainability, 2021, 13, 7521.	1.6	4
743	Increasing probability of record-shattering climate extremes. Nature Climate Change, 2021, 11, 689-695.	8.1	224
744	Ten questions concerning age-friendly cities and communities and the built environment. Building and Environment, 2021, 199, 107922.	3.0	79
745	COVID-19 and heat waves: New challenges for healthcare systems. Environmental Research, 2021, 198, 111153.	3.7	32
746	An unsupervised learning approach to identifying blocking events: the case of European summer. Weather and Climate Dynamics, 2021, 2, 581-608.	1.2	4
747	Future Projections of Heat Mortality Risk for Major European Cities. Weather, Climate, and Society, 2021, , .	0.5	5
749	An investigation into the relationship between remotely sensed land surface temperatures and heat stroke incident rates in the Tokyo Prefecture 2010–2019. Sustainable Cities and Society, 2021, 71, 102988.	5.1	5
750	Climate change-mediated heat stress vulnerability and adaptation strategies among outdoor workers. Climate and Development, 2022, 14, 591-599.	2.2	2
751	Emerging new climate extremes over Europe. Climate Dynamics, 2022, 58, 487-501.	1.7	20
754	Characteristics of Enhanced Heatwaves over Tanzania and Scenario Projection in the 21st Century. Atmosphere, 2021, 12, 1026.	1.0	4
755	Effective Community-Based Interventions for the Prevention and Management of Heat-Related Illnesses: A Scoping Review. International Journal of Environmental Research and Public Health, 2021, 18, 8362.	1.2	11
756	Interdecadal variations of persistent extreme heat events in eastern China under global warming. Theoretical and Applied Climatology, 2021, 146, 349-364.	1.3	4
757	The Significance of Occupants' Interaction with Their Environment on Reducing Cooling Loads and Dermatological Distresses in East Mediterranean Climates. International Journal of Environmental Research and Public Health, 2021, 18, 8870.	1.2	13

#	Article	IF	CITATIONS
758	Changes in compound hot and dry day and population exposure across China under climate change. International Journal of Climatology, 2022, 42, 2935-2949.	1.5	15
759	Comparison of Atmospheric Circulation Anomalies between Dry and Wet Extreme High-Temperature Days in the Middle and Lower Reaches of the Yellow River. Atmosphere, 2021, 12, 1265.	1.0	9
760	Borderless Heat Hazards With Bordered Impacts. Earth's Future, 2021, 9, e2021EF002064.	2.4	9
761	Improving building thermal performance through an integration of Passivhaus envelope and shading in a tropical climate. Energy and Buildings, 2021, 253, 111521.	3.1	6
762	Seasonality reversal of temperature attributable mortality projections due to previously unobserved extreme heat in Europe. Lancet Planetary Health, The, 2021, 5, e573-e575.	5.1	12
763	Extreme lows of wheat production in Brazil. Environmental Research Letters, 2021, 16, 104025.	2.2	6
764	Extreme wind projections over Europe from the Euro-CORDEX regional climate models. Weather and Climate Extremes, 2021, 33, 100363.	1.6	23
765	Prediction of Heatwave 2013 over Andhra Pradesh and Telangana, India using WRF Model. Asian Journal of Atmospheric Environment, 2021, 15, 33-44.	0.4	4
766	A practical approach to the evaluation of local urban overheating– A coastal city case-study. Energy and Buildings, 2021, 253, 111522.	3.1	11
767	Dynamical downscaling projections of extreme temperature for the major river basins in China under shared socioeconomic pathway scenarios. International Journal of Climatology, 2022, 42, 2639-2655.	1.5	1
768	A vast increase in heat exposure in the 21st century is driven by global warming and urban population growth. Sustainable Cities and Society, 2021, 73, 103098.	5.1	35
769	Mortality risk related to heatwaves in Finland – Factors affecting vulnerability. Environmental Research, 2021, 201, 111503.	3.7	30
770	A New Framework for Identifying and Investigating Seasonal Climate Extremes. Journal of Climate, 2021, 34, 7761-7782.	1.2	4
771	The role of extreme temperature in cause-specific acute cardiovascular mortality in Switzerland: A case-crossover study. Science of the Total Environment, 2021, 790, 147958.	3.9	36
772	Increased high-temperature extremes and associated population exposure in Africa by the mid-21st century. Science of the Total Environment, 2021, 790, 148162.	3.9	83
773	Present and future projections of heatwave hazard-risk over India: A regional earth system model assessment. Environmental Research, 2021, 201, 111573.	3.7	37
774	Significant increase in extreme heat events along an urban–rural gradient. Landscape and Urban Planning, 2021, 215, 104210.	3.4	12
775	Assessing local heat stress and air quality with the use of remote sensing and pedestrian perception in urban microclimate simulations. Science of the Total Environment, 2021, 794, 148709.	3.9	26

#		IE	
# 776	From expanding areas to stable areas: Identification, classification and determinants of multiple frequency urban heat islands. Ecological Indicators, 2021, 130, 108046.	2.6	6
777	Spatial-scale dependent risk factors of heat-related mortality: A multiscale geographically weighted regression analysis. Sustainable Cities and Society, 2021, 74, 103159.	5.1	17
778	Developing a geospatial framework for coupled large scale thermal comfort and air quality indices using high resolution gridded meteorological and station based observations. Sustainable Cities and Society, 2021, 74, 103204.	5.1	9
779	Public support for urban climate adaptation policy through nature-based solutions in Prague. Landscape and Urban Planning, 2021, 215, 104215.	3.4	16
780	Progress of ship exhaust gas control technology. Science of the Total Environment, 2021, 799, 149437.	3.9	44
781	Climate driven trends in London's urban heat island intensity reconstructed over 70Âyears using a generalized additive model. Urban Climate, 2021, 40, 100990.	2.4	13
782	Effect of heatwaves and greenness on mortality among Chinese older adults. Environmental Pollution, 2021, 290, 118009.	3.7	19
783	Review on Time-Integrated Overheating Evaluation Methods for Residential Buildings in Temperate Climates of Europe. Energy and Buildings, 2021, 252, 111463.	3.1	38
784	Rapid rises in the magnitude and risk of extreme regional heat wave events in China. Weather and Climate Extremes, 2021, 34, 100379.	1.6	26
785	Sensitivities of heat-wave mortality projections: Moving towards stochastic model assumptions. Environmental Research, 2022, 204, 111895.	3.7	6
786	Study of heat wave and rainfall over Adilabad Region, India during 2013. AIP Conference Proceedings, 2021, , .	0.3	0
787	Indoor Overheating, Climate Resilience, and Adaptation of Care Settings. , 2021, , 1-21.		0
789	Two spatial types of North China heatwaves and their possible links to <scp>Barentsâ€Kara</scp> Sea ice changes. International Journal of Climatology, 2022, 42, 6876-6889.	1.5	7
790	Dynamics of concurrent and sequential Central European and Scandinavian heatwaves. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 2998-3013.	1.0	24
791	Hydrometeorological Hazards. Encyclopedia of Earth Sciences Series, 2013, , 497-508.	0.1	3
792	Heat Waves and Rising Temperatures: Human Health Impacts and the Determinants of Vulnerability. , 2014, , 85-120.		9
793	Climate Change: An Overview of Potential Health Impacts Associated with Climate Change Environmental Driving Forces. Innovative Renewable Energy, 2020, , 77-119.	0.2	6
794	Climate Change, Wildfires, Heatwaves and Health Impacts in Australia. , 2020, , 99-116.		24

#	ARTICLE	IF	CITATIONS
795	Climate Change and Heat Exposure: Impact on Health in Occupational and General Populations. , 2020, , 225-261.		11
797	Assessing the Potential of Regulating Ecosystem Services as Nature-Based Solutions in Urban Areas. Theory and Practice of Urban Sustainability Transitions, 2017, , 139-158.	1.9	7
798	Geographical Gerontology. , 2019, , 1-15.		2
800	A Review of the Health Sector Impacts of 4 $\hat{A}^{\circ}C$ or more Temperature Rise. , 2019, , 67-129.		5
801	Mapping Heat Wave Risk of the World. IHDP/Future Earth-integrated Risk Governance Project Series, 2015, , 169-188.	0.2	7
802	Gesundheit. , 2017, , 137-149.		12
803	Temperatur inklusive Hitzewellen. , 2017, , 47-56.		5
804	Human Health as Precondition for Achieving Sustainable Development. Disaster Risk Reduction, 2016, , 103-117.	0.2	1
805	Lateral Public Health: A Comprehensive Approach to Adaptation in Urban Environments. Advances in Global Change Research, 2011, , 143-159.	1.6	4
806	The Role of Transport in Mitigation and Adaptation to Climate Change Impacts in Urban Areas. , 2011, , 465-478.		4
808	Hazards, Disasters, and Risks. IHDP/Future Earth-integrated Risk Governance Project Series, 2019, , 1-50.	0.2	1
809	Hazards, Disasters, and Risks. IHDP/Future Earth-integrated Risk Governance Project Series, 2019, , 1-48.	0.2	13
810	The vulnerability of homes to overheating in Myanmar today and in the future: A heat index analysis of measured and simulated data. Energy and Buildings, 2020, 223, 110201.	3.1	17
811	Urban heat stress mitigation potential of green walls: A review. Urban Forestry and Urban Greening, 2020, 55, 126843.	2.3	64
813	Promoting protection against a threat that evokes positive affect: The case of heat waves in the United Kingdom Journal of Experimental Psychology: Applied, 2016, 22, 261-271.	0.9	22
814	Russian summer tops 'universal' heatwave index. Nature, 0, , .	13.7	28
815	GHWR, a multi-method global heatwave and warm-spell record and toolbox. Scientific Data, 2018, 5, 180206.	2.4	46
816	Expression profiles of genes associated with inflammatory responses and oxidative stress in lung after heat stroke. Bioscience Reports, 2020, 40, .	1.1	13

		CEPORT	
#	Article	IF	CITATIONS
817	Civil Registration and Vital Statistics: A Unique Source of Data for Policy. , 2019, , 125-144.		2
818	Summer Russian heat waves and their links to Greenland's ice melt and sea surface temperature anomalies over the North Atlantic and the Barents–Kara Seas. Environmental Research Letters, 2020, 15, 114048.	2.2	12
819	Reduced impacts of heat extremes from limiting global warming to under 1.5 °C or 2 °C over Mediterranean regions. Environmental Research Letters, 2021, 16, 014034.	2.2	7
821	A Statistical–Dynamical Methodology to Downscale Regional Climate Projections to Urban Scale. Journal of Applied Meteorology and Climatology, 2020, 59, 1109-1123.	0.6	14
822	The Impact of Climate Change on Human Health. , 2012, , 75-105.		2
824	Measurement of the Cooling Efficiency of Pavement-Watering as an Urban Heat Island Mitigation Technique. Journal of Sustainable Development of Energy, Water and Environment Systems, 2015, 3, 1-11.	0.9	8
825	Health Effects of Drought: a Systematic Review of the Evidence. PLOS Currents, 2013, 5, .	1.4	210
826	Toll-Like Receptor 4 and High-Mobility Group Box 1 Are Critical Mediators of Tissue Injury and Survival in a Mouse Model for Heatstroke. PLoS ONE, 2012, 7, e44100.	1.1	30
827	Potential Impacts of Future Warming and Land Use Changes on Intra-Urban Heat Exposure in Houston, Texas. PLoS ONE, 2016, 11, e0148890.	1.1	22
828	A Heat Vulnerability Index: Spatial Patterns of Exposure, Sensitivity and Adaptive Capacity for Santiago de Chile. PLoS ONE, 2016, 11, e0162464.	1.1	127
829	Perception of climate change in patients with chronic lung disease. PLoS ONE, 2017, 12, e0186632.	1.1	4
830	Synergies between urban heat island and heat waves in Seoul: The role of wind speed and land use characteristics. PLoS ONE, 2020, 15, e0243571.	1.1	45
831	Application of thermal discomfort indices for the coastal zone of Black Sea, in Dobrogea Region. Ovidius University Annals of Constanta - Series Civil Engineering, 2017, 19, 87-100.	0.3	7
832	Climate change and the projected burden of future health impacts – The Project EXHAUSTION. Public Health Forum, 2020, 28, 17-20.	0.1	3
833	A Unique View on Carbon Dioxide Emissions around the World. Global Journal of Earth Science and Engineering, 0, 4, 8-17.	0.1	5
834	USING LANDSAT-8 DATA TO EXPLORETHE CORRELATION BETWEEN URBAN HEAT ISLAND AND URBAN LAND USES. International Journal of Research in Engineering and Technology, 2016, 05, 457-466.	0.1	17
835	Human Heat stress risk prediction in the Brazilian semiarid Region based on the Wet-Bulb Globe Temperature. Anais Da Academia Brasileira De Ciencias, 2019, 91, e20180748.	0.3	5
837	Changes in bioclimatic indices in the Republic of Moldova (1960–2012): consequences for tourism. Boletin De La Asociacion De Geografos Espanoles, 2018, , 521-548.	0.2	1

#	Article	IF	CITATIONS
838	Feasibility of Relative Strain Index (RSI) for the Assessment of Heat Stress in Outdoor Environments: Case Study in Three Different Climates of Iran. Open Ecology Journal, 2020, 13, 11-18.	2.0	8
839	The Impact of Heat Waves on Mortality among the Elderly: A Mini Systematic Review. Journal of Geriatric Medicine and Gerontology, 2018, 4, .	0.1	10
840	Reducing the risks of extreme heat for seniors: communicating risks and building resilience. Health Promotion and Chronic Disease Prevention in Canada: Research, Policy and Practice, 2020, 40, 215-224.	0.8	12
841	Heat Alert and Response Systems in Urban and Rural Communities in Canada. Change and Adaptation in Socio-Ecological Systems, 2014, 1, .	1.5	5
842	Evidence for the temperature-mitigating capacity of urban blue space – a health geographic perspective. Erdkunde, 2013, 67, 355-371.	0.4	100
843	Perceptions of heatwave risks to health: results of an qualitative interview study with older people and their carers in Freiburg, Germany. Gms Psycho-social-medicine, 2012, 9, Doc05.	1.2	16
844	Health Risks and Interventions in Exertional Heat Stress. Deutsches Ärzteblatt International, 2019, 116, 537-544.	0.6	35
845	Perceived Crowd Safety in Large Space Buildings: The Confirmatory Factor Analysis of Perceived Risk Variables Journal of Engineering, Project, and Production Management, 2018, 8, 22-39.	0.5	8
847	Variability trends in the daily air temperatures series Running head: Variability trends prague . AIMS Environmental Science, 2019, 6, 167-185.	0.7	1
848	CITIES, ENERGY AND CLIMATE: SEVEN REASONS TO QUESTION THE DENSE HIGH-RISE CITY. Journal of Green Building, 2020, 15, 197-214.	0.4	28
849	Response of surface shortwave cloud radiative effect to greenhouse gases and aerosols and its impact on summer maximum temperature. Atmospheric Chemistry and Physics, 2020, 20, 8251-8266.	1.9	7
850	Spatiotemporal changes of heat waves and extreme temperatures in the main cities of China fromÂ1955 toÂ2014. Natural Hazards and Earth System Sciences, 2020, 20, 1889-1901.	1.5	16
852	Climate Change and Psychological Adaptation: Psychological Response, Adaptation, and Prevention. Journal of Korean Society for Atmospheric Environment, 2016, 32, 237-247.	0.2	2
853	Transportation and Land Use. , 2011, , 149-169.		14
854	Projected changes in seasonal and extreme summertime temperature and precipitation in India in response to COVID-19 recovery emissions scenarios. Environmental Research Letters, 2021, 16, 114025.	2.2	9
855	Impact of Heat Waves on Hospitalisation and Mortality in Nursing Homes: A Case-Crossover Study. International Journal of Environmental Research and Public Health, 2021, 18, 10697.	1.2	4
856	Extreme temperature return level mapping for northwest Turkey. Theoretical and Applied Climatology, 2021, 146, 1501.	1.3	0
857	Occurrence of heatwave in Korea by the displacement of South Asian high. Climate Dynamics, 2022, 58, 1699-1718.	1.7	11

#	Article	IF	CITATIONS
858	Interannual Variability of Springtime Extreme Heat Events over the Southeastern Edge of the Tibetan Plateau: Role of A Spring-type Circum-global Teleconnection Pattern. Journal of Climate, 2021, , 1-47.	1.2	2
859	A dynamical adjustment perspective on extreme event attribution. Weather and Climate Dynamics, 2021, 2, 971-989.	1.2	13
860	Urban heat: an increasing threat to global health. BMJ, The, 2021, 375, n2467.	3.0	43
861	Experiences of heat stress while homeless on hot summer days in Adelaide. Australian Journal of Emergency Management, 2021, 10.47389/36, 55-61.	0.3	2
862	Climate change and global issues in allergy and immunology. Journal of Allergy and Clinical Immunology, 2021, 148, 1366-1377.	1.5	75
863	Assessing current and future heat risk in Dublin city, Ireland. Urban Climate, 2021, 40, 100983.	2.4	11
864	Climate change: a global health emergency. BMJ, The, 0, , b2484.	3.0	0
865	Climate change: read, listen, act. BMJ, The, 0, , b4143.	3.0	0
866	Health Effects of Air Pollution and Air Temperature. Contributions To Statistics, 2011, , 119-133.	0.2	0
867	Improving Understanding of Climatic Controls on Ecology in Development Contexts. , 2012, , 353-367.		Ο
868	Anticulture and Aging. , 2013, , 135-156.		0
870	Regionalplanung unter Berücksichtigung des Klimawandels und dessen Gesundheitsfolgen: Der Klimaplanatlas Nordhessen. Springer-Lehrbuch, 2013, , 205-223.	0.1	Ο
872	Klimawandel und Gesundheit: Grundlagen und Herausforderungen für den Public Health-Sektor. Springer-Lehrbuch, 2013, , 1-21.	0.1	1
873	Utilização da análise multi-nÃveis para avaliação da vulnerabilidade da população da AML ao calor. Cadernos De Geografia, 2015, , 261-267.	0.1	0
874	Klimakamp er helsearbeid. Tidsskrift for Den Norske Laegeforening, 2014, 134, 1582-1584.	0.2	3
875	Statistical Analysis of Subsurface Diffusion of Solar Energy with Implications for Urban Heat Stress. Journal of Modern Physics, 2014, 05, 751-762.	0.3	0
876	Seniors, Disaster Mortality, and End-of-Life Care. , 2014, , 73-87.		1
878	Human Health. Springer Climate, 2015, , 191-213.	0.3	0

# 879	ARTICLE Climate Change and Sustainability. , 2015, , 194-201.	IF	CITATIONS 0
880	Shade. , 2015, , 125-144.		0
881	2. The public health impacts of natural disasters. Human Health Handbooks, 2015, , 33-58.	0.1	1
883	- Regional and Global Urban Land Cover Characterizations. , 2015, , 66-91.		0
884	- Air Quality in Urban Areas—Local and Regional Aspects. , 2015, , 144-167.		0
885	Climate Change and Ethical Change. Public Health Ethics Analysis, 2016, , 39-46.	0.1	1
887	A new paradigm of governance for a carbon-pricing system. International Journal of Energy Production and Management, 2016, 1, 192-205.	1.9	0
889	The Role of Inequality in Climate-Poverty Debates. , 2016, , .		1
890	Die klimaresiliente Gesellschaft–ÂTransformation und SystemÃ ¤ derungen. , 2017, , 315-324.		2
892	Climate Change and Health. Delaware Journal of Public Health, 2017, 3, 24-25.	0.2	1
893	Was passiert mit dem Wetter? – Grundlagen des Klimawandels. , 2018, , 3-38.		0
894	10.ÂClimate Change and Environmental Public Health. , 2018, , .		0
895	Classification of Heat Wave Events in Seoul Using Self-Organizing Map. Journal of Climate Change Research, 2018, 9, 209-221.	0.1	4
896	Work Productivity Loss In A Warming World:ÂDeveloped Country Vs Developing Country. , 2018, , .		0
897	Climate, Vulnerability, and Older People. , 2019, , 1-7.		0
898	Ambient Temperature and Mortality in Chinese Population. , 2019, , 13-25.		0
899	Elaboration and Characterization of Thermal Insulating Material Based on the Synergy of Natural Coconut Husk and Disposable Diaper Pads Fibers. International Journal of Engineering and Technologies, 0, 17, 21-32.	0.0	3
900	GeografÃa de la salud: aplicaciones en la planificación territorial y urbana. Estudios Geograficos, 2019, 80, 007.	0.4	3

#	Article	IF	CITATIONS
901	Medical and social aspects of global warming. Journal of the National Academy of Medical Sciences of Ukraine, 2019, , 439-447.	0.1	0
902	Mortality risk attributable to high and low ambient temperature in Pune city, India: A time series analysis from 2004 to 2012. Environmental Research, 2022, 204, 112304.	3.7	12
903	Defining local extreme heat thresholds and Indoor Cooling Degree Necessity for vulnerable residential dwellings during the 2020 summer in Ankara – Part I: Air temperature. Solar Energy, 2022, 242, 435-453.	2.9	6
904	Progress in extreme heat management and warning systems: A systematic review of heat-health action plans (1995-2020). Sustainable Cities and Society, 2022, 76, 103487.	5.1	42
905	Risk factors for heat-related illnesses during the Hajj mass gathering: an expert review. Reviews on Environmental Health, 2023, 38, 33-43.	1.1	8
906	Impact of heat waves and cold spells on cause-specific mortality in the city of São Paulo, Brazil. International Journal of Hygiene and Environmental Health, 2022, 239, 113861.	2.1	26
907	Heatwave fatalities in Australia, 2001–2018: An analysis of coronial records. International Journal of Disaster Risk Reduction, 2022, 67, 102671.	1.8	20
908	Températures de surface et mesures mobiles confrontées aux zones climatiques locales : exemples des agglomérations de Tokyo et de Lyon. Climatologie, 2020, 17, 11.	0.2	0
909	Sustaining Life: Human Health–Planetary Health Linkages. , 2020, , 21-37.		5
910	Producing and Contesting Climate Injustice. , 2020, , 1-35.		0
910 911	Producing and Contesting Climate Injustice. , 2020, , 1-35. The Social Issue of ESG Analysis. SSRN Electronic Journal, 0, , .	0.4	0
910 911 912	Producing and Contesting Climate Injustice. , 2020, , 1-35. The Social Issue of ESG Analysis. SSRN Electronic Journal, 0, , . Building Policies, Plans, and Cities to Manage Extreme Weather Events: Perspectives from Urban Planning and Landscape Architecture. , 2020, , 261-283.	0.4	0 2 5
910 911 912 914	Producing and Contesting Climate Injustice., 2020, , 1-35. The Social Issue of ESG Analysis. SSRN Electronic Journal, 0, , . Building Policies, Plans, and Cities to Manage Extreme Weather Events: Perspectives from Urban Planning and Landscape Architecture., 2020, , 261-283. From Atmospheric Waves to Heatwaves: A Waveguide Perspective for Understanding and Predicting Concurrent, Persistent, and Extreme Extratropical Weather. Bulletin of the American Meteorological Society, 2022, 103, E923-E935.	0.4	0 2 5 20
910 911 912 914 915	Producing and Contesting Climate Injustice., 2020, , 1-35. The Social Issue of ESG Analysis. SSRN Electronic Journal, 0, , . Building Policies, Plans, and Cities to Manage Extreme Weather Events: Perspectives from Urban Planning and Landscape Architecture., 2020, , 261-283. From Atmospheric Waves to Heatwaves: A Waveguide Perspective for Understanding and Predicting Concurrent, Persistent, and Extreme Extratropical Weather. Bulletin of the American Meteorological Society, 2022, 103, E923-E935. MENTAL HEALTH CONSEQUENCES OF CLIMATE CHANGE FROM EUROPEAN PERSPECTIVE. Military Medical Science Letters (Vojenske Zdravotnicke Listy), 0, .	0.4	0 2 5 20 0
910 911 912 914 915	Producing and Contesting Climate Injustice. , 2020, , 1-35. The Social Issue of ESG Analysis. SSRN Electronic Journal, 0, , . Building Policies, Plans, and Cities to Manage Extreme Weather Events: Perspectives from Urban Planning and Landscape Architecture. , 2020, , 261-283. From Atmospheric Waves to Heatwaves: A Waveguide Perspective for Understanding and Predicting Concurrent, Persistent, and Extreme Extratropical Weather. Bulletin of the American Meteorological Society, 2022, 103, E923-E935. MENTAL HEALTH CONSEQUENCES OF CLIMATE CHANGE FROM EUROPEAN PERSPECTIVE. Military Medical Science Letters (Vojenske Zdravotnicke Listy), 0, , . Analysis of Urban Heat Island and Heat Waves Using Sentinel-3 Images: a Study of Andalusian Cities in Spain. Earth Systems and Environment, 2022, 6, 199-219.	0.4 1.7 0.2 3.0	0 2 5 20 0 15
 910 911 912 914 915 916 917 	Producing and Contesting Climate Injustice., 2020, , 1-35. The Social Issue of ESG Analysis. SSRN Electronic Journal, 0, , . Building Policies, Plans, and Cities to Manage Extreme Weather Events: Perspectives from Urban Planning and Landscape Architecture., 2020, , 261-283. From Atmospheric Waves to Heatwaves: A Waveguide Perspective for Understanding and Predicting Concurrent, Persistent, and Extreme Extratropical Weather. Bulletin of the American Meteorological Society, 2022, 103, E923-E935. MENTAL HEALTH CONSEQUENCES OF CLIMATE CHANGE FROM EUROPEAN PERSPECTIVE. Military Medical Science Letters (Vojenske Zdravotnicke Listy), 0, ,. Analysis of Urban Heat Island and Heat Waves Using Sentinel-3 Images: a Study of Andalusian Cities in Spain. Earth Systems and Environment, 2022, 6, 199-219. How local climate zones influence urban air temperature: Measurements by bicycle in Dijon, France. Urban Climate, 2021, 40, 101017.	0.4 1.7 0.2 3.0 2.4	0 2 5 20 0 15
 910 911 912 914 915 916 917 918 	Producing and Contesting Climate Injustice., 2020, , 1-35. The Social Issue of ESG Analysis. SSRN Electronic Journal, 0, , . Building Policies, Plans, and Cities to Manage Extreme Weather Events: Perspectives from Urban Planning and Landscape Architecture., 2020, , 261-283. From Atmospheric Waves to Heatwaves: A Waveguide Perspective for Understanding and Predicting Concurrent, Persistent, and Extreme Extratropical Weather. Bulletin of the American Meteorological Society, 2022, 103, E923-E935. MENTAL HEALTH CONSEQUENCES OF CLIMATE CHANGE FROM EUROPEAN PERSPECTIVE. Military Medical Science Letters (Vojenske Zdravotnicke Listy), 0, , . Analysis of Urban Heat Island and Heat Waves Using Sentinel-3 Images: a Study of Andalusian Cities in Spain. Earth Systems and Environment, 2022, 6, 199-219. How local climate zones influence urban air temperature: Measurements by bicycle in Dijon, France. Urban Climate, 2021, 40, 101017. How does the environment affect human ageing? An interdisciplinary review. Journal of Gerontology and Geriatrics, 2021, 69, 53-67.	0.4 1.7 0.2 3.0 2.4 0.2	0 2 5 20 0 15 23 8

#	Article	IF	CITATIONS
920	How to assess ecodistrict resilience to urban heat stress under future heatwaves? A case study for the city of Paris. ICRBE Procedia, 0, , 11-24.	0.0	0
921	Heat Waves and Rising Temperatures: Human Health Impacts and the Determinants of Vulnerability. Respiratory Medicine, 2021, , 123-161.	0.1	5
923	Climate Change Adaptation: Prehospital Data Facilitate the Detection of Acute Heat Illness in India. Western Journal of Emergency Medicine, 2021, 22, 739-749.	0.6	0
924	Menschliche Gesundheit in der Klimakrise: Betroffenheit, Verantwortung und Chancen. , 2021, , 49-74.		0
925	Extreme Heat and Cardiovascular Health: What a Cardiovascular Health Professional Should Know. Canadian Journal of Cardiology, 2021, 37, 1828-1836.	0.8	27
926	Indoor Overheating, Climate Resilience, and Adaptation of Care Settings. , 2021, , 779-799.		0
927	The Synergistic Impacts of Urban Air Pollution Compounding Our Climate Emergency. , 2021, , 355-378.		1
928	Climate Change, Vulnerability, and Older People. , 2021, , 1022-1028.		1
929	Geographical Gerontology. , 2021, , 2078-2092.		2
930	High-resolution impact assessment of climate change on building energy performance considering extreme weather events and microclimate – Investigating variations in indoor thermal comfort and degree-days. Sustainable Cities and Society, 2022, 78, 103634.	5.1	39
931	Climate Change Adaptation: Prehospital Data Facilitate the Detection of Acute Heat Illness in India. Western Journal of Emergency Medicine, 2021, 22, 739-749.	0.6	0
933	Population Exposure Projections to Intensified Summer Heat. Earth's Future, 2022, 10, .	2.4	7
934	Aging, frailty, and design of built environments. Journal of Physiological Anthropology, 2022, 41, 2.	1.0	8
935	Population Exposure Changes to One Heat Wave and the Influencing Factors Using Mobile Phone Data—A Case Study of Zhuhai City, China. Sustainability, 2022, 14, 997.	1.6	2
936	Modeling Large‣cale Heatwave by Incorporating Enhanced Urban Representation. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	15
937	Impact of Extreme ClimateÂEvents on Vegetation Phenology in Arid Central Asia. SSRN Electronic Journal, 0, , .	0.4	0
938	The Course and the Effects of Agricultural Biomass Pyrolysis in the Production of High-Calorific Biochar. Materials, 2022, 15, 1038.	1.3	15
939	The Impact of Climate Change on Primary Air Treatment Processes and Energy Demand in Air Conditioning Systems—A Case Study from Warsaw, Poland. Energies, 2022, 15, 355.	1.6	1

#	Article	IF	Citations
940	A Case Study of a Nursing Home in Nagano, Japan: Field Survey on Thermal Comfort and Building Energy Simulation for Future Climate Change. Energies, 2022, 15, 936.	1.6	8
943	Current and future burdens of heat-related dementia hospital admissions in England. Environment International, 2022, 159, 107027.	4.8	17
944	Heat-related mortality amplified during the COVID-19 pandemic. International Journal of Biometeorology, 2022, 66, 457-468.	1.3	15
945	Will individuals visit hospitals when suffering heat-related illnesses? Yes, but…. Building and Environment, 2022, 208, 108587.	3.0	33
946	Upwind Droughts Enhance Half of the Heatwaves Over North China. Geophysical Research Letters, 2022, 49, .	1.5	16
947	Communication Aspects about Heat in an Era of Global Warming—The Lessons Learnt by Germany and Beyond. Atmosphere, 2022, 13, 226.	1.0	10
948	Accelerated exacerbation of global extreme heatwaves under warming scenarios. International Journal of Climatology, 2022, 42, 5430-5441.	1.5	5
949	Plants in the UK flower a month earlier under recent warming. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212456.	1.2	34
950	Gesundheitliche Auswirkungen der Klimakrise und Kommunikation mit Patient*innen. Ärztliche Psychotherapie, 2022, 17, 10-15.	0.1	0
951	Classic and exertional heatstroke. Nature Reviews Disease Primers, 2022, 8, 8.	18.1	128
953	Heat, Mortality, and Health. International Handbooks of Population, 2022, , 283-299.	0.2	3
954	Projected Changes in Socioeconomic Exposure to Heatwaves in South Asia Under Changing Climate. Earth's Future, 2022, 10, .	2.4	65
955	Using adaptive strategies of natural ventilation with tolerances applied to the upper limit to improve social dwellings' thermal comfort in current and future scenarios. Science and Technology for the Built Environment, 2022, 28, 527-546.	0.8	3
956	Rising risks of compound extreme heatâ€precipitation events in China. International Journal of Climatology, 2022, 42, 5785-5795.	1.5	41
957	Planning for Extreme Heat. Journal of the American Planning Association, 2022, 88, 319-334.	0.9	33
959	Smart and Sustainable Technology for Resilient Cities and Communities—An Overview. Advances in Sustainability Science and Technology, 2022, , 1-7.	0.4	1
960	Influences of the boreal winter Arctic Oscillation on the peak-summer compound heat waves over the Yangtze–Huaihe River basin: the North Atlantic capacitor effect. Climate Dynamics, 2022, 59, 2331-2343.	1.7	15
961	Effects of a school-network intervention using Reduce, Reuse and Recycle in Thailand. Health Education Journal, 2022, 81, 363-371.	0.6	0

#	Article	IF	CITATIONS
962	Extreme Heat and Pregnancy Outcomes: A Scoping Review of the Epidemiological Evidence. International Journal of Environmental Research and Public Health, 2022, 19, 2412.	1.2	28
963	The Malay-Version Knowledge, Risk Perception, Attitude and Practice Questionnaire on Heatwaves: Development and Construct Validation. International Journal of Environmental Research and Public Health, 2022, 19, 2279.	1.2	4
964	Severe heat stress modulated nuclear factor erythroid 2-related factor 2 and macrophage migration inhibitory factor pathway in rat liver. Journal of Cell Communication and Signaling, 2022, 16, 547-566.	1.8	2
965	High-resolution spatiotemporal variability of heat wave impacts quantified by thermal indices. Theoretical and Applied Climatology, 2022, 148, 1181-1198.	1.3	7
966	The Use of Horizontal Shading Devices to Alleviate Overheating in Residential Buildings in the Severe Cold Region and Cold Region of China. Buildings, 2022, 12, 408.	1.4	6
967	A Review of the Effects of Climate Extremes on Agriculture Production. , 2022, , 198-219.		0
968	The 2022 On-site Padua Days on Muscle and Mobility Medicine hosts the University of Florida Institute of Myology and the Wellstone Center, March 30 - April 3, 2022 at the University of Padua and Thermae of Euganean Hills, Padua, Italy: The collection of abstracts. European Journal of Translational Myology, 2022, 32, .	0.8	12
969	Extreme Hot Weather Has Stronger Impacts on Avian Reproduction in Forests Than in Cities. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	6
971	Mapping Heat-Health Vulnerability Based on Remote Sensing: A Case Study in Karachi. Remote Sensing, 2022, 14, 1590.	1.8	8
972	Estimating excess mortality due to the COVID-19 pandemic: a systematic analysis of COVID-19-related mortality, 2020–21. Lancet, The, 2022, 399, 1513-1536.	6.3	938
973	Effect of Drought Stress on Potato Production: A Review. Agronomy, 2022, 12, 635.	1.3	44
975	Moving from adaptation capacities to implementing adaptation to extreme heat events in urban areas of the European Union: Introducing the U-ADAPT! research approach. Journal of Environmental Management, 2022, 310, 114773.	3.8	15
976	Heat vulnerability caused by physical and social conditions in a mountainous megacity of Chongqing, China. Sustainable Cities and Society, 2022, 80, 103792.	5.1	21
977	The application of the physiologically equivalent temperature to determine impacts of locally defined extreme heat events within vulnerable dwellings during the 2020 summer in Ankara. Sustainable Cities and Society, 2022, 81, 103833.	5.1	7
978	Effect on the health of newborns caused by extreme temperature in Guangzhou. Journal of Environmental Management, 2022, 311, 114842.	3.8	7
979	Expanding urban green space with superblocks. Land Use Policy, 2022, 117, 106111.	2.5	5
980	Nature-Based Citizen Science as a Mechanism to Improve Human Health in Urban Areas. International Journal of Environmental Research and Public Health, 2022, 19, 68.	1.2	4
981	Cardiovascular Health Peaks and Meteorological Conditions: A Quantile Regression Approach. International Journal of Environmental Research and Public Health, 2021, 18, 13277.	1.2	4

#	Article	IF	CITATIONS
982	Comparative study of multiple heat indices in revisiting summer heat across China based on meteorological observations. Progress in Physical Geography, 2022, 46, 291-309.	1.4	1
983	Atmospheric blocking and weather extremes over the Euro-Atlantic sector – a review. Weather and Climate Dynamics, 2022, 3, 305-336.	1.2	79
984	Aging Hearts in a Hotter, More Turbulent World: The Impacts of Climate Change on the Cardiovascular Health of Older Adults. Current Cardiology Reports, 2022, 24, 749-760.	1.3	9
985	Seasonal forecast of the percentage of days with extreme temperatures in central-northern Argentina: An operational statistical approach. Climate Services, 2022, 26, 100293.	1.0	3
986	Climate change, trauma and mental health in Italy: a scoping review. European Journal of Psychotraumatology, 2022, 13, 1-16.	0.9	10
987	Comparison of Relative and Absolute Heatwaves in Eastern China: Observations, Simulations and Future Projections. Atmosphere, 2022, 13, 649.	1.0	3
988	Parks Under Stress: Air Temperature Regulation of Urban Green Spaces Under Conditions of Drought and Summer Heat. Frontiers in Environmental Science, 2022, 10, .	1.5	16
989	The Impact of High Ambient Temperature on Human Sperm Parameters: A Meta-Analysis. Iranian Journal of Public Health, 0, , .	0.3	5
996	Outdoor air quality and human health: An overview of reviews of observational studies. Environmental Pollution, 2022, 306, 119309.	3.7	14
997	Climate change and its impacts on health, environment and economy. , 2022, , 253-279.		3
999	Changes in the risk of extreme temperatures in megacities worldwide. Climate Risk Management, 2022, 36, 100433.	1.6	10
1000	Temporal Temperature Variation in Urban Gardens Is Mediated by Local and Landscape Land Cover and Is Linked to Environmental Justice. Frontiers in Sustainable Food Systems, 2022, 6, .	1.8	4
1001	Changes in Weather-Related Fatalities in the Czech Republic during the 1961–2020 Period. Atmosphere, 2022, 13, 688.	1.0	4
1002	Integrating attribution with adaptation for unprecedented future heatwaves. Climatic Change, 2022, 172, 1.	1.7	7
1003	Bucking the trend: Population resilience in a marginal environment. PLoS ONE, 2022, 17, e0266680.	1.1	2
1004	Trends, intensification, attribution and uncertainty of projected heatwaves in India. International Journal of Climatology, 2022, 42, 7563-7582.	1.5	1
1005	Mortality risk during heat waves in the summer 2013-2014 in 18 provinces of Argentina: Ecological study. Ciencia E Saude Coletiva, 2022, 27, 2071-2086.	0.1	5
1006	Quantifying potential contributions of green facades to environmental justice: a case study of a quarter in Berlin. Urban Ecosystems, 0, , .	1.1	1

ARTICLE IF CITATIONS Increasing urban and rural population exposures to warmâ€season concurrent hot days and nights on 1007 1.5 2 the North China Plain. International Journal of Climatology, 2022, 42, 7938-7950. A method for improving the estimation of extreme air temperature by satellite. Science of the Total Environment, 2022, 837, 155887. Identifying sensitive population associated with summer extreme heat in Beijing. Sustainable Cities and 1009 9 5.1Society, 2022, 83, 103925. Exposures to psycholeptics, psychoanaleptics, and cardiovascular drugs reported to the PIC erfurt during heat waves from 2003 to 2018. Journal of Environmental Science and Health - Part A 0.9 Toxic/Hazardous Substances and Environmental Engineering, 2022, , 1-6. Future projections of heatwave characteristics and dynamics over India using a high-resolution 1011 1.7 4 regional earth system model. Climate Dynamics, 2023, 60, 127-145. The role of atmospheric dynamics and largeâ€scale topography in driving heatwaves. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 2344-2367. 1.0 Global near realâ€time daily apparent temperature and heat wave dataset. Geoscience Data Journal, 2023, 1013 1.8 1 10, 231-245. The burden of injury in Central, Eastern, and Western European sub-region: a systematic analysis from 1014 1.0 9 the Clobal Burden of Disease 2019 Study. Archives of Public Health, 2022, 80, 142. Do high energy-efficient buildings increase overheating risk in cold climates? Causes and mitigation 1016 3.0 23 measures required under recent and future climates. Building and Environment, 2022, 219, 109230. Fine structure analysis of urban heat island of a central city in low-latitude plateau of China. Urban 2.4 Climate, 2022, 44, 101186. The macroeconomic effects of temperature shocks in Europe. SSRN Electronic Journal, 0, , . 1019 0.4 1 Influence of Future Climate on Building Performance and the Related Adaptive Solution to New Building Design., 2022, , 2867-2924. Theoretical fragility curvesÂâ[^]ÂA novel approach to assess heat vulnerability of residential buildings. 1021 5.1 6 Sustainable Cities and Society, 2022, 83, 103969. Investigating the potential for cool roofs to mitigate urban heat in the Kansas City metropolitan area. 1.7 Climate Dynamics, 2023, 60, 461-475. 1027 Global Warming, Renal Function and Heart Failure Over 20 Years. SSRN Electronic Journal, 0, , . 0.4 0 An Analytic Hierarchy Process for urban heat stress mitigation., 2022,,. 1028 An Analytic Hierarchy Process for urban heat stress mitigation., 2022, , . 1029 1 Climate change and cardiovascular disease: implications for global health. Nature Reviews 6.1 Cardiology, 2022, 19, 798-812.

#	Article	IF	CITATIONS
1031	The emergence of prolonged deadly humid heatwaves. International Journal of Climatology, 2022, 42, 8607-8618.	1.5	2
1033	Linking Landscape Spatial Heterogeneity to Urban Heart Island and Outdoor Human Thermal Comfort in Tokyo: Application of the Outdoor Thermal Comfort Index. SSRN Electronic Journal, 0, , .	0.4	0
1034	Global Land-Use Development Trends: Traditional Cultural Landscapes Under Threat. Landscape Series, 2022, , 129-199.	0.1	2
1035	The March 2012 Heat Wave in Northeast America as a Possible Effect of Strong Solar Activity and Unusual Space Plasma Interactions. Atmosphere, 2022, 13, 926.	1.0	4
1038	A flexible extended generalized Pareto distribution forÂtail estimation. Environmetrics, 2022, 33, .	0.6	5
1039	North Eurasian thermal comfort indices dataset (NETCID): new gridded database for the biometeorological studies. Environmental Research Letters, 2022, 17, 085006.	2.2	2
1040	Introduction to the Special Issue on Earth's Climate and Weather: Dominant Variability and Disastrous Extremes. Atmosphere - Ocean, 2022, 60, 141-148.	0.6	1
1041	Accelerated western European heatwave trends linked to more-persistent double jets over Eurasia. Nature Communications, 2022, 13, .	5.8	132
1042	Webâ€Based Data to Quantify Meteorological and Geographical Effects on Heat Stroke: Case Study in China. GeoHealth, 2022, 6, .	1.9	3
1043	New developments and future challenges in reducing and controlling heat island effect in urban areas. Environment, Development and Sustainability, 2023, 25, 10485-10531.	2.7	12
1044	Sociodemographic Factors Associated with Heatwave Risk Perception in the United States. Weather, Climate, and Society, 2022, 14, 1119-1131.	0.5	2
1045	Towards a more comprehensive assessment of the intensity of historical European heat waves (1979–2019). Atmospheric Science Letters, 2022, 23, .	0.8	10
1046	Heat-health action planning in the WHO European Region: Status and policy implications. Environmental Research, 2022, 214, 113709.	3.7	10
1047	Análisis de sinergias entre Isla de Calor Urbana y Olas de Calor mediante imágenes Sentinel 3 sobre la ciudad de Granada. Revista De Teledeteccion, 2022, , 1-15.	0.6	1
1048	Health Risk Assessment and Influencing Factors Analysis of High Temperatures on Negative Emotions. Buildings, 2022, 12, 1040.	1.4	3
1049	Monitoring Heat Extremes across Central Europe Using Land Surface Temperature Data Records from SEVIRI/MSG. Remote Sensing, 2022, 14, 3470.	1.8	8
1050	Mesoscale patterns associated with two distinct heatwave events in coastal Santa Barbara, California, and their impact on local fire risk conditions. Weather and Climate Extremes, 2022, 37, 100482.	1.6	5
1051	Urban Air Pollution, Urban Heat Island and Human Health: A Review of the Literature. Sustainability, 2022, 14, 9234.	1.6	57

#	Article	IF	CITATIONS
1052	Temporal Analysis of Heat Waves and Cold Waves for Samsun Province. Doğal Afetler Ve Çevre Dergisi, 0, , 359-367.	0.2	0
1053	Identifying Causes of Short-Range Forecast Errors in Maximum Temperature during Recent Central European Heatwaves Using the ECMWF-IFS Ensemble. Weather and Forecasting, 2022, 37, 1885-1902.	0.5	1
1054	Present and future European heat wave magnitudes: climatologies, trends, and their associated uncertainties in GCM-RCM model chains. Earth System Dynamics, 2022, 13, 1197-1214.	2.7	7
1055	Towards improved understanding of cascading and interconnected risks from concurrent weather extremes: Analysis of historical heat and drought extreme events. , 2022, 1, e0000057.		9
1056	Weather Extremes Led to Large Variability in O3 Pollution and Associated Premature Deaths in East of China. Frontiers in Earth Science, 0, 10, .	0.8	0
1058	Climate change, healthy ageing and the health crisis: is wisdom the link?. Experimental Physiology, 2022, 107, 1209-1211.	0.9	2
1059	Impact of climate change on nearly zero-energy dwelling in temperate climate: Time-integrated discomfort, HVAC energy performance, and GHG emissions. Building and Environment, 2022, 223, 109397.	3.0	27
1060	A method of predicting the dynamic thermal sensation under varying outdoor heat stress conditions in summer. Building and Environment, 2022, 223, 109454.	3.0	15
1061	Global warming, renal function and heart failure over 20Âyears. International Journal of Cardiology, 2022, 365, 100-105.	0.8	1
1062	Identifying the dominant impact factors and their contributions to heatwave events over mainland China. Science of the Total Environment, 2022, 848, 157527.	3.9	14
1063	Realistic representation of city street-level human thermal stress via a new urban climate-human coupling system. Renewable and Sustainable Energy Reviews, 2022, 169, 112919.	8.2	3
1064	Overheating of residential buildings in the severe cold and cold regions of China: The gap between building policy and performance. Building and Environment, 2022, 225, 109601.	3.0	11
1065	Hotspots, co-occurrence, and shifts of compound and cascading extreme climate events in Eurasian drylands. Environment International, 2022, 169, 107509.	4.8	8
1066	Extreme temperature trend and return period mapping in a changing climate in Upper Tekeze river basin, Northern Ethiopia. Physics and Chemistry of the Earth, 2022, 128, 103234.	1.2	1
1067	A Roadmap for European Union's Urban Adaptation to Extreme Heat Events: The U-Adapt! Framework. SSRN Electronic Journal, 0, , .	0.4	0
1068	Learning from the past in moving to the future: Invest in communication and response to weather early warnings to reduce death and damage. Climate Risk Management, 2022, 38, 100461.	1.6	6
1069	Urban Overheating and the Impact on Health in Melbourne. Advances in Sustainability Science and Technology, 2022, , 233-248.	0.4	0
1070	Analysis of Public Awareness, Health Risks, and Coping Strategies Against Heat Waves in NCT of Delhi, India. Springer Natural Hazards, 2022, , 299-324.	0.1	0

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1071	Heat and Mental Health in Cities. Advances in Sustainability Science and Technology, 202	2, , 81-107.	0.4	0
1072	Meteorological Hazards. , 2022, , 97-136.			0
1073	The Effects of Extreme Temperature Heat Spells on Financial Performance. SSRN Electroni	ic Journal, 0, ,	0.4	1
1074	Climatologia das Ondas de Calor Registradas no Estado do Pará, Brasil. Revista Brasileira Fisica, 2022, 15, 2525-2543.	De Geografia	0.0	0
1075	Diagnostic Significance of Combined Calcitoninogen, Platelet, and D-Dimer Assay in Sever with Clinical Data Analysis of 70 Patients with Severe Heatstroke. Therapeutic Hypotherm Temperature Management, 0, , .	re Heatstroke: iia and	0.3	0
1076	Integrating Copernicus land cover data into the i-Tree Cool Air model to evaluate and map mitigation by tree cover. European Journal of Remote Sensing, 2023, 56, .) urban heat	1.7	3
1077	Environmental Psychology. Sustainable Development Goals Series, 2023, , 127-149.		0.2	0
1078	Impact of Extreme Heatwaves on Population Exposure in China Due to Additional Warmir Sustainability, 2022, 14, 11458.	ıg.	1.6	4
1079	Spatiotemporal Analysis of Urban Thermal Effects Caused by Heat Waves through Remote Sustainability, 2022, 14, 12262.	e Sensing.	1.6	5
1080	ROS/JNK-mediated lysosomal injury in rat intestinal epithelial-6 cells during heat stress. Jou Thermal Biology, 2022, 109, 103326.	urnal of	1.1	7
1081	The influence of heat and cold waves on mortality in Russian subarctic cities with varying International Journal of Biometeorology, 2022, 66, 2501-2515.	climates.	1.3	8
1082	Wintertime outdoor thermal sensations and comfort in cold-humid environments of Chor China. Sustainable Cities and Society, 2022, 87, 104203.	ngqing	5.1	16
1083	Heat-prone neighbourhood typologies of European cities with temperate climate. Sustain and Society, 2022, 87, 104174.	able Cities	5.1	7
1084	Mega Risks and Urban Health System: Investment in Life. , 2022, , 171-198.			0
1085	Planetary Health – Gesundheit und Krankheit im Kontext von Klima und Umwelt. The Sp Reference Pflegerapie, Gesundheit, 2022, , 929-940.	pringer	0.2	0
1086	Enlarging the Human Climate Niche: Integrating Urban Heat Island in Urban Planning Inter Urban Planning, 2022, 7, .	rventions.	0.7	1
1087	The Impact of Urban Warming on the Mortality of Vulnerable Populations in Seoul. Sustai 2022, 14, 13452.	nability,	1.6	4
1088	A mathematical model for the energy stored in green roofs. Applied Mathematical Modelli	ing, 2022, , .	2.2	1

#	Article	IF	CITATIONS
1089	It's getting hot in here: heat stroke in children and young people for paediatric clinicians. Paediatrics and Child Health (United Kingdom), 2022, , .	0.2	0
1090	Downscaling ensemble climate projections to urban scale: Brussels's future climate at 1.5°C, 2°C, and 3°C global warming. Urban Climate, 2022, 46, 101319.	2.4	5
1091	Mapping daytime thermal patterns of Bologna municipality (Italy) during a heatwave: A new methodology for cities adaptation to global climate change. Urban Climate, 2022, 46, 101317.	2.4	6
1092	Climate change and human health in the Eastern Mediterranean and Middle East: Literature review, research priorities and policy suggestions. Environmental Research, 2023, 216, 114537.	3.7	26
1093	Geospatial assessment of early summer heatwaves, droughts, and their relationship with vegetation and soil moisture in the arid region of Southern Punjab, Pakistan. Journal of Water and Climate Change, 2022, 13, 4105-4129.	1.2	4
1094	Modification of temperature-related human mortality by area-level socioeconomic and demographic characteristics in Latin American cities. Social Science and Medicine, 2023, 317, 115526.	1.8	3
1095	The 2021 European Heat Wave in the Context of Past Major Heat Waves. Earth and Space Science, 2022, 9, .	1.1	18
1096	Assessment of walkability and walkable routes of a 15-min city for heat adaptation: Development of a dynamic attenuation model of heat stress. Frontiers in Public Health, 0, 10, .	1.3	7
1097	Subseasonal predictability of onset, duration, and intensity of European heat extremes. Quarterly Journal of the Royal Meteorological Society, 2023, 149, 84-101.	1.0	2
1098	A ~700 years perspective on the 21st century drying in the eastern part of Europe based on δ18O in tree ring cellulose. Communications Earth & Environment, 2022, 3, .	2.6	11
1099	Model projections of increased severity of heat waves in Eastern Europe. Geophysical Research Letters, 0, , .	1.5	0
1100	An analysis of past and future heatwaves based on a heat-associated mortality threshold: towards a heat health warning system. Environmental Health, 2022, 21, .	1.7	6
1101	Extreme Heat Governance: A Critical Analysis of Heat Action Plans in California. American Journal of Public Health, 2023, 113, 15-19.	1.5	2
1102	Heat exposure and cardiorespiratory health. , 2023, , 133-154.		0
1103	Synergies and exacerbationsâ \in "effects of warmer weather and climate change. , 2023, , 73-121.		0
1104	City-Heat Equity Adaptation Tool (City-HEAT): Multi-objective optimization of environmental modifications and human heat exposure reductions for urban heat adaptation under uncertainty. Environmental Modelling and Software, 2023, 160, 105607.	1.9	0
1105	Dependence of compound hot and dry extremes on individual ones across China during 1961–2014. Atmospheric Research, 2023, 283, 106553.	1.8	6
1106	Climate Change: What Can Doctors Do?. European Medical Journal (Chelmsford, England), 0, , 12-14.	3.0	Ο

#	Article	IF	CITATIONS
1107	Elaboration and Characterization of Thermal Insulating Material Based on the Synergy of Natural Coconut Husk and Disposable Diaper Pads Fibers. International Journal of Engineering and Technologies, 0, 17, 21-32.	0.0	1
1108	Heat Waves Amplify the Urban Canopy Heat Island in Brno, Czechia. Meteorology, 2022, 1, 477-494.	0.6	1
1109	The Impact of Extreme Temperature Shocks on the Health Status of the Elderly in China. International Journal of Environmental Research and Public Health, 2022, 19, 15729.	1.2	2
1110	Are Wildfires in the Wildland-Urban Interface Increasing Temperatures? A Land Surface Temperature Assessment in a Semi-Arid Mexican City. Land, 2022, 11, 2105.	1.2	2
1111	Better Forests, Better Cities. , 0, , .		5
1112	Urban Heat Island Phenomenon in Tropical Countries: Analysis of the Wake Flow Behind Slender High-Rise Building. Lecture Notes in Energy, 2023, , 273-288.	0.2	0
1113	Extreme Heat and Adverse Cardiovascular Outcomes in Australia and New Zealand: What Do We Know?. Heart Lung and Circulation, 2023, 32, 43-51.	0.2	6
1114	A Step to Develop Heat-Health Action Plan: Assessing Heat Waves' Impacts on Mortality. Atmosphere, 2022, 13, 2126.	1.0	6
1115	Research Priorities for Climate Litigation. Earth's Future, 0, , .	2.4	1
1116	The Impact of Heatwaves on Mortality and Morbidity and the Associated Vulnerability Factors: A Systematic Review. International Journal of Environmental Research and Public Health, 2022, 19, 16356.	1.2	19
1117	Yonmenkaigi System Method as an Educational Framework for Climate Change Within the United Kingdom: A Pilot Study. Disaster and Risk Research: GADRI Book Series, 2023, , 217-237.	0.1	0
1119	Drivers and Mechanisms of the 2021 Pacific Northwest Heatwave. Earth's Future, 2022, 10, .	2.4	20
1120	The heat wave knowledge, awareness, practice and behavior scale: Scale development, validation and reliability. PLoS ONE, 2022, 17, e0279259.	1.1	2
1122	Multifaceted characteristics of summer heat and affected population across China under climate change. Climate Dynamics, 2023, 61, 2173-2187.	1.7	2
1123	Geospatial Approach in Watershed Vulnerability to Climate Change and Environmental Sustainability. Springer Climate, 2022, , 271-310.	0.3	0
1124	The Climate Emergency and the Built Environment. , 2022, , 1-27.		0
1125	Public Health Preparedness for Extreme Heat Events. Annual Review of Public Health, 2023, 44, 301-321.	7.6	4
1126	Responses to heat waves: what can Twitter data tell us?. Natural Hazards, 2023, 116, 3547-3564.	1.6	2

-			_		
CIT		ON	DE	DO	DT
	AL		IVE	РU	IK I

#	Article	IF	CITATIONS
1127	Analysis of time-dependent effects of ambient temperatures on health by vulnerable groups in Korea in 1999–2018. Scientific Reports, 2023, 13, .	1.6	2
1128	Changing behavioral responses to heat risk in a warming world: How can communication approaches be improved?. Wiley Interdisciplinary Reviews: Climate Change, 2023, 14, .	3.6	1
1129	Operational attribution of weather and climate extremes: what next?. , 2023, 2, 013001.		3
1130	ESMUST: EnergyPlus-driven surrogate model for urban surface temperature prediction. Building and Environment, 2023, 229, 109935.	3.0	4
1131	The environmental pollution's influence on public health: general principles and case studies. , 2023, , 77-100.		0
1132	Inter-seasonal connection of typical European heatwave patterns to soil moisture. Npj Climate and Atmospheric Science, 2023, 6, .	2.6	6
1133	Application of Remote Sensing and GIS in Drought and Flood Assessment and Monitoring. Water (Switzerland), 2023, 15, 541.	1.2	1
1134	A prehospital risk assessment tool predicts clinical outcomes in hospitalized patients with heat-related illness: a Japanese nationwide prospective observational study. Scientific Reports, 2023, 13, .	1.6	2
1135	Domestic overheating risks and mitigation strategies: The state-of-the-art and directions for future research. Indoor and Built Environment, 2023, 32, 1057-1077.	1.5	4
1136	Mortality Risk Related to Heatwaves in Dezful City, Southwest of Iran. Environmental Health Insights, 2023, 17, 117863022311515.	0.6	0
1137	European heatwaves: Link to largeâ€scale circulation patterns and intraseasonal drivers. International Journal of Climatology, 2023, 43, 3189-3209.	1.5	3
1138	Whole genome transcriptomic reveals heat stroke molecular signatures in humans. Journal of Physiology, 2023, 601, 2407-2423.	1.3	6
1139	Characterization of temperature regimes in Western Europe, as regards the summer 2022 Western European heat wave. Climate Dynamics, 2023, 61, 3707-3720.	1.7	3
1140	Quantifying urban heat exposure at fine scale - modeling outdoor and indoor temperatures using citizen science and VHR remote sensing. Urban Climate, 2023, 49, 101522.	2.4	3
1141	Effects of heatwave features on machine-learning-based heat-related ambulance calls prediction models in Japan. Science of the Total Environment, 2023, 873, 162283.	3.9	1
1142	Projecting the excess mortality due to heatwave and its characteristics under climate change, population and adaptation scenarios. International Journal of Hygiene and Environmental Health, 2023, 250, 114157.	2.1	4
1143	Influence of environmental temperature and heatwaves on surgical site infection after hip and knee arthroplasty: a nationwide study. Journal of Hospital Infection, 2023, 135, 125-131.	1.4	0
1144	Promoting self-determination, minimizing green gentrification, and maximizing community benefits in urban forestry expansion: A systematic review. Urban Forestry and Urban Greening, 2023, 84, 127933.	2.3	1

#	ARTICLE	IF	CITATIONS
1145	Climate change mitigation with clean energy: a case study on the potential of solar photovoltaic power plants in eastern Iran. Arabian Journal of Geosciences, 2023, 16, .	0.6	0
1146	Cardiovascular mortality risks during the 2017 exceptional heatwaves in China. Environment International, 2023, 172, 107767.	4.8	7
1147	Exploring the of Establishment of an Urban Forest in Phuthaditjhaba to Create a More Sustainable Future Urban Environment. Sustainable Development Goals Series, 2023, , 153-169.	0.2	2
1148	More frequent, persistent, and deadly heat waves in the 21st century over the Eastern Mediterranean. Science of the Total Environment, 2023, 870, 161883.	3.9	16
1149	Analysing the Impact of Carbon Emissions and Non-Renewable Energy Use on Infant and Under-5 Mortality Rates in Europe: New Evidence Using Panel Quantile Regression. Environmental Modeling and Assessment, 2023, 28, 389-403.	1.2	5
1150	Global warming and heat wave risks for cardiovascular diseases: A position paper from the Portuguese Society of Cardiology. Revista Portuguesa De Cardiologia, 2023, , .	0.2	1
1151	The unprecedented Pacific Northwest heatwave of June 2021. Nature Communications, 2023, 14, .	5.8	70
1152	Predicting indoor air temperature and thermal comfort in occupational settings using weather forecasts, indoor sensors, and artificial neural networks. Building and Environment, 2023, 234, 110077.	3.0	7
1153	Estimation of the number of heat illness patients in eight metropolitan prefectures of Japan: Correlation with ambient temperature and computed thermophysiological responses. Frontiers in Public Health, 0, 11, .	1.3	1
1154	Factors influencing vulnerability to climate change-related health impacts in cities – A conceptual framework. Environment International, 2023, 173, 107837.	4.8	3
1155	Experimental and numerical investigation of using waste glass aggregates in asphalt pavement to mitigate urban heat islands. Clean Technologies and Environmental Policy, 2023, 25, 1935-1948.	2.1	6
1156	The contribution of demographic changes to future heat-related health burdens under climate change scenarios. Environment International, 2023, 173, 107836.	4.8	4
1157	Regional coupled and decoupled day–night compound hot extremes over the mid–lower reaches of the Yangtze River: characteristics and mechanisms. Climate Dynamics, 2023, 61, 2853-2864.	1.7	0
1158	Influence of built environment on outdoor thermal comfort: A comparative study of new and old urban blocks in Guangzhou. Building and Environment, 2023, 234, 110133.	3.0	17
1159	Influence of rooftop mitigation strategies on the thermal environment in a subtropical city. Urban Climate, 2023, 49, 101450.	2.4	4
1162	Boreal Summer Extratropical Intraseasonal Waves over the Eurasian Continent and Real-Time Monitoring Metrics. Journal of Climate, 2023, 36, 3971-3991.	1.2	5
1163	Identification and Analysis of Heatwave Events Considering Temporal Continuity and Spatial Dynamics. Remote Sensing, 2023, 15, 1369.	1.8	3
1164	Ten questions concerning residential overheating in Central and Northern Europe. Building and Environment, 2023, 234, 110154.	3.0	10

#	Article	IF	CITATIONS
1165	Using early extremes to place the 2022 UK heat waves into historical context. Atmospheric Science Letters, 2023, 24, .	0.8	7
1166	Hospital admission tendencies caused by day-to-day temperature changes during summer: a case study for the city of Novi Sad (Serbia). International Journal of Biometeorology, 2023, 67, 695-704.	1.3	1
1167	Acute and chronic impacts of heat stress on planetary health. Allergy: European Journal of Allergy and Clinical Immunology, 2023, 78, 2109-2120.	2.7	4
1168	Characteristics of Heat Waves in Mainland China since 1961 Based on Absolute and Relative Methods. Atmosphere, 2023, 14, 544.	1.0	1
1170	Chronic Diseases Associated With Mortality in British Columbia, Canada During the 2021 Western North America Extreme Heat Event. GeoHealth, 2023, 7, .	1.9	8
1171	Tropical influences on European summer climate variability. Environmental Research Letters, 2023, 18, 044034.	2.2	0
1172	Localizing and prioritizing roof greening opportunities for urban heat island mitigation: insights from the city of Krefeld, Germany. Landscape Ecology, 2023, 38, 1697-1712.	1.9	2
1173	Current <scp>AMO</scp> mitigating extreme high temperatures in Central Asia under global warming. International Journal of Climatology, 2023, 43, 3947-3962.	1.5	0
1174	Government is expected to lead the payment of heat-resilient infrastructure. IScience, 2023, 26, 106566.	1.9	2
1175	Quantification of heat vulnerability using system dynamics. Frontiers in Built Environment, 0, 9, .	1.2	0
1176	Establishing a baseline for thermal stress conditions – A high-resolution radiative perspective. Urban Climate, 2023, 49, 101523.	2.4	3
1177	Quantifying the Scale Effect of the Relationship between Land Surface Temperature and Landscape Pattern. Remote Sensing, 2023, 15, 2131.	1.8	0
1178	Pretermâ€born individuals: a vulnerable population at risk of cardiovascular morbidity and mortality during thermal extremes?. Experimental Physiology, 2023, 108, 1011-1025.	0.9	2
1210	Mitigation and Adaptation for Climate Change: The Role of BioCities and Nature-Based Solutions. Future City, 2023, , 109-130.	0.2	1
1214	Urban Heat Island Intensity Prediction in the Context of Heat Waves: An Evaluation of Model Performance. , 0, , .		0
1221	Climate Change and Health in the Tropics: Current Status and Future Trends. , 2024, , 33-42.		0
1255	Comfortable urban environment: Definition and term concept. AIP Conference Proceedings, 2023, , .	0.3	0
1265	Climate change and urban forests. , 2024, , 243-264.		0

#	Article	IF	CITATIONS
1282	Greenprinting: Urban Planning for Ecosystem Services. , 2023, , 317-331.		0
1283	Improved Air Quality and Other Services from Urban Trees and Forests. , 2023, , 215-245.		0
1291	Long-Term Forecast of Heatdays and Heatwaves Incidents in Temperate Continental Climate Zone of China. Mechanisms and Machine Science, 2024, , 327-343.	0.3	0
1301	Hitzeerkrankungen. , 2024, , 433-449.		0
1304	An Era to Address Climate Change for Urban Resilience. Advances in Science, Technology and Innovation, 2023, , 3-7.	0.2	0
1310	Climate change and human health: Primary, secondary, and tertiary effects. , 2024, , 213-240.		0
1326	Klimawandel und Gesundheit. , 2023, , 171-189.		0
1327	Die klimaresiliente Gesellschaft–ÂTransformation und SystemÃ ¤ derungen. , 2023, , 461-473.		0
1328	Klimawandel und Extremereignisse: Temperatur inklusive Hitzewellen. , 2023, , 61-72.		0