The Evolution of Gene Regulation Underlies a Morpholo Drosophila Sister Species

Cell 132, 783-793 DOI: 10.1016/j.cell.2008.01.014

Citation Report

#	ARTICLE	IF	CITATIONS
2	Comparative genomics and the study of evolution by natural selection. Molecular Ecology, 2008, 17, 4586-4596.	2.0	133
3	Tinker where the tinkering's good. Trends in Genetics, 2008, 24, 317-319.	2.9	4
4	Shadow Enhancers as a Source of Evolutionary Novelty. Science, 2008, 321, 1314-1314.	6.0	435
5	Genomic hotspots of adaptation in butterfly wing pattern evolution. Current Opinion in Genetics and Development, 2008, 18, 559-564.	1.5	45
6	Evo-Devo and an Expanding Evolutionary Synthesis: A Genetic Theory of Morphological Evolution. Cell, 2008, 134, 25-36.	13.5	1,729
7	The Regulation and Evolution of a Genetic Switch Controlling Sexually Dimorphic Traits in Drosophila. Cell, 2008, 134, 610-623.	13.5	287
8	Evolution of Eukaryotic Transcription Circuits. Science, 2008, 319, 1797-1799.	6.0	145
9	Controlling Type-I Error of the McDonald–Kreitman Test in Genomewide Scans for Selection on Noncoding DNA. Genetics, 2008, 180, 1767-1771.	1.2	41
10	Genetic Basis of Sex-Specific Color Pattern Variation in <i>Drosophila malerkotliana</i> . Genetics, 2008, 180, 421-429.	1.2	21
11	The pattern of genetic hitchhiking under recurrent mutation. Electronic Journal of Probability, 2008, 13, .	0.5	14
12	Segmentation, metamerism and the Cambrian explosion. International Journal of Developmental Biology, 2009, 53, 1305-1316.	0.3	75
13	Cross-Species RNAi Rescue Platform in <i>Drosophila melanogaster</i> . Genetics, 2009, 183, 1165-1173.	1.2	43
14	Pathogenic adaptation of intracellular bacteria by rewiring a cis-regulatory input function. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3982-3987.	3.3	60
15	Rapid Evolution of Sex Pheromone-Producing Enzyme Expression in Drosophila. PLoS Biology, 2009, 7, e1000168.	2.6	203
16	Wings, Horns, and Butterfly Eyespots: How Do Complex Traits Evolve?. PLoS Biology, 2009, 7, e1000037.	2.6	127
17	Transcription factor function and promoter architecture govern the evolution of bacterial regulons. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4319-4324.	3.3	64
18	Genomic Features That Predict Allelic Imbalance in Humans Suggest Patterns of Constraint on Gene Expression Variation. Molecular Biology and Evolution, 2009, 26, 2047-2059.	3.5	9
19	Stepwise Modification of a Modular Enhancer Underlies Adaptation in a <i>Drosophila</i> Population. Science, 2009, 326, 1663-1667.	6.0	259

#	Article	IF	CITATIONS
20	Characterizing natural variation using next-generation sequencing technologies. Trends in Genetics, 2009, 25, 463-471.	2.9	116
21	Evolution: Mirror, Mirror in the Pond. Current Biology, 2009, 19, R902-R904.	1.8	1
22	Association of <i>orthodenticle</i> with natural variation for early embryonic patterning in <i>Drosophila melanogaster</i> . Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2009, 312B, 841-854.	0.6	11
23	The evolution of hierarchical gene regulatory networks. Nature Reviews Genetics, 2009, 10, 141-148.	7.7	411
24	TEMPERATURE-BASED EXTRINSIC REPRODUCTIVE ISOLATION IN TWO SPECIES OF <i>DROSOPHILA </i> . Evolution; International Journal of Organic Evolution, 2009, 63, 595-612.	1.1	68
25	METAMODELS AND PHYLOGENETIC REPLICATION: A SYSTEMATIC APPROACH TO THE EVOLUTION OF DEVELOPMENTAL PATHWAYS. Evolution; International Journal of Organic Evolution, 2009, 63, 2771-2789.	1.1	89
26	PLASTICITY, CANALIZATION, AND DEVELOPMENTAL STABILITY OF THE <i>DROSOPHILA</i> WING: JOINT EFFECTS OF MUTATIONS AND DEVELOPMENTAL TEMPERATURE. Evolution; International Journal of Organic Evolution, 2009, 63, 2864-2876.	1.1	117
27	Body shape evolution among ploidy levels of the <i>Squalius alburnoides</i> hybrid complex (Teleostei, Cyprinidae). Journal of Evolutionary Biology, 2009, 22, 718-728.	0.8	18
28	Shared and divergent expression domains on mimetic <i>Heliconius</i> wings. Evolution & Development, 2009, 11, 498-512.	1.1	43
29	An ortholog of <i>MIXTAâ€like2</i> controls epidermal cell shape in flowers of <i>Thalictrum</i> . New Phytologist, 2009, 183, 718-728.	3.5	51
30	Evolution of Transcriptional Regulatory Circuits in Bacteria. Cell, 2009, 138, 233-244.	13.5	152
31	Little Effect of the tan Locus on Pigmentation in Female Hybrids between Drosophila santomea and D. melanogaster. Cell, 2009, 139, 1180-1188.	13.5	10
32	Evolution of the tan Locus Contributed to Pigment Loss in Drosophila santomea: A Response to Matute etÂal Cell, 2009, 139, 1189-1196.	13.5	32
33	Comparative genomics of gene regulation—conservation and divergence of cis-regulatory information. Current Opinion in Genetics and Development, 2009, 19, 565-570.	1.5	76
34	Development and evolution of insect pigmentation: Genetic mechanisms and the potential consequences of pleiotropy. Seminars in Cell and Developmental Biology, 2009, 20, 65-71.	2.3	285
35	Intraspecific Polymorphism to Interspecific Divergence: Genetics of Pigmentation in <i>Drosophila</i> . Science, 2009, 326, 540-544.	6.0	143
36	Weeds of change: Cardamine hirsuta as a new model system for studying dissected leaf development. Journal of Plant Research, 2010, 123, 25-33.	1.2	43
37	The Genetics of Human Adaptation: Hard Sweeps, Soft Sweeps, and Polygenic Adaptation. Current Biology, 2010, 20, R208-R215.	1.8	853

#	Article	IF	CITATIONS
38	Shadow Enhancers Foster Robustness of Drosophila Gastrulation. Current Biology, 2010, 20, 1562-1567.	1.8	592
39	Functional evolutionary developmental biology (evo-devo) of morphological novelties in plants. Journal of Systematics and Evolution, 2010, 48, 94-101.	1.6	9
40	Caterpillar color patterns are determined by a twoâ€phase melanin gene prepatterning process: new evidence from <i>tan</i> and <i>laccase2</i> . Evolution & Development, 2010, 12, 157-167.	1.1	94
41	Speciesâ€specific coordinated gene expression and <i>trans</i> â€regulation of larval color pattern in three swallowtail butterflies. Evolution & Development, 2010, 12, 305-314.	1.1	41
42	A TEST OF THE NEUTRAL MODEL OF EXPRESSION CHANGE IN NATURAL POPULATIONS OF HOUSE MOUSE SUBSPECIES. Evolution; International Journal of Organic Evolution, 2010, 64, 549-560.	1.1	17
43	A genetic perspective on insect climate specialists. Australian Journal of Entomology, 2010, 49, 93-103.	1.1	27
44	Phylogeny Disambiguates the Evolution of Heat-Shock cis-Regulatory Elements in Drosophila. PLoS ONE, 2010, 5, e10669.	1.1	39
45	Disruption of an N-acetyltransferase gene in the silkworm reveals a novel role in pigmentation. Development (Cambridge), 2010, 137, 4083-4090.	1.2	77
46	Parallel Adaptation: One or Many Waves of Advance of an Advantageous Allele?. Genetics, 2010, 186, 647-668.	1.2	163
47	<i>cis</i> -Regulatory Remodeling of the <i>SCL</i> Locus during Vertebrate Evolution. Molecular and Cellular Biology, 2010, 30, 5741-5751.	1.1	17
48	Ninety Years of <i>Drosophila melanogaster</i> Hybrids. Genetics, 2010, 186, 1-8.	1.2	58
49	Radiations of Mycalesine Butterflies and Opening Up Their Exploration of Morphospace. American Naturalist, 2010, 176, S77-S87.	1.0	19
50	Adaptive Evolution of Pelvic Reduction in Sticklebacks by Recurrent Deletion of a <i>Pitx1</i> Enhancer. Science, 2010, 327, 302-305.	6.0	901
51	Evolutionary Tinkering with Conserved Components of a Transcriptional Regulatory Network. PLoS Biology, 2010, 8, e1000329.	2.6	133
52	Evidence that Adaptation in Drosophila Is Not Limited by Mutation at Single Sites. PLoS Genetics, 2010, 6, e1000924.	1.5	255
53	Genomic Hotspots for Adaptation: The Population Genetics of Müllerian Mimicry in the Heliconius melpomene Clade. PLoS Genetics, 2010, 6, e1000794.	1.5	97
54	Secondary enhancers synergise with primary enhancers to guarantee fine-tuned muscle gene expression. Developmental Biology, 2010, 337, 16-28.	0.9	26
55	Morphological evolution caused by many subtle-effect substitutions in regulatory DNA. Nature, 2011, 474, 598-603.	13.7	199

#	Article	IF	CITATIONS
56	Evo-devo and accounting for Darwin's endless forms. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2069-2075.	1.8	75
57	Contributions of Flowering Time Genes to Sunflower Domestication and Improvement. Genetics, 2011, 187, 271-287.	1.2	82
58	The evolutionary history of <i>Antirrhinum</i> suggests that ancestral phenotype combinations survived repeated hybridizations. Plant Journal, 2011, 66, 1032-1043.	2.8	17
59	Characterization of <i>Linaria KNOX</i> genes suggests a role in petalâ€spur development. Plant Journal, 2011, 68, 703-714.	2.8	44
60	The molecular genetics of clinal variation: a case study of ebony and thoracic trident pigmentation in Drosophila melanogaster from eastern Australia. Molecular Ecology, 2011, 20, 2100-2110.	2.0	80
61	Divergent enhancer haplotype of ebony on inversion In(3R)Payne associated with pigmentation variation in a tropical population of Drosophila melanogaster. Molecular Ecology, 2011, 20, 4277-4287.	2.0	34
62	CHROMOSOME NUMBER AND SEX DETERMINATION COEVOLVE IN TURTLES. Evolution; International Journal of Organic Evolution, 2011, 65, 1808-1813.	1.1	78
63	Rapid Evolutionary Rewiring of a Structurally Constrained Eye Enhancer. Current Biology, 2011, 21, 1186-1196.	1.8	104
64	The impact of cis-acting polymorphisms on the human phenotype. The HUGO Journal, 2011, 5, 13-23.	4.1	18
65	Morphology and behaviour: functional links in development and evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2056-2068.	1.8	68
66	Evolutionary origin of a novel gene expression pattern through co-option of the latent activities of existing regulatory sequences. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10036-10043.	3.3	112
67	Convergent, modular expression of ebony and tan in the mimetic wing patterns of Heliconius butterflies. Development Genes and Evolution, 2011, 221, 297-308.	0.4	36
68	Divergence in cis-regulatory sequences surrounding the opsin gene arrays of African cichlid fishes. BMC Evolutionary Biology, 2011, 11, 120.	3.2	35
69	In Vivo Neuronal Subtype-Specific Targets of Atoh1 (Math1) in Dorsal Spinal Cord. Journal of Neuroscience, 2011, 31, 10859-10871.	1.7	56
70	Insights into Hox Protein Function from a Large Scale Combinatorial Analysis of Protein Domains. PLoS Genetics, 2011, 7, e1002302.	1.5	32
71	Natural Allelic Variation Defines a Role for ATMYC1: Trichome Cell Fate Determination. PLoS Genetics, 2011, 7, e1002069.	1.5	54
72	Parallel Loss-of-Function at the RPM1 Bacterial Resistance Locus in Arabidopsis thaliana. Frontiers in Plant Science, 2012, 3, 287.	1.7	15
73	Tempo and Mode in Evolution of Transcriptional Regulation. PLoS Genetics, 2012, 8, e1002432.	1.5	60

#	Article	IF	CITATIONS
74	Divergence of the Yeast Transcription Factor FZF1 Affects Sulfite Resistance. PLoS Genetics, 2012, 8, e1002763.	1.5	35
75	Extensive morphological divergence and rapid evolution of the larval neuromuscular junction in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E648-E655.	3.3	15
76	Abdominal segment reduction. Fly, 2012, 6, 240-245.	0.9	3
77	Selective Sweep of a cis-Regulatory Sequence in a Non-African Population of Drosophila melanogaster. Molecular Biology and Evolution, 2012, 29, 1167-1174.	3.5	25
78	Evolutionary History and Adaptation from High-Coverage Whole-Genome Sequences of Diverse African Hunter-Gatherers. Cell, 2012, 150, 457-469.	13.5	289
79	Recent Advances in Entomological Research. , 2011, , .		10
80	Evolution of cichlid vision via trans-regulatory divergence. BMC Evolutionary Biology, 2012, 12, 251.	3.2	31
81	Changes in Cis-regulatory Elements during Morphological Evolution. Biology, 2012, 1, 557-574.	1.3	15
82	Hoxâ€mediated regulation of <i>doublesex</i> sculpts sexâ€specific abdomen morphology in <i>Drosophila</i> . Developmental Dynamics, 2012, 241, 1076-1090.	0.8	27
83	An assessment of transgenomics as a tool for identifying genes involved in the evolutionary differentiation of closely related plant species. New Phytologist, 2012, 193, 494-503.	3.5	7
84	Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nature Reviews Genetics, 2012, 13, 59-69.	7.7	926
85	Unraveling the thread of nature's tapestry: the genetics of diversity and convergence in animal pigmentation. Pigment Cell and Melanoma Research, 2012, 25, 411-433.	1.5	143
86	Ancestral and conserved cis-regulatory architectures in developmental control genes. Developmental Biology, 2012, 362, 282-294.	0.9	13
87	Comparative genetics of postembryonic development as a means to understand evolutionary change. Journal of Applied Ichthyology, 2012, 28, 306-315.	0.3	18
88	Evolutionary biochemistry: revealing the historical and physical causes of protein properties. Nature Reviews Genetics, 2013, 14, 559-571.	7.7	305
89	Periodic Wnt1 expression in response to ecdysteroid generates twin-spot markings on caterpillars. Nature Communications, 2013, 4, 1857.	5.8	52
90	Population genomics of rapid adaptation by soft selective sweeps. Trends in Ecology and Evolution, 2013, 28, 659-669.	4.2	471
91	Regulatory evolution at the host–pathogen interface. Canadian Journal of Microbiology, 2013, 59, 365-367.	0.8	6

#	ARTICLE	IF	CITATIONS
92	THE LOCI OF REPEATED EVOLUTION: A CATALOG OF GENETIC HOTSPOTS OF PHENOTYPIC VARIATION. Evolution; International Journal of Organic Evolution, 2013, 67, n/a-n/a.	1.1	405
94	SUCCESSIVE GAIN OF INSULATOR PROTEINS IN ARTHROPOD EVOLUTION. Evolution; International Journal of Organic Evolution, 2013, 67, 2945-2956.	1.1	32
95	The Conditional Nature of Genetic Interactions: The Consequences of Wild-Type Backgrounds on Mutational Interactions in a Genome-Wide Modifier Screen. PLoS Genetics, 2013, 9, e1003661.	1.5	74
96	Recurrent Modification of a Conserved Cis-Regulatory Element Underlies Fruit Fly Pigmentation Diversity. PLoS Genetics, 2013, 9, e1003740.	1.5	79
97	The Impact of Gene Expression Variation on the Robustness and Evolvability of a Developmental Gene Regulatory Network. PLoS Biology, 2013, 11, e1001696.	2.6	71
98	The Molecular Mechanism of a Cis-Regulatory Adaptation in Yeast. PLoS Genetics, 2013, 9, e1003813.	1.5	35
99	Evolution of transcriptional enhancers and animal diversity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130017.	1.8	67
100	A Perspective on Micro-Evo-Devo: Progress and Potential. Genetics, 2013, 195, 625-634.	1.2	48
101	A Genome-Wide, Fine-Scale Map of Natural Pigmentation Variation in Drosophila melanogaster. PLoS Genetics, 2013, 9, e1003534.	1.5	146
102	The evolution of Bab paralog expression and abdominal pigmentation among <i>Sophophora</i> fruit fly species. Evolution & Development, 2013, 15, 442-457.	1.1	35
103	Genetic and Neural Bases for Species-Specific Behavior in <i>Drosophila</i> Species. Journal of Neurogenetics, 2013, 27, 130-142.	0.6	12
104	Pigmentation and behavior: potential association through pleiotropic genes in <i>Drosophila</i> . Genes and Genetic Systems, 2013, 88, 165-174.	0.2	46
106	The transcription factor Apontic-like controls diverse colouration pattern in caterpillars. Nature Communications, 2014, 5, 4936.	5.8	41
107	Defining functional DNA elements in the human genome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6131-6138.	3.3	635
108	In silico evolution of the hunchback gene indicates redundancy in cis-regulatory organization and spatial gene expression. Journal of Bioinformatics and Computational Biology, 2014, 12, 1441009.	0.3	5
109	Two genomic regions together cause dark abdominal pigmentation in Drosophila tenebrosa. Heredity, 2014, 112, 454-462.	1.2	11
110	Evidence for Deep Regulatory Similarities in Early Developmental Programs across Highly Diverged Insects. Genome Biology and Evolution, 2014, 6, 2301-2320.	1.1	37
111	Biochemistry and biosynthesis of insect pigments. European Journal of Entomology, 2014, 111, 149-164.	1.2	130

#	Article	IF	CITATIONS
112	Identification of loci that cause phenotypic variation in diverse species with the reciprocal hemizygosity test. Trends in Genetics, 2014, 30, 547-554.	2.9	63
113	<i>Cardamine hirsuta</i> : a versatile genetic system for comparative studies. Plant Journal, 2014, 78, 1-15.	2.8	78
114	A flexible Bayesian method for detecting allelic imbalance in RNA-seq data. BMC Genomics, 2014, 15, 920.	1.2	41
115	The Genetic Architecture of Coordinately Evolving Male Wing Pigmentation and Courtship Behavior in <i>Drosophila elegans</i> and <i>Drosophila gunungcola</i> . G3: Genes, Genomes, Genetics, 2014, 4, 2079-2093.	0.8	22
116	Extensive transcriptional response associated with seasonal plasticity of butterfly wing patterns. Molecular Ecology, 2014, 23, 6123-6134.	2.0	37
117	Evolutionary conservation of the eumetazoan gene regulatory landscape. Genome Research, 2014, 24, 639-650.	2.4	143
118	Pigmentation in Drosophila melanogaster reaches its maximum in Ethiopia and correlates most strongly with ultra-violet radiation in sub-Saharan Africa. BMC Evolutionary Biology, 2014, 14, 179.	3.2	90
119	Sequencing pools of individuals — mining genome-wide polymorphism data without big funding. Nature Reviews Genetics, 2014, 15, 749-763.	7.7	654
120	Comparative studies of gene regulatory mechanisms. Current Opinion in Genetics and Development, 2014, 29, 68-74.	1.5	14
121	A survey of the trans-regulatory landscape for Drosophila melanogaster abdominal pigmentation. Developmental Biology, 2014, 385, 417-432.	0.9	59
122	Genome-Wide Dissection of Hybrid Sterility in Drosophila Confirms a Polygenic Threshold Architecture. Journal of Heredity, 2014, 105, 381-396.	1.0	20
123	The expansion of body coloration involves coordinated evolution in cis and trans within the pigmentation regulatory network of Drosophila prostipennis. Developmental Biology, 2014, 392, 431-440.	0.9	35
124	Complex patterns of <i>cis</i> â€regulatory polymorphisms in <i>ebony</i> underlie standing pigmentation variation in <i>Drosophila melanogaster</i> . Molecular Ecology, 2015, 24, 5829-5841.	2.0	32
125	Genetic Changes to a Transcriptional Silencer Element Confers Phenotypic Diversity within and between Drosophila Species. PLoS Genetics, 2015, 11, e1005279.	1.5	32
126	A Single Gene Causes an Interspecific Difference in Pigmentation in <i>Drosophila</i> . Genetics, 2015, 200, 331-342.	1.2	21
127	Genetics on the Fly: A Primer on the <i>Drosophila</i> Model System. Genetics, 2015, 201, 815-842.	1.2	205
128	Genetic basis of natural variation in body pigmentation in <i>Drosophila melanogaster</i> . Fly, 2015, 9, 75-81.	0.9	13
129	Intraspecific Polymorphism, Interspecific Divergence, and the Origins of Function-Altering Mutations in Deer Mouse Hemoglobin. Molecular Biology and Evolution, 2015, 32, 978-997.	3.5	88

#	Article	IF	CITATIONS
130	Unraveling the Tangled Skein: The Evolution of Transcriptional Regulatory Networks in Development. Annual Review of Genomics and Human Genetics, 2015, 16, 103-131.	2.5	86
131	Gain of <i>cis</i> -regulatory activities underlies novel domains of <i>wingless</i> gene expression in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7524-7529.	3.3	95
132	The Evolutionary Origination and Diversification of a Dimorphic Gene Regulatory Network through Parallel Innovations in cis and trans. PLoS Genetics, 2015, 11, e1005136.	1.5	57
133	Genetic Architecture of Abdominal Pigmentation in Drosophila melanogaster. PLoS Genetics, 2015, 11, e1005163.	1.5	89
134	Towards the identification of the loci of adaptive evolution. Methods in Ecology and Evolution, 2015, 6, 445-464.	2.2	115
135	The genetics of sexual behavior in Drosophila. Advances in Genomics and Genetics, 0, , 1.	0.8	1
136	Phenotypic Plasticity through Transcriptional Regulation of the Evolutionary Hotspot Gene tan in Drosophila melanogaster. PLoS Genetics, 2016, 12, e1006218.	1.5	48
137	Biofunctionalized Hydrogel Microscaffolds Promote 3D Hepatic Sheet Morphology. Macromolecular Bioscience, 2016, 16, 314-321.	2.1	19
138	The genus Drosophila is characterized by a large number of sibling species showing evolutionary significance. Journal of Genetics, 2016, 95, 1053-1064.	0.4	6
139	Size and shape—integration of morphometrics, mathematical modelling, developmental and evolutionary biology. Development Genes and Evolution, 2016, 226, 109-112.	0.4	5
140	Decoding transcriptional enhancers: Evolving from annotation to functional interpretation. Seminars in Cell and Developmental Biology, 2016, 57, 40-50.	2.3	11
141	Origin and evolution of developmental enhancers in the mammalian neocortex. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2617-26.	3.3	95
142	Identifying Coopted Networks and Causative Mutations in the Origin of Novel Complex Traits. Current Topics in Developmental Biology, 2016, 119, 205-226.	1.0	21
143	The Genetic Basis of Pigmentation Differences Within and Between Drosophila Species. Current Topics in Developmental Biology, 2016, 119, 27-61.	1.0	98
144	Cardamine hirsuta: a comparative view. Current Opinion in Genetics and Development, 2016, 39, 1-7.	1.5	20
145	Evolutionary Genetics: Reuse, Recycle, Converge. Current Biology, 2016, 26, R838-R840.	1.8	3
146	The pdm3 Locus Is a Hotspot for Recurrent Evolution of Female-Limited Color Dimorphism in Drosophila. Current Biology, 2016, 26, 2412-2422.	1.8	57
147	Genetic Convergence in the Evolution of Male-Specific Color Patterns in Drosophila. Current Biology, 2016, 26, 2423-2433.	1.8	30

	Ci	ITATION REPORT	
#	Article	IF	CITATIONS
148	Tyrosine Metabolism for Insect Cuticle Pigmentation and Sclerotization. , 2016, , 165-220.		20
149	Evolved Repression Overcomes Enhancer Robustness. Developmental Cell, 2016, 39, 572-584.	3.1	40
150	Arylalkylamine N-acetyltransferase 1 gene (TcAANAT1) is required for cuticle morphology and pigmentation of the adult red flour beetle, Tribolium castaneum. Insect Biochemistry and Molecular Biology, 2016, 79, 119-129.	1.2	39
151	Fabrication of Inverted Colloidal Crystal Poly(ethylene glycol) Scaffold: A Three-dimensional Cell Culture Platform for Liver Tissue Engineering. Journal of Visualized Experiments, 2016, , .	0.2	10
152	Functional analysis of genes involved in color pattern formation in Lepidoptera. Current Opinion in Insect Science, 2016, 17, 16-23.	2.2	29
153	Phenotypic regulation of liver cells in a biofunctionalized three-dimensional hydrogel platform. Integrative Biology (United Kingdom), 2016, 8, 156-166.	0.6	14
154	Ancient balancing selection at tan underlies female colour dimorphism in Drosophila erecta. Nature Communications, 2016, 7, 10400.	5.8	37
155	A Pathway Analysis of Melanin Patterning in a Hemimetabolous Insect. Genetics, 2016, 203, 403-413	. 1.2	69
156	Reconciling Differences in Pool-GWAS Between Populations: A Case Study of Female Abdominal Pigmentation in Drosophila melanogaster. Genetics, 2016, 202, 843-855.	1.2	39
157	The evolutionary origination of a novel expression pattern through an extreme heterochronic shift. Evolution & Development, 2017, 19, 43-55.	1.1	30
158	Evolutionary acquisition of promoter-associated non-coding RNA (pancRNA) repertoires diversifies species-dependent gene activation mechanisms in mammals. BMC Genomics, 2017, 18, 285.	1.2	23
159	Perspectives on Gene Regulatory Network Evolution. Trends in Genetics, 2017, 33, 436-447.	2.9	66
160	Soft sweeps and beyond: understanding the patterns and probabilities of selection footprints under rapid adaptation. Methods in Ecology and Evolution, 2017, 8, 700-716.	2.2	235
161	Modulation of yellow expression contributes to thermal plasticity of female abdominal pigmentation in Drosophila melanogaster. Scientific Reports, 2017, 7, 43370.	1.6	24
162	Evolution and developmental genetics of floral display—A review of progress. Journal of Systematics and Evolution, 2017, 55, 487-515.	5 1.6	20
163	The flexible stem hypothesis: evidence from genetic data. Development Genes and Evolution, 2017, 2 297-307.	.227, 0.4	32
164	Comparative transcriptomes and reciprocal best hit analysis revealed potential pigment genes in two color forms of Tetranychus urticae. Experimental and Applied Acarology, 2017, 73, 159-176.	0.7	3
165	Automated tools for comparative sequence analysis of genic regions using the GenePalette application. Developmental Biology, 2017, 429, 158-164.	0.9	22

#	Article	IF	CITATIONS
166	Tools and strategies for scarless allele replacement in <i>Drosophila</i> using CRISPR/Cas9. Fly, 2017, 11, 53-64.	0.9	36
167	Using Drosophila pigmentation traits to study the mechanisms of cis-regulatory evolution. Current Opinion in Insect Science, 2017, 19, 1-7.	2.2	68
168	Strong epistatic and additive effects of linked candidate SNPs for Drosophila pigmentation have implications for analysis of genome-wide association studies results. Genome Biology, 2017, 18, 126.	3.8	11
169	The Neutral Theory in Light of Natural Selection. Molecular Biology and Evolution, 2018, 35, 1366-1371.	3.5	180
170	Pigmentation pattern and developmental constraints: flight muscle attachment sites delimit the thoracic trident of Drosophila melanogaster. Scientific Reports, 2018, 8, 5328.	1.6	6
171	Tyrosine hydroxylase coordinates larval–pupal tanning and immunity in oriental fruit fly (<scp><i>Bactrocera dorsalis</i></scp>). Pest Management Science, 2018, 74, 569-578.	1.7	28
172	Multiple trans QTL and one cis-regulatory deletion are associated with the differential expression of cone opsins in African cichlids. BMC Genomics, 2018, 19, 945.	1.2	19
173	REforge associates transcription factor binding site divergence in regulatory elements with phenotypic differences between species. Molecular Biology and Evolution, 2018, 35, 3027-3040.	3.5	12
174	Gene regulation underlies environmental adaptation in house mice. Genome Research, 2018, 28, 1636-1645.	2.4	51
175	Pleiotropic effects of regulatory variation in <i>tan</i> result in correlation of two pigmentation traits in <i>Drosophila melanogaster</i> . Molecular Ecology, 2018, 27, 3207-3218.	2.0	22
176	bric à brac (bab), a central player in the gene regulatory network that mediates thermal plasticity of pigmentation in Drosophila melanogaster. PLoS Genetics, 2018, 14, e1007573.	1.5	24
177	Augmentation of a wound response element accompanies the origin of a Hox-regulated Drosophila abdominal pigmentation trait. Developmental Biology, 2018, 441, 159-175.	0.9	25
178	Genetic Dissection of a Supergene Implicates <i>Tfap2a</i> in Craniofacial Evolution of Threespine Sticklebacks. Genetics, 2018, 209, 591-605.	1.2	25
179	Yellow mutant of the Neotropical green lacewing <i>Chrysoperla externa</i> : trait inheritance and predator performance. Entomologia Experimentalis Et Applicata, 2019, 167, 646-654.	0.7	3
180	Evolution: Remodelling Animal Body Plans, Gene by Gene. Current Biology, 2019, 29, R623-R625.	1.8	0
181	How Do Developmental Programs Evolve?. Fascinating Life Sciences, 2019, , 73-106.	0.5	0
182	Changes throughout a Genetic Network Mask the Contribution of Hox Gene Evolution. Current Biology, 2019, 29, 2157-2166.e6.	1.8	33
183	Three Melanin Pathway Genes, TH, yellow, and aaNAT, Regulate Pigmentation in the Twin-Spotted Assassin Bug, Platymeris biguttatus (Linnaeus). International Journal of Molecular Sciences, 2019, 20, 2728.	1.8	20

#	Article	IF	CITATIONS
184	Quantifying the extent of morphological homoplasy: A phylogenetic analysis of 490 characters in Drosophila. Evolution Letters, 2019, 3, 286-298.	1.6	15
185	Novel approach to quantitative spatial gene expression uncovers genetic stochasticity in the developing <i>Drosophila</i> eye. Evolution & Development, 2019, 21, 157-171.	1.1	6
186	Divergent molecular evolution in glutathione S-transferase conferring malathion resistance in the oriental fruit fly, Bactrocera dorsalis (Hendel). Chemosphere, 2020, 242, 125203.	4.2	28
187	Red Light/Green Light, a Dual Fluorescent Protein Reporter System To Study Enhancer-Promoter Specificity in Drosophila. G3: Genes, Genomes, Genetics, 2020, 10, 985-997.	0.8	2
188	The modular expression patterns of three pigmentation genes prefigure unique abdominal morphologies seen among three Drosophila species. Gene Expression Patterns, 2020, 38, 119132.	0.3	5
190	Evolution of wing pigmentation in <i>Drosophila</i> : Diversity, physiological regulation, and <i>cis</i> â€regulatory evolution. Development Growth and Differentiation, 2020, 62, 269-278.	0.6	18
191	Gene Regulatory Network Homoplasy Underlies Recurrent Sexually Dimorphic Fruit Fly Pigmentation. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	11
192	Transcriptome analysis reveals <i>wingless</i> regulates neural development and signaling genes in the region of wing pigmentation of a polkaâ€dotted fruit fly. FEBS Journal, 2021, 288, 115-126.	2.2	15
193	Positive Selection in Human Populations: Practical Aspects and Current Knowledge. Evolutionary Studies, 2021, , 29-65.	0.2	1
195	Developmental Transcriptomics Reveals a Gene Network Driving Mimetic Color Variation in a Bumble Bee. Genome Biology and Evolution, 2021, 13, .	1.1	7
196	A morphological trait involved in reproductive isolation between Drosophila sister species is sensitive to temperature. Ecology and Evolution, 2021, 11, 7492-7506.	0.8	4
198	The hourglass model of evolutionary conservation during embryogenesis extends to developmental enhancers with signatures of positive selection. Genome Research, 2021, 31, 1573-1581.	2.4	9
199	Widespread <i>cis</i> ―and <i>trans</i> â€regulatory evolution underlies the origin, diversification, and loss of a sexually dimorphic fruit fly pigmentation trait. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2023, 340, 143-161.	0.6	7
200	From Aedes to Zeugodacus: a review of dipteran body coloration studies regarding evolutionary developmental biology, pest control, and species discovery. Current Opinion in Genetics and Development, 2021, 69, 35-41.	1.5	2
201	Regional patterning and regulation of melanin pigmentation in insects. Current Opinion in Genetics and Development, 2021, 69, 163-170.	1.5	8
202	DrosoPhyla: Resources for Drosophilid Phylogeny and Systematics. Genome Biology and Evolution, 2021, 13, .	1.1	45
203	Distinct genetic architectures underlie divergent thorax, leg, and wing pigmentation between Drosophila elegans and D. gunungcola. Heredity, 2021, 127, 467-474.	1.2	6
204	Pigments in Insects. , 2021, , 3-43.		17

#	Article	IF	CITATIONS
206	Functional Genomic Insights into Regulatory Mechanisms of High-Altitude Adaptation. Advances in Experimental Medicine and Biology, 2016, 903, 113-128.	0.8	19
207	Whole-Mount In Situ Hybridization of Sectioned Tissues of Species Hybrids to Detect Cis-regulatory Changes in Gene Expression Pattern. Methods in Molecular Biology, 2012, 772, 319-328.	0.4	3
208	Biological Function of Insect Yellow Gene Family. , 2011, , 121-131.		7
209	A Snapshot of Evolutionary History of Floral Nectaries Across Angiosperm Lineages. , 2020, , 105-129.		1
212	Comparative Developmental Transcriptomics Reveals Rewiring of a Highly Conserved Gene Regulatory Network during a Major Life History Switch in the Sea Urchin Genus Heliocidaris. PLoS Biology, 2016, 14, e1002391.	2.6	78
213	Mosaic hoxb4a Neuronal Pleiotropism in Zebrafish Caudal Hindbrain. PLoS ONE, 2009, 4, e5944.	1.1	32
214	Candidate Transcriptomic Sources of Inbreeding Depression in Drosophila melanogaster. PLoS ONE, 2013, 8, e70067.	1.1	5
216	Integrating Genomics into Evolutionary Theory. , 2010, , 97-116.		3
217	Quantitative system drift compensates for altered maternal inputs to the gap gene network of the scuttle fly Megaselia abdita. ELife, 2015, 4, .	2.8	68
218	Ancient mechanisms for the evolution of the bicoid homeodomain's function in fly development. ELife, 2018, 7, .	2.8	28
219	Disparate expression specificities coded by a shared Hox-C enhancer. ELife, 2020, 9, .	2.8	3
220	Repression precedes independent evolutionary gains of a highly specific gene expression pattern. Cell Reports, 2021, 37, 109896.	2.9	5
230	Modularity in Biological Evolution and Evolutionary Computation. Biology Bulletin Reviews, 2020, 10, 308-323.	0.3	5
235	Chromosome-Scale Genome Assembly of <i>Gilia yorkii</i> Enables Genetic Mapping of Floral Traits in an Interspecies Cross. Genome Biology and Evolution, 2022, 14, .	1.1	4
236	Silencing of Adc and Ebony Causes Abnormal Darkening of Cuticle in Henosepilachna vigintioctopunctata. Frontiers in Physiology, 2022, 13, 829675.	1.3	6
237	Sexâ€specific evolution of a <i>Drosophila</i> sensory system via interacting <i>cisâ€</i> and <i>transâ€</i> regulatory changes. Evolution & Development, 2022, 24, 37-60.	1.1	5
238	Diversity of melanin synthesis genes in insects. Advances in Insect Physiology, 2022, , 339-376.	1.1	3
255	Patterns of selection across gene regulatory networks. Seminars in Cell and Developmental Biology, 2023, 145, 60-67.	2.3	6

258 RNAi-Mediated Manipulation of Cuticle Coloration Genes in Lygus hesperus Knight (Hemiptera:) Tj ETQq0 0 0 rgBT (Overlock 10 Tf 50 66

261	Functional characterization of tyrosine melanin genes in the white-backed planthopper and utilization of a spray-based nanoparticle-wrapped dsRNA technique for pest control. International Journal of Biological Macromolecules, 2023, 230, 123123.	3.6	7
262	The Genetic Mechanisms Underlying the Concerted Expression of the yellow and tan Genes in Complex Patterns on the Abdomen and Wings of Drosophila guttifera. Genes, 2023, 14, 304.	1.0	1
263	Evolutionary relevance of singleÂnucleotideÂvariantsÂwithin the forebrain exclusive human accelerated enhancer regions. BMC Molecular and Cell Biology, 2023, 24, .	1.0	0
264	Drosophilids with darker cuticle have higher body temperature under light. Scientific Reports, 2023, 13, .	1.6	0
269	Shaping gene expression and its evolution by chromatin architecture and enhancer activity. Current Topics in Developmental Biology, 2024, , .	1.0	0