Control of Chemokine-Guided Cell Migration by Ligand

Cell

132, 463-473

DOI: 10.1016/j.cell.2007.12.034

Citation Report

#	Article	IF	CITATIONS
1	Regional and cellular localization of the CXCl12/SDFâ€1 chemokine receptor CXCR7 in the developing and adult rat brain. Journal of Comparative Neurology, 2008, 510, 207-220.	0.9	118
3	How chemokines invite leukocytes to dance. Nature Immunology, 2008, 9, 953-959.	7.0	305
4	CXCL12/CXCR4 signalling in neuronal cell migration. Current Opinion in Neurobiology, 2008, 18, 237-244.	2.0	99
5	CXCR7, CXCR4 and CXCL12: An eccentric trio?. Journal of Neuroimmunology, 2008, 198, 9-13.	1.1	220
6	Sequential SDF1a and b-induced mobility guides Medaka PGC migration. Developmental Biology, 2008, 320, 319-327.	0.9	50
7	Distinct contributions of CXCR4b and CXCR7/RDC1 receptor systems in regulation of PGC migration revealed by medaka mutants kazura and yanagi. Developmental Biology, 2008, 320, 328-339.	0.9	40
8	Wnt/ \hat{l}^2 -Catenin and Fgf Signaling Control Collective Cell Migration by Restricting Chemokine Receptor Expression. Developmental Cell, 2008, 15, 749-761.	3.1	228
9	Chemokines in and out of the central nervous system: much more than chemotaxis and inflammation. Journal of Leukocyte Biology, 2008, 84, 587-594.	1.5	93
10	The Zebrafish Secretome. Zebrafish, 2008, 5, 131-138.	0.5	16
11	Tre1 GPCR initiates germ cell transepithelial migration by regulating <i>Drosophila melanogaster</i> E-cadherin. Journal of Cell Biology, 2008, 183, 157-168.	2.3	81
12	Killing the messenger. Cell Adhesion and Migration, 2008, 2, 69-70.	1.1	40
13	The Stem Cell Movement. Circulation Research, 2008, 102, 1155-1168.	2.0	162
14	Sopping up chemokine. Journal of Cell Biology, 2008, 180, 849-849.	2.3	0
16	Housekeeping by chemokine scavenging. Blood, 2008, 112, 215-216.	0.6	7
17	Wnt signaling: bone's defense against myeloma. Blood, 2008, 112, 216-217.	0.6	12
18	Bioluminescent CXCL12 fusion protein for cellular studies of CXCR4 and CXCR7. BioTechniques, 2009, 47, 625-632.	0.8	57
19	Imaging chemokine receptor dimerization with firefly luciferase complementation. FASEB Journal, 2009, 23, 823-834.	0.2	107
20	Scavenger Chemokine (CXC Motif) Receptor 7 (CXCR7) Is a Direct Target Gene of HIC1 (Hypermethylated) Tj ET	Qq1,1 0.7 	84314 rgBT/(_

#	Article	IF	CITATIONS
21	Elucidation of CXCR7-Mediated Signaling Events and Inhibition of CXCR4-Mediated Tumor Cell Transendothelial Migration by CXCR7 Ligands. Journal of Immunology, 2009, 183, 3204-3211.	0.4	263
22	Citrullination of CXCL12 Differentially Reduces CXCR4 and CXCR7 Binding with Loss of Inflammatory and Anti-HIV-1 Activity via CXCR4. Journal of Immunology, 2009, 182, 666-674.	0.4	86
23	Collective cell migration in development. Journal of Cell Science, 2009, 122, 3215-3223.	1.2	273
24	Functional diversity of SDF-1 splicing variants. Cell Adhesion and Migration, 2009, 3, 243-249.	1.1	105
25	Multiple signaling interactions coordinate collective cell migration of the posterior lateral line primordium. Cell Adhesion and Migration, 2009, 3, 365-368.	1.1	30
26	Atypical Chemokine Receptors in Inflammatory Disease. Current Molecular Medicine, 2009, 9, 86-93.	0.6	12
27	The Group Migration of <i>Dictyostelium</i> Cells Is Regulated by Extracellular Chemoattractant Degradation. Molecular Biology of the Cell, 2009, 20, 3295-3304.	0.9	41
28	Chemokines in neuroectodermal cancers: The crucial growth signal from the soil. Seminars in Cancer Biology, 2009, 19, 103-110.	4.3	26
29	Allelic loss of the PTEN gene and mutation of the TP53 gene in choriocarcinoma arising from gastric adenocarcinoma: analysis of loss of heterozygosity in two male patients with extragonadal choriocarcinoma. Cancer Genetics and Cytogenetics, 2009, 193, 104-108.	1.0	8
30	The role of stromal-derived factor-1 â€" CXCR7 axis in development and cancer. European Journal of Pharmacology, 2009, 625, 31-40.	1.7	101
31	D6 and the atypical chemokine receptor family: Novel regulators of immune and inflammatory processes. European Journal of Immunology, 2009, 39, 342-351.	1.6	112
32	The CXCR4/CXCL12 axis in endometrial cancer. Clinical and Experimental Metastasis, 2009, 26, 261-268.	1.7	50
33	Human testicular (non)seminomatous germ cell tumours: the clinical implications of recent pathobiological insights. Journal of Pathology, 2009, 218, 146-162.	2.1	84
34	CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia, 2009, 23, 43-52.	3.3	429
35	Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules. Nature, 2009, 461, 533-536.	13.7	335
36	Collective cell migration in morphogenesis, regeneration and cancer. Nature Reviews Molecular Cell Biology, 2009, 10, 445-457.	16.1	2,170
37	Trafficking and Cell Migration. Traffic, 2009, 10, 811-818.	1.3	83
38	CXCR4 chemokine receptor antagonists: perspectives in SCLC. Expert Opinion on Investigational Drugs, 2009, 18, 481-490.	1.9	63

#	Article	IF	CITATIONS
39	Chemokines in Lung Cancer Metastasis. , 2009, , 155-172.		0
40	Stripes and belly-spots—A review of pigment cell morphogenesis in vertebrates. Seminars in Cell and Developmental Biology, 2009, 20, 90-104.	2.3	180
41	Germ cell migration in zebrafish is cyclopamine-sensitive but Smoothened-independent. Developmental Biology, 2009, 328, 342-354.	0.9	19
42	Evidence for crucial role of hindgut expansion in directing proper migration of primordial germ cells in mouse early embryogenesis. Developmental Biology, 2009, 330, 427-439.	0.9	74
43	A role for chemokine signaling in neural crest cell migration and craniofacial development. Developmental Biology, 2009, 333, 161-172.	0.9	111
44	CXCR4 and CXCR7 cooperate during tangential migration of facial motoneurons. Molecular and Cellular Neurosciences, 2009, 40, 474-484.	1.0	37
45	Chemokine signaling in embryonic cell migration: a fisheye view. Development (Cambridge), 2009, 136, 1223-1229.	1.2	103
46	Trefoil Factor Family (TFF) Peptides and Chemokine Receptors: A Promising Relationship. Journal of Medicinal Chemistry, 2009, 52, 6505-6510.	2.9	51
47	Chapter 2 CXCR4 and Mobilization of Hematopoietic Precursors. Methods in Enzymology, 2009, 460, 57-90.	0.4	24
48	The evolution of chemotaxis assays from static models to physiologically relevant platforms. Integrative Biology (United Kingdom), 2009, 1, 170-181.	0.6	61
49	The good and the bad of chemokines/chemokine receptors in melanoma. Pigment Cell and Melanoma Research, 2009, 22, 175-186.	1.5	105
50	Imaging Ligand-Dependent Activation of CXCR7. Neoplasia, 2009, 11, 1022-1035.	2.3	92
51	CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling. Blood, 2009, 113, 6085-6093.	0.6	519
52	Chemoattractant Receptors and Leukocyte Recruitment: More Than Cell Migration. Science Signaling, 2009, 2, pe10.	1.6	5
53	Peripheral Blood Derived Cell Trafficking for Cardiac Regeneration. Current Stem Cell Research and Therapy, 2010, 5, 303-313.	0.6	1
54	CXCL12 CXCR4 CXCR7 chemokine axis and cancer progression. Cancer and Metastasis Reviews, 2010, 29, 709-722.	2.7	633
55	Disruption of neuronal CXCR4 function by opioids: Preliminary evidence of Ferritin Heavy Chain as a potential etiological agent in neuroAIDS. Journal of Neuroimmunology, 2010, 224, 66-71.	1.1	19
56	Expression and function of CXCR7 in the mouse forebrain. Journal of Neuroimmunology, 2010, 224, 72-79.	1.1	33

#	Article	IF	Citations
57	Neutralizing endogenous chemokines with small molecules., 2010, 126, 39-55.		28
58	Chemokine receptors intracellular trafficking. , 2010, 127, 1-8.		77
59	CXCR4 positive bone mesenchymal stem cells migrate to human endothelial cell stimulated by ox-LDL via SDF- $1\hat{1}\pm$ /CXCR4 signaling axis. Experimental and Molecular Pathology, 2010, 88, 250-255.	0.9	38
60	Oogenesis in teleosts: How fish eggs are formed. General and Comparative Endocrinology, 2010, 165, 367-389.	0.8	863
61	CXCR7: a new SDFâ€lâ€binding receptor in contrast to normal CD34 ⁺ progenitors is functional and is expressed at higher level in human malignant hematopoietic cells. European Journal of Haematology, 2010, 85, 472-483.	1.1	81
62	Overlapping and distinct role of CXCR7â€SDFâ€1/ITAC and CXCR4â€SDFâ€1 axes in regulating metastatic behavior of human rhabdomyosarcomas. International Journal of Cancer, 2010, 127, 2554-2568.	2.3	91
63	Comparative expression pattern analysis of the highly conserved chemokines SDF1 and CXCL14 during amniote embryonic development. Developmental Dynamics, 2010, 239, 2769-2777.	0.8	24
64	Activation of CXCR7 receptor promotes oligodendroglial cell maturation. Annals of Neurology, 2010, 68, 915-924.	2.8	69
65	Stromal cellâ€derived factorâ€1 promotes migration of cells from the upper rhombic lip in cerebellar development. Journal of Neuroscience Research, 2010, 88, 2775-2786.	1.3	12
66	Significantly improved precision of cell migration analysis in time-lapse video microscopy through use of a fully automated tracking system. BMC Cell Biology, 2010, 11, 24.	3.0	80
67	Constitutive and chemokine-dependent internalization and recycling of CXCR7 in breast cancer cells to degrade chemokine ligands. Oncogene, 2010, 29, 4599-4610.	2.6	192
68	A role for Rho GTPases and cell–cell adhesion in single-cell motility in vivo. Nature Cell Biology, 2010, 12, 47-53.	4.6	225
69	Mechanisms guiding primordial germ cell migration: strategies from different organisms. Nature Reviews Molecular Cell Biology, 2010, 11, 37-49.	16.1	450
71	Chemokine patterning by glycosaminoglycans and interceptors. Frontiers in Bioscience - Landmark, 2010, 15, 645.	3.0	47
72	Molecular Genetic Markers in Female Reproductive Cancers. Journal of Oncology, 2010, 2010, 1-2.	0.6	1
73	Role of Chemokine Network in the Development and Progression of Ovarian Cancer: A Potential Novel Pharmacological Target. Journal of Oncology, 2010, 2010, 1-15.	0.6	65
74	CXCL12/CXCR4-Axis Dysfunctions: Markers of the Rare Immunodeficiency Disorder WHIM Syndrome. Disease Markers, 2010, 29, 189-198.	0.6	40
75	CXCR7 Functions as a Scavenger for CXCL12 and CXCL11. PLoS ONE, 2010, 5, e9175.	1.1	401

#	Article	IF	Citations
76	Interactions Between Wnt/ \hat{l}^2 -Catenin/Fgf and Chemokine Signaling in Lateral Line Morphogenesis. , 2010, , 1867-1872.		1
77	Estrogen receptor ESR1 controls cell migration by repressing chemokine receptor CXCR4 in the zebrafish posterior lateral line system. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6358-6363.	3.3	41
78	CXCL12-CXCR4 Axis in Angiogenesis, Metastasis and Stem Cell Mobilization. Current Pharmaceutical Design, 2010, 16, 3903-3920.	0.9	193
79	Atypical Chemokine Receptors in Renal Inflammation. Nephron Experimental Nephrology, 2010, 115, e89-e95.	2.4	5
80	CXCR7 Protein Is Not Expressed on Human or Mouse Leukocytes. Journal of Immunology, 2010, 185, 5130-5139.	0.4	66
81	CXCR4 promotes differentiation of oligodendrocyte progenitors and remyelination. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11062-11067.	3.3	200
82	Migration of engrafted neural stem cells is mediated by CXCL12 signaling through CXCR4 in a viral model of multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11068-11073.	3.3	200
83	Lighting up developmental mechanisms: how fluorescence imaging heralded a new era. Development (Cambridge), 2010, 137, 373-387.	1.2	47
84	The Peptidomimetic CXCR4 Antagonist TC14012 Recruits \hat{l}^2 -Arrestin to CXCR7. Journal of Biological Chemistry, 2010, 285, 37939-37943.	1.6	77
85	The Effect of CXCL12 Processing on CD34+ Cell Migration in Myeloproliferative Neoplasms. Cancer Research, 2010, 70, 3402-3410.	0.4	118
86	Crosstalk Between PKA and Epac Regulates the Phenotypic Maturation and Function of Human Dendritic Cells. Journal of Immunology, 2010, 185, 3227-3238.	0.4	39
87	CXCR7 is an active component of SDF-1 signalling in astrocytes and Schwann cells. Journal of Cell Science, 2010, 123, 1081-1088.	1.2	100
88	The chemokine receptor CXCR7 is expressed on lymphatic endothelial cells during renal allograft rejection. Kidney International, 2010, 77, 801-808.	2.6	34
89	Concomitant CXCR4 and CXCR7 Expression Predicts Poor Prognosis in Renal Cancer. Current Cancer Drug Targets, 2010, 10, 772-781.	0.8	73
90	Chemokine Decoy Receptors: Structure–Function and Biological Properties. Current Topics in Microbiology and Immunology, 2010, 341, 15-36.	0.7	44
91	Dysfunctional gene/protein networks in hepatitis C virus-induced hepatocellular cirrhosis and carcinoma. , 2010 , , .		3
92	Determinants of leader cells in collective cell migration. Integrative Biology (United Kingdom), 2010, 2, 568.	0.6	196
93	Chemokines and chemokine receptors: new insights into cancer-related inflammation. Trends in Molecular Medicine, 2010, 16, 133-144.	3.5	603

#	ARTICLE	IF	CITATIONS
94	Fly fishing for collective cell migration. Current Opinion in Genetics and Development, 2010, 20, 428-432.	1.5	11
95	Cell migration during morphogenesis. Developmental Biology, 2010, 341, 20-33.	0.9	258
96	Vascular endothelial growth factor (VEGF) regulates cranial neural crest migration in vivo. Developmental Biology, 2010, 339, 114-125.	0.9	108
97	Cranial neural crest migration: New rules for an old road. Developmental Biology, 2010, 344, 543-554.	0.9	155
98	CXCL12 and CXCR4 in bone marrow physiology. Expert Review of Hematology, 2010, 3, 315-322.	1.0	92
99	β-arrestin- but not G protein-mediated signaling by the "decoy―receptor CXCR7. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 628-632.	3.3	499
100	Microfluidic platform for chemotaxis in gradients formed by CXCL12 source-sink cells. Integrative Biology (United Kingdom), 2010, 2, 680.	0.6	76
101	A Fluorescent Ligand-Binding Alternative Using Tag-lite® Technology. Journal of Biomolecular Screening, 2010, 15, 1248-1259.	2.6	135
102	Can mesenchymal cells undergo collective cell migration? The case of the neural crest. Cell Adhesion and Migration, 2011, 5, 490-498.	1.1	58
103	Expression of the new CXCL12 receptor, CXCR7, in gliomas. Cancer Biology and Therapy, 2011, 11, 242-253.	1.5	41
104	Trafficking of Stem Cells. Methods in Molecular Biology, 2011, 750, 3-24.	0.4	23
105	Cell Migration. Methods in Molecular Biology, 2011, , .	0.4	9
106	Chemokine-mediated migration of mesencephalic neural crest cells. Cytokine, 2011, 56, 760-768.	1.4	24
107	Numb Links Extracellular Cues to Intracellular Polarity Machinery to Promote Chemotaxis. Developmental Cell, 2011, 20, 610-622.	3.1	39
108	Extracellular Movement of Signaling Molecules. Developmental Cell, 2011, 21, 145-158.	3.1	112
109	The blood–brain barrier, chemokines and multiple sclerosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 220-230.	1.8	198
110	A novel function for KIF13B in germ cell migration. Developmental Biology, 2011, 349, 169-178.	0.9	23
111	Wnt/ \hat{l}^2 -catenin dependent cell proliferation underlies segmented lateral line morphogenesis. Developmental Biology, 2011, 349, 470-482.	0.9	78

#	Article	IF	Citations
112	CXCR4 and CXCR7 Have Distinct Functions in Regulating Interneuron Migration. Neuron, 2011, 69, 61-76.	3.8	249
113	Cxcr7 Controls Neuronal Migration by Regulating Chemokine Responsiveness. Neuron, 2011, 69, 77-90.	3.8	260
114	CXCR7 Protein Expression in Human Adult Brain and Differentiated Neurons. PLoS ONE, 2011, 6, e20680.	1.1	56
115	The Mechanism for Primordial Germ-Cell Migration Is Conserved between Japanese Eel and Zebrafish. PLoS ONE, 2011, 6, e24460.	1.1	36
116	The chemokine CXCL12 regulates monocyte-macrophage differentiation and RUNX3 expression. Blood, 2011, 117, 88-97.	0.6	299
117	D6 facilitates cellular migration and fluid flow to lymph nodes by suppressing lymphatic congestion. Blood, 2011, 118, 6220-6229.	0.6	70
118	miRNA regulation of Sdf1 chemokine signaling provides genetic robustness to germ cell migration. Nature Genetics, 2011, 43, 204-211.	9.4	110
119	Testicular germ cell tumours: predisposition genes and the male germ cell niche. Nature Reviews Cancer, 2011, 11, 278-288.	12.8	86
120	Mechanisms of G-CSF-mediated hematopoietic stem and progenitor mobilization. Leukemia, 2011, 25, 211-217.	3.3	205
121	The role of CXCR7 on the adhesion, proliferation and angiogenesis of endothelial progenitor cells. Journal of Cellular and Molecular Medicine, 2011, 15, 1299-1309.	1.6	90
122	Chemokines in health and disease. Experimental Cell Research, 2011, 317, 575-589.	1.2	312
123	Atypical chemokine receptors. Experimental Cell Research, 2011, 317, 556-568.	1.2	119
124	Chemokine research moves on. Experimental Cell Research, 2011, 317, 553-555.	1.2	7
125	CXCR7 antagonism prevents axonal injury during experimental autoimmune encephalomyelitis as revealed by in vivoaxial diffusivity. Journal of Neuroinflammation, 2011, 8, 170.	3.1	41
126	CXCL12 (SDF1 \hat{i} ±)-CXCR4/CXCR7 Pathway Inhibition: An Emerging Sensitizer for Anticancer Therapies?. Clinical Cancer Research, 2011, 17, 2074-2080.	3.2	377
127	CXCR7 influences leukocyte entry into the CNS parenchyma by controlling abluminal CXCL12 abundance during autoimmunity. Journal of Experimental Medicine, 2011, 208, 327-339.	4.2	194
128	The role of chemokines and their receptors in angiogenesis. Cellular and Molecular Life Sciences, 2011, 68, 2811-2830.	2.4	102
129	The Ins and Outs of Hematopoietic Stem Cells: Studies to Improve Transplantation Outcomes. Stem Cell Reviews and Reports, 2011, 7, 590-607.	5.6	59

#	Article	IF	CITATIONS
130	HIV-1 co-receptor usage:influence on mother-to-child transmission and pediatric infection. Journal of Translational Medicine, 2011, 9, S10.	1.8	8
131	Opposing roles of CXCR4 and CXCR7 in breast cancer metastasis. Breast Cancer Research, 2011, 13, R128.	2.2	119
132	The chemokine receptor CXCR7 functions to regulate cardiac valve remodeling. Developmental Dynamics, 2011, 240, 384-393.	0.8	68
133	CELLULAR, MOLECULAR, GENOMICS, AND BIOMEDICAL APPROACHES Germ Cell Migration and Trans Sex. , 2011, , 2046-2054.		1
134	Cxcl12 evolution – subfunctionalization of a ligand through altered interaction with the chemokine receptor. Development (Cambridge), 2011, 138, 2909-2914.	1.2	31
135	Cell-cell signaling interactions coordinate multiple cell behaviors that drive morphogenesis of the lateral line. Cell Adhesion and Migration, 2011, 5, 499-508.	1.1	40
136	The role of Hepatitis C Virus in the dynamic protein interaction networks of hepatocellular cirrhosis and carcinoma. International Journal of Computational Biology and Drug Design, 2011, 4, 5.	0.3	15
137	Use of target protector morpholinos to analyze the physiological roles of specific miRNA-mRNA pairs in vivo. Nature Protocols, 2011, 6, 2035-2049.	5.5	79
138	Potential of CXCR4 antagonists for the treatment of metastatic lung cancer. Expert Review of Anticancer Therapy, 2011, 11, 621-630.	1.1	81
141	Reciprocal regulation of CXCR4 and CXCR7 in intestinal mucosal homeostasis and inflammatory bowel disease. Journal of Leukocyte Biology, 2011, 90, 583-590.	1.5	33
142	C-Terminal Region of EBNA-2 Determines the Superior Transforming Ability of Type 1 Epstein-Barr Virus by Enhanced Gene Regulation of LMP-1 and CXCR7. PLoS Pathogens, 2011, 7, e1002164.	2.1	23
143	A role for the CXCL12 receptor, CXCR7, in the pathogenesis of human pulmonary vascular disease. European Respiratory Journal, 2012, 39, 1415-1424.	3.1	47
144	Mobilization of hematopoietic stem and progenitor cells using inhibitors of CXCR4 and VLA-4. Leukemia, 2012, 26, 34-53.	3.3	156
145	Hypermethylated in Cancer 1 (HIC1) Recruits Polycomb Repressive Complex 2 (PRC2) to a Subset of Its Target Genes through Interaction with Human Polycomb-like (hPCL) Proteins. Journal of Biological Chemistry, 2012, 287, 10509-10524.	1.6	43
146	Rapid Uptake and Degradation of CXCL12 Depend on CXCR7 Carboxyl-terminal Serine/Threonine Residues. Journal of Biological Chemistry, 2012, 287, 28362-28377.	1.6	79
147	\hat{l}^2 -arrestin control of late endosomal sorting facilitates decoy receptor function and chemokine gradient formation. Development (Cambridge), 2012, 139, 2897-2902.	1.2	35
148	CXCL12 receptor preference, signal transduction, biological response and the expression of 5T4 oncofoetal glycoprotein. Journal of Cell Science, 2012, 125, 5467-78.	1.2	35
150	Potential Use of CXCR4 Antagonists to Mobilize Endothelial and Mesenchymal Stem Cells., 2012,, 423-437.		0

#	Article	IF	CITATIONS
151	Down-regulation of CXCR7 inhibits the growth and lung metastasis of human hepatocellular carcinoma cells with highly metastatic potential. Experimental and Therapeutic Medicine, 2012, 3, 117-123.	0.8	28
152	The CXCR7 chemokine receptor promotes B-cell retention in the splenic marginal zone and serves as a sink for CXCL12. Blood, 2012, 119, 465-468.	0.6	64
153	In vivo imaging of ligand receptor binding with Gaussia luciferase complementation. Nature Medicine, 2012, 18, 172-177.	15.2	68
154	Epithelial cell guidance by self-generated EGF gradients. Integrative Biology (United Kingdom), 2012, 4, 259.	0.6	79
155	Nuclear (PET/SPECT) and optical imaging probes targeting the CXCR4 chemokine receptor. MedChemComm, 2012, 3, 1039.	3.5	9
156	CXCL12/CXCR4 Protein Signaling Axis Induces Sonic Hedgehog Expression in Pancreatic Cancer Cells via Extracellular Regulated Kinase- and Akt Kinase-mediated Activation of Nuclear Factor κB. Journal of Biological Chemistry, 2012, 287, 39115-39124.	1.6	106
157	Cell Migration. , 2012, 2, 2369-2392.		324
158	ASSESSMENT OF AUTOMATED ANALYSES OF CELL MIGRATION ON FLAT AND NANOSTRUCTURED SURFACES. Computational and Structural Biotechnology Journal, 2012, 1, e201207004.	1.9	3
159	Antagonism of CXCR7 attenuates chronic hypoxia–induced pulmonary hypertension. Pediatric Research, 2012, 71, 682-688.	1.1	37
160	Attractive guidance: How the chemokine SDF1/CXCL12 guides different cells to different locations. Seminars in Cell and Developmental Biology, 2012, 23, 333-340.	2.3	53
161	Expression and function of the SDF-1 chemokine receptors CXCR4 and CXCR7 during mouse limb muscle development and regeneration. Experimental Cell Research, 2012, 318, 2178-2190.	1.2	37
162	The biochemistry and biology of the atypical chemokine receptors. Immunology Letters, 2012, 145, 30-38.	1.1	145
163	Chemokines and adult bone marrow stem cells. Immunology Letters, 2012, 145, 47-54.	1.1	54
164	The Chemokine Superfamily Revisited. Immunity, 2012, 36, 705-716.	6.6	914
165	Carboxy-terminus of CXCR7 regulates receptor localization and function. International Journal of Biochemistry and Cell Biology, 2012, 44, 669-678.	1.2	35
166	CXCR7 is up-regulated in human and murine hepatocellular carcinoma and is specifically expressed by endothelial cells. European Journal of Cancer, 2012, 48, 138-148.	1.3	68
167	Chemokine CXCL12 and its receptors in the developing central nervous system: Emerging themes and future perspectives. Developmental Neurobiology, 2012, 72, 1349-1362.	1.5	39
168	Human cytomegalovirus infection inhibits CXCL12- mediated migration and invasion of human extravillous cytotrophoblasts. Virology Journal, 2012, 9, 255.	1.4	36

#	ARTICLE	IF	CITATIONS
169	SDF and GABA interact to regulate axophilic migration of GnRH neurons. Journal of Cell Science, 2012, 125, 5015-25.	1.2	51
170	Identification and Regulation of a Molecular Module for Bleb-Based Cell Motility. Developmental Cell, 2012, 23, 210-218.	3.1	61
171	Reconstitution of Mouse Spermatogonial Stem Cell Niches in Culture. Cell Stem Cell, 2012, 11, 567-578.	5.2	104
172	Chemokine CXCL12 in neurodegenerative diseases: an SOS signal for stem cell-based repair. Trends in Neurosciences, 2012, 35, 619-628.	4.2	81
173	CXCL12 Signaling in the Development of the Nervous System. Journal of NeuroImmune Pharmacology, 2012, 7, 820-834.	2.1	47
174	CXC Chemokine Receptor 7 (CXCR7) Regulates CXCR4 Protein Expression and Capillary Tuft Development in Mouse Kidney. PLoS ONE, 2012, 7, e42814.	1.1	40
175	Involvement of the CXCR7/CXCR4/CXCL12 Axis in the Malignant Progression of Human Neuroblastoma. PLoS ONE, 2012, 7, e43665.	1,1	58
176	Complementary methods provide evidence for the expression of <scp>CXCR</scp> 7 on human <scp>B</scp> cells. Proteomics, 2012, 12, 1938-1948.	1.3	33
177	Chemokine and Fgf signalling act as opposing guidance cues in formation of the lateral line primordium. Development (Cambridge), 2012, 139, 2246-2253.	1.2	23
178	Scavenging of CXCL12 by CXCR7 promotes tumor growth and metastasis of CXCR4-positive breast cancer cells. Oncogene, 2012, 31, 4750-4758.	2.6	178
179	Secreted CXCL12 (SDF-1) forms dimers under physiological conditions. Biochemical Journal, 2012, 442, 433-442.	1.7	53
180	$G\hat{l}^2\hat{l}^3$ signaling controls the polarization of zebrafish primordial germ cells by regulating Rac activity. Development (Cambridge), 2012, 139, 57-62.	1.2	22
181	Widespread roles of microRNAs during zebrafish development and beyond. Development Growth and Differentiation, 2012, 54, 55-65.	0.6	41
182	miRNAs and morphogen gradients. Current Opinion in Cell Biology, 2012, 24, 194-201.	2.6	22
183	CXCR7 mediated Gil^{\pm} independent activation of ERK and Akt promotes cell survival and chemotaxis in T cells. Cellular Immunology, 2012, 272, 230-241.	1.4	58
184	Neural crest delamination and migration: From epithelium-to-mesenchyme transition to collective cell migration. Developmental Biology, 2012, 366, 34-54.	0.9	439
185	Building the posterior lateral line system in zebrafish. Developmental Neurobiology, 2012, 72, 234-255.	1.5	98
186	The presumed atypical chemokine receptor CXCR7 signals through G _{i/o} proteins in primary rodent astrocytes and human glioma cells. Glia, 2012, 60, 372-381.	2.5	105

#	Article	IF	CITATIONS
187	Phylogenetic analysis of vertebrate CXC chemokines reveals novel lineage specific groups in teleost fish. Developmental and Comparative Immunology, 2013, 41, 137-152.	1.0	88
188	<scp>CXCR</scp> 4 and <scp>CXCR</scp> 7 form a functional receptor unit for <scp>SDF</scp> â€1/ <scp>CXCL</scp> 12 in primary rodent microglia. Neuropathology and Applied Neurobiology, 2013, 39, 667-680.	1.8	34
189	Allosteric peptide regulators of chemokine receptors CXCR4 and CXCR7. Biochemical Pharmacology, 2013, 86, 1263-1271.	2.0	19
190	Progress in studies of fish reproductive development regulation. Science Bulletin, 2013, 58, 7-16.	1.7	23
191	Mechanical guidance of cell migration: lessons from chemotaxis. Current Opinion in Cell Biology, 2013, 25, 543-549.	2.6	136
192	Immune regulation by atypical chemokine receptors. Nature Reviews Immunology, 2013, 13, 815-829.	10.6	331
193	Generation and Dynamics of an Endogenous, Self-Generated Signaling Gradient across a Migrating Tissue. Cell, 2013, 155, 674-687.	13.5	174
194	Dissecting Trafficking and Signaling of Atypical Chemokine Receptors. Methods in Enzymology, 2013, 521, 151-168.	0.4	3
195	Directional tissue migration through a self-generated chemokine gradient. Nature, 2013, 503, 285-289.	13.7	320
196	CXCR4 prevents dispersion of granule neuron precursors in the adult dentate gyrus. Hippocampus, 2013, 23, 1345-1358.	0.9	31
197	<scp>CXCR</scp> 4 antagonism attenuates loadâ€induced periosteal bone formation in mice. Journal of Orthopaedic Research, 2013, 31, 1828-1838.	1.2	29
198	Interstitial Dendritic Cell Guidance by Haptotactic Chemokine Gradients. Science, 2013, 339, 328-332.	6.0	474
199	Grk2 is an Essential Regulator of CXCR7 Signalling in Astrocytes. Cellular and Molecular Neurobiology, 2013, 33, 111-118.	1.7	23
200	CXCR7 impact on CXCL12 biology and disease. Trends in Molecular Medicine, 2013, 19, 12-22.	3.5	180
201	Estrogen represses CXCR7 gene expression by inhibiting the recruitment of NFήB transcription factor at the CXCR7 promoter in breast cancer cells. Biochemical and Biophysical Research Communications, 2013, 431, 729-733.	1.0	22
202	<scp>CXCR</scp> 7 mediates <scp>SDF</scp> 1â€induced melanocyte migration. Pigment Cell and Melanoma Research, 2013, 26, 58-66.	1.5	41
203	Chemokine receptor trio: CXCR3, CXCR4 and CXCR7 crosstalk via CXCL11 and CXCL12. Cytokine and Growth Factor Reviews, 2013, 24, 41-49.	3.2	156
204	Native Adipose Stromal Cells Egress from Adipose Tissue In Vivo: Evidence During Lymph Node Activation. Stem Cells, 2013, 31, 1309-1320.	1.4	49

#	Article	IF	CITATIONS
205	Inflammatory Mediators in Tumorigenesis and Metastasis., 2013,, 101-127.		1
206	CXCR7 is induced by hypoxia and mediates glioma cell migration towards SDF-1α. BMC Cancer, 2013, 13, 347.	1.1	41
207	\hat{l}^2 -Arrestins in the Immune System. Progress in Molecular Biology and Translational Science, 2013, 118, 359-393.	0.9	21
208	Arrest Functions of the MIF Ligand/Receptor Axes in Atherogenesis. Frontiers in Immunology, 2013, 4, 115.	2.2	101
209	Quantifying the range of a lipid phosphate signal in vivo. Journal of Cell Science, 2013, 126, 5453-64.	1.2	9
210	Cryopreservation of gametes for aquaculture and alternative cell sources for genome preservation. , $2013, 76-116.$		16
211	CXC Chemokine Receptor 7 (CXCR7) Affects the Migration of GnRH Neurons by Regulating CXCL12 Availability. Journal of Neuroscience, 2013, 33, 17527-17537.	1.7	31
212	International Union of Basic and Clinical Pharmacology. LXXXVIII. G Protein-Coupled Receptor List: Recommendations for New Pairings with Cognate Ligands. Pharmacological Reviews, 2013, 65, 967-986.	7.1	250
213	Misregulation of SDF1-CXCR4 Signaling Impairs Early Cardiac Neural Crest Cell Migration Leading to Conotruncal Defects. Circulation Research, 2013, 113, 505-516.	2.0	80
214	CXCR7/CXCR4/CXCL12 Axis Regulates the Proliferation, Migration, Survival and Tube Formation of Choroid-Retinal Endothelial Cells. Ophthalmic Research, 2013, 50, 6-12.	1.0	18
215	Induction of C-X-C Chemokine Receptor Type 7 (CXCR7) Switches Stromal Cell-derived Factor-1 (SDF-1) Signaling and Phagocytic Activity in Macrophages Linked to Atherosclerosis. Journal of Biological Chemistry, 2013, 288, 15481-15494.	1.6	62
216	The chemokine <scp>CXCL</scp> 12 and its receptor <scp>CXCR</scp> 4 are implicated in human seminoma metastasis. Andrology, 2013, 1, 517-529.	1.9	37
217	Evolution and function of chemokine receptors in the immune system of lower vertebrates. European Journal of Immunology, 2013, 43, 1686-1692.	1.6	61
218	A humidity-sensitive hydrogel-Bacillusspore composite for micropatterning of biomolecular gradients. Review of Scientific Instruments, 2013, 84, 085003.	0.6	1
219	Angiogenic and Antiangiogenic Chemokines. Chemical Immunology and Allergy, 2014, 99, 89-104.	1.7	43
220	CXCR7-mediated progression of osteosarcoma in the lungs. British Journal of Cancer, 2013, 109, 1579-1585.	2.9	34
221	On the robustness of germ cell migration and microRNA-mediated regulation of chemokine signaling. Nature Genetics, 2013, 45, 1264-1265.	9.4	5
222	Reply to: "On the robustness of germ cell migration and microRNA-mediated regulation of chemokine signaling". Nature Genetics, 2013, 45, 1266-1267.	9.4	6

#	Article	IF	CITATIONS
223	A Hox gene controls lateral line cell migration by regulating chemokine receptor expression downstream of Wnt signaling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16892-16897.	3.3	20
224	Precise SDF1-mediated cell guidance is achieved through ligand clearance and microRNA-mediated decay. Journal of Cell Biology, 2013, 200, 337-355.	2.3	34
225	Potential combinatorial effects of recombinant atypical chemokine receptors in breast cancer cell invasion: A research perspective. Biomedical Reports, 2013, 1, 185-192.	0.9	9
226	Cryopreservation Causes Genetic and Epigenetic Changes in Zebrafish Genital Ridges. PLoS ONE, 2013, 8, e67614.	1.1	77
227	Preclinical Development of a Novel Class of CXCR4 Antagonist Impairing Solid Tumors Growth and Metastases. PLoS ONE, 2013, 8, e74548.	1.1	76
228	The Development of a Novel High Throughput Computational Tool for Studying Individual and Collective Cellular Migration. PLoS ONE, 2013, 8, e82444.	1.1	10
229	Eosinophils in Fungus-Associated Allergic Pulmonary Disease. Frontiers in Pharmacology, 2013, 4, 8.	1.6	32
230	CXCR4/CXCL12 Axis in Non Small Cell Lung Cancer (NSCLC) Pathologic Roles and Therapeutic Potential. Theranostics, 2013, 3, 26-33.	4.6	107
231	Involvement of CXCR4/CXCR7/CXCL12 Interactions in Inflammatory Bowel Disease. Theranostics, 2013, 3, 40-46.	4.6	81
232	Expression of xSDF-1α, xCXCR4, and xCXCR7 during gastrulation in Xenopus laevis. International Journal of Developmental Biology, 2013, 57, 95-100.	0.3	9
233	Mechanisms of cranial placode assembly. International Journal of Developmental Biology, 2014, 58, 9-19.	0.3	19
234	A General Method for Site Specific Fluorescent Labeling of Recombinant Chemokines. PLoS ONE, 2014, 9, e81454.	1.1	21
235	CXCR7 Is Highly Expressed in Acute Lymphoblastic Leukemia and Potentiates CXCR4 Response to CXCL12. PLoS ONE, 2014, 9, e85926.	1.1	49
236	The Origin And Migration Of Primordial Germ Cells In Sturgeons. PLoS ONE, 2014, 9, e86861.	1.1	79
237	Profiling of Cxcl12 Receptors, Cxcr4 and Cxcr7 in Murine Testis Development and a Spermatogenic Depletion Model Indicates a Role for Cxcr7 in Controlling Cxcl12 Activity. PLoS ONE, 2014, 9, e112598.	1.1	16
238	Chemokines Referee Inflammation within the Central Nervous System during Infection and Disease. Advances in Medicine, 2014, 2014, 1-10.	0.3	12
239	CXCL12 modulation of CXCR4 and CXCR7 activity in human glioblastoma stem-like cells and regulation of the tumor microenvironment. Frontiers in Cellular Neuroscience, 2014, 8, 144.	1.8	129
240	Chemokines in the balance: maintenance of homeostasis and protection at CNS barriers. Frontiers in Cellular Neuroscience, 2014, 8, 154.	1.8	118

#	Article	IF	Citations
241	Chemokine (C-X-C Motif) Receptor 4 and Atypical Chemokine Receptor 3 Regulate Vascular $\hat{l}\pm 1$ -Adrenergic Receptor Function. Molecular Medicine, 2014, 20, 435-447.	1.9	33
242	Involvement of the CXCL12/CXCR4/CXCR7 Axis in Brain Metastases. , 2014, , 25-36.		1
243	Chaperoning G Protein-Coupled Receptors: From Cell Biology to Therapeutics. Endocrine Reviews, 2014, 35, 602-647.	8.9	114
244	The chemokine receptor CXCR7 interacts with EGFR to promote breast cancer cell proliferation. Molecular Cancer, 2014, 13, 198.	7.9	82
245	Arteries are formed by vein-derived endothelial tip cells. Nature Communications, 2014, 5, 5758.	5.8	165
246	Automated, contour-based tracking and analysis of cell behaviour over long time scales in environments of varying complexity and cell density. Journal of the Royal Society Interface, 2014, 11, 20140386.	1.5	25
247	Emerging Targets in Pituitary Adenomas: Role of the CXCL12/CXCR4-R7 System. International Journal of Endocrinology, 2014, 2014, 1-16.	0.6	18
248	Biased and G Protein-Independent Signaling of Chemokine Receptors. Frontiers in Immunology, 2014, 5, 277.	2.2	152
249	CXCR4, but not CXCR7, Discriminates Metastatic Behavior in Non–Small Cell Lung Cancer Cells. Molecular Cancer Research, 2014, 12, 38-47.	1.5	53
250	Diverse and dynamic sources and sinks in gradient formation and directed migration. Current Opinion in Cell Biology, 2014, 30, 91-98.	2.6	27
251	In Vitro Generation of Zebrafish PGC-Like Cells1. Biology of Reproduction, 2014, 91, 114.	1.2	18
252	Xmrkâ€induced melanoma progression is affected by Sdf1 signals through Cxcr7. Pigment Cell and Melanoma Research, 2014, 27, 221-233.	1.5	12
253	Blocking initial infiltration of pioneer <scp>CD</scp> 8 ⁺ <scp>T</scp> â€ells into the <scp>CNS</scp> via inhibition of <scp>SHP</scp> â€2 ameliorates experimental autoimmune encephalomyelitis in mice. British Journal of Pharmacology, 2014, 171, 1706-1721.	2.7	20
254	The atypical chemokine receptor CCXâ€CKR regulates metastasis of mammary carcinoma via an effect on EMT. Immunology and Cell Biology, 2014, 92, 815-824.	1.0	18
255	Leading and trailing cells cooperate in collective migration of the zebrafish posterior lateral line primordium. Development (Cambridge), 2014, 141, 3188-3196.	1.2	57
256	CXCR7 expression correlates with tumor depth in cutaneous squamous cell carcinoma skin lesions and promotes tumor cell survival through <scp>ERK</scp> activation. Experimental Dermatology, 2014, 23, 902-908.	1.4	20
257	CXCR4 drives the metastatic phenotype in breast cancer through induction of CXCR2 and activation of MEK and PI3K pathways. Molecular Biology of the Cell, 2014, 25, 566-582.	0.9	81
258	Neural Crest Cell Migration. , 2014, , 73-88.		7

#	ARTICLE	IF	CITATIONS
259	Temporal control over the initiation of cell motility by a regulator of G-protein signaling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11389-11394.	3.3	25
260	The involvement of CXCR7 in modulating the progression of papillary thyroid carcinoma. Journal of Surgical Research, 2014, 191, 379-388.	0.8	22
261	Flow Sensing in Air and Water. , 2014, , .		28
262	The peculiarities of the SDF-1/CXCL12 system: in some cells, CXCR4 and CXCR7 sing solos, in others, they sing duets. Cell and Tissue Research, 2014, 355, 239-253.	1.5	51
263	Toddler: An Embryonic Signal That Promotes Cell Movement via Apelin Receptors. Science, 2014, 343, 1248636.	6.0	498
264	CXC chemokine ligand 12 (CXCL12) and its receptor CXCR4. Journal of Molecular Medicine, 2014, 92, 433-439.	1.7	136
265	The atypical chemokine receptor CCRL1 shapes functional CCL21 gradients in lymph nodes. Nature Immunology, 2014, 15, 623-630.	7.0	235
266	Heparan sulfate glycosaminoglycans modulate migration and survival in zebrafish primordial germ cells. Theriogenology, 2014, 81, 1275-1285.e2.	0.9	26
267	CXCL14 antagonizes the CXCL12-CXCR4 signaling axis. Biomolecular Concepts, 2014, 5, 167-173.	1.0	35
268	SDF-1 signaling: a promising target in rheumatic diseases. Expert Opinion on Therapeutic Targets, 2014, 18, 1077-1087.	1.5	50
269	<scp>CXCR</scp> 7 influences the migration of <scp>B</scp> cells during maturation. European Journal of Immunology, 2014, 44, 694-705.	1.6	34
270	Chemokine signaling in development and disease. Development (Cambridge), 2014, 141, 4199-4205.	1.2	102
271	Decoy Receptor CXCR7 Modulates Adrenomedullin-Mediated Cardiac and Lymphatic Vascular Development. Developmental Cell, 2014, 30, 528-540.	3.1	77
272	Endothelial expression of <scp>CXCR</scp> 7 and the regulation of systemic <scp>CXCL</scp> 12 levels. Immunology, 2014, 141, 111-122.	2.0	81
273	Peptides targeting chemokine receptor CXCR4: structural behavior and biological binding studies. Journal of Peptide Science, 2014, 20, 270-278.	0.8	8
274	International Union of Basic and Clinical Pharmacology. LXXXIX. Update on the Extended Family of Chemokine Receptors and Introducing a New Nomenclature for Atypical Chemokine Receptors. Pharmacological Reviews, 2014, 66, 1-79.	7.1	735
275	New paradigms in the establishment and maintenance of gradients during directed cell migration. Current Opinion in Cell Biology, 2014, 30, 33-40.	2.6	82
276	Expression of stromal cell-derived factor-1 receptors CXCR4 and CXCR7 on circulating platelets of patients with acute coronary syndrome and association with left ventricular functional recovery. European Heart Journal, 2014, 35, 386-394.	1.0	69

#	Article	IF	CITATIONS
277	TGF-Î ² 1 enhances SDF-1-induced migration and tube formation of choroid-retinal endothelial cells by up-regulating CXCR4 and CXCR7 expression. Molecular and Cellular Biochemistry, 2014, 397, 131-138.	1.4	27
278	CXCR7 prevents excessive CXCL12-mediated downregulation of CXCR4 in migrating cortical interneurons. Development (Cambridge), 2014, 141, 1857-1863.	1.2	68
279	Vasculogenesis: a crucial player in the resistance of solid tumours to radiotherapy. British Journal of Radiology, 2014, 87, 20130686.	1.0	81
280	The SDF-1/CXCR4 axis induces epithelial–mesenchymal transition in hepatocellular carcinoma. Molecular and Cellular Biochemistry, 2014, 392, 77-84.	1.4	55
281	Targeting CXCR7/ACKR3 as a therapeutic strategy to promote remyelination in the adult central nervous system. Journal of Experimental Medicine, 2014, 211, 791-799.	4.2	53
282	Endocytosis and Signaling during Development. Cold Spring Harbor Perspectives in Biology, 2014, 6, a017020-a017020.	2.3	36
283	The development of lateral line placodes: Taking a broader view. Developmental Biology, 2014, 389, 68-81.	0.9	55
284	Use of antagonists and morpholinos in loss-of-function analyses: estrogen receptor ESR2a mediates the effects of 17alpha-ethinylestradiol on primordial germ cell distribution in zebrafish. Reproductive Biology and Endocrinology, 2014, 12, 40.	1.4	16
285	Constitutively Active Chemokine CXC Receptors. Advances in Pharmacology, 2014, 70, 265-301.	1.2	24
286	New nomenclature for atypical chemokine receptors. Nature Immunology, 2014, 15, 207-208.	7.0	176
287	Microfluidic source-sink model reveals effects of biophysically distinct CXCL12 isoforms in breast cancer chemotaxis. Integrative Biology (United Kingdom), 2014, 6, 564-576.	0.6	32
289	Endocytic trafficking of chemokine receptors. Current Opinion in Cell Biology, 2014, 27, 72-77.	2.6	85
290	Atorvastatin inhibits CXCR7 induction to reduce macrophage migration. Biochemical Pharmacology, 2014, 89, 99-108.	2.0	26
291	The relevance of the chemokine receptor ACKR3/CXCR7 on CXCL12-mediated effects in cancers with a focus on virus-related cancers. Cytokine and Growth Factor Reviews, 2014, 25, 307-316.	3.2	47
292	Cell migration: from tissue culture to embryos. Development (Cambridge), 2014, 141, 1999-2013.	1.2	147
293	Chemotherapeutic agents attenuate CXCL12-mediated migration of colon cancer cells by selecting for CXCR4-negative cells and increasing peptidase CD26. BMC Cancer, 2015, 15, 882.	1.1	21
294	A Broad G Protein-Coupled Receptor Internalization Assay that Combines SNAP-Tag Labeling, Diffusion-Enhanced Resonance Energy Transfer, and a Highly Emissive Terbium Cryptate. Frontiers in Endocrinology, 2015, 6, 167.	1.5	56
295	Chemokines as effector and target molecules in vascular biology. Cardiovascular Research, 2015, 107, 364-372.	1.8	30

#	Article	IF	CITATIONS
296	Development of Novel CXC Chemokine Receptor 7 (CXCR7) Ligands: Selectivity Switch from CXCR4 Antagonists with a Cyclic Pentapeptide Scaffold. Journal of Medicinal Chemistry, 2015, 58, 5218-5225.	2.9	19
297	Navigating in tissue mazes: chemoattractant interpretation in complex environments. Current Opinion in Cell Biology, 2015, 36, 93-102.	2.6	85
298	Intercellular Communication in Cancer. , 2015, , .		4
299	The CXC chemokine receptors of fish: Insights into CXCR evolution in the vertebrates. General and Comparative Endocrinology, 2015, 215, 117-131.	0.8	56
300	On the move: endocytic trafficking in cell migration. Cellular and Molecular Life Sciences, 2015, 72, 2119-2134.	2.4	84
301	Stromal derived factorâ€1α in hippocampus radial glial cells in vitro regulates the migration of neural progenitor cells. Cell Biology International, 2015, 39, 750-758.	1.4	3
302	Chemokineâ€guided cell migration and motility in zebrafish development. EMBO Journal, 2015, 34, 1309-1318.	3 . 5	63
303	MIF interacts with CXCR7 to promote receptor internalization, ERK1/2 and ZAPâ€70 signaling, and lymphocyte chemotaxis. FASEB Journal, 2015, 29, 4497-4511.	0.2	129
304	CXCR7 Receptor Controls the Maintenance of Subpial Positioning of Cajal–Retzius Cells. Cerebral Cortex, 2015, 25, 3446-3457.	1.6	17
305	Developmental expression patterns of chemokines CXCL11, CXCL12 and their receptor CXCR7 in testes of common marmoset and human. Cell and Tissue Research, 2015, 361, 885-898.	1.5	11
306	Gene expression profile analyze the molecular mechanism of CXCR7 regulating papillary thyroid carcinoma growth and metastasis. Journal of Experimental and Clinical Cancer Research, 2015, 34, 16.	3 . 5	40
307	Regulation of Hematopoiesis by CXCL12/CXCR4 Signaling. , 2015, , 593-605.		1
308	Zebrafish germ cells: motility and guided migration. Current Opinion in Cell Biology, 2015, 36, 80-85.	2.6	54
309	Neutrophil trails guide influenza-specific CD8 ⁺ T cells in the airways. Science, 2015, 349, aaa4352.	6.0	328
310	Cell-Cell Fusion, Chemotaxis and Metastasis. , 2015, , 227-254.		0
311	Drosophila immune cell migration and adhesion during embryonic development and larval immune responses. Current Opinion in Cell Biology, 2015, 36, 71-79.	2.6	59
312	CXCR4/CXCR7 Molecular Involvement in Neuronal and Neural Progenitor Migration: Focus in CNS Repair. Journal of Cellular Physiology, 2015, 230, 27-42.	2.0	53
313	CXCR4 expression affects overall survival of HCC patients whereas CXCR7 expression does not. Cellular and Molecular Immunology, 2015, 12, 474-482.	4.8	39

#	Article	IF	CITATIONS
314	CXCR4 and CXCR7 Mediate TFF3-Induced Cell Migration Independently From the ERK1/2 Signaling Pathway. , 2016, 57, 56.		33
315	Glioblastoma Stem Cells Microenvironment: The Paracrine Roles of the Niche in Drug and Radioresistance. Stem Cells International, 2016, 2016, 1-17.	1.2	131
316	Vascular Growth Factors and Glomerular Disease. Annual Review of Physiology, 2016, 78, 437-461.	5.6	89
317	Activation of the SDF1/CXCR4 pathway retards muscle atrophy during cancer cachexia. Oncogene, 2016, 35, 6212-6222.	2.6	35
318	Inhibition of cross-species CXCR4 signaling by the small molecule IT1t impairs triple negative breast cancer early metastases in zebrafish. DMM Disease Models and Mechanisms, 2016, 9, 141-53.	1.2	45
319	\hat{l}^2 -Arrestin-2 Counters CXCR7-Mediated EGFR Transactivation and Proliferation. Molecular Cancer Research, 2016, 14, 493-503.	1.5	32
320	Self-generated chemotactic gradientsâ€"cells steering themselves. Current Opinion in Cell Biology, 2016, 42, 46-51.	2.6	47
321	The Molecular Basis of Radial Intercalation during Tissue Spreading in Early Development. Developmental Cell, 2016, 37, 213-225.	3.1	38
322	Expression and function of CXCL12/CXCR4/CXCR7 in thyroid cancer. International Journal of Oncology, 2016, 48, 2321-2329.	1.4	49
323	Drug design strategies focusing on the CXCR4/CXCR7/CXCL12 pathway in leukemia and lymphoma. Expert Opinion on Drug Discovery, 2016, 11, 1093-1109.	2.5	28
324	Optogenetic Control of Protein Function: From Intracellular Processes to Tissue Morphogenesis. Trends in Cell Biology, 2016, 26, 864-874.	3.6	63
325	Overexpression of CXCR7 induces angiogenic capacity of human hepatocellular carcinoma cells via the AKT signaling pathway. Oncology Reports, 2016, 36, 2275-2281.	1.2	21
326	Finding their way: themes in germ cell migration. Current Opinion in Cell Biology, 2016, 42, 128-137.	2.6	76
327	Stromal cell–derived factor-1 is upregulated byÂdipeptidyl peptidase-4 inhibition and hasÂprotective roles in progressive diabeticÂnephropathy. Kidney International, 2016, 90, 783-796.	2.6	82
328	CXC Chemokine Receptor 3 Alternative Splice Variants Selectively Activate Different Signaling Pathways. Molecular Pharmacology, 2016, 90, 483-495.	1.0	84
329	Function of Chemokines and Their Receptors in Immunity. , 2016, , 572-578.		3
330	Atypical Chemokine Receptors., 2016,, 579-585.		0
331	Tangential migration of glutamatergic neurons and cortical patterning during development: Lessons from Cajalâ€Retzius cells. Developmental Neurobiology, 2016, 76, 847-881.	1.5	68

#	Article	IF	Citations
332	Pattern of CXCR7 Gene Expression in Mouse Brain Under Normal and Inflammatory Conditions. Journal of NeuroImmune Pharmacology, 2016, 11, 26-35.	2.1	39
333	Cell migration towards CXCL12 in leukemic cells compared to breast cancer cells. Cellular Signalling, 2016, 28, 316-324.	1.7	19
334	Monitoring Scavenging Activity of Chemokine Receptors. Methods in Enzymology, 2016, 570, 87-118.	0.4	17
335	Chemotaxis during neural crest migration. Seminars in Cell and Developmental Biology, 2016, 55, 111-118.	2.3	56
336	The sweet spot: how GAGs help chemokines guide migrating cells. Journal of Leukocyte Biology, 2016, 99, 935-953.	1.5	104
337	Biased signaling pathways via CXCR3 control the development and function of CD4+ T cell subsets. Journal of Leukocyte Biology, 2016, 99, 857-862.	1.5	67
338	Functional dissection of the Pax6 paired domain: Roles in neural tube patterning and peripheral nervous system development. Developmental Biology, 2016, 413, 86-103.	0.9	9
339	The chemokine receptor CXCR7 is a critical regulator for the tumorigenesis and development of papillary thyroid carcinoma by inducing angiogenesis in vitro and in vivo. Tumor Biology, 2016, 37, 2415-2423.	0.8	10
340	Process of hepatic metastasis from pancreatic cancer: biology with clinical significance. Journal of Cancer Research and Clinical Oncology, 2016, 142, 1137-1161.	1.2	24
341	Endothelial CXCR7 regulates breast cancer metastasis. Oncogene, 2016, 35, 1716-1724.	2.6	45
342	Biology of teleost primordial germ cells (PGCs) and spermatogonia: Biotechnological applications. Aquaculture, 2017, 472, 4-20.	1.7	44
343	Loss of Endothelial CXCR7 Impairs Vascular Homeostasis and Cardiac Remodeling After Myocardial Infarction. Circulation, 2017, 135, 1253-1264.	1.6	73
344	CXCL12/CXCR4/CXCR7 Chemokine Axis in the Central Nervous System: Therapeutic Targets for Remyelination in Demyelinating Diseases. Neuroscientist, 2017, 23, 627-648.	2.6	37
345	Attempts to Overcome Remyelination Failure: Toward Opening New Therapeutic Avenues for Multiple Sclerosis. Cellular and Molecular Neurobiology, 2017, 37, 1335-1348.	1.7	21
346	dl -3- n -butylphthalide promotes neuroplasticity and motor recovery in stroke rats. Behavioural Brain Research, 2017, 329, 67-74.	1.2	32
347	A framework for understanding morphogenesis and migration of the zebrafish posterior Lateral Line primordium. Mechanisms of Development, 2017, 148, 69-78.	1.7	53
348	Sequential organogenesis sets two parallel sensory lines in medaka. Development (Cambridge), 2017, 144, 687-697.	1.2	16
349	Molecular characterization of sdf1 and cxcr4 in the Mozambique tilapia, Oreochromis mossambicus. Animal Reproduction Science, 2017, 176, 51-63.	0.5	7

#	Article	IF	CITATIONS
350	Irradiation affects germ and somatic cells in prepubertal monkey testis xenografts. Molecular Human Reproduction, 2017, 23, gax003.	1.3	22
351	Convergence of signaling pathways underlying habenular formation and axonal outgrowth. Development (Cambridge), 2017, 144, 2652-2662.	1.2	5
352	Lymphangiogenesis guidance by paracrine and pericellular factors. Genes and Development, 2017, 31, 1615-1634.	2.7	134
353	Biological/pathological functions of the CXCL12/CXCR4/CXCR7 axes in the pathogenesis of bladder cancer. International Journal of Clinical Oncology, 2017, 22, 991-1000.	1.0	66
354	Expression of CXCR4 and VEGF is correlated with lymph node metastasis in nonâ€small cell lung cancer. Thoracic Cancer, 2017, 8, 634-641.	0.8	20
355	The chemokines CXCL12 and CXCL14 differentially regulate connective tissue markers during limb development. Scientific Reports, 2017, 7, 17279.	1.6	19
356	Oroxylin A reverses the drug resistance of chronic myelogenous leukemia cells to imatinib through CXCL12/CXCR7 axis in bone marrow microenvironment. Molecular Carcinogenesis, 2017, 56, 863-876.	1.3	21
357	Inhibition of chemokine (C-X-C motif) receptor four (CXCR4) at the fetal-maternal interface during early gestation in sheep: alterations in expression of chemokines, angiogenic factors and their receptors1. Journal of Animal Science, 2017, 95, 1144-11153.	0.2	11
358	Chemokines and Chemotaxis., 2017,, 619-650.		2
359	The Vertebrate Protein Dead End Maintains Primordial Germ Cell Fate by Inhibiting Somatic Differentiation. Developmental Cell, 2017, 43, 704-715.e5.	3.1	85
360	Migration of primordial germ cells during late embryogenesis of pikeperch Sander lucioperca relative to blastomere transplantation. Czech Journal of Animal Science, 2017, 62, 121-129.	0.5	5
361	The Role of SDF-1/CXCR4/CXCR7 in Neuronal Regeneration after Cerebral Ischemia. Frontiers in Neuroscience, 2017, 11, 590.	1.4	92
362	Signaling properties of the human chemokine receptors CXCR4 and CXCR7 by cellular electric impedance measurements. PLoS ONE, 2017, 12, e0185354.	1.1	21
363	Multisystem multitasking by CXCL12 and its receptors CXCR4 and ACKR3. Cytokine, 2018, 109, 2-10.	1.4	46
364	Rapid progression through the cell cycle ensures efficient migration of primordial germ cells – The role of Hsp90. Developmental Biology, 2018, 436, 84-93.	0.9	17
365	Characterization of a chimeric chemokine as a specific ligand for ACKR3. Journal of Leukocyte Biology, 2018, 104, 391-400.	1.5	19
366	A guide to chemokines and their receptors. FEBS Journal, 2018, 285, 2944-2971.	2.2	748
367	The C-X-C signalling system in the rodent vs primate testis: impact on germ cell niche interaction. Reproduction, 2018, 155, R211-R219.	1.1	12

#	Article	IF	CITATIONS
368	Targeting the CXCL12/CXCR4 pathway and myeloid cells to improve radiation treatment of locally advanced cervical cancer. International Journal of Cancer, 2018, 143, 1017-1028.	2.3	39
369	Different contributions of chemokine Nâ€terminal features attest to a different ligand binding mode and a bias towards activation of ACKR3/CXCR7 compared with CXCR4 and CXCR3. British Journal of Pharmacology, 2018, 175, 1419-1438.	2.7	52
370	Critical involvement of atypical chemokine receptor CXCR7 in allergic airway inflammation. Immunology, 2018, 154, 274-284.	2.0	23
371	Biotechnology applied to fish reproduction: tools for conservation. Fish Physiology and Biochemistry, 2018, 44, 1469-1485.	0.9	31
372	Use of zebrafish to study <i>Shigella</i> infection. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	36
373	A Chimeric Antibody against ACKR3/CXCR7 in Combination with TMZ Activates Immune Responses and Extends Survival in Mouse GBM Models. Molecular Therapy, 2018, 26, 1354-1365.	3.7	40
374	Structure–Activity Relationship Study of Cyclic Pentapeptide Ligands for Atypical Chemokine Receptor 3 (ACKR3). Journal of Medicinal Chemistry, 2018, 61, 3745-3751.	2.9	3
375	CXCL12â€mediated feedback from granule neurons regulates generation and positioning of new neurons in the dentate gyrus. Glia, 2018, 66, 1566-1576.	2.5	18
376	Mutational analysis of the extracellular disulphide bridges of the atypical chemokine receptor ACKR3/CXCR7 uncovers multiple binding and activation modes for its chemokine and endogenous non-chemokine agonists. Biochemical Pharmacology, 2018, 153, 299-309.	2.0	33
377	The unique structural and functional features of CXCL12. Cellular and Molecular Immunology, 2018, 15, 299-311.	4.8	243
378	Targeting CXCR7 improves the efficacy of breast cancer patients with tamoxifen therapy. Biochemical Pharmacology, 2018, 147, 128-140.	2.0	19
379	Ligand-specific conformational transitions and intracellular transport are required for atypical chemokine receptor 3–mediated chemokine scavenging. Journal of Biological Chemistry, 2018, 293, 893-905.	1.6	35
380	Harnessing CXCR4 antagonists in stem cell mobilization, HIV infection, ischemic diseases, and oncology. Medicinal Research Reviews, 2018, 38, 1188-1234.	5.0	29
381	Mechanisms of Neural Crest Migration. Annual Review of Genetics, 2018, 52, 43-63.	3.2	135
382	Molecular Mechanisms Governing the Stem Cell's Fate in Brain Cancer: Factors of Stemness and Quiescence. Frontiers in Cellular Neuroscience, 2018, 12, 388.	1.8	41
383	Breast Cancer: An Examination of the Potential of ACKR3 to Modify the Response of CXCR4 to CXCL12. International Journal of Molecular Sciences, 2018, 19, 3592.	1.8	18
384	Prognostic significance of CXCR7 in cancer patients: a meta-analysis. Cancer Cell International, 2018, 18, 212.	1.8	16
385	Peroxynitrite Exposure of CXCL12 Impairs Monocyte, Lymphocyte and Endothelial Cell Chemotaxis, Lymphocyte Extravasation in vivo and Anti-HIV-1 Activity. Frontiers in Immunology, 2018, 9, 1933.	2.2	5

#	Article	IF	Citations
386	Divergent Expression Patterns and Function of Two cxcr4 Paralogs in Hermaphroditic Epinephelus coioides. International Journal of Molecular Sciences, 2018, 19, 2943.	1.8	14
387	Pathological roles of the homeostatic chemokine CXCL12. Cytokine and Growth Factor Reviews, 2018, 44, 51-68.	3.2	110
388	Using Zebrafish to Study Collective Cell Migration in Development and Disease. Frontiers in Cell and Developmental Biology, 2018, 6, 83.	1.8	31
389	Cxcl12a induces $\langle i \rangle$ snail1b $\langle i \rangle$ expression to initiate collective migration and sequential Fgf-dependent neuromast formation in the zebrafish posterior Lateral Line primordium. Development (Cambridge), 2018, 145, .	1.2	9
390	Responses of the Differentiated Intestinal Epithelial Cell Line Caco-2 to Infection With the Giardia intestinalis GS Isolate. Frontiers in Cellular and Infection Microbiology, 2018, 8, 244.	1.8	34
391	CXCR7 Targeting and Its Major Disease Relevance. Frontiers in Pharmacology, 2018, 9, 641.	1.6	67
392	The Immunopathophysiology of Endometriosis. Trends in Molecular Medicine, 2018, 24, 748-762.	3.5	275
393	CXCR7 participates in CXCL12-mediated migration and homing of leukemic and normal hematopoietic cells. Stem Cell Research and Therapy, 2018, 9, 34.	2.4	20
394	Skewed Signaling through the Receptor for Advanced Glycation End-Products Alters the Proinflammatory Profile of Tumor-Associated Macrophages. Cancer Microenvironment, 2018, 11, 97-105.	3.1	13
395	Transcriptomic profile of early zebrafish PGCs by single cell sequencing. PLoS ONE, 2019, 14, e0220364.	1.1	8
396	The CXCL12/CXCR4 Signaling Axis Retains Neutrophils at Inflammatory Sites in Zebrafish. Frontiers in Immunology, 2019, 10, 1784.	2.2	97
397	Estrogen Receptor \hat{I}^2 2 Oversees Germ Cell Maintenance and Gonadal Sex Differentiation in Medaka, Oryzias latipes. Stem Cell Reports, 2019, 13, 419-433.	2.3	10
398	Tumor-derived exosomes promote the in vitro osteotropism of melanoma cells by activating the SDF-1/CXCR4/CXCR7 axis. Journal of Translational Medicine, 2019, 17, 230.	1.8	41
399	RAMP3 determines rapid recycling of atypical chemokine receptor-3 for guided angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24093-24099.	3.3	38
400	CXCR7: A key neuroprotective molecule against alarmin HMGB1 mediated CNS pathophysiology and subsequent memory impairment. Brain, Behavior, and Immunity, 2019, 82, 319-337.	2.0	15
401	Atypical Chemokine Receptors in Cardiovascular Disease. Thrombosis and Haemostasis, 2019, 119, 534-541.	1.8	21
402	Context-Dependent Signaling of CXC Chemokine Receptor 4 and Atypical Chemokine Receptor 3. Molecular Pharmacology, 2019, 96, 778-793.	1.0	30
403	Decreased ACKR3 (CXCR7) function causes oculomotor synkinesis in mice and humans. Human Molecular Genetics, 2019, 28, 3113-3125.	1.4	8

#	Article	IF	CITATIONS
404	MicroRNA-101 Targets CXCL12-Mediated Akt and Snail Signaling Pathways to Inhibit Cellular Proliferation and Invasion in Papillary Thyroid Carcinoma. Oncology Research, 2019, 27, 691-701.	0.6	8
405	Atypical Chemokine Receptor 3 Generates Guidance Cues for CXCL12-Mediated Endothelial Cell Migration. Frontiers in Immunology, 2019, 10, 1092.	2.2	9
406	Axon Guidance and Collective Cell Migration by Substrate-Derived Attractants. Frontiers in Molecular Neuroscience, 2019, 12, 148.	1.4	17
407	Role of TPBG (Trophoblast Glycoprotein) Antigen in Human Pericyte Migratory and Angiogenic Activity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1113-1124.	1.1	15
408	Atypical Chemokine Receptor 3 (ACKR3): A Comprehensive Overview of its Expression and Potential Roles in the Immune System. Molecular Pharmacology, 2019, 96, 809-818.	1.0	41
409	A Small-Molecule Compound Selectively Activates K2P Channel TASK-3 by Acting at Two Distant Clusters of Residues. Molecular Pharmacology, 2019, 96, 26-35.	1.0	16
410	Regulators of Tâ€eell fate: Integration of cell migration, differentiation and function. Immunological Reviews, 2019, 289, 101-114.	2.8	47
411	ACKR3 Regulation of Neuronal Migration Requires ACKR3 Phosphorylation, but Not \hat{l}^2 -Arrestin. Cell Reports, 2019, 26, 1473-1488.e9.	2.9	60
412	Support of Tumor Endothelial Cells by Chemokine Receptors. Frontiers in Immunology, 2019, 10, 147.	2.2	56
413	Cancer Cells Invade Confined Microchannels via a Self-Directed Mesenchymal-to-Amoeboid Transition. Nano Letters, 2019, 19, 2280-2290.	4 . 5	90
414	Hmgcr promotes a long-range signal to attract <i>Drosophila</i> germ cells independently of Hedgehog. Journal of Cell Science, 2019, 132, .	1.2	5
415	Lumen Expansion Facilitates Epiblast-Primitive Endoderm Fate Specification during Mouse Blastocyst Formation. Developmental Cell, 2019, 51, 684-697.e4.	3.1	58
416	Applications of miRNAs in cardiac development, disease progression and regeneration. Stem Cell Research and Therapy, 2019, 10, 336.	2.4	37
417	Regulation of CNS precursor function by neuronal chemokines. Neuroscience Letters, 2020, 715, 134533.	1.0	34
418	Frontline Science: Antagonism between regular and atypical Cxcr3 receptors regulates macrophage migration during infection and injury in zebrafish. Journal of Leukocyte Biology, 2020, 107, 185-203.	1.5	31
419	The CXCL12-CXCR4/CXCR7 axis as a mechanism of immune resistance in gastrointestinal malignancies. Seminars in Cancer Biology, 2020, 65, 176-188.	4.3	117
420	Small molecule and peptide-based CXCR4 modulators as therapeutic agents. A patent review for the period from 2010 to 2018. Expert Opinion on Therapeutic Patents, 2020, 30, 87-101.	2.4	32
421	Maternal miR-202-5p is required for zebrafish primordial germ cell migration by protecting small GTPase Cdc42. Journal of Molecular Cell Biology, 2020, 12, 530-542.	1.5	16

#	Article	IF	CITATIONS
422	B cell hyperactivation in an <i>Ackr4</i> -deficient mouse strain is not caused by lack of ACKR4 expression. Journal of Leukocyte Biology, 2020, 107, 1155-1166.	1.5	8
423	Germ cell migration—Evolutionary issues and current understanding. Seminars in Cell and Developmental Biology, 2020, 100, 152-159.	2.3	26
424	NetLogo agent-based models as tools for understanding the self-organization of cell fate, morphogenesis and collective migration of the zebrafish posterior Lateral Line primordium. Seminars in Cell and Developmental Biology, 2020, 100, 186-198.	2.3	8
425	Durotaxis Index of 3T3 Fibroblast Cells Scales with Stiff-to-Soft Membrane Tension Polarity. Biophysical Journal, 2020, 119, 1427-1438.	0.2	13
426	The atypical chemokine receptor 3 interacts with Connexin 43 inhibiting astrocytic gap junctional intercellular communication. Nature Communications, 2020, 11, 4855.	5.8	21
427	Microglia induce the transformation of A1/A2 reactive astrocytes via the CXCR7/PI3K/Akt pathway in chronic post-surgical pain. Journal of Neuroinflammation, 2020, $17,211$.	3.1	105
428	Marginal Zone Formation Requires ACKR3 Expression on B Cells. Cell Reports, 2020, 32, 107951.	2.9	13
429	Relevance of the CXCR4/CXCR7-CXCL12 axis and its effect in pathophysiological conditions. Pharmacological Research, 2020, 161, 105092.	3.1	45
430	Chemokine receptor CXCR7 non-cell-autonomously controls pontine neuronal migration and nucleus formation. Scientific Reports, 2020, 10, 11830.	1.6	3
431	Role of Immune System in Kidney Cancer. , 2020, , .		1
432	Differential activity and selectivity of N-terminal modified CXCL12 chemokines at the CXCR4 and ACKR3 receptors. Journal of Leukocyte Biology, 2020, 107, 1123-1135.	1.5	9
433	Atypical chemokine receptor ACKR3/CXCR7 controls postnatal vasculogenesis and arterial specification by mesenchymal stem cells via Notch signaling. Cell Death and Disease, 2020, 11, 307.	2.7	11
434	The extracellular matrix in development. Development (Cambridge), 2020, 147, .	1.2	210
435	The atypical chemokine receptor ACKR3/CXCR7 is a broad-spectrum scavenger for opioid peptides. Nature Communications, 2020, 11, 3033.	5.8	74
436	Self-Generated Gradients Yield Exceptionally Robust Steering Cues. Frontiers in Cell and Developmental Biology, 2020, 8, 133.	1.8	38
437	Analysis of lung stromal expression of the atypical chemokine receptor ACKR2 reveals unanticipated expression in murine blood endothelial cells. European Journal of Immunology, 2020, 50, 666-675.	1.6	5
438	Advances in CXCR7 Modulators. Pharmaceuticals, 2020, 13, 33.	1.7	29
439	The diverse and complex roles of atypical chemokine receptors in cancer: From molecular biology to clinical relevance and therapy. Advances in Cancer Research, 2020, 145, 99-138.	1.9	23

#	Article	IF	CITATIONS
440	Chemokine Receptors and Phagocyte Biology in Zebrafish. Frontiers in Immunology, 2020, 11, 325.	2.2	40
441	Dawn of a New RAMPage. Trends in Pharmacological Sciences, 2020, 41, 249-265.	4.0	30
442	A negative-feedback loop maintains optimal chemokine concentrations for directional cell migration. Nature Cell Biology, 2020, 22, 266-273.	4.6	40
443	Dynamic Buffering of Extracellular Chemokine by a Dedicated Scavenger Pathway Enables Robust Adaptation during Directed Tissue Migration. Developmental Cell, 2020, 52, 492-508.e10.	3.1	25
444	Autoselective transport of mammalian cells with a chemotactic droplet. Scientific Reports, 2020, 10, 5525.	1.6	5
445	Flt3-L enhances trans-epithelial migration and antigen presentation of dendritic cells adoptively transferred to genital mucosa. Journal of Controlled Release, 2021, 329, 782-793.	4.8	1
446	Naringenin attenuates experimental autoimmune encephalomyelitis by protecting the intact of blood-brain barrier and controlling inflammatory cell migration. Journal of Nutritional Biochemistry, 2021, 89, 108560.	1.9	25
447	CXCR7, CXCR4, and Their Ligand Expression Profile in Traumatic Brain Injury. World Neurosurgery, 2021, 147, e16-e24.	0.7	5
448	The role of stromal cell-derived factor 1 on cartilage development and disease. Osteoarthritis and Cartilage, 2021, 29, 313-322.	0.6	38
449	The CXCL12/CXCR4/ACKR3 Axis in the Tumor Microenvironment: Signaling, Crosstalk, and Therapeutic Targeting. Annual Review of Pharmacology and Toxicology, 2021, 61, 541-563.	4.2	29
450	The basics of collective cell migration: unity makes strength. , 2021, , 1-19.		0
451	Cell Proliferation and Collective Cell Migration During Zebrafish Lateral Line System Development Are Regulated by Ncam/Fgf-Receptor Interactions. Frontiers in Cell and Developmental Biology, 2020, 8, 591011.	1.8	3
452	CXCL12 Retargeting of an Oncolytic Adenovirus Vector to the Chemokine CXCR4 and CXCR7 Receptors in Breast Cancer. Journal of Cancer Therapy, 2021, 12, 311-336.	0.1	4
453	Proadrenomedullin N-Terminal 20 Peptides (PAMPs) Are Agonists of the Chemokine Scavenger Receptor ACKR3/CXCR7. ACS Pharmacology and Translational Science, 2021, 4, 813-823.	2.5	15
454	Differential Involvement of ACKR3 C-Tail in \hat{l}^2 -Arrestin Recruitment, Trafficking and Internalization. Cells, 2021, 10, 618.	1.8	24
455	Zebrafish Primordial Germ Cell Migration. Frontiers in Cell and Developmental Biology, 2021, 9, 684460.	1.8	18
456	The CXCL12/CXCR4/ACKR3 Response Axis in Chronic Neurodegenerative Disorders of the Central Nervous System: Therapeutic Target and Biomarker. Cellular and Molecular Neurobiology, 2022, 42, 2147-2156.	1.7	8
457	Expression and prognostic value of CXCL12/CXCR4/CXCR7 axis in clear cell renal cell carcinoma. Clinical and Experimental Nephrology, 2021, 25, 1057-1069.	0.7	6

#	Article	IF	CITATIONS
458	CXCL12-CXCR4/CXCR7 Axis in Colorectal Cancer: Therapeutic Target in Preclinical and Clinical Studies. International Journal of Molecular Sciences, 2021, 22, 7371.	1.8	56
459	Dual role for CXCL12 signaling in semilunar valve development. Cell Reports, 2021, 36, 109610.	2.9	8
460	The CXC Chemokine Receptors in Four-Eyed Sleeper (Bostrychus sinensis) and Their Involvement in Responding to Skin Injury. International Journal of Molecular Sciences, 2021, 22, 10022.	1.8	3
461	Axonal Growth Abnormalities Underlying Ocular Cranial Nerve Disorders. Annual Review of Vision Science, 2021, 7, 827-850.	2.3	9
462	CXCL12-stimulated lymphocytes produce secondary stimulants that affect the surrounding cell chemotaxis. Biochemistry and Biophysics Reports, 2021, 28, 101128.	0.7	1
463	Expression of the CXCR4 and CXCR7 in renal cancers; can "the orphan receptor―predict the mortality?. Annals of Diagnostic Pathology, 2021, 55, 151829.	0.6	3
464	Beads on the Run: Beads as Alternative Tools for Chemotaxis Assays. Methods in Molecular Biology, 2011, 769, 449-460.	0.4	16
465	Patterning the Posterior Lateral Line in Teleosts: Evolution of Development. , 2014, , 295-318.		10
469	The CXCR4/CXCR7/SDF-1 pathway contributes to the pathogenesis of Shiga toxin–associated hemolytic uremic syndrome in humans and mice. Journal of Clinical Investigation, 2012, 122, 759-776.	3.9	86
470	Neural crest migration: trailblazing ahead. F1000prime Reports, 2015, 7, 02.	5.9	30
471	Fgf and Sdf-1 Pathways Interact during Zebrafish Fin Regeneration. PLoS ONE, 2009, 4, e5824.	1.1	38
472	Ubiquitination of CXCR7 Controls Receptor Trafficking. PLoS ONE, 2012, 7, e34192.	1.1	86
473	Blood Vessels Pattern Heparan Sulfate Gradients between Their Apical and Basolateral Aspects. PLoS ONE, 2014, 9, e85699.	1.1	46
474	CXCR7 Controls Competition for Recruitment of \hat{l}^2 -Arrestin 2 in Cells Expressing Both CXCR4 and CXCR7. PLoS ONE, 2014, 9, e98328.	1.1	45
475	Cell, Isoform, and Environment Factors Shape Gradients and Modulate Chemotaxis. PLoS ONE, 2015, 10, e0123450.	1.1	25
476	CXCR4-A Prognostic and Clinicopathological Biomarker for Pancreatic Ductal Adenocarcinoma: A Meta-Analysis. PLoS ONE, 2015, 10, e0130192.	1.1	32
477	Mutation in cpsf6/CFIm68 (Cleavage and Polyadenylation Specificity Factor Subunit 6) causes short 3'UTRs and disturbs gene expression in developing embryos, as revealed by an analysis of primordial germ cell migration using the medaka mutant naruto. PLoS ONE, 2017, 12, e0172467.	1.1	6
478	Developmental expression and regulation of the chemokine CXCL14 in Xenopus. International Journal of Developmental Biology, 2009, 53, 535-540.	0.3	19

#	Article	IF	CITATIONS
479	BH3 mimetics suppress CXCL12 expression in human malignant peripheral nerve sheath tumor cells. Oncotarget, 2017, 8, 8670-8678.	0.8	4
480	ACKR3 expression on diffuse large B cell lymphoma is required for tumor spreading and tissue infiltration. Oncotarget, 2017, 8, 85068-85084.	0.8	22
481	Screening of cancer tissue arrays identifies CXCR4 on adrenocortical carcinoma: correlates with expression and quantification on metastases using 64Cu-plerixafor PET. Oncotarget, 2017, 8, 73387-73406.	0.8	25
482	Stromal-derived factor-1α/CXCL12-CXCR4 chemotactic pathway promotes perineural invasion in pancreatic cancer. Oncotarget, 2015, 6, 4717-4732.	0.8	65
483	CXCL12/CXCR4-axis dysfunctions: Markers of the rare immunodeficiency disorder WHIM syndrome. Disease Markers, 2010, 29, 189-98.	0.6	24
484	Role of the stromal cell derived factor‑1 in the biological functions of endothelial progenitor cells and its underlying mechanisms. Experimental and Therapeutic Medicine, 2020, 21, 39.	0.8	15
485	Effects of CXCR7-neutralizing antibody on neurogenesis in the hippocampal dentate gyrus and cognitive function in the chronic phase of cerebral ischemia. Neural Regeneration Research, 2020, 15, 1079.	1.6	8
486	The Role of Chemoattractant Receptors in the Progression of Glioma. , 0, , .		2
487	Dynamic filopodia are required for chemokine-dependent intracellular polarization during guided cell migration in vivo. ELife, 2015, 4, .	2.8	49
488	Chemotactic network responses to live bacteria show independence of phagocytosis from chemoreceptor sensing. ELife, 2017, 6, .	2.8	12
489	A Clockwork Bleb: cytoskeleton, calcium, and cytoplasmic fluidity. FEBS Journal, 2022, 289, 7907-7917.	2.2	7
490	Risk Factors and Genetical Characterization. , 2011, , 27-63.		0
492	ACKR3., 2015,, 1-5.		0
493	ACKR3., 2016, , 1-5.		0
497	Development of the Zebrafish Posterior Lateral Line System. , 2020, , 66-84.		1
498	Zebrafish Posterior Lateral Line primordium migration requires interactions between a superficial sheath of motile cells and the skin. ELife, 2020, 9, .	2.8	17
499	Co-expression of CXCR4 and CXCR7 in human endometrial stromal cells is modulated by steroid hormones. International Journal of Clinical and Experimental Pathology, 2015, 8, 2449-60.	0.5	16
503	Restoring Ravaged Heart: Molecular Mechanisms and Clinical Application of miRNA in Heart Regeneration. Frontiers in Cardiovascular Medicine, 2022, 9, 835138.	1.1	4

#	Article	IF	CITATIONS
504	CXCL11 expressing C57BL/6 mice have intact adaptive immune responses to viral infection. Immunology and Cell Biology, 2022, , .	1.0	4
505	Steering yourself by the bootstraps: how cells create their own gradients for chemotaxis. Trends in Cell Biology, 2022, 32, 585-596.	3.6	10
506	Primordial Germ Cell Development in the Poeciliid, Gambusia holbrooki, Reveals Shared Features Between Lecithotrophs and Matrotrophs. Frontiers in Cell and Developmental Biology, 2022, 10, 793498.	1.8	4
507	Spatial determinates of effector and memory CD8 ⁺ T cell fates*. Immunological Reviews, 2022, 306, 76-92.	2.8	5
517	CXCR4/CXCL12 Activities in the Tumor Microenvironment and Implications for Tumor Immunotherapy. Cancers, 2022, 14, 2314.	1.7	27
518	The CXCL12/CXCR4/ACKR3 Signaling Axis Regulates PKM2 and Glycolysis. Cells, 2022, 11, 1775.	1.8	2
520	Germinal Center-Related G Protein-Coupled Receptors in Antibody-Mediated Autoimmune Skin Diseases: from Basic Research to Clinical Trials. Clinical Reviews in Allergy and Immunology, 2022, 63, 357-370.	2.9	3
521	Endothelial ACKR3 drives atherosclerosis by promoting immune cell adhesion to vascular endothelium. Basic Research in Cardiology, 2022, 117, .	2.5	10
522	Emerging Roles of the Atypical Chemokine Receptor 3 (ACKR3) in Cardiovascular Diseases. Frontiers in Endocrinology, $0,13,13$	1.5	10
523	Blebs—Formation, Regulation, Positioning, and Role in Amoeboid Cell Migration. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	20
525	Dipeptidyl Peptidase 4 Inhibitorâ€'Associated Bullous Pemphigoid Is Characterized by an Altered Expression of Cytokines in the Skin. Journal of Investigative Dermatology, 2023, 143, 78-86.e12.	0.3	1
526	Metzincin metalloproteases in PGC migration and gonadal sex conversion. General and Comparative Endocrinology, 2023, 330, 114137.	0.8	1
527	Germline stem cells in human. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	12
528	A new obligate CXCL4–CXCL12 heterodimer for studying chemokine heterodimer activities and mechanisms. Scientific Reports, 2022, 12, .	1.6	6
529	Collective chemotaxis in a Voronoi model for confluent clusters. Biophysical Journal, 2022, , .	0.2	0
530	CXCL12/CXCR7/ \hat{l}^2 -arrestin1 biased signal promotes epithelial-to-mesenchymal transition of colorectal cancer by repressing miRNAs through YAP1 nuclear translocation. Cell and Bioscience, 2022, 12, .	2.1	6
532	Targeting CXCR4 and CD47 Receptors: An Overview of New and Old Molecules for a Biological Personalized Anticancer Therapy. International Journal of Molecular Sciences, 2022, 23, 12499.	1.8	1
533	ACKR3 promotes CXCL12/CXCR4-mediated cell-to-cell-induced lymphoma migration through LTB4 production. Frontiers in Immunology, 0, 13 , .	2.2	4

#	Article	IF	CITATIONS
534	Tracking unlabeled cancer cells imaged with low resolution in wide migration chambers via U-NET class-1 probability (pseudofluorescence). Journal of Biological Engineering, 2023, 17, .	2.0	0
536	MUG CCArly: A Novel Autologous 3D Cholangiocarcinoma Model Presents an Increased Angiogenic Potential. Cancers, 2023, 15, 1757.	1.7	0
537	Two Novel IncRNAs Regulate Primordial Germ Cell Development in Zebrafish. Cells, 2023, 12, 672.	1.8	2
538	Receptors, enzymes and self-attraction as autocrine generators and amplifiers of chemotaxis and cell steering. Current Opinion in Cell Biology, 2023, 81, 102169.	2.6	4
540	New pairings and deorphanization among the atypical chemokine receptor family $\hat{a} \in \text{``}$ physiological and clinical relevance. Frontiers in Immunology, 0, 14, .	2.2	3
550	CXCL12–CXCR4 Axis in Cancer Metastasis. , 2023, , 191-217.		0