Real-Time Visualization of Dynamin-Catalyzed Membra

Cell 135, 1263-1275 DOI: 10.1016/j.cell.2008.11.020

Citation Report

#	Article	IF	CITATIONS
1	GTPase Cycle of Dynamin Is Coupled to Membrane Squeeze and Release, Leading to Spontaneous Fission. Cell, 2008, 135, 1276-1286.	13.5	269
2	Cargo and Dynamin Regulate Clathrin-Coated Pit Maturation. PLoS Biology, 2009, 7, e1000057.	2.6	357
3	Hypoxia Transiently Sequesters Mps1 and Polo to Collagenase-Sensitive Filaments in Drosophila Prometaphase Oocytes. PLoS ONE, 2009, 4, e7544.	1.1	8
4	Conserved Functions of Membrane Active GTPases in Coated Vesicle Formation. Science, 2009, 325, 1217-1220.	6.0	160
5	An Intramolecular Signaling Element that Modulates Dynamin Function In Vitro and In Vivo. Molecular Biology of the Cell, 2009, 20, 3561-3571.	0.9	76
6	Membrane Insertion of the Pleckstrin Homology Domain Variable Loop 1 Is Critical for Dynamin-catalyzed Vesicle Scission. Molecular Biology of the Cell, 2009, 20, 4630-4639.	0.9	94
7	Dynamin2 GTPase and Cortactin Remodel Actin Filaments. Journal of Biological Chemistry, 2009, 284, 23995-24005.	1.6	94
8	The Mechanochemistry of Endocytosis. PLoS Biology, 2009, 7, e1000204.	2.6	197
9	Computational Model of Membrane Fission Catalyzed by ESCRT-III. PLoS Computational Biology, 2009, 5, e1000575.	1.5	141
10	Overexpressing Temperature-Sensitive Dynamin Decelerates Phototransduction and Bundles Microtubules in Drosophila Photoreceptors. Journal of Neuroscience, 2009, 29, 14199-14210.	1.7	34
11	Constricting membranes at the nano and micro scale. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20559-20560.	3.3	3
12	Endocytic Accessory Proteins Are Functionally Distinguished by Their Differential Effects on the Maturation of Clathrin-coated Pits. Molecular Biology of the Cell, 2009, 20, 3251-3260.	0.9	115
13	Mechanistic Analysis of a Dynamin Effector. Science, 2009, 325, 874-877.	6.0	120
14	Domain-Driven Morphogenesis of Cellular Membranes. Current Biology, 2009, 19, R772-R780.	1.8	33
15	Mechanical requirements for membrane fission: Common facts from various examples. FEBS Letters, 2009, 583, 3839-3846.	1.3	53
16	On vesicle formation and tethering in the ER–Golgi shuttle. Current Opinion in Cell Biology, 2009, 21, 531-536.	2.6	51
17	AMPH-1/Amphiphysin/Bin1 functions with RME-1/Ehd1 in endocytic recycling. Nature Cell Biology, 2009, 11, 1399-1410.	4.6	174
20	Biology under construction: in vitro reconstitution of cellular function. Nature Reviews Molecular Cell Biology, 2009, 10, 644-650.	16.1	194

#	Article	IF	Citations
21	Dynamins at a glance. Journal of Cell Science, 2009, 122, 3427-3431.	1.2	93
22	Opening the doors to cytochrome c: Changes in mitochondrial shape and apoptosis. International Journal of Biochemistry and Cell Biology, 2009, 41, 1875-1883.	1.2	82
23	A Class of Dynamin-like GTPases Involved in the Generation of the Tubular ER Network. Cell, 2009, 138, 549-561.	13.5	495
24	Structure of a Bacterial Dynamin-like Protein Lipid Tube Provides a Mechanism For Assembly and Membrane Curving. Cell, 2009, 139, 1342-1352.	13.5	163
25	The changing shape of mitochondrial apoptosis. Trends in Endocrinology and Metabolism, 2009, 20, 287-294.	3.1	116
26	Mechanisms Shaping the Membranes of Cellular Organelles. Annual Review of Cell and Developmental Biology, 2009, 25, 329-354.	4.0	368
27	Molecular mechanisms of clathrin-independent endocytosis. Journal of Cell Science, 2009, 122, 1713-1721.	1.2	251
28	Molecular mechanism of membrane constriction and tubulation mediated by the F-BAR protein Pacsin/Syndapin. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12700-12705.	3.3	186
29	Membrane-bending proteins. Critical Reviews in Biochemistry and Molecular Biology, 2009, 44, 278-291.	2.3	55
30	Signal Recognition Particle (SRP) and SRP Receptor: A New Paradigm for Multistate Regulatory GTPases. Biochemistry, 2009, 48, 6696-6704.	1.2	33
31	Dissecting dynamin's role in clathrin-mediated endocytosis. Biochemical Society Transactions, 2009, 37, 1022-1026.	1.6	169
33	Hijacking the endocytic machinery by microbial pathogens. Protoplasma, 2010, 244, 75-90.	1.0	22
34	Dynamin architecture—from monomer to polymer. Current Opinion in Structural Biology, 2010, 20, 791-798.	2.6	41
35	Protein-driven membrane stresses in fusion and fission. Trends in Biochemical Sciences, 2010, 35, 699-706.	3.7	197
36	Mechanochemical crosstalk during endocytic vesicle formation. Current Opinion in Cell Biology, 2010, 22, 36-43.	2.6	62
37	Molecules, mechanisms, and cellular roles of clathrin-independent endocytosis. Current Opinion in Cell Biology, 2010, 22, 519-527.	2.6	171
38	Modeling membrane shaping by proteins: Focus on EHD2 and Nâ€BAR domains. FEBS Letters, 2010, 584, 1830-1839.	1.3	57
39	Cooperative elastic stresses, the hydrophobic effect, and lipid tilt in membrane remodeling. FEBS Letters, 2010, 584, 1824-1829.	1.3	31

	CITATION	Report	
#	Article	IF	CITATIONS
40	Dynamin selfâ€assembly and the vesicle scission mechanism. BioEssays, 2010, 32, 1033-1039.	1.2	13
41	Stonins—Specialized Adaptors for Synaptic Vesicle Recycling and Beyond?. Traffic, 2010, 11, 8-15.	1.3	39
42	Divide et Impera: The Dictum of Peroxisomes. Traffic, 2010, 11, 175-184.	1.3	46
43	Endocytosis unplugged: multiple ways to enter the cell. Cell Research, 2010, 20, 256-275.	5.7	455
44	A Dyn2–CIN85 complex mediates degradative traffic of the EGFR by regulation of late endosomal budding. EMBO Journal, 2010, 29, 3039-3053.	3.5	48
45	G domain dimerization controls dynamin's assembly-stimulated GTPase activity. Nature, 2010, 465, 435-440.	13.7	264
46	Live-Cell Imaging in Caenorhabditis elegans Reveals the Distinct Roles of Dynamin Self-Assembly and Guanosine Triphosphate Hydrolysis in the Removal of Apoptotic Cells. Molecular Biology of the Cell, 2010, 21, 610-629.	0.9	26
47	Sar1 bends membranes into shape. Journal of Cell Biology, 2010, 190, 3-3.	2.3	2
48	Sar1 assembly regulates membrane constriction and ER export. Journal of Cell Biology, 2010, 190, 115-128.	2.3	75
49	Clathrin-mediated Endocytosis: A Universe of New Questions. Molecular Biology of the Cell, 2010, 21, 3818-3819.	0.9	12
51	The <i>Arabidopsis</i> Dynamin-Related Protein2 Family Is Essential for Gametophyte Development Â. Plant Cell, 2010, 22, 3218-3231.	3.1	88
52	Membrane curvature controls dynamin polymerization. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4141-4146.	3.3	262
53	Molecular basis for SH3 domain regulation of F-BAR–mediated membrane deformation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8213-8218.	3.3	138
54	Supported Bilayers with Excess Membrane Reservoir: A Template for Reconstituting Membrane Budding and Fission. Biophysical Journal, 2010, 99, 517-525.	0.2	53
55	Deformation of Dynamin Helices Damped by Membrane Friction. Biophysical Journal, 2010, 99, 3580-3588.	0.2	19
56	The Proline/Arginine-Rich Domain Is a Major Determinant of Dynamin Self-Activation. Biochemistry, 2010, 49, 10592-10594.	1.2	13
57	Physical aspects of COPI vesicle formation. Molecular Membrane Biology, 2010, 27, 428-442.	2.0	23
58	Induced Domain Formation in Endocytic Invagination, Lipid Sorting, and Scission. Cell, 2010, 142, 507-510.	13.5	70

#	Article	IF	Citations
59	SNX–BAR proteins in phosphoinositide-mediated, tubular-based endosomal sorting. Seminars in Cell and Developmental Biology, 2010, 21, 371-380.	2.3	150
60	Helical Crystallization of Soluble and Membrane Binding Proteins. Methods in Enzymology, 2010, 481, 45-62.	0.4	9
61	COPI Budding within the Golgi Stack. Cold Spring Harbor Perspectives in Biology, 2011, 3, a005231-a005231.	2.3	150
63	The crystal structure of dynamin. Nature, 2011, 477, 561-566.	13.7	241
64	Structure, Regulation, and Evolution of the Plastid Division Machinery. International Review of Cell and Molecular Biology, 2011, 291, 115-153.	1.6	48
65	Crystal structure of nucleotide-free dynamin. Nature, 2011, 477, 556-560.	13.7	277
66	Increased Expression of Wild-Type or a Centronuclear Myopathy Mutant of Dynamin 2 in Skeletal Muscle of Adult Mice Leads to Structural Defects and Muscle Weakness. American Journal of Pathology, 2011, 178, 2224-2235.	1.9	84
67	A Pseudoatomic Model of the Dynamin Polymer Identifies a Hydrolysis-Dependent Powerstroke. Cell, 2011, 147, 209-222.	13.5	189
68	Synaptojanin 1-Mediated PI(4,5)P2 Hydrolysis Is Modulated by Membrane Curvature and Facilitates Membrane Fission. Developmental Cell, 2011, 20, 206-218.	3.1	154
69	Thermodynamics and Mechanics of Membrane Curvature Generation and Sensing by Proteins and Lipids. Annual Review of Physical Chemistry, 2011, 62, 483-506.	4.8	336
70	Vesicle scission: Dynamin. Seminars in Cell and Developmental Biology, 2011, 22, 10-17.	2.3	50
71	Dynamin: Functional Design of a Membrane Fission Catalyst. Annual Review of Cell and Developmental Biology, 2011, 27, 79-105.	4.0	264
72	A bacterial dynaminâ€like protein mediating nucleotideâ€independent membrane fusion. Molecular Microbiology, 2011, 79, 1294-1304.	1.2	68
73	Imaging Single Endocytic Events Reveals Diversity in Clathrin, Dynamin and Vesicle Dynamics. Traffic, 2011, 12, 1394-1406.	1.3	26
74	Rapid and efficient clathrin-mediated endocytosis revealed in genome-edited mammalian cells. Nature Cell Biology, 2011, 13, 331-337.	4.6	233
75	Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nature Structural and Molecular Biology, 2011, 18, 20-26.	3.6	399
76	COPII and COPI Traffic at the ER-Golgi Interface. Physiology, 2011, 26, 348-364.	1.6	106
77	The immunity-related GTPases in mammals: a fast-evolving cell-autonomous resistance system against intracellular pathogens. Mammalian Genome, 2011, 22, 43-54.	1.0	106

# 78	ARTICLE Protein-membrane interactions: the virtue of minimal systems in systems biology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2011, 3, 269-280.	IF 6.6	CITATIONS
79	Dynamic Remodeling of Membranes Catalyzed by Dynamin. Current Topics in Membranes, 2011, 68, 33-47.	0.5	5
80	Differential curvature sensing and generating activities of dynamin isoforms provide opportunities for tissue-specific regulation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E234-42.	3.3	87
81	Structural basis for mechanochemical role of Arabidopsis thaliana dynamin-related protein in membrane fission. Journal of Molecular Cell Biology, 2011, 3, 378-381.	1.5	22
82	Membrane elongation factors in organelle maintenance: the case of peroxisome proliferation. Biomolecular Concepts, 2011, 2, 353-364.	1.0	26
83	Regulation of Synaptic Vesicle Budding and Dynamin Function by an EHD ATPase. Journal of Neuroscience, 2011, 31, 13972-13980.	1.7	46
84	Investigating G Protein-Coupled Receptor Endocytosis and Trafficking by TIR-FM. Methods in Molecular Biology, 2011, 756, 325-332.	0.4	10
85	Mechanism of Neuroprotective Mitochondrial Remodeling by PKA/AKAP1. PLoS Biology, 2011, 9, e1000612.	2.6	164
86	A High Precision Survey of the Molecular Dynamics of Mammalian Clathrin-Mediated Endocytosis. PLoS Biology, 2011, 9, e1000604.	2.6	671
87	Structures of the atlastin GTPase provide insight into homotypic fusion of endoplasmic reticulum membranes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3976-3981.	3.3	212
88	A Feedback Loop between Dynamin and Actin Recruitment during Clathrin-Mediated Endocytosis. PLoS Biology, 2012, 10, e1001302.	2.6	126
89	Rabs and EHDs: alternate modes for traffic control. Bioscience Reports, 2012, 32, 17-23.	1.1	23
90	Cellular Mechanisms for the Biogenesis and Transport of Synaptic and Dense-Core Vesicles. International Review of Cell and Molecular Biology, 2012, 299, 27-115.	1.6	68
91	Membrane Trafficking and Phagosome Maturation During the Clearance of Apoptotic Cells. International Review of Cell and Molecular Biology, 2012, 293, 269-309.	1.6	57
92	Structure and function of bacterial dynamin-like proteins. Biological Chemistry, 2012, 393, 1203-1214.	1.2	58
93	The Role of EHD Proteins at the Neuronal Synapse. Science Signaling, 2012, 5, jc1.	1.6	6
94	Plasma Membrane Reshaping during Endocytosis Is Revealed by Time-Resolved Electron Tomography. Cell, 2012, 150, 508-520.	13.5	320
95	Membrane Shape at the Edge of the Dynamin Helix Sets Location and Duration of the Fission Reaction. Cell, 2012, 151, 619-629.	13.5	164

#	Article	IF	CITATIONS
96	Bridging membrane and cytoskeleton dynamics in the secretory and endocytic pathways. Nature Cell Biology, 2012, 14, 11-19.	4.6	208
97	Dynamin, a membrane-remodelling GTPase. Nature Reviews Molecular Cell Biology, 2012, 13, 75-88.	16.1	807
98	Synaptic Vesicle Endocytosis. Cold Spring Harbor Perspectives in Biology, 2012, 4, a005645-a005645.	2.3	342
99	Interactome of the Plant-specific ESCRT-III Component AtVPS2.2 in <i>Arabidopsis thaliana</i> . Journal of Proteome Research, 2012, 11, 397-411.	1.8	26
100	Supported Native Plasma Membranes as Platforms for the Reconstitution and Visualization of Endocytic Membrane Budding. Methods in Cell Biology, 2012, 108, 1-18.	0.5	8
101	5.14 The Biophysics of Membrane Fusion. , 2012, , 273-289.		5
102	Dynamin: Membrane Scission Meets Physics. Current Biology, 2012, 22, R1047-R1048.	1.8	2
103	Structural Insights into Dynamin-Mediated Membrane Fission. Structure, 2012, 20, 1621-1628.	1.6	60
104	Reconstitution of clathrin-coated bud and vesicle formation with minimal components. Nature Cell Biology, 2012, 14, 634-639.	4.6	156
105	A Neurotoxic Phospholipase A2 Impairs Yeast Amphiphysin Activity and Reduces Endocytosis. PLoS ONE, 2012, 7, e40931.	1.1	11
106	Key Events in Synaptic Vesicle Endocytosis. , 0, , .		1
107	The evolution of dynamin to regulate clathrinâ€mediated endocytosis. BioEssays, 2012, 34, 643-647.	1.2	15
108	Membrane Fission: The Biogenesis of Transport Carriers. Annual Review of Biochemistry, 2012, 81, 407-427.	5.0	96
109	Plastid division control: the PDV proteins regulate DRP5B dynamin activity. Plant Molecular Biology, 2013, 82, 255-266.	2.0	30
110	Differential Roles of C-terminal Eps15 Homology Domain Proteins as Vesiculators and Tubulators of Recycling Endosomes. Journal of Biological Chemistry, 2013, 288, 30172-30180.	1.6	48
111	Scission of <scp>COPI</scp> and <scp>COPII</scp> Vesicles Is Independent of <scp>GTP</scp> Hydrolysis. Traffic, 2013, 14, 922-932.	1.3	35
112	Actin Polymerization Does Not Provide Direct Mechanical Forces for Vesicle Fission during Clathrin-Mediated Endocytosis. Journal of Neuroscience, 2013, 33, 15793-15798.	1.7	20
113	A Four-Step Cycle Driven by PI(4)P Hydrolysis Directs Sterol/PI(4)P Exchange by the ER-Golgi Tether OSBP. Cell, 2013, 155, 830-843.	13.5	623

ARTICLE IF CITATIONS # From endocytosis to membrane fusion: emerging roles of dynamin in virus entry. Critical Reviews in 2.7 31 114 Microbiology, 2013, 39, 166-179. Dynamin. International Review of Cell and Molecular Biology, 2013, 302, 187-219. 1.6 Dynamin Assembly Strategies and Adaptor Proteins in Mitochondrial Fission. Current Biology, 2013, 23, 116 1.8 98 R891-R899. Role of Phospholipids in Endocytosis, Phagocytosis, and Macropinocytosis. Physiological Reviews, 13.1 2013, 93, 69-106. Bioanalysis of Eukaryotic Organelles. Chemical Reviews, 2013, 113, 2733-2811. 118 23.0 110 Mechanics of Dynamin-Mediated Membrane Fission. Annual Review of Biophysics, 2013, 42, 629-649. 4.5 Dynamin-2 mediates heart failure by modulating Ca2+-dependent cardiomyocyte apoptosis. International Journal of Cardiology, 2013, 168, 2109-2119. 120 0.8 19 Oligomerization of Dynamin Superfamily Proteins in Health and Disease. Progress in Molecular 49 Biology and Translational Science, 2013, 117, 411-443. Analyzing membrane remodeling and fission using supported bilayers with excess membrane reservoir. 122 5.5 45 Nature Protocols, 2013, 8, 213-222. Emerging facets of plastid division regulation. Planta, 2013, 237, 389-398. 1.6 Structural basis for conformational switching and GTP loading of the large G protein atlastin. EMBO 124 3.5 85 Journal, 2013, 32, 369-384. Cooperative Recruitment of Dynamin and BIN/Amphiphysin/Rvs (BAR) Domain-containing Proteins Leads 132 to GTP-dependent Membrane Ścission*. Journal of Biological Chemistry, 2013, 288, 665 Ĭ-6661. Dynamin triple knockout cells reveal off target effects of commonly used dynamin inhibitors. Journal 126 1.2 196 of Cell Science, 2013, 126, 5305-12. Building a fission machine – structural insights into dynamin assembly and activation. Journal of Cell 127 1.2 63 Science, 2013, 126, 2773-84. Aberrant dynamin 2â€dependent Na⁺/H⁺ exchangerâ€1 trafficking contributes to 128 1.6 12 cardiomyocyte apoptosis. Journal of Cellular and Molecular Medicine, 2013, 17, 1119-1127. 129 Geometric Catalysis of Membrane Fission Driven by Flexible Dynamin Rings. Science, 2013, 339, 1433-1436. 123 Dual Role of BAR Domain-containing Proteins in Regulating Vesicle Release Catalyzed by the GTPase, 130 1.6 65 Dynamin-2. Journal of Biological Chemistry, 2013, 288, 25119-25128. The Toxoplasma Pseudokinase ROP5 Is an Allosteric Inhibitor of the Immunity-related GTPases. Journal of Biological Chemistry, 2014, 289, 27849-27858.

#	Article	IF	CITATIONS
132	Tagging Endogenous Loci for Live-Cell Fluorescence Imaging and Molecule Counting Using ZFNs, TALENs, and Cas9. Methods in Enzymology, 2014, 546, 139-160.	0.4	32
133	Managing the Phase Separation in Double Emulsion by Tuning Amphiphilicity via a Supramolecular Route. Langmuir, 2014, 30, 14460-14468.	1.6	25
134	From junior to senior: advice from the benefit of 20/20 hindsight. Molecular Biology of the Cell, 2014, 25, 3259-3262.	0.9	0
135	Regulation of Dynamin Oligomerization in Cells: The Role of Dynamin–Actin Interactions and Its <scp>GTPase</scp> Activity. Traffic, 2014, 15, 819-838.	1.3	45
136	Macrophage endocytosis of high-mobility group box 1 triggers pyroptosis. Cell Death and Differentiation, 2014, 21, 1229-1239.	5.0	183
137	Mitochondrial alterations in apoptosis. Chemistry and Physics of Lipids, 2014, 181, 62-75.	1.5	142
138	The dynamics of plant plasma membrane proteins: PINs and beyond. Development (Cambridge), 2014, 141, 2924-2938.	1.2	128
139	Bending "On the Rocks"A Cocktail of Biophysical Modules to Build Endocytic Pathways. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016741-a016741.	2.3	66
140	A Dynamin Mutant Defines a Superconstricted Prefission State. Cell Reports, 2014, 8, 734-742.	2.9	83
141	Polyunsaturated phospholipids facilitate membrane deformation and fission by endocytic proteins. Science, 2014, 345, 693-697.	6.0	291
142	Divided we stand: splitting synthetic cells for their proliferation. Systems and Synthetic Biology, 2014, 8, 249-269.	1.0	43
143	BAR Domain Scaffolds in Dynamin-Mediated Membrane Fission. Cell, 2014, 156, 882-892.	13.5	199
144	Thomas Pucadyil: Piecing together membrane fission. Journal of Cell Biology, 2015, 211, 720-721.	2.3	0
145	Single Particle Fluorescence Burst Analysis of Epsin Induced Membrane Fission. PLoS ONE, 2015, 10, e0119563.	1.1	6
146	Spatial Control of Epsin-induced Clathrin Assembly by Membrane Curvature. Journal of Biological Chemistry, 2015, 290, 14267-14276.	1.6	23
147	A hemi-fission intermediate links two mechanistically distinct stages of membrane fission. Nature, 2015, 524, 109-113.	13.7	91
148	Molecular dynamics at the endocytic portal and regulations of endocytic and recycling traffics. European Journal of Cell Biology, 2015, 94, 235-248.	1.6	16
149	A high-throughput platform for real-time analysis of membrane fission reactions reveals dynamin function. Nature Cell Biology, 2015, 17, 1588-1596.	4.6	51

#	Article	IF	CITATIONS
150	Coarse-grained simulation of dynamin-mediated fission. Soft Matter, 2015, 11, 1464-1480.	1.2	24
151	Endocytosis. , 2016, , 217-240.		4
152	Imaging mitochondrial dynamics in human skin reveals depth-dependent hypoxia and malignant potential for diagnosis. Science Translational Medicine, 2016, 8, 367ra169.	5.8	82
153	Altered brain energetics induces mitochondrial fission arrest in Alzheimer's Disease. Scientific Reports, 2016, 6, 18725.	1.6	146
154	Membrane fission by dynamin: what we know and what we need to know. EMBO Journal, 2016, 35, 2270-2284.	3.5	388
155	Constriction by Dynamin: Elasticity versus Adhesion. Biophysical Journal, 2016, 111, 2470-2480.	0.2	17
156	An endosomal tether undergoes an entropic collapse to bring vesicles together. Nature, 2016, 537, 107-111.	13.7	135
157	How bio-filaments twist membranes. Soft Matter, 2016, 12, 5747-5757.	1.2	19
158	Use of the supported membrane tube assay system for real-time analysis of membrane fission reactions. Nature Protocols, 2017, 12, 390-400.	5.5	24
159	Regulation of dynamin family proteins by post-translational modifications. Journal of Biosciences, 2017, 42, 333-344.	0.5	14
160	Curvature variation controls particle aggregation on fluid vesicles. Soft Matter, 2017, 13, 4924-4930.	1.2	23
161	Apoptotic foci at mitochondria: in and around Bax pores. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160217.	1.8	45
162	Membrane fission by protein crowding. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3258-E3267.	3.3	142
163	Giardia intestinalis mitosomes undergo synchronized fission but not fusion and are constitutively associated with the endoplasmic reticulum. BMC Biology, 2017, 15, 27.	1.7	26
164	The pleckstrin-homology domain of dynamin is dispensable for membrane constriction and fission. Molecular Biology of the Cell, 2017, 28, 152-160.	0.9	23
165	Crowdâ€Sourcing of Membrane Fission. BioEssays, 2017, 39, 1700117.	1.2	3
166	Membrane Tension Inhibits Rapid and Slow Endocytosis in Secretory Cells. Biophysical Journal, 2017, 113, 2406-2414.	0.2	40
167	Disassembly of Dipeptide Single Crystals Can Transform the Lipid Membrane into a Network. ACS Nano, 2017, 11, 7349-7354.	7.3	30

#	Article	IF	CITATIONS
168	<i>DNM1</i> encephalopathy. Neurology, 2017, 89, 385-394.	1.5	87
169	Drp1 polymerization stabilizes curved tubular membranes similar to those of constricted mitochondria. Journal of Cell Science, 2018, 132, .	1.2	16
170	Single-molecule force spectroscopy of protein-membrane interactions. ELife, 2017, 6, .	2.8	59
171	Lateral Tension-Induced Penetration of Particles into a Liposome. Materials, 2017, 10, 765.	1.3	5
172	Mastering Complexity: Towards Bottom-up Construction of Multifunctional Eukaryotic Synthetic Cells. Trends in Biotechnology, 2018, 36, 938-951.	4.9	205
173	Mechanisms of clathrin-mediated endocytosis. Nature Reviews Molecular Cell Biology, 2018, 19, 313-326.	16.1	1,060
174	Dissecting the biochemical architecture and morphological release pathways of the human platelet extracellular vesiculome. Cellular and Molecular Life Sciences, 2018, 75, 3781-3801.	2.4	38
175	Stromules: Probing Formation and Function. Plant Physiology, 2018, 176, 128-137.	2.3	82
176	A Tethered Vesicle Assay for High-Throughput Quantification of Membrane Fission. Methods in Enzymology, 2018, 611, 559-582.	0.4	6
177	A synthetic biology platform for the reconstitution and mechanistic dissection of LINC complex assembly. Journal of Cell Science, 2018, 132, .	1.2	16
178	Molecular details on the intermediate states of melittin action on a cell membrane. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2234-2241.	1.4	39
179	A simple supported tubulated bilayer system for evaluating protein-mediated membrane remodeling. Chemistry and Physics of Lipids, 2018, 215, 18-28.	1.5	6
180	Spontaneous Membrane Generation and Extension in a Dipeptide Single Crystal and Phospholipid Mixed System. Angewandte Chemie - International Edition, 2018, 57, 11404-11407.	7.2	14
181	Shaping plastid stromules — principles of in vitro membrane tubulation applied in planta. Current Opinion in Plant Biology, 2018, 46, 48-54.	3.5	20
182	Spontaneous Membrane Generation and Extension in a Dipeptide Single Crystal and Phospholipid Mixed System. Angewandte Chemie, 2018, 130, 11574-11577.	1.6	4
183	A novel fluorescence microscopic approach to quantitatively analyse protein-induced membrane remodelling. Journal of Biosciences, 2018, 43, 431-435.	0.5	0
184	Open and cut: allosteric motion and membrane fission by dynamin superfamily proteins. Molecular Biology of the Cell, 2019, 30, 2097-2104.	0.9	11
185	The structural biology of the dynaminâ€related proteins: New insights into a diverse, multitalented family. Traffic, 2019, 20, 717-740.	1.3	31

#	Article	IF	CITATIONS
186	The late stage of COPI vesicle fission requires shorter forms of phosphatidic acid and diacylglycerol. Nature Communications, 2019, 10, 3409.	5.8	11
187	The tilted helix model of dynamin oligomers. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12845-12850.	3.3	8
188	Combining patch-clamping and fluorescence microscopy for quantitative reconstitution of cellular membrane processes with Giant Suspended Bilayers. Scientific Reports, 2019, 9, 7255.	1.6	18
189	Visualizing Biological Membrane Organization and Dynamics. Journal of Molecular Biology, 2019, 431, 1889-1919.	2.0	18
190	A Novel Membrane Fission Mechanism by Dynamin Complex: Clusterase Model. Seibutsu Butsuri, 2019, 59, 255-261.	0.0	0
191	Structural Insights into the Mechanism of Dynamin Superfamily Proteins. Trends in Cell Biology, 2019, 29, 257-273.	3.6	82
192	BAR scaffolds drive membrane fission by crowding disordered domains. Journal of Cell Biology, 2019, 218, 664-682.	2.3	69
194	A mechanical model reveals that non-axisymmetric buckling lowers the energy barrier associated with membrane neck constriction. Soft Matter, 2020, 16, 784-797.	1.2	29
195	Profile of Sandra L. Schmid. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31563-31566.	3.3	0
196	Dynamin-2 Regulates Postsynaptic Cytoskeleton Organization and Neuromuscular Junction Development. Cell Reports, 2020, 33, 108310.	2.9	19
197	The New Age of Cell-Free Biology. Annual Review of Biomedical Engineering, 2020, 22, 51-77.	5.7	48
198	Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine. Beilstein Journal of Nanotechnology, 2020, 11, 338-353.	1.5	80
199	Microfluidic chip with pillar arrays for controlled production and observation of lipid membrane nanotubes. Lab on A Chip, 2020, 20, 2748-2755.	3.1	11
201	Interferon-Induced Transmembrane Protein 3 Blocks Fusion of Diverse Enveloped Viruses by Altering Mechanical Properties of Cell Membranes. ACS Nano, 2021, 15, 8155-8170.	7.3	50
202	Dynamin-dependent vesicle twist at the final stage of clathrin-mediated endocytosis. Nature Cell Biology, 2021, 23, 859-869.	4.6	32
203	Systems biology of cellular membranes: a convergence with biophysics. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2017, 9, e1386.	6.6	31
204	Role of Phosphoinositides at the Neuronal Synapse. Sub-Cellular Biochemistry, 2012, 59, 131-175.	1.0	48
207	Regulating dynamin dynamics during endocytosis. F1000prime Reports, 2014, 6, 85.	5.9	31

		CITATION REPORT		
#	Article		IF	CITATIONS
208	Reaching a consensus on the mechanism of dynamin?. F1000prime Reports, 2014, 6, 8	.6.	5.9	15
209	Dynamin-Catalyzed Membrane Fission Requires Coordinated GTP Hydrolysis. PLoS ONE	, 2013, 8, e55691.	1.1	19
210	The Formation of Stromules In Vitro from Chloroplasts Isolated from Nicotiana benthar ONE, 2016, 11, e0146489.	niana. PLoS	1.1	13
211	Molecular mechanism of DRP1 assembly studied in vitro by cryo-electron microscopy. F 12, e0179397.	PLOS ONE, 2017,	1.1	44
212	Dynamins and BAR Proteins-Safeguards against Cancer. Critical Reviews in Oncogenesi 475-484.	s, 2015, 20,	0.2	2
213	Uncoupling of dynamin polymerization and GTPase activity revealed by the conformati nanobody dynab. ELife, 2017, 6, .	on-specific	2.8	18
215	Dynamic instability of microtubules regulated by Dynamin2 and Charcot-Marie-Tooth d Igakkai Zasshi, 2010, 122, 113-117.	isease. Okayama	0.0	0
216	Membrane deformation and separation. F1000 Biology Reports, 2010, 2, .		4.0	1
217	Visualizing In Vitro Trafficking. Neuromethods, 2013, , 19-39.		0.2	0
218	Trauma, Regulated Cell Death, and Inflammation. , 2017, , 253-281.			0
220	Membrane Deformation Ability of the Ankyrin Repeat and KH Domain-Containing Prote Its Involvement in the Early Endosome Enlargement. SSRN Electronic Journal, 0, , .	in 1 (ANKHD1) and	0.4	0
224	Role of Clathrin and Dynamin in Clathrin Mediated Endocytosis/Synaptic Vesicle Recycl Implications in Neurological Diseases. Frontiers in Cellular Neuroscience, 2021, 15, 754	ing and H10.	1.8	16
225	A novel fluorescence microscopic approach to quantitatively analyse protein-induced n remodelling. Journal of Biosciences, 2018, 43, 431-435.	iembrane	0.5	0
226	Membrane-Remodeling Proteins. Nanoscience and Technology, 2022, , 183-200.		1.5	0
227	Protein–Protein Interactions on Membrane Surfaces Analysed Using Pull-Downs with Bilayers on Silica Beads. Journal of Membrane Biology, 2022, 255, 591-597.	Supported	1.0	0
231	Forces of Change: Optical Tweezers in Membrane Remodeling Studies. Journal of Mem 2022, 255, 677-690.	brane Biology,	1.0	4
233	Dynamin is primed at endocytic sites for ultrafast endocytosis. Neuron, 2022, 110, 281	5-2835.e13.	3.8	38
234	Reconstitution of membrane symmetry breaking. , 2023, , 333-353.			0

#	Article	IF	CITATIONS
235	Dynamin: molecular scissors for membrane fission. , 2023, , 77-90.		0
236	Membrane fusion by <i>Drosophila</i> atlastin does not require GTP hydrolysis. Molecular Biology of the Cell, 2022, 33, .	0.9	4
237	Membrane stretching activates calcium permeability of a putative channel Pkd2 during fission yeast cytokinesis. Molecular Biology of the Cell, 2022, 33, .	0.9	11
239	Actuating tension-loaded DNA clamps drives membrane tubulation. Science Advances, 2022, 8, .	4.7	8
240	Modelling membrane reshaping by staged polymerization of ESCRT-III filaments. PLoS Computational Biology, 2022, 18, e1010586.	1.5	6
241	Membrane curvature as a signal to ensure robustness of diverse cellular processes. Trends in Cell Biology, 2023, 33, 427-441.	3.6	8
242	Phosphatidic Acid Accumulates at Areas of Curvature in Tubulated Lipid Bilayers and Liposomes. Biomolecules, 2022, 12, 1707.	1.8	5
243	GSK3α phosphorylates dynamin-2 to promote GLUT4 endocytosis in muscle cells. Journal of Cell Biology, 2023, 222, .	2.3	6
244	<scp>GTP</scp> â€stimulated membrane fission by the <scp>Nâ€BAR</scp> protein <scp>AMPH</scp> â€1. Traffic, 0, , .	1.3	1
245	Dynamin2 functions as an accessory protein to reduce the rate of caveola internalization. Journal of Cell Biology, 2023, 222, .	2.3	6
248	A deep intronic variant in DNM1 in a patient with developmental and epileptic encephalopathy creates a splice acceptor site and affects only transcript variants including exon 10a. Neurogenetics, 0, , .	0.7	0
251	Dissecting membrane interfacial cellular processes: an in vitro reconstitution approach. European Physical Journal: Special Topics, 0, , .	1.2	0