Enhance the Optical Absorptivity of Nanocrystalline Tio Molar Extinction Coefficient Ruthenium Sensitizers for Solar Cells

Journal of the American Chemical Society 130, 10720-10728 DOI: 10.1021/ja801942j

Citation Report

#	Article	IF	CITATIONS
1	Highâ€Performance Liquid and Solid Dye‧ensitized Solar Cells Based on a Novel Metalâ€Free Organic Sensitizer. Advanced Materials, 2008, 20, 4460-4463.	11.1	154
2	Molecular Design of Thin Film Optoelectronic Materials for Solar Cells. Journal of the American Chemical Society, 2008, 130, 12201-12203.	6.6	18
3	Simple organic molecules bearing a 3,4-ethylenedioxythiophene linker for efficient dye-sensitized solar cells. Chemical Communications, 2008, , 5152.	2.2	195
4	Dye-Sensitized Solar Cells with Solvent-Free Ionic Liquid Electrolytes. Journal of Physical Chemistry C, 2008, 112, 13775-13781.	1.5	126
5	New Efficiency Records for Stable Dye-Sensitized Solar Cells with Low-Volatility and Ionic Liquid Electrolytes. Journal of Physical Chemistry C, 2008, 112, 17046-17050.	1.5	197
6	Energy-Level and Molecular Engineering of Organic D-Ï€-A Sensitizers in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2008, 112, 19770-19776.	1.5	172
7	New Organic Sensitizer for Stable Dye-Sensitized Solar Cells with Solvent-Free Ionic Liquid Electrolytes. Journal of Physical Chemistry C, 2008, 112, 17478-17485.	1.5	73
8	The Effect of Dye Density on the Efficiency of Photosensitization of TiO2 Films: Light-Harvesting by Phenothiazine-Labelled Dendritic Ruthenium Complexes. Molecules, 2009, 14, 3851-3867.	1.7	6
9	Fabrication and performance of a monolithic dye-sensitized TiO2/Cu(In,Ga)Se2 thin film tandem solar cell. Applied Physics Letters, 2009, 94, 173508.	1.5	49
10	Layering of [BMIM]+-based ionic liquids at a charged sapphire interface. Journal of Chemical Physics, 2009, 131, 094701.	1.2	127
11	Development of multijunction thin film solar cells. , 2009, , .		3
12	New development of nanocrystalline TiO <inf>2</inf> -based dye-sensitized solar cells. , 2009, , .		0
13	Synthesis and characterization of Nb doped titania for dye sensitized solar cells. , 2009, , .		1
14	The Effect of UV-Irradiation (under Short-Circuit Condition) on Dye-Sensitized Solar Cells Sensitized with a Ru-Complex Dye Functionalized with a (diphenylamino)Styryl-Thiophen Group. International Journal of Photoenergy, 2009, 2009, 1-9.	1.4	4
15	Solventâ€Free Ionic Liquid Electrolytes for Mesoscopic Dyeâ€Sensitized Solar Cells. Advanced Functional Materials, 2009, 19, 2187-2202.	7.8	423
16	Poreâ€Filling of Spiroâ€OMeTAD in Solidâ€State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance. Advanced Functional Materials, 2009, 19, 2431-2436.	7.8	258
17	Solidâ€Phase Synthesis of Peptide Libraries Combining αâ€Amino Acids with Inorganic and Organic Chromophores. Chemistry - A European Journal, 2009, 15, 1346-1358.	1.7	43
18	Lightâ€Driven Charge Separation in Isoxazolidine–Perylene Bisimide Dyads. Chemistry - A European Journal, 2009, 15, 12733-12744.	1.7	18

#	Article	IF	CITATIONS
19	A Dendritic Oligothiophene Ruthenium Sensitizer for Stable Dye‧ensitized Solar Cells. ChemSusChem, 2009, 2, 761-768.	3.6	35
20	Resonance Raman Studies of Bis(terpyridine)ruthenium(II) Amino Acid Esters and Diesters. European Journal of Inorganic Chemistry, 2009, 2009, 3119-3126.	1.0	32
21	Dye-sensitized solar cells based on bisindolylmaleimide derivatives. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2009, 4, 269-277.	0.4	7
22	New trends for solar cell development and recent progress of dye sensitized solar cells. Frontiers of Materials Science in China, 2009, 3, 345-352.	0.5	8
23	Engineering Airy beams. Nature Photonics, 2009, 3, 374-375.	15.6	17
24	Relay dye boosts efficiency. Nature Photonics, 2009, 3, 373-374.	15.6	8
25	Structures and excitation energies of Zn–tetraarylporphyrin analogues: A theoretical study. Computational and Theoretical Chemistry, 2009, 910, 20-26.	1.5	76
26	Photoelectrocatalytic degradation of tetracycline by highly effective TiO2 nanopore arrays electrode. Journal of Hazardous Materials, 2009, 171, 678-683.	6.5	143
27	Novel iridium complex with carboxyl pyridyl ligand for dye-sensitized solar cells: High fluorescence intensity, high electron injection efficiency?. Journal of Organometallic Chemistry, 2009, 694, 2705-2711.	0.8	87
28	Fabrication and characterization of brookite-rich, visible light-active TiO2 films for water splitting. Applied Catalysis B: Environmental, 2009, 93, 90-95.	10.8	54
29	Efficient and stable plastic dye-sensitized solar cells based on a high light-harvesting ruthenium sensitizer. Journal of Materials Chemistry, 2009, 19, 5009.	6.7	72
30	Molecular water-oxidation catalysts for photoelectrochemical cells. Dalton Transactions, 2009, , 9374.	1.6	124
31	Large π-Aromatic Molecules as Potential Sensitizers for Highly Efficient Dye-Sensitized Solar Cells. Accounts of Chemical Research, 2009, 42, 1809-1818.	7.6	936
32	Recent Advances in Sensitized Mesoscopic Solar Cells. Accounts of Chemical Research, 2009, 42, 1788-1798.	7.6	2,502
33	Photoelectrochemical Effects of Guanidinium Thiocyanate on Dye-Sensitized Solar Cell Performance and Stability. Journal of Physical Chemistry C, 2009, 113, 21779-21783.	1.5	105
34	Effect of Surface Protonation of TiO ₂ on Charge Recombination and Conduction Band Edge Movement in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 15417-15421.	1.5	54
35	Synergistic effect between anatase and rutile TiO2 nanoparticles in dye-sensitized solar cells. Dalton Transactions, 2009, , 10078.	1.6	196
36	Novel Amphiphilic Ruthenium Sensitizer with Hydrophobic Thiophene or Thieno(3,2- <i>b</i>)thiophene-Substituted 2,2′-Dipyridylamine Ligands for Effective Nanocrystalline Dye Sensitized Solar Cells. Chemistry of Materials, 2009, 21, 5719-5726.	3.2	51

#	Article	IF	CITATIONS
37	Conjugation of Selenophene with Bipyridine for a High Molar Extinction Coefficient Sensitizer in Dye-Sensitized Solar Cells. Inorganic Chemistry, 2009, 48, 2664-2669.	1.9	80
38	New Ruthenium Sensitizer with Carbazole Antennas for Efficient and Stable Thin-Film Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 20752-20757.	1.5	60
39	Development of large size dye-sensitized solar cell modules with high temperature durability. Synthetic Metals, 2009, 159, 2355-2357.	2.1	32
40	An Extremely High Molar Extinction Coefficient Ruthenium Sensitizer in Dye-Sensitized Solar Cells: The Effects of π-Conjugation Extension. Journal of Physical Chemistry C, 2009, 113, 14559-14566.	1.5	119
41	New Indole-Based Metal-Free Organic Dyes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2009, 113, 14588-14595.	1.2	72
42	Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 2009, 131, 6050-6051.	6.6	17,777
43	Prolonged Light and Thermal Stress Effects on Industrial Dye-Sensitized Solar Cells: A Micro-Raman Investigation on the Long-Term Stability of Aged Cells. Journal of Physical Chemistry C, 2009, 113, 9412-9422.	1.5	65
44	Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells. ACS Nano, 2009, 3, 3103-3109.	7.3	1,210
45	Ground and Excited Electronic States of Quininone-Containing Re(I)-Based Rectangles: a Comprehensive Study of Their Preparation, Electrochemistry, and Photophysics. Inorganic Chemistry, 2009, 48, 3731-3742.	1.9	29
46	Design and characterization of highly efficient porphyrin sensitizers for green see-through dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2009, 11, 10270.	1.3	118
47	Numerical Simulation of the Currentâ~'Voltage Curve in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 19722-19731.	1.5	49
48	Design and synthesis of a novel anchoring ligand for highly efficient thin film dye-sensitized solar cells. Chemical Communications, 2009, , 7146.	2.2	42
49	Control of Dye Aggregation and Electron Injection for Highly Efficient Porphyrin Sensitizers Adsorbed on Semiconductor Films with Varying Ratios of Coadsorbate. Journal of Physical Chemistry C, 2009, 113, 20990-20997.	1.5	191
50	Dye-Sensitized Solar Cells with a High Absorptivity Ruthenium Sensitizer Featuring a 2-(Hexylthio)thiophene Conjugated Bipyridine. Journal of Physical Chemistry C, 2009, 113, 6290-6297.	1.5	558
51	Neutral, panchromatic Ru(ii) terpyridine sensitizers bearing pyridine pyrazolate chelates with superior DSSC performance. Chemical Communications, 2009, , 5844.	2.2	96
52	Dye-Sensitized Solar Cells Based on Organic Sensitizers with Different Conjugated Linkers: Furan, Bifuran, Thiophene, Bithiophene, Selenophene, and Biselenophene. Journal of Physical Chemistry C, 2009, 113, 7469-7479.	1.5	201
53	Quasi-Solid-State Dye-Sensitized Solar Cells with Polymer Gel Electrolyte and Triphenylamine-Based Organic Dyes. ACS Applied Materials & Interfaces, 2009, 1, 944-950.	4.0	67
54	Vertically Oriented TiO ₂ Nanotube Arrays Grown on Ti Meshes for Flexible Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 14028-14033.	1.5	115

#	Article	IF	Citations
55	Charge recombination studies in conformally coated trifluoroacetate/TiO2 modified dye sensitized solar cells (DSSC). Journal of Materials Chemistry, 2009, 19, 5381.	6.7	12
56	Enhanced photovoltaic performance by synergism of light-cultivation and electronic localization for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry, 2009, 19, 7036.	6.7	42
57	Photovoltaic Performance Enhancement in Dye-Sensitized Solar Cells with Periodic Surface Relief Structures. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 46, 1213-1216.	1.2	6
58	Increasing the performance of cis-dithiocyanato(4,4′-dicarboxy-2,2′-bipyridine)(1,10-phenanthroline) ruthenium (ii) based DSC using citric acid as co-adsorbant. Energy and Environmental Science, 2009, 2, 1078.	15.6	14
59	Fluorescent protein red Kaede chromophore; one-step, high-yield synthesis and potential application for solar cells. Chemical Communications, 2009, , 6982.	2.2	39
60	Spectroelectrochemical properties of homo- and heteroleptic ruthenium and osmium binuclear complexes: intercomponent communication as a function of energy differences between HOMO levels of bridge and metal centres. Dalton Transactions, 2009, , 4146.	1.6	17
61	Tuning the Energy Level of Organic Sensitizers for High-Performance Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 2966-2973.	1.5	134
62	Photophysical properties of metal complexes. Annual Reports on the Progress of Chemistry Section A, 2009, 105, 525.	0.8	1
63	Employ a bisthienothiophene linker to construct an organic chromophore for efficient and stable dye-sensitized solar cells. Energy and Environmental Science, 2009, 2, 92-95.	15.6	251
64	Re-evaluation of Recombination Losses in Dye-Sensitized Cells: The Failure of Dynamic Relaxation Methods to Correctly Predict Diffusion Length in Nanoporous Photoelectrodes. Nano Letters, 2009, 9, 3532-3538.	4.5	88
65	Titanium, zirconium and hafnium. Annual Reports on the Progress of Chemistry Section A, 2009, 105, 177.	0.8	0
66	The influence of light intensity, active area, and excitation wavelength on the temporal response of a dye sensitized solar cell. Proceedings of SPIE, 2009, , .	0.8	2
67	Synthesis and Characterization of Novel Heteroleptic Ruthenium Complexes for Dye‣ensitized Solar Cells. Journal of the Chinese Chemical Society, 2010, 57, 1151-1156.	0.8	5
68	Remarkable Improvement in Sensitizing Property of Tetraphenylporphyrincarboxylic Acids as Sensitizers for Dye-sensitized Solar Cells by the Introduction of Trimethylsilyl Groups as Substituents. Chemistry Letters, 2010, 39, 1063-1065.	0.7	7
69	Investigation of Iodine Concentration Effects in Electrolytes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 10612-10620.	1.5	84
70	High-Efficiency Dye-Sensitized Solar Cells: The Influence of Lithium lons on Exciton Dissociation, Charge Recombination, and Surface States. ACS Nano, 2010, 4, 6032-6038.	7.3	531
71	D-Ï€-A Sensitizers for Dye-Sensitized Solar Cells: Linear vs Branched Oligothiophenes. Chemistry of Materials, 2010, 22, 1836-1845.	3.2	144
72	Electrophosphorescent Heterobimetallic Oligometallaynes and Their Applications in Solutionâ€Processed Organic Lightâ€Emitting Devices. Chemistry - an Asian Journal, 2010, 5, 2405-2414.	1.7	38

#	Article	IF	CITATIONS
73	Dye-Sensitized Solar Cells. Chemical Reviews, 2010, 110, 6595-6663.	23.0	8,072
74	Improvement of dye-sensitized solar cells: what we know and what we need to know. Energy and Environmental Science, 2010, 3, 1170.	15.6	695
75	Photocurrent enhancement of dye solar cells by efficient light management. Superlattices and Microstructures, 2010, 47, 197-201.	1.4	6
76	Effect of heat and light on the performance of dye-sensitized solar cells based on organic sensitizers and nanostructured TiO2. Nano Today, 2010, 5, 91-98.	6.2	37
77	DFT and TD-DFT studies on symmetrical squaraine dyes for nanocrystalline solar cells. Monatshefte Für Chemie, 2010, 141, 549-555.	0.9	17
78	Structure-property relationships of organic dyes with D-ï€-A structure in dye-sensitized solar cells. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2010, 5, 150-161.	0.4	11
79	Bandgap Modulation in Efficient <i>n</i> â€Thiophene Absorbers for Dye Solar Cell Sensitization. ChemPhysChem, 2010, 11, 245-250.	1.0	35
80	Axially Extended Perylene Dyes. European Journal of Organic Chemistry, 2010, 2010, 3140-3145.	1.2	8
81	Enhancedâ€Lightâ€Harvesting Amphiphilic Ruthenium Dye for Efficient Solidâ€State Dyeâ€Sensitized Solar Cells. Advanced Functional Materials, 2010, 20, 1821-1826.	7.8	68
82	An Efficient Organicâ€Dyeâ€Sensitized Solar Cell with in situ Polymerized Poly(3,4â€ethylenedioxythiophene) as a Holeâ€Transporting Material. Advanced Materials, 2010, 22, E150-5.	11.1	150
83	High Molar Extinction Coefficient Organic Sensitizers for Efficient Dye‣ensitized Solar Cells. Chemistry - A European Journal, 2010, 16, 1193-1201.	1.7	140
84	Photophysical Studies of Dipolar Organic Dyes That Feature a 1,3â€Cyclohexadiene Conjugated Linkage: The Implication of a Twisted Intramolecular Chargeâ€Transfer State on the Efficiency of Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2010, 16, 12873-12882.	1.7	37
86	Highly Efficient Mesoscopic Dye‣ensitized Solar Cells Based on Donor–Acceptor‣ubstituted Porphyrins. Angewandte Chemie - International Edition, 2010, 49, 6646-6649.	7.2	762
87	QSPR study of absorption maxima of organic dyes for dye-sensitized solar cells based on 3D descriptors. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 76, 239-247.	2.0	31
88	Fluorescent nano particles in the aqueous phase by polymer analogous reaction of polyvinyl alcohol. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 77, 541-544.	2.0	3
89	Electron transfer dynamics from the singlet and triplet excited states of meso-tetrakis(p-carboxyphenyl)porphyrin into colloidal TiO2 and AuTiO2 nanoparticles. Journal of Colloid and Interface Science, 2010, 348, 642-648.	5.0	18
90	High efficiency solid-state sensitized heterojunction photovoltaic device. Nano Today, 2010, 5, 169-174.	6.2	76
91	Plastic dye-sensitized photo-supercapacitor using electrophoretic deposition and compression methods. Journal of Power Sources, 2010, 195, 6225-6231.	4.0	130

#	Article	IF	CITATIONS
92	Hybrid tandem solar cell for concurrently converting light and heat energy with utilization of full solar spectrum. Journal of Power Sources, 2010, 195, 7684-7690.	4.0	96
93	Theoretical study on the electronic absorption spectra and molecular orbitals of ten novel ruthenium sensitizers derived from N3 and K8. Journal of Molecular Graphics and Modelling, 2010, 29, 498-505.	1.3	14
94	Mono and dinuclear complexes of half-sandwich platinum group metals (Ru, Rh and Ir) bearing a flexible pyridyl-thiazole multidentate donor ligand. Journal of Organometallic Chemistry, 2010, 695, 226-234.	0.8	19
95	New type of ruthenium sensitizers with a triazole moiety as a bridging group. Journal of Organometallic Chemistry, 2010, 695, 821-826.	0.8	21
96	Electrolyte effects on photoelectron injection and recombination dynamics in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 213, 87-92.	2.0	17
97	Terpyridine- and 2,6-dipyrazinylpyridine-coordinated ruthenium(II) complexes: Synthesis, characterization and application in TiO2-based dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 214, 22-32.	2.0	46
98	Quasi solid state dye-sensitized solar cells with modified TiO2 photoelectrodes and triphenylamine-based dye. Electrochimica Acta, 2010, 55, 2368-2372.	2.6	20
99	Hyperbranched conjugated polymers with donor-ï€-acceptor architecture as organic sensitizers for dye-sensitized solar cells. European Polymer Journal, 2010, 46, 2033-2041.	2.6	29
100	Evaluation on over photocurrents measured from unmasked dye-sensitized solar cells. Solar Energy, 2010, 84, 418-425.	2.9	24
101	Pomegranate leaves and mulberry fruit as natural sensitizers for dye-sensitized solar cells. Solar Energy, 2010, 84, 1833-1837.	2.9	216
102	A simple numerical model for the charge transport and recombination properties of dye-sensitized solar cells: A comparison of transport-limited and transfer-limited recombination. Solar Energy Materials and Solar Cells, 2010, 94, 45-50.	3.0	67
103	Energy Conversion in Natural and Artificial Photosynthesis. Chemistry and Biology, 2010, 17, 434-447.	6.2	366
104	Low-cost dyes based on methylthiophene for high-performance dye-sensitized solar cells. Dyes and Pigments, 2010, 87, 181-187.	2.0	51
105	Analysis of electronic and optical losses in Cu(In,Ga)Se2 /dye sensitized cell tandem solar cells. Energy Procedia, 2010, 2, 199-205.	1.8	1
106	Estimation of standard reduction potentials of alkyl radicals involved in atom transfer radical polymerization. Electrochimica Acta, 2010, 55, 8312-8318.	2.6	92
107	Efficient and Stable Solidâ€State Dyeâ€Sensitized Solar Cells Based on a Highâ€Molarâ€Extinctionâ€Coefficient Sensitizer. Small, 2010, 6, 319-324.	5.2	74
108	An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nature Chemistry, 2010, 2, 385-389.	6.6	510
109	Light scattering with oxide nanocrystallite aggregates for dye-sensitized solar cell application. Journal of Nanophotonics, 2010, 4, 041540.	0.4	49

#	Article	IF	CITATIONS
110	Novel Organic Sensitizers with a Quinoline Unit for Efficient Dye-sensitized Solar Cells. Bulletin of the Korean Chemical Society, 2010, 31, 125-132.	1.0	30
111	Carbazole Containing Ruâ€based Photoâ€sensitizer for Dyeâ€sensitized Solar Cell. Journal of the Chinese Chemical Society, 2010, 57, 1127-1130.	0.8	8
112	Growth of seaweed-like TiO2 nanoarrays for dye-sensitized solar cells. Applied Physics Letters, 2010, 97, 153108.	1.5	14
113	Toward Optimization of Oligothiophene Antennas: New Ruthenium Sensitizers with Excellent Performance for Dye-Sensitized Solar Cells. Chemistry of Materials, 2010, 22, 4392-4399.	3.2	39
114	Dye-Sensitized Photovoltaic Wires Using Highly Ordered TiO ₂ Nanotube Arrays. ACS Nano, 2010, 4, 2196-2200.	7.3	149
115	Computational Studies of the Interaction between Ruthenium Dyes and Xâ^' and X2â^', X = Br, I, At. Implications for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 15165-15173.	1.5	25
116	Effect of Cations in Coadsorbate on Charge Recombination and Conduction Band Edge Movement in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 7190-7195.	1.5	99
117	Photocatalytic silver enhancement reaction for gravimetric immunosensors. Nanotechnology, 2010, 21, 505502.	1.3	7
118	Materials, Nanomorphology, and Interfacial Charge Transfer Reactions in Quantum Dot/Polymer Solar Cell Devices. Journal of Physical Chemistry Letters, 2010, 1, 3039-3045.	2.1	73
119	Study on the effect of measuring methods on incident photon-to-electron conversion efficiency of dye-sensitized solar cells by home-made setup. Review of Scientific Instruments, 2010, 81, 103106.	0.6	81
120	Lighting porphyrins and phthalocyanines for molecular photovoltaics. Chemical Communications, 2010, 46, 7090.	2.2	600
121	Reducing Graphene Oxide on a Visible-Light BiVO ₄ Photocatalyst for an Enhanced Photoelectrochemical Water Splitting. Journal of Physical Chemistry Letters, 2010, 1, 2607-2612.	2.1	825
122	Novel Broadly Absorbing Sensitizers with Cyanovinylene 4-Nitrophenyl Segments and Various Anchoring Groups: Synthesis and Application for High-Efficiency Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 12355-12363.	1.5	31
123	New Photovoltaic Devices Based on the Sensitization of p-type Semiconductors: Challenges and Opportunities. Accounts of Chemical Research, 2010, 43, 1063-1071.	7.6	432
124	Effects of meso-Diarylamino Group of Porphyrins as Sensitizers in Dye-Sensitized Solar Cells on Optical, Electrochemical, and Photovoltaic Properties. Journal of Physical Chemistry C, 2010, 114, 10656-10665.	1.5	147
125	Viable Alternative to N719 for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2010, 2, 2039-2045.	4.0	60
126	High-Efficiency Solid-State Dye-Sensitized Solar Cells: Fast Charge Extraction through Self-Assembled 3D Fibrous Network of Crystalline TiO ₂ Nanowires. ACS Nano, 2010, 4, 7644-7650.	7.3	105
127	Molecular design of metal-free D–π-A substituted sensitizers for dye-sensitized solar cells. Energy and Environmental Science, 2010, 3, 1757.	15.6	70

#	Article	IF	CITATIONS
128	[Ru(bpy) ₃] ²⁺ Analogues Containing an N-Heterocyclic Carbene Ligand. Organometallics, 2010, 29, 6782-6789.	1.1	51
129	Green-light photocatalytic reduction using dye-sensitized TiO ₂ and transition metal nanoparticles. Green Chemistry, 2010, 12, 400-406.	4.6	118
130	Visible-Light-Induced Hydrophilic Effect in an Ultrathin Hybrid Film of Titania Nanosheet and an Optical Active Ruthenium(II) Complex Cation. Journal of Physical Chemistry C, 2010, 114, 19697-19703.	1.5	13
131	Stark Effects after Excited-State Interfacial Electron Transfer at Sensitized TiO ₂ Nanocrystallites. Journal of the American Chemical Society, 2010, 132, 6696-6709.	6.6	171
132	High Molar Extinction Coefficient Branchlike Organic Dyes Containing Di(<i>p</i> -tolyl)phenylamine Donor for Dye-Sensitized Solar Cells Applications. Journal of Physical Chemistry C, 2010, 114, 3280-3286.	1.5	110
133	Molecular Engineering of Efficient Organic Sensitizers Incorporating a Binary π-Conjugated Linker Unit for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 14646-14653.	1.5	67
134	Unsymmetrical Squaraines Incorporating the Thiophene Unit for Panchromatic Dye-Sensitized Solar Cells. Organic Letters, 2010, 12, 5454-5457.	2.4	93
135	Incorporating Hierarchical Nanostructured Carbon Counter Electrode into Metal-Free Organic Dye-Sensitized Solar Cell. Langmuir, 2010, 26, 11238-11243.	1.6	104
136	A spatially resolved study on the Sn diffusion during the sintering process in the active layer of dye sensitised solar cells. Physical Chemistry Chemical Physics, 2010, 12, 7241.	1.3	12
137	Tuning Spectral and Electrochemical Properties of Porphyrin-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 12018-12023.	1.5	74
138	New Efficient Ruthenium Sensitizers with Unsymmetrical Indeno[1,2 <i>-b</i>]thiophene or a Fused Dithiophene Ligand for Dye-Sensitized Solar Cells. Inorganic Chemistry, 2010, 49, 8351-8357.	1.9	47
139	Synthesis and characterization of porphyrin sensitizers with various electron-donating substituents for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry, 2010, 20, 1127-1134.	6.7	247
140	Design and characterization of porphyrin sensitizers with a push-pull framework for highly efficient dye-sensitized solar cells. Energy and Environmental Science, 2010, 3, 949.	15.6	165
141	Influence of Triple Bonds as π-Spacer Units in Metal-Free Organic Dyes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 11305-11313.	1.5	134
142	Application of Cu(ii) and Zn(ii) coproporphyrins as sensitizers for thin film dye sensitized solar cells. Energy and Environmental Science, 2010, 3, 956.	15.6	37
143	New fluoranthene-based cyanine dye for dye-sensitized solar cells. Synthetic Metals, 2010, 160, 1008-1014.	2.1	25
144	Dye-Sensitized Solar Cells Employing a Single Film of Mesoporous TiO ₂ Beads Achieve Power Conversion Efficiencies Over 10%. ACS Nano, 2010, 4, 4420-4425.	7.3	412
145	Doping a TiO ₂ Photoanode with Nb ⁵⁺ to Enhance Transparency and Charge Collection Efficiency in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 15849-15856.	1.5	153

#	Article	IF	CITATIONS
146	Synthesis and electron-transfer properties of benzimidazole-functionalized ruthenium complexes for highly efficient dye-sensitized solar cells. Chemical Communications, 2010, 46, 8992.	2.2	73
147	Preparation and Spectral, Electrochemical, and Photovoltaic Properties of Acene-Modified Zinc Porphyrins. Journal of Physical Chemistry C, 2010, 114, 687-693.	1.5	105
148	Effects of π-Elongation and the Fused Position of Quinoxaline-Fused Porphyrins as Sensitizers in Dye-Sensitized Solar Cells on Optical, Electrochemical, and Photovoltaic Properties. Journal of Physical Chemistry C, 2010, 114, 11293-11304.	1.5	102
149	Quantification of the Effects of Recombination and Injection in the Performance of Dye-Sensitized Solar Cells Based on <i>N</i> -Substituted Carbazole Dyes. Journal of Physical Chemistry C, 2010, 114, 19840-19848.	1.5	120
150	Efficient Electron Transfer and Sensitizer Regeneration in Stable π-Extended Tetrathiafulvalene-Sensitized Solar Cells. Journal of the American Chemical Society, 2010, 132, 5164-5169.	6.6	188
151	Isotruxene-Derived Cone-Shaped Organic Dyes for Dye-Sensitized Solar Cells. Journal of Organic Chemistry, 2010, 75, 7877-7886.	1.7	49
152	Symmetrically and unsymmetrically substituted carboxy phthalocyanines as sensitizers for nanoporous ZnO films. Journal of Porphyrins and Phthalocyanines, 2010, 14, 985-992.	0.4	18
153	Preparation and Photovoltaic Characterization of Freeâ€Base and Metallo Carboxyphenylethynyl Porphyrins for Dyeâ€Sensitized Solar Cells. Journal of the Chinese Chemical Society, 2010, 57, 1136-1140.	0.8	10
154	Nanotubes from Rutile TiO ₂ (110) Sheets: Formation and Properties. Journal of Physical Chemistry C, 2010, 114, 9251-9256.	1.5	19
155	Dye structure–charge transfer process relationship in efficient ruthenium-dye based dye sensitized solar cells. Energy and Environmental Science, 2010, 3, 805.	15.6	64
156	Hierarchical TiO ₂ Photoanode for Dye-Sensitized Solar Cells. Nano Letters, 2010, 10, 2562-2567.	4.5	331
157	Charge transfer kinetics in CdSe quantum dot sensitized solar cells. Physical Chemistry Chemical Physics, 2010, 12, 2819.	1.3	44
158	Enhanced Electron Collection Efficiency in Dye-Sensitized Solar Cells Based on Nanostructured TiO ₂ Hollow Fibers. Nano Letters, 2010, 10, 1632-1638.	4.5	234
159	Bifacial dye-sensitized solar cells based on vertically oriented TiO2nanotube arrays. Nanotechnology, 2010, 21, 125703.	1.3	21
160	Fabrication of long TiO2 nanotube arrays in a short time using a hybrid anodic method for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry, 2010, 20, 2753.	6.7	99
161	Organic dyes with remarkably high absorptivity; all solid-state dye sensitized solar cell and role of fluorine substitution. Chemical Communications, 2010, 46, 5256.	2.2	88
162	Heteroleptic ruthenium antenna-dye for high-voltage dye-sensitized solar cells. Journal of Materials Chemistry, 2010, 20, 7158.	6.7	50
163	Absorption and photovoltaic properties of organic solar cell sensitizers containing fluorene unit as conjunction bridge. Energy and Environmental Science, 2011, 4, 1830.	15.6	88

ARTICLE IF CITATIONS Molecular design and synthesis of ruthenium(ii) sensitizers for highly efficient dye-sensitized solar 6.7 42 164 cells. Journal of Materials Chemistry, 2011, 21, 12389. D–π–Mâ€″π–A structured platinum acetylide sensitizer for dye-sensitized solar cells. Journal of 6.7 Materials Chemistry, 2011, 21, 10666. A double layered photoanode made of highly crystalline TiO2 nanooctahedra and agglutinated mesoporous TiO2 microspheres for high efficiency dye sensitized solar cells. Energy and 146 166 15.6 Environmental Science, 2011, 4, 2168. Study of Interfacial Charge Transfer Bands and Electron Recombination in the Surface Complexes of TCNÉ, TCNQ, and TCNAQ with TiO₂. Journal of Physical Chemistry C, 2011, 115, 21487-21493. Structures, spectroscopic properties and redox potentials of quaterpyridyl Ru(ii) photosensitizer and its derivatives for solar energy cell: a density functional study. Physical Chemistry Chemical Physics, 168 19 1.32011, 13, 14481. Nanoparticle and nanorod TiO2 composite photoelectrodes with improved performance. Chemical 169 2.2 Communications, 2011, 47, 6608. Large size, high efficiency fiber-shaped dye-sensitized solar cells. Physical Chemistry Chemical Physics, 170 1.3 74 2011, 13, 10076. Utilization of a heterosupramolecular self-assembled trisporphyrin complex in dye-sensitised solar 171 15.6 cells. Energy and Environmental Science, 2011, 4, 528-534. Heteroleptic ruthenium complexes containing uncommon 5,5â€²-disubstituted-2,2â€²-bipyridine chromophores for dye-sensitized solar cells. Dalton Transactions, 2011, 40, 2314-2323. 172 1.6 28 ZnO hierarchical structures for efficient quasi-solid dye-sensitized solar cells. Physical Chemistry 1.3 39 Chemical Physics, 2011, 13, 10631. Graphite and platinum's catalytic selectivity for disulfide/thiolate (T2/Tâ[^]) and triiodide/iodide (I3â[^]/lâ[^]). 174 6.7 45 Journal of Materials Chemistry, 2011, 21, 14815. A new familiy of heteroleptic ruthenium(ii) polypyridyl complexes for sensitization of nanocrystalline TiO2 films. Dalton Transactions, 2011, 40, 4497. 1.6 Artificial neural network-based QSPR study on absorption maxima of organic dyes for dye-sensitised 176 0.9 16 solar cells. Molecular Simulation, 2011, 37, 1-10. Improved Efficiency of over 10% in Dye-Sensitized Solar Cells with a Ruthenium Complex and an Organic Dye Heterogeneously Positioning on a Single TiO₂ Electrode. Journal of Physical Chemistry C, 2011, 115, 7747-7754. 1.5 141 Effect of Sensitizer Adsorption Temperature on the Performance of Dye-Sensitized Solar Cells. 178 143 6.6 Journal of the American Chemical Society, 2011, 133, 9304-9310. High-Efficiency Dye-Sensitized Solar Cell with Three-Dimensional Photoanode. Nano Letters, 2011, 11, 143 4579-4584. Device Performance Related to Amphiphilic Modification at Charge Separation Interface in Hybrid Solar Cells with Vertically Aligned ZnO Nanorod Arrays. Journal of Physical Chemistry C, 2011, 115, 180 1.542 3745-3752. Experimental Investigation of Back Electron Transfer and Band Edge Shift in Dyed TiO₂ 181 1.5 Electrodes. Journal of Physical Chemistry C, 2011, 115, 8653-8657.

#	Article	IF	CITATIONS
182	High Performance Dye-Sensitized Solar Cells with Alkylpyridinium Iodide Salts in Electrolytes. ACS Applied Materials & Interfaces, 2011, 3, 512-516.	4.0	25
183	High Efficiency Dye-Sensitized Solar Cells Based on Hierarchically Structured Nanotubes. Nano Letters, 2011, 11, 3214-3220.	4.5	337
184	Electrical and photophysical analyses on the impacts of arylamine electron donors in cyclopentadithiophene dye-sensitized solar cells. Energy and Environmental Science, 2011, 4, 4735.	15.6	58
185	A theoretical investigation of tetrahydroquinoline dyes with different spacers used for sensitized solar cells. Canadian Journal of Chemistry, 2011, 89, 978-986.	0.6	4
186	Impact of High Charge-Collection Efficiencies and Dark Energy-Loss Processes on Transport, Recombination, and Photovoltaic Properties of Dye-Sensitized Solar Cells. Journal of Physical Chemistry Letters, 2011, 2, 1070-1076.	2.1	84
187	Efficient and stable panchromatic squaraine dyes for dye-sensitized solar cells. Chemical Communications, 2011, 47, 2874.	2.2	157
188	A Method for Rapid Screening of Photosensitizers by Scanning Electrochemical Microscopy (SECM) and the Synthesis and Testing of a Porphyrin Sensitizer. Journal of Physical Chemistry C, 2011, 115, 2592-2599.	1.5	27
189	Low-Temperature UV Processing of Nanoporous SnO ₂ Layers for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2011, 3, 1485-1491.	4.0	45
190	Preparation of donor–acceptor type organic dyes bearing various electron-withdrawing groups for dye-sensitized solar cell application. Chemical Communications, 2011, 47, 6159.	2.2	56
191	Efficient organic dye sensitized solar cells based on modified sulfide/polysulfide electrolyte. Journal of Materials Chemistry, 2011, 21, 5573.	6.7	32
192	Plasmon resonant enhancement of dye sensitized solar cells. Energy and Environmental Science, 2011, 4, 4650.	15.6	85
193	Sensitizer molecular structure-device efficiency relationship in dye sensitized solar cells. Chemical Society Reviews, 2011, 40, 1635-1646.	18.7	520
194	Panchromatic ruthenium sensitizer based on electron-rich heteroarylvinylene π-conjugated quaterpyridine for dye-sensitized solar cells. Dalton Transactions, 2011, 40, 234-242.	1.6	57
195	Fluorine Treatment of TiO2 for Enhancing Quantum Dot Sensitized Solar Cell Performance. Journal of Physical Chemistry C, 2011, 115, 14400-14407.	1.5	105
196	Solvent Effects at the Photoelectrode/Electrolyte Interface of a DSC: A Combined Spectroscopic and Photoelectrochemical Study. Journal of Physical Chemistry C, 2011, 115, 10236-10244.	1.5	42
197	Dye-Sensitized W-Doped TiO ₂ Solar Cells with a Tunable Conduction Band and Suppressed Charge Recombination. Journal of Physical Chemistry C, 2011, 115, 12665-12671.	1.5	188
198	Origin of efficiency enhancement in Nb2O5 coated titanium dioxide nanorod based dye sensitized solar cells. Energy and Environmental Science, 2011, 4, 3414.	15.6	75
199	Modifying organic phenoxazine dyes for efficient dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 12462.	6.7	79

#	Article	IF	CITATIONS
200	A molecularly engineered fluorene-substituted Ru-complex for efficient mesoscopic dye-sensitized solar cells. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2011, 2, 035016.	0.7	12
201	Photosensitizers in Solar Energy Conversion. , 2011, , 527-617.		2
202	Titanium nitride thin film as a novel charge collector in TCO-less dye-sensitized solar cell. Journal of Materials Chemistry, 2011, 21, 3077.	6.7	40
203	Arylamine-Based Dyes for p-Type Dye-Sensitized Solar Cells. Organic Letters, 2011, 13, 4930-4933.	2.4	83
204	Transient photocurrent and photovoltage studies on charge transport in dye sensitized solar cells made from the composites of TiO2 nanofibers and nanoparticles. Applied Physics Letters, 2011, 98, 082114.	1.5	48
205	Energy levels, charge injection, charge recombination and dye regeneration dynamics for donor–acceptor l€-conjugated organic dyes in mesoscopic TiO2 sensitized solar cells. Energy and Environmental Science, 2011, 4, 1820.	15.6	140
206	Flexible Counter Electrodes Based on Mesoporous Carbon Aerogel for High-Performance Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 22615-22621.	1.5	61
207	High-Efficiency, Solid-State, Dye-Sensitized Solar Cells Using Hierarchically Structured TiO2 Nanofibers. ACS Applied Materials & Interfaces, 2011, 3, 1521-1527.	4.0	63
208	Panchromatic engineering for dye-sensitized solar cells. Energy and Environmental Science, 2011, 4, 842-857.	15.6	319
209	Real-Time Optical Waveguide Measurements of Dye Adsorption into Nanocrystalline TiO ₂ Films with Relevance to Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 613-619.	1.5	21
210	Novel Quinoxaline-Based Organic Sensitizers for Dye-Sensitized Solar Cells. Organic Letters, 2011, 13, 3880-3883.	2.4	166
211	Incorporating Benzotriazole Moiety to Construct D–Aâ^'π–A Organic Sensitizers for Solar Cells: Significant Enhancement of Open-Circuit Photovoltage with Long Alkyl Group. Chemistry of Materials, 2011, 23, 4394-4401.	3.2	253
212	Butyronitrile-Based Electrolyte for Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2011, 133, 13103-13109.	6.6	75
213	Size-dependent light-scattering effects of nanoporous TiO2 spheres in dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 532-538.	6.7	201
214	Nanotechnology Research Directions for Societal Needs in 2020. , 2011, , .		202
215	Ruthenium Sensitizer with Thienothiophene-Linked Carbazole Antennas in Conjunction with Liquid Electrolytes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 20043-20050.	1.5	44
216	Controlling the directionality of charge transfer in phthalocyaninato zinc sensitizer for a dye-sensitized solar cell: density functional theory studies. Physical Chemistry Chemical Physics, 2011, 13, 1639-1648.	1.3	24
217	An Organic D-ï€-A Dye for Record Efficiency Solid-State Sensitized Heterojunction Solar Cells. Nano Letters, 2011, 11, 1452-1456.	4.5	322

ARTICLE IF CITATIONS Ruthenium sensitizer with a thienylvinylbipyridyl ligand for dye-sensitized solar cells. Dalton 218 1.6 10 Transactions, 2011, 40, 8361. High Open Circuit Voltage Quantum Dot Sensitized Solar Cells Manufactured with ZnO Nanowire Arrays and Si/ZnO Branched Hierarchical Structures. Journal of Physical Chemistry Letters, 2011, 2, 2.1 1984-1990. Electronic structure of indium tin oxide/nanocrystalline TiO2 interfaces as used in dye-sensitized 220 1.1 13 solar cell devices. Journal of Applied Physics, 2011, 109, 113719. Detachment and transfer of ordered TiO2 nanotube arrays for front-illuminated dye-sensitized solar cells. Energy and Environmental Science, 2011, 4, 3420. Purification-free synthesis of a highly efficient ruthenium dye complex for dye-sensitised solar cells 222 1.6 26 (DSSCs). Dalton Transactions, 2011, 40, 3871-3876. Ga³⁺ and Y³⁺ Cationic Substitution in Mesoporous TiO₂ 1.5 Photoanodes for Photovoltaic Applications. Journal of Physical Chemistry C, 2011, 115, 9232-9240. Electron-rich heteroaromatic conjugated polypyridine ruthenium sensitizers for dye-sensitized solar 224 1.6 70 cells. Dalton Transactions, 2011, 40, 12421. Optical, Electrochemical, and Photovoltaic Effects of an Electron-Withdrawing Tetrafluorophenylene Bridge in a Push–Pull Porphyrin Sensitizer Used for Dye-Sensitized Solar Cells. 1.5 94 Journal of Physical Chemistry C, 2011, 115, 14415-14424. 226 TiO2 nanotubes: Structure optimization for solar cells. Journal of Materials Chemistry, 2011, 21, 9406. 180 6.7 Can Polypyridyl Cu(I)-based Complexes Provide Promising Sensitizers for Dye-Sensitized Solar Cells? A Theoretical Insight into Cu(I) versus Ru(II) Sensitizers. Journal of Physical Chemistry C, 2011, 115, 1.5 3753-3761. A novel main chain polymeric metal complex based on Zn(II) with thiophene and 228 2-(2â€²-pyridyl)benzimidazole ligand: Synthesis, characterization, photovoltaic property and application 12 2.1 in DSSCs. Synthetic Metals, 2011, 161, 455-459. Polypyridyl Ru(II)-sensitizers with extended π-system enhances the performance of dye sensitized solar 229 2.1 cells. Synthetic Metals, 2011, 161, 1098-1104. An Interfacial and Bulk Charge Transport Model for Dye-Sensitized Solar Cells Based on Photoanodes Consisting of Coreâ€"Shell Nanowire Arrays. Journal of the American Chemical Society, 2011, 133, 230 6.6 32 18663-18672. Patterned 3-dimensional metal grid electrodes as alternative electron collectors in dye-sensitized 1.3 solar cells. Physical Chemistry Chemical Physics, 2011, 13, 19314. Organic Dye Bearing Asymmetric Double Donor-Ï€-Acceptor Chains for Dye-Sensitized Solar Cells. 232 140 1.7 Journal of Organic Chemistry, 2011, 76, 8015-8021. Theoretical Investigation on Interfacial-Potential-Limited Diffusion and Recombination in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 17154-17162. Charge Recombination and Band-Edge Shift in the Dye-Sensitized Mg²⁺-Doped 234 1.579 TiO<šub>2</sub>Solar Cells. Journal of Physical Chemistry C, 2011, 115, 16418-16424. Enhanced light harvesting with π-conjugated cyclic aromatic hydrocarbons for porphyrin-sensitized 159 solar cells. Energy and Environmental Science, 2011, 4, 1788.

#	Article	IF	CITATIONS
236	A New Class of Cyclometalated Ruthenium Sensitizers of the Type ĈNÌ,N for Efficient Dye-Sensitized Solar Cells. Inorganic Chemistry, 2011, 50, 11340-11347.	1.9	59
237	Coupled Optical and Electronic Modeling of Dye-Sensitized Solar Cells for Steady-State Parameter Extraction. Journal of Physical Chemistry C, 2011, 115, 10218-10229.	1.5	58
238	Phenothiazine conjugated bipyridine as ancillary ligand in Ru(II)-complexes for application in dye sensitized solar cell. Synthetic Metals, 2011, 161, 1469-1476.	2.1	25
239			

#	Article	IF	CITATIONS
256	Effect of anchoring groups in zinc phthalocyanine on the dye-sensitized solar cell performance and stability. Chemical Science, 2011, 2, 1145.	3.7	95
257	Liquid electrolytes for dye-sensitized solar cells. Dalton Transactions, 2011, 40, 10289.	1.6	156
258	Organic Dyes Incorporating the Benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene Moiety for Efficient Dye-Sensitized Solar Cells. Organic Letters, 2011, 13, 5424-5427.	2.4	48
259	Electrodeposition of Hierarchical ZnO Nanorod-Nanosheet Structures and Their Applications in Dye-Sensitized Solar Cells. ACS Applied Materials & amp; Interfaces, 2011, 3, 2358-2367.	4.0	158
260	D-ï€-A Dye System Containing Cyano-Benzoic Acid as Anchoring Group for Dye-Sensitized Solar Cells. Langmuir, 2011, 27, 14248-14252.	1.6	41
261	Lithium-Modulated Conduction Band Edge Shifts and Charge-Transfer Dynamics in Dye-Sensitized Solar Cells Based on a Dicyanamide Ionic Liquid. Langmuir, 2011, 27, 4749-4755.	1.6	73
262	Ruthenium(II)- bipyridyl with extended π-system: Improved thermo-stable sensitizer for efficient and long-term durable dye sensitized solar cells. Journal of Chemical Sciences, 2011, 123, 555-565.	0.7	14
263	Quantifying Regeneration in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 2439-2447.	1.5	203
264	Improved conversion efficiency of Ag2S quantum dot-sensitized solar cells based on TiO2 nanotubes with a ZnO recombination barrier layer. Nanoscale Research Letters, 2011, 6, 462.	3.1	83
265	Biomimetic strategies for solar energy conversion: a technical perspective. Energy and Environmental Science, 2011, 4, 3834.	15.6	69
266	Electronically coupled porphyrin-arene dyads for dye-sensitized solar cells. Dyes and Pigments, 2011, 91, 317-323.	2.0	25
267	Conjugate spacer effect on molecular structures and absorption spectra of triphenylamine dyes for sensitized solar cells: Density functional theory calculations. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 78, 287-293.	2.0	46
268	High spectral response heteroleptic ruthenium (II) complexes as sensitizers for dye sensitized solar cells. Journal of Chemical Sciences, 2011, 123, 37-46.	0.7	24
269	Synthesis and photovoltaic property of pyrrole-based conjugated oligomer as organic dye for dye-sensitized solar cells. Frontiers of Optoelectronics in China, 2011, 4, 87-92.	0.2	1
270	2,2′-(Ethane-1,2-diyl)bis[2-(5-bromothiophen-2-yl)-1,3-dioxolane] at 100â€K refined using a multipolar atom model. Acta Crystallographica Section C: Crystal Structure Communications, 2011, 67, o329-o333.	0.4	9
271	Two novel branched chain polymeric metal complexes based on Cd(II), Zn(II) with fluorene, thiophene, 8â€hydroxyquinoline, and 1,10â€phenathroline ligand: synthesis, characterization, photovoltaic properties, and their application in DSSCs. Polymers for Advanced Technologies, 2011, 22, 2583-2591.	1.6	15
272	A DFT/TDDFT study of porphyrazines and phthalocyanine oxoâ€titanium derivatives as potential dyes in solar cells. International Journal of Quantum Chemistry, 2011, 111, 4186-4196.	1.0	17
273	A Thiopheneâ€Based Anchoring Ligand and Its Heteroleptic Ru(II)â€Complex for Efficient Thinâ€Film Dyeâ€Sensitized Solar Cells. Advanced Functional Materials, 2011, 21, 963-970.	7.8	53

#	Article	IF	CITATIONS
274	Toward Hierarchical TiO ₂ Nanotube Arrays for Efficient Dye ensitized Solar Cells. Advanced Materials, 2011, 23, 1330-1334.	11.1	131
275	The Effect of Hole Transport Material Pore Filling on Photovoltaic Performance in Solidâ€State Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2011, 1, 407-414.	10.2	130
276	TiO ₂ Nanocrystals Synthesized by Laser Pyrolysis for the Upâ€Scaling of Efficient Solidâ€State Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2011, 1, 908-916.	10.2	29
277	Recent Progress in Dye‣ensitized Solar Cells Using Nanocrystallite Aggregates. Advanced Energy Materials, 2011, 1, 988-1001.	10.2	83
279	Strategies for Optimizing the Performance of Cyclometalated Ruthenium Sensitizers for Dye‧ensitized Solar Cells. European Journal of Inorganic Chemistry, 2011, 2011, 1806-1814.	1.0	84
280	Interfacial Electron Transfer Dynamics of Two Newly Synthesized Catecholate Bound Ru ^{II} Polypyridylâ€Based Sensitizers on TiO ₂ Nanoparticle Surface – A Femtosecond Pump Probe Spectroscopic Study. European Journal of Inorganic Chemistry, 2011, 2011, 4187-4197.	1.0	25
281	Photophysical and Electrochemical Properties of Thiopheneâ€Based 2â€Arylpyridines. European Journal of Organic Chemistry, 2011, 2011, 5587-5598.	1.2	16
282	Triplication of the Photocurrent in Dye Solar Cells by Increasing the Elongation of the Ï€â€conjugation in Znâ€Porphyrin Sensitizers. ChemPhysChem, 2011, 12, 961-965.	1.0	33
283	Dilemmas of Dye‧ensitized Solar Cells. ChemPhysChem, 2011, 12, 1633-1636.	1.0	71
284	Bisquinoxalineâ€Fused Porphyrins for Dyeâ€Sensitized Solar Cells. ChemSusChem, 2011, 4, 797-805.	3.6	36
285	A Nonâ€Aqueous Synthesis of TiO ₂ /SiO ₂ Composites in Supercritical CO ₂ for the Photodegradation of Pollutants. ChemSusChem, 2011, 4, 1457-1463.	3.6	16
287	Ruthenium(II) Sensitizers with Heteroleptic Tridentate Chelates for Dyeâ€5ensitized Solar Cells. Angewandte Chemie - International Edition, 2011, 50, 2054-2058.	7.2	199
288	Efficient Charge Separation in TiO ₂ Films Sensitized with Ruthenium(II)–Polypyridyl Complexes: Hole Stabilization by Ligand‣ocalized Chargeâ€Transfer States. Chemistry - A European Journal, 2011, 17, 1561-1568.	1.7	33
289	Heteroleptic Ruthenium Sensitizers That Contain an Ancillary Bipyridine Ligand Tethered with Hydrocarbon Chains for Efficient Dye‧ensitized Solar Cells. Chemistry - A European Journal, 2011, 17, 6781-6788.	1.7	43
290	Derivative coupling constants of NK1, NK7 dyes and their relation to excited state dynamics in solar cell applications. Chemical Physics Letters, 2011, 501, 580-586.	1.2	21
291	Preparation of graphene/multi-walled carbon nanotube hybrid and its use as photoanodes of dye-sensitized solar cells. Carbon, 2011, 49, 3597-3606.	5.4	225
292	New photosensitizer with phenylenebisthiophene central unit and cyanovinylene 4-nitrophenyl terminal units for dye-sensitized solar cells. Electrochimica Acta, 2011, 56, 5616-5623.	2.6	37
293	Theoretical characterization of ruthenium complexes containing functionalized bithiophene ligands for dye-sensitized solar cells. Journal of Organometallic Chemistry, 2011, 696, 1632-1639.	0.8	9

#	Article	IF	CITATIONS
294	A new class of organic sensitizers with fused planar triphenylamine for nanocrystalline dye sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 219, 122-131.	2.0	18
295	Nanostructured photoelectrodes for dye-sensitized solar cells. Nano Today, 2011, 6, 91-109.	6.2	601
296	Electronic structures and absorption properties of three kinds of ruthenium dye sensitizers containing bipyridine-pyrazolate for solar cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 79, 1843-1848.	2.0	17
297	Long-term stability of dye solar cells. Solar Energy, 2011, 85, 1179-1188.	2.9	152
298	Stable dye-sensitized solar cells based on organic chromophores and ionic liquid electrolyte. Solar Energy, 2011, 85, 1189-1194.	2.9	36
299	TiO ₂ nanorod arrays functionalized with In ₂ S ₃ shell layer by a low-cost route for solar energy conversion. Nanotechnology, 2011, 22, 305601.	1.3	29
300	Theoretical study of the origin of the large difference in the visible absorption spectra of organic dyes containing a thienylmethine unit and differing by the methine unit position. , 2011, , .		6
301	Relationship Between I ₃ _{â^'} Diffusion in Titania Nanopores Modified with Dyes and Open Circuit Voltage of Dye-Sensitized Solar Cell. Journal of the Electrochemical Society, 2011, 158, B770-B771.	1.3	5
302	Improved conversion efficiency of CdS quantum dots-sensitized TiO ₂ nanotube array using ZnO energy barrier layer. Nanotechnology, 2011, 22, 015202.	1.3	43
303	DFT study of electronic structure and optical properties of some Ru- and Rh-based complexes for dye-sensitized solar cells. Molecular Physics, 2011, 109, 2511-2523.	0.8	14
304	Molecular engineering of carbazole functionalized ruthenium dyes for efficient dye-sensitized solar cells. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2011, 2, 045009.	0.7	4
305	Synthesis and Characterization of a Thiophene Copolymer for Photovoltaic Application. Journal of Macromolecular Science - Pure and Applied Chemistry, 2011, 48, 1044-1048.	1.2	1
306	A Nano Quasi-Solid Electrolyte With Modified Nano-Clay Applied to Dye-Sensitized Solar Cells. Journal of Solar Energy Engineering, Transactions of the ASME, 2011, 133, .	1.1	17
307	Influence of TiO ₂ Nanocrystals Fabricating Dye-Sensitized Solar Cell on the Absorption Spectra of N719 Sensitizer. International Journal of Photoenergy, 2012, 2012, 1-7.	1.4	20
308	A New Ruthenium Sensitizer Containing Benzo[1,9]quinolizino(acridin-2-yl)vinyl-2,2′-bipyridine Ligand for Effective Nanocrystalline Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2012, 2012, 1-7.	1.4	3
309	Ruthenium Sensitizers and Their Applications in Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2012, 2012, 1-21.	1.4	111
310	Effect of dielectric Bragg grating nanostructuring on dye sensitized solar cells. Optics Express, 2012, 20, A888.	1.7	21
311	High-Efficiency CdS Quantum-Dots-Sensitized Solar Cells with Compressed Nanocrystalline <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mtext>TiO</mml:mtext> mathvariant="bold">2</mml:msub></mml:mrow>Photoelectrodes. Journal of Nanomaterials. 2012. 2012. 1-5.</mml:math 	<mml:mto< td=""><td>ext_o</td></mml:mto<>	ext _o

#	Article	IF	CITATIONS
312	Carbazole Dyes with Ether Groups for Dye-Sensitized Solar Cells: Effect of Negative Charges in Dye Molecules on Electron Lifetime. Japanese Journal of Applied Physics, 2012, 51, 10NE14.	0.8	4
313	Solid-State Dye Sensitized Optoelectronic Carbon Nanotube-Wires: An Energy Harvesting Damage Sensor With Nanotechnology Approach. , 2012, , .		3
314	Synthesis of a Novel Ruthenium Sensitizer Bearing an <i>ortho</i> -Dicarboxyphenyl Group as an Anchoring Unit for Dye-sensitized Solar Cells. Chemistry Letters, 2012, 41, 1406-1408.	0.7	9
315	Synthesis and Properties of Anthrylene-Substituted Phenyleneethynylene Dyes Having Amino/Cyano Group(s) and Their Application to Dye-Sensitized Solar Cells. Bulletin of the Chemical Society of Japan, 2012, 85, 687-697.	2.0	14
316	Structural Change of Pheophorbide <i>a</i> Methyl Ester by Contact with Titanium Oxide Particles. Chemistry Letters, 2012, 41, 360-362.	0.7	4
317	Macrocyclic triphenylamine based organic dyes for efficient dye-sensitized solar cells. Tetrahedron, 2012, 68, 9113-9118.	1.0	21
318	Dye sensitized solar cell (DSSC) by a novel fully room temperature process: a solar paint for smart windows and flexible substrates. RSC Advances, 2012, 2, 11645.	1.7	16
319	Advances in high efficiency dye sensitized solar cells based on Ru(ii) free sensitizers and a liquid redox electrolyte. Journal of Materials Chemistry, 2012, 22, 24195.	6.7	54
320	Squaraine-Arylamine Sensitizers for Highly Efficient p-Type Dye-Sensitized Solar Cells. Organic Letters, 2012, 14, 4726-4729.	2.4	79
321	Chemical compatibility between a hole conductor and organic dye enhances the photovoltaic performance of solid-state dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 8641.	6.7	34
322	Application of F4TCNQ doped spiro-MeOTAD in high performance solid state dye sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 11689.	1.3	75
323	Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials. Renewable and Sustainable Energy Reviews, 2012, 16, 5848-5860.	8.2	749
324	Solvent-free ionic liquid electrolytes without elemental iodine for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 11592.	1.3	28
325	High performance organic sensitizers based on 11,12-bis(hexyloxy) dibenzo[a,c]phenazine for dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 18830.	6.7	86
326	Degradation Analysis of Thermal Aged Back-Illuminated Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2012, 159, B430-B433.	1.3	10
327	Characterisation of electron transport and charge recombination using temporally resolved and frequency-domain techniques for dye-sensitised solar cells. International Reviews in Physical Chemistry, 2012, 31, 420-467.	0.9	75
328	Solid-State Dye-Sensitized Solar Cells using Ordered TiO ₂ Nanorods on Transparent Conductive Oxide as Photoanodes. Journal of Physical Chemistry C, 2012, 116, 3266-3273.	1.5	75
329	Unsymmetrical Squaraines Incorporating Cabazole as a Donor for Dye‣ensitized Solar Cells. Journal of the Chinese Chemical Society, 2012, 59, 1337-1344.	0.8	5

#	Article	IF	CITATIONS
330	Ruthenium(II) complexes bearing pyridineâ€based tridentate and bidentate ligands: catalytic activity for transfer hydrogenation of aryl ketones. Applied Organometallic Chemistry, 2012, 26, 663-670.	1.7	30
331	Light-driven water oxidation for solar fuels. Coordination Chemistry Reviews, 2012, 256, 2503-2520.	9.5	337
332	Structure optimization of ruthenium photosensitizers for efficient dye-sensitized solar cells – A goal toward a "bright―future. Coordination Chemistry Reviews, 2012, 256, 3008-3035.	9.5	152
333	Unsymmetrical Squaraines Incorporating Quinoline for Near Infrared Responsive Dye-Sensitized Solar Cells. Organic Letters, 2012, 14, 5420-5423.	2.4	55
334	Influence of ionic pretreatment on the performance of solid electrolyte dye-sensitized solar cells. Solar Energy, 2012, 86, 2312-2317.	2.9	4
335	The effect of ligand substitution and water co-adsorption on the adsorption dynamics and energy level matching of amino-phenyl acid dyes on TiO2. Physical Chemistry Chemical Physics, 2012, 14, 1749-1755.	1.3	18
336	Transition metal complexes with strong absorption of visible light and long-lived triplet excited states: from molecular design to applications. RSC Advances, 2012, 2, 1712-1728.	1.7	176
337	Symmetric vs. asymmetric squaraines as photosensitisers in mesoscopic injection solar cells: a structure–property relationship study. Chemical Communications, 2012, 48, 2782.	2.2	79
338	Polymer brushes assisted loading of high density CdS/CdSe quantum dots onto TiO2 nanotubes and the resulting photoelectric performance. RSC Advances, 2012, 2, 3978.	1.7	16
339	Superior energy band structure and retarded charge recombination for Anatase N, B codoped nano-crystalline TiO2 anodes in dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 9123.	6.7	31
340	Voltage enhancement in dye-sensitized solar cell using (001)-oriented anatase TiO2 nanosheets. Journal of Solid State Electrochemistry, 2012, 16, 2993-3001.	1.2	64
341	High-performance dye-sensitized solar cells based on 5,6-bis-hexyloxy-benzo[2,1,3]thiadiazole. Journal of Materials Chemistry, 2012, 22, 10929.	6.7	79
342	Probing the morphology-device relation of Fe ₂ O ₃ nanostructures towards photovoltaic and sensing applications. Nanoscale, 2012, 4, 194-205.	2.8	100
343	Enhanced light-harvesting capability by phenothiazine in ruthenium sensitizers with superior photovoltaic performance. Journal of Materials Chemistry, 2012, 22, 130-139.	6.7	20
344	Incorporating a stable fluorenone unit into D–A–π–A organic dyes for dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 19236.	6.7	64
345	Narrowing band gap of platinum acetylide dye-sensitized solar cell sensitizers with thiophene ï€-bridges. Journal of Materials Chemistry, 2012, 22, 5382.	6.7	82
346	All carbon nanotube fiber electrode-based dye-sensitized photovoltaic wire. Journal of Materials Chemistry, 2012, 22, 14856.	6.7	47
347	Natural alkannin and anthocyanin as photosensitizers for dye-sensitized solar cells. , 2012, , .		2

#	Article	IF	CITATIONS
348	Comparative study of 2,7 versus 3,6 disubstituted carbazole as hole transporting materials in solid state DSSC. , 2012, , .		0
349	Oligo(poly)thiophene Sensitization of CdSe Nanocrystal and TiO ₂ Polycrystalline Electrodes: A Photoelectrochemical Investigation. Journal of Physical Chemistry C, 2012, 116, 2033-2039.	1.5	10
350	Design and Characterization of Heteroleptic Ruthenium Complexes Containing Benzimidazole Ligands for Dye-Sensitized Solar Cells: The Effect of Fluorine Substituents on Photovoltaic Performance. Journal of Physical Chemistry Letters, 2012, 3, 1830-1835.	2.1	42
351	Effect of Axially Projected Oligothiophene Pendants and Nitro-Functionalized Diimine Ligands on the Lowest Excited State in Cationic Ir(III) bis-Cyclometalates. Inorganic Chemistry, 2012, 51, 5082-5094.	1.9	27
352	Isotopic Substitution as a Strategy to Control Non-Adiabatic Dynamics in Photoelectrochemical Cells: Surface Complexes between TiO\$_{2}\$ and Dicyanomethylene Compounds. Japanese Journal of Applied Physics, 2012, 51, 10NE03.	0.8	5
353	Comparative Interface Metrics for Metal-Free Monolayer-Based Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2012, 4, 6735-6746.	4.0	16
354	Functionalized organic dyes containing a phenanthroimidazole donor for dye-sensitized solar cell applications. Tetrahedron, 2012, 68, 5590-5598.	1.0	24
355	Synthesis and photovoltaic properties of organic sensitizers containing electron-deficient and electron-rich fused thiophene for dye-sensitized solar cells. Tetrahedron, 2012, 68, 5375-5385.	1.0	31
356	2,1,3-Benzothiadiazole-containing donor–acceptor–acceptor dyes for dye-sensitized solar cells. Tetrahedron, 2012, 68, 7509-7516.	1.0	44
357	Influence of the Anchoring Modes on the Electronic and Photovoltaic Properties of Dâ^'ï€â€"A Dyes. Journal of Physical Chemistry C, 2012, 116, 16876-16884.	1.5	53
358	Near infrared thieno[3,4-b]pyrazine sensitizers for efficient quasi-solid-state dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 4802.	1.3	66
359	Cycloruthenated sensitizers: improving the dye-sensitized solar cell with classical inorganic chemistry principles. Dalton Transactions, 2012, 41, 7814.	1.6	101
360	Molecular design of distorted push–pull porphyrins for dye-sensitized solar cells. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	55
361	A Novel Organic Sensitizer Combined with a Cobalt Complex Redox Shuttle for Dye-Sensitized Solar Cells. Organic Letters, 2012, 14, 2532-2535.	2.4	26
362	High-temperature hydrothermal synthesis of crystalline mesoporous TiO2 with superior photo catalytic activities. Applied Surface Science, 2012, 258, 7448-7454.	3.1	13
363	Preparation of Jeffamine based quaternary ammonium iodide melt for dye sensitized solar cells. Journal of Molecular Liquids, 2012, 172, 8-11.	2.3	3
364	Heteroleptic ruthenium complex containing substituted triphenylamine hole-transport unit as sensitizer for stable dye-sensitized solar cell. Nano Energy, 2012, 1, 6-12.	8.2	38
365	The application of camphorsulfonic acid doped polyaniline films prepared on TCO-free glass for counter electrode of bifacial dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 245, 1-8.	2.0	29

#	Article	IF	CITATIONS
366	Cyclometalated ruthenium chromophores for the dye-sensitized solar cell. Coordination Chemistry Reviews, 2012, 256, 1438-1450.	9.5	275
367	Quantum chemical investigations aimed at modeling highly efficient zinc porphyrin dye sensitized solar cells. Journal of Molecular Modeling, 2012, 18, 4199-4207.	0.8	39
368	Tuning the Electrical and Optical Properties of Diketopyrrolopyrrole Complexes for Panchromatic Dyeâ€6ensitized Solar Cells. Chemistry - an Asian Journal, 2012, 7, 2895-2903.	1.7	37
369	Highâ€Performance Dipolar Organic Dyes with an Electronâ€Deficient Diphenylquinoxaline Moiety in the π onjugation Framework for Dye‧ensitized Solar Cells. Chemistry - A European Journal, 2012, 18, 12085-12095.	1.7	65
370	Graphene wrapped BiVO4 photocatalyst and its enhanced performance under visible light irradiation. International Nano Letters, 2012, 2, 1.	2.3	53
371	All-carbon electrode-based fiber-shaped dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 125-130.	1.3	82
372	Electron-Deficient Pyrimidine Adopted in Porphyrin Sensitizers: A Theoretical Interpretation of Ï€-Spacers Leading to Highly Efficient Photo-to-Electric Conversion Performances in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2012, 116, 9166-9179.	1.5	76
373	Adsorption of organic dyes on TiO2 surfaces in dye-sensitized solar cells: interplay of theory and experiment. Physical Chemistry Chemical Physics, 2012, 14, 15963.	1.3	151
374	Mesoporous Submicrometer TiO ₂ Hollow Spheres As Scatterers in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2012, 4, 2964-2968.	4.0	116
375	One bipyridine and triple advantages: tailoring ancillary ligands in ruthenium complexes for efficient sensitization in dye solar cells. Journal of Materials Chemistry, 2012, 22, 18757.	6.7	21
377	Derivatization of Bichromic Cyclometalated Ru(II) Complexes with Hydrophobic Substituents. Inorganic Chemistry, 2012, 51, 1501-1507.	1.9	25
378	Terpyridine-fused polyaromatic hydrocarbons generated via cyclodehydrogenation and used as ligands in Ru(ii) complexes. Dalton Transactions, 2012, 41, 7746.	1.6	22
379	Effective enhancement of the performance of black dye based dye-sensitized solar cells by metal oxide surface modification of the TiO2 photoelectrode. Dalton Transactions, 2012, 41, 5137.	1.6	33
380	A simple triaryl amine-based dual functioned co-adsorbent for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 3786.	6.7	65
381	Hollow anatase TiO2 porous microspheres with V-shaped channels and exposed (101) facets: Anisotropic etching and photovoltaic properties. Journal of Materials Chemistry, 2012, 22, 6002.	6.7	49
382	In situ investigation of dye adsorption on TiO2 films using a quartz crystal microbalance with a dissipation technique. Physical Chemistry Chemical Physics, 2012, 14, 9037.	1.3	36
383	CdS/CdSe quantum dot co-sensitized graphene nanocomposites via polymer brush templated synthesis for potential photovoltaic applications. Nanoscale, 2012, 4, 2109.	2.8	42
384	Light controlled assembling of iodine-free dye-sensitized solar cells with poly(3,4-ethylenedioxythiophene) as a hole conductor reaching 7.1% efficiency. Physical Chemistry Chemical Physics, 2012, 14, 7098.	1.3	38

#	Article	IF	CITATIONS
385	Significant improvement in the conversion efficiency of black-dye-based dye-sensitized solar cells by cosensitization with organic dye. RSC Advances, 2012, 2, 3198.	1.7	100
386	Bin(Tu)xCl3n: a novel sensitizer and its enhancement of BiOCl nanosheets' photocatalytic activity. Journal of Materials Chemistry, 2012, 22, 8354.	6.7	68
387	Effects of tethering alkyl chains for amphiphilic ruthenium complex dyes on their adsorption to titanium oxide and photovoltaic properties. Journal of Colloid and Interface Science, 2012, 386, 359-365.	5.0	21
388	A novel polymer gel electrolyte based on cyanoethylated cellulose for dye-sensitized solar cells. Electrochimica Acta, 2012, 80, 219-226.	2.6	44
389	Effect of linker used in D–A–ï€â€"A metal free dyes with different ï€-spacers for dye sensitized solar cells. Organic Electronics, 2012, 13, 3108-3117.	1.4	21
390	Highly-ordered TiO2 nanotube arrays with double-walled and bamboo-type structures in dye-sensitized solar cells. Nano Energy, 2012, 1, 796-804.	8.2	44
391	Influence of cations of the electrolyte on the performance and stability of dye sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 24424.	6.7	23
392	Measured binding coefficients for iodine and ruthenium dyes; implications for recombination in dye sensitised solar cells. Physical Chemistry Chemical Physics, 2012, 14, 15421.	1.3	43
393	D–Dâ~ï̃€â€"A-Type Organic Dyes for Dye-Sensitized Solar Cells with a Potential for Direct Electron Injection and a High Extinction Coefficient: Synthesis, Characterization, and Theoretical Investigation. Journal of Physical Chemistry C, 2012, 116, 25653-25663.	1.5	153
394	Theoretical studies of the structures and spectroscopic properties of the photoelectrochemical cell ruthenium sensitizers, C101 and J13. Science China Chemistry, 2012, 55, 398-408.	4.2	2
395	Commercialization of dye sensitized solar cells: Present status and future research needs to improve efficiency, stability, and manufacturing. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	0.9	131
396	Multi-carbazole derivatives: new dyes for highly efficient dye-sensitized solar cells. RSC Advances, 2012, 2, 2427.	1.7	54
397	Molecular Engineering of Quinoxaline-Based Organic Sensitizers for Highly Efficient and Stable Dye-Sensitized Solar Cells. Chemistry of Materials, 2012, 24, 3179-3187.	3.2	138
398	Alternate redox electrolytes in dye-sensitized solar cells. Science Bulletin, 2012, 57, 4131-4142.	1.7	26
399	Hierarchical TiO2 microspheres: synthesis, structural control and their applications in dye-sensitized solar cells. RSC Advances, 2012, 2, 11629.	1.7	60
400	Introducing structural colour in DSCs by using photonic crystals: interplay between conversion efficiency and optical properties. Energy and Environmental Science, 2012, 5, 8238.	15.6	50
402	High-Performance Plastic Dye-sensitized Solar Cells Based on Low-Cost Commercial P25 TiO ₂ and Organic Dye. ACS Applied Materials & Interfaces, 2012, 4, 1709-1715.	4.0	47
403	Tetrathiafulvalene as a one-electron iodine-free organic redox mediator in electrolytes for dye-sensitized solar cells. RSC Advances, 2012, 2, 1083-1087.	1.7	24

#	Article	IF	CITATIONS
404	Influence of the antennas in starburst triphenylamine-based organic dye-sensitized solar cells: phenothiazine versus carbazole. RSC Advances, 2012, 2, 4507.	1.7	43
405	COMPUTATIONAL SIMULATIONS OF NANOSTRUCTURED SOLAR CELLS. Nano LIFE, 2012, 02, 1230007.	0.6	3
406	Substitution of Ethynyl-Thiophene Chromophores on Ruthenium Sensitizers: Influence on Thermal and Photovoltaic Performance of Dye-Sensitized Solar Cells. Advances in OptoElectronics, 2012, 2012, 1-10.	0.6	1
407	Potential Applications for Solar Photocatalysis: From Environmental Remediation to Energy Conversion. , 0, , .		9
408	Solidâ€state dyeâ€sensitized and bulk heterojunction solar cells using TiO ₂ and ZnO nanostructures: recent progress and new concepts at the borderline. Polymer International, 2012, 61, 355-373.	1.6	104
409	Worldwide first fully upâ€scaled fabrication of 60 × 100 cm ² dye solar module proto Progress in Photovoltaics: Research and Applications, 2012, 20, 698-710.	otypes. 4.4	61
410	Molecular engineering of sensitizers for dyeâ€sensitized solar cell applications. Chemical Record, 2012, 12, 306-328.	2.9	109
411	Nitro group as a new anchoring group for organic dyes in dye-sensitized solar cells. Chemical Communications, 2012, 48, 6663.	2.2	65
412	The renaissance of dye-sensitized solar cells. Nature Photonics, 2012, 6, 162-169.	15.6	1,197
413	A novel D–A-ï€-A organic sensitizer containing a diketopyrrolopyrrole unit with a branched alkyl chain for highly efficient and stable dye-sensitized solar cells. Chemical Communications, 2012, 48, 6972.	2.2	229
414	TiO ₂ Thin Films Prepared via Adsorptive Self-Assembly for Self-Cleaning Applications. ACS Applied Materials & amp; Interfaces, 2012, 4, 1093-1102.	4.0	92
415	Novel nanostructures for next generation dye-sensitized solar cells. Energy and Environmental Science, 2012, 5, 8506.	15.6	162
416	Effect of bulky groups in ruthenium heteroleptic sensitizers on dye sensitized solar cell performance. Chemical Science, 2012, 3, 1177.	3.7	23
417	Enveloping porphyrins for efficient dye-sensitized solar cells. Energy and Environmental Science, 2012, 5, 6933.	15.6	218
418	Enhanced photovoltaic performance with co-sensitization of porphyrin and an organic dye in dye-sensitized solar cells. Energy and Environmental Science, 2012, 5, 6460.	15.6	173
419	Efficient Metalâ€Free Organic Sensitizers Containing Tetraphenylethylene Moieties in the Donor Part for Dyeâ€ S ensitized Solar Cells. European Journal of Organic Chemistry, 2012, 2012, 5248-5255.	1.2	25
420	Effect of Diffuse Light Scattering Designs on the Efficiency of Dye Solar Cells: An Integral Optical and Electrical Description. Journal of Physical Chemistry C, 2012, 116, 11426-11433.	1.5	48
421	Optimizing nanosheet-based ZnO hierarchical structure through ultrasonic-assisted precipitation for remarkable photovoltaic enhancement in quasi-solid dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 13097.	6.7	48

#	Article	IF	CITATIONS
422	High-conversion-efficiency organic dye-sensitized solar cells: molecular engineering on D–A–݀-A featured organic indoline dyes. Energy and Environmental Science, 2012, 5, 8261.	15.6	308
423	Modeling Ruthenium-Dye-Sensitized TiO ₂ Surfaces Exposing the (001) or (101) Faces: A First-Principles Investigation. Journal of Physical Chemistry C, 2012, 116, 18124-18131.	1.5	55
424	Organic Dye Design Tools for Efficient Photocurrent Generation in Dyeâ€Sensitized Solar Cells: Exciton Binding Energy and Electron Acceptors. Advanced Functional Materials, 2012, 22, 1606-1612.	7.8	143
425	Efficient Transparent Thin Dye Solar Cells Based on Highly Porous 1D Photonic Crystals. Advanced Functional Materials, 2012, 22, 1303-1310.	7.8	74
426	Transparent, Double‣ided, ITOâ€Free, Flexible Dyeâ€Sensitized Solar Cells Based on Metal Wire/ZnO Nanowire Arrays. Advanced Functional Materials, 2012, 22, 2775-2782.	7.8	84
427	Stable Dyeâ€Sensitized Solar Cells by Encapsulation of N719â€Sensitized TiO ₂ Electrodes Using Surfaceâ€Induced Crossâ€Linking Polymerization. Advanced Energy Materials, 2012, 2, 219-224.	10.2	43
428	Clickâ€Functionalized Ru(II) Complexes for Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2012, 2, 1004-1012.	10.2	22
429	Solutionâ€Processed TiO ₂ Nanoparticles as the Window Layer for CuIn(S,Se) ₂ Devices. Advanced Energy Materials, 2012, 2, 1368-1374.	10.2	7
430	A New Heteroleptic Ruthenium Sensitizer for Transparent Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2012, 2, 1503-1509.	10.2	22
433	Cyclometalated Ruthenium(II) Complexes as Nearâ€IR Sensitizers for High Efficiency Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2012, 51, 7528-7531.	7.2	109
434	New 2, 6â€Modified Bodipy Sensitizers for Dye‣ensitized Solar Cells. Chemistry - an Asian Journal, 2012, 7, 696-700.	1.7	52
435	Highly Catalytic Carbon Nanotube/Pt Nanohybridâ€Based Transparent Counter Electrode for Efficient Dye‣ensitized Solar Cells. Chemistry - an Asian Journal, 2012, 7, 1795-1802.	1.7	27
436	Ruthenium(II) Photosensitizers of Tridentate Clickâ€Derived Cyclometalating Ligands: A Joint Experimental and Computational Study. Chemistry - A European Journal, 2012, 18, 4010-4025.	1.7	61
437	Thieno[3,4â€ <i>b</i>]thiopheneâ€Based Organic Dyes for Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2012, 18, 5430-5437.	1.7	43
438	Ethoxyâ€substituted Oligoâ€phenylenevinyleneâ€Bridged Organic Dyes for Efficient Dyeâ€5ensitized Solar Cells. Chinese Journal of Chemistry, 2012, 30, 1497-1503.	2.6	7
439	Substituent Effect on the π Linkers in Triphenylamine Dyes for Sensitized Solar Cells: A DFT/TDDFT Study. ChemPhysChem, 2012, 13, 3320-3329.	1.0	39
440	An Unconventional Route to High-Efficiency Dye-Sensitized Solar Cells via Embedding Graphitic Thin Films into TiO ₂ Nanoparticle Photoanode. Nano Letters, 2012, 12, 479-485.	4.5	150
441	Dye adsorption, desorption, and distribution in mesoporous TiO2 films, and its effects on recombination losses in dye sensitized solar cells. Energy and Environmental Science, 2012, 5, 7203.	15.6	117

#	Article	IF	CITATIONS
442	A theoretical investigation on photocatalytic oxidation on the TiO2 surface. Journal of Chemical Physics, 2012, 136, 024706.	1.2	23
443	Preparation, characterization and photoluminescence properties of TiO2:Eu3+ nanorods and nanobelts. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	9
444	lodine-free organic dye sensitized solar cells with in situ polymerized hole transporting material from alkoxy-substituted TriEDOT. Polymer Bulletin, 2012, 68, 1857-1865.	1.7	10
445	The effect of anchoring group number on molecular structures and absorption spectra of triphenylamine sensitizers: a computational study. Journal of Molecular Modeling, 2012, 18, 1767-1777.	0.8	29
446	Molecular dynamics simulations on the aggregation behavior of indole type organic dye molecules in dye-sensitized solar cells. Journal of Molecular Modeling, 2012, 18, 2099-2104.	0.8	15
447	Application of Pt sputter-deposited counter electrodes based on micro-patterned ITO glass to quasi-solid state dye-sensitized solar cells. Current Applied Physics, 2012, 12, 1302-1306.	1.1	11
448	Synthesis of new N, N-diphenylhydrazone dyes for solar cells: Effects of thiophene-derived Ï€-conjugated bridge. Dyes and Pigments, 2012, 92, 1042-1051.	2.0	34
449	Organic dyes with oligo-n-hexylthiophene for dye-sensitized solar cells: Relation between chemical structure of donor and photovoltaic performance. Dyes and Pigments, 2012, 92, 1250-1256.	2.0	33
450	Theoretical studies on spectroscopic properties of ruthenium sensitizers absorbed to TiO2 film surface with connection mode for DSSC. Dyes and Pigments, 2012, 94, 459-468.	2.0	61
451	Panchromatic donor–acceptor–acceptor sensitizers based on 4H-cyclopenta[2,1-b:3,4-bâ€2]dithiophen-4-one as a strong acceptor for dye-sensitized solar cells. Dyes and Pigments, 2012, 94, 553-560.	2.0	32
452	New efficient dyes containing tert-butyl in donor for dye-sensitized solar cells. Dyes and Pigments, 2012, 95, 244-251.	2.0	29
453	Charge transporting enhancement of NiO photocathodes for p-type dye-sensitized solar cells. Electrochimica Acta, 2012, 66, 210-215.	2.6	30
454	Enhanced light-harvesting efficiency by Förster resonance energy transfer in quasi-solid state DSSC using organic blue dye. Electrochimica Acta, 2012, 68, 240-245.	2.6	25
455	Correlating the photovoltaic performance of alumina modified dye-sensitized solar cells with the properties of metal-free organic sensitizers. Materials Chemistry and Physics, 2012, 132, 943-949.	2.0	13
456	Two polymeric metal complexes based on polycarbazole containing complexes of 8-hydroxyquinoline with Zn(II) and Ni(II) in the backbone: Synthesis, characterization and photovoltaic applications. Materials Chemistry and Physics, 2012, 133, 452-458.	2.0	20
457	VIS harvesting unsymmetrical squaraine dye for dye-sensitized solar cells. Renewable Energy, 2012, 38, 163-168.	4.3	11
458	Linear perylenetetracarboxylic monoanhydried derivatives for the sensitization of dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 239, 28-36.	2.0	3
459	Dye-sensitized solar cells using ion-gel electrolytes for long-term stability. Journal of Power Sources, 2012, 201, 395-401.	4.0	41

#	Article	IF	CITATIONS
460	A novel nanocomposite TiO2 photoanode for highly efficient dye-sensitized solar cells. Journal of Power Sources, 2012, 203, 297-301.	4.0	26
461	Effect of a compact ZnO interlayer on the performance of ZnO-based dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2012, 100, 21-26.	3.0	39
462	Dipolar organic pyridyl dyes for dye-sensitized solar cell applications. Tetrahedron, 2012, 68, 767-773.	1.0	28
463	A novel pyridinium hemicyanine dye with carboxylate anchoring group and its application in dye-sensitized solar cells. Tetrahedron Letters, 2012, 53, 1341-1344.	0.7	10
464	A hybrid tandem solar cell based on hydrogenated amorphous silicon and dye-sensitized TiO2 film. Thin Solid Films, 2012, 520, 2102-2105.	0.8	12
465	Molecular‣cale Interface Engineering of Nanocrystalline Titania by Coâ€adsorbents for Solar Energy Conversion. ChemSusChem, 2012, 5, 181-187.	3.6	26
466	Novel Esterâ€Functionalized Solidâ€State Electrolyte for Highly Efficient Allâ€Solidâ€State Dyeâ€Sensitized Solar Cells. Advanced Materials, 2012, 24, 121-124.	11.1	114
467	Effects of Dyeâ€Adsorption Solvent on the Performances of the Dyeâ€Sensitized Solar Cells Based on Black Dye. Chemistry - an Asian Journal, 2012, 7, 156-162.	1.7	52
468	Molecular Engineering of Zinc Phthalocyanines with Phosphinic Acid Anchoring Groups. Angewandte Chemie - International Edition, 2012, 51, 1895-1898.	7.2	86
469	Facile synthesis of ZnO nanocrystals via a solid state reaction for high performance plastic dye-sensitized solar cells. Nano Research, 2012, 5, 1-10.	5.8	42
470	Syntheses of organic dyes based on phenothiazine as photosensitizers and effects of their Ï€-conjugated bridges on the photovoltaic performances of dye-sensitized solar cells. Macromolecular Research, 2012, 20, 128-137.	1.0	16
471	Theoretical studies on structural and spectroscopic properties of photoelectrochemical cell ruthenium sensitizers, derivatives of AR20. International Journal of Quantum Chemistry, 2013, 113, 891-901.	1.0	5
472	Substitution effects of Ru–terpyridyl complexes on photovoltaic and carrier transport properties in dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 11033.	5.2	12
473	Novel D â~' π â~' A dye sensitizers of polymeric metal complexes based on 8â€hydroxyquinoline phenylethyl or fluorene units: synthesis, characterization and photovoltaic applications for dyeâ€sensitized solar cells. Applied Organometallic Chemistry, 2013, 27, 479-485.	e and 1.7	40
474	Exploring the role of varied-length spacers in charge transfer: a theoretical investigation on pyrimidine-bridged porphyrin dyes. RSC Advances, 2013, 3, 17515.	1.7	25
475	Functionalized phenyl bipyridine ancillary ligand as double recombination inhibitor in ruthenium complex for dye solar cells. Dyes and Pigments, 2013, 99, 850-856.	2.0	14
476	Efficient and stable DSSC sensitizers based on substituted dihydroindolo[2,3-b]carbazole donors with high molar extinction coefficients. Journal of Materials Chemistry A, 2013, 1, 11295.	5.2	87
477	Review on nanostructured photoelectrodes for next generation dye-sensitized solar cells. Renewable and Sustainable Energy Reviews, 2013, 27, 334-349.	8.2	118

#	Article	IF	CITATIONS
478	Imidazolium functionalized cobalt tris(bipyridyl) complex redox shuttles for high efficiency ionic liquid electrolyte dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 11933.	5.2	44
479	New Dual Donor–Acceptor (2Dâ€i€â€2A) Porphyrin Sensitizers for Stable and Costâ€Effective Dye‧ensitized Solar Cells. Chemistry - an Asian Journal, 2013, 8, 2144-2153.	1.7	49
480	Varied alkyl chain functionalized organic dyes for efficient dye-sensitized solar cells: Influence of alkyl substituent type on photovoltaic properties. Journal of Power Sources, 2013, 239, 16-23.	4.0	33
481	Highly efficient dye sensitized solar cells based on a novel ruthenium sensitizer. Journal of Materials Science: Materials in Electronics, 2013, 24, 2346-2350.	1.1	8
482	Novel ruthenium sensitizer with multiple butadiene equivalent thienyls as conjugation on ancillary ligand for dye-sensitized solar cells. Organic Electronics, 2013, 14, 2243-2248.	1.4	18
483	Near-infrared absorbing squaraine dye with extended π conjugation for dye-sensitized solar cells. Renewable Energy, 2013, 60, 672-678.	4.3	34
484	Amorphous Zinc Stannate (Zn ₂ SnO ₄) Nanofibers Networks as Photoelectrodes for Organic Dye‧ensitized Solar Cells. Advanced Functional Materials, 2013, 23, 3146-3155.	7.8	67
485	Experimental and Computational Exploration of Ground and Excited State Properties of Highly Strained Ruthenium Terpyridine Complexes. Journal of Physical Chemistry A, 2013, 117, 6489-6507.	1.1	25
486	Dual-channel anchorable organic dyes with well-defined structures for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 9947.	5.2	48
487	Design of Os ^{II} â€based Sensitizers for Dyeâ€Sensitized Solar Cells: Influence of Heterocyclic Ancillaries. ChemSusChem, 2013, 6, 1366-1375.	3.6	17
488	Organic dyes incorporating N-functionalized pyrrole as conjugated bridge for dye-sensitized solar cells: Convenient synthesis, additional withdrawing group on the π-bridge and the suppressed aggregation. Dyes and Pigments, 2013, 99, 863-870.	2.0	32
489	Preparation, optical properties and solar cell applications of CdS quantum dots synthesized by chemical bath deposition. Journal of Materials Science: Materials in Electronics, 2013, 24, 3009-3013.	1.1	9
490	Photovoltaic Property of a Vertically Aligned Carbon Nanotube Hexagonal Network Assembled with CdS Quantum Dots. ACS Applied Materials & Interfaces, 2013, 5, 7400-7404.	4.0	17
491	A Simple Synthetic Route to Obtain Pure <i>Trans</i> â€Ruthenium(II) Complexes for Dyeâ€Sensitized Solar Cell Applications. ChemSusChem, 2013, 6, 2170-2180.	3.6	27
493	Embedding an electron donor or acceptor into naphtho[2,1-b:3,4-bâ€2]dithiophene based organic sensitizers for dye-sensitized solar cells. Chemical Communications, 2013, 49, 7445.	2.2	49
494	Julolidine dyes with different acceptors and thiophene-conjugation bridge: Design, synthesis and their application in dye-sensitized solar cells. Synthetic Metals, 2013, 180, 9-15.	2.1	31
495	Facile and Selective Synthesis of Oligothiophene-Based Sensitizer Isomers: An Approach toward Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & amp; Interfaces, 2013, 5, 8982-8990.	4.0	34
496	Carbon nanotubes (CNTs) enrich the solar cells. Solar Energy, 2013, 96, 239-252.	2.9	69

#	Article	IF	Citations
497	Efficient Sensitization of Dye-Sensitized Solar Cells by Novel Triazine-Bridged Porphyrin–Porphyrin Dyads. Inorganic Chemistry, 2013, 52, 9813-9825.	1.9	51
498	D-A-Ï€-A organic sensitizers containing a benzothiazole moiety as an additional acceptor for use in solar cells. Science China Chemistry, 2013, 56, 505-513.	4.2	25
499	Molecular dynamics study of ionic liquid film based on [emim][Tf2N] and [emim][TfO] adsorbed on highly oriented pyrolytic graphite. Chemical Research in Chinese Universities, 2013, 29, 366-373.	1.3	3
500	D–΀–A Dye Sensitizers Made of Polymeric Metal Complexes Containing 1,10â€Phenanthroline and Alkylfluorene or Alkoxybenzene: Synthesis, Characterization and Photovoltaic Performance for Dyeâ€Sensitized Solar Cells. European Journal of Organic Chemistry, 2013, 2013, 5893-5901.	1.2	7
501	Benzotriazoleâ€Containing D–π–A Conjugated Organic Dyes for Dyeâ€5ensitized Solar Cells. Chemistry - an Asian Journal, 2013, 8, 809-816.	1.7	60
502	Tuning the electronic structures and related properties of Ruthenium-based dye sensitizers by ligands: A theoretical study and design. Computational and Theoretical Chemistry, 2013, 1017, 99-108.	1.1	15
503	Synthesis and spectral properties of ruthenium(II) complexes based on 2,2′-bipyridines modified by a perylene chromophore. Tetrahedron Letters, 2013, 54, 5514-5517.	0.7	29
504	Ruthenium Sensitizers with 2,2′-Bipyrimidine or a 5,5′-Disubstituted 2,2′-Bipyrimidine Ligand: Synthesis, Photo- and Electrochemical Properties, and Application to Dye-Sensitized Solar Cells. European Journal of Inorganic Chemistry, 2013, 2013, 5187-5195.	1.0	9
506	A new ruthenium sensitizer containing dipyridylamine ligand for effective nanocrystalline dye-sensitized solar cells. Inorganica Chimica Acta, 2013, 394, 506-511.	1.2	10
507	Highly Asymmetrical Porphyrins with Enhanced Push–Pull Character for Dye ensitized Solar Cells. Chemistry - A European Journal, 2013, 19, 17075-17081.	1.7	129
508	Photophysical studies on D–π–A dye-sensitized solar cells: Effects of π-bridge and hexyloxy side chains in donor moieties. Organic Electronics, 2013, 14, 1037-1044.	1.4	10
509	Recent Advances in Phthalocyanineâ€Based Sensitizers for Dyeâ€Sensitized Solar Cells. European Journal of Organic Chemistry, 2013, 2013, 6475-6489.	1.2	211
510	Hierarchical micro/nano-structured cobalt sulfide spindles as low-cost counter electrodes for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 13801.	1.3	21
511	Comparative computational IR, Raman and phosphorescence study of Ru- and Rh-based complexes. Molecular Physics, 2013, 111, 1526-1538.	0.8	6
512	Zinc-Porphyrin Based Dyes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry A, 2013, 117, 10973-10979.	1.1	83
513	Light trapping in nanotube-based dye-sensitized solar cells. , 2013, , .		0
514	Soft processing of hierarchical oxide nanostructures for dye-sensitized solar cell applications. Nano Energy, 2013, 2, 1354-1372.	8.2	25
515	Nanoenergy. , 2013, , .		5

		15	0
#	ARTICLE	IF	CITATIONS
516	Dye-Sensitized Solar Cells. ACS Applied Materials & amp; Interfaces, 2013, 5, 10960-10965.	4.0	35
517	Synthesis and characterisation of thin-film TiO2 dye-sensitised solar cell. Ceramics International, 2013, 39, 1519-1523.	2.3	20
518	Synthesis and optimization of P(MMA-BA-MAA)/PEG-based polymer gel electrolytes. Journal of Materials Science, 2013, 48, 8153-8162.	1.7	4
519	Design and Characterization of Heteroleptic Ruthenium Complexes Containing Benzimidazole Ligands for Dye-Sensitized Solar Cells: The Effect of Thiophene and Alkyl Substituents on Photovoltaic Performance. Journal of Physical Chemistry C, 2013, 117, 2059-2065.	1.5	37
520	In-situ investigation of adsorption of dye and coadsorbates on TiO ₂ films using QCM-D, fluorescence and AFM techniques. Proceedings of SPIE, 2013, , .	0.8	0
521	Stabilization of Ruthenium Sensitizers to TiO ₂ Surfaces through Cooperative Anchoring Groups. Journal of the American Chemical Society, 2013, 135, 1692-1695.	6.6	123
522	Recent developments in sensitizers for mesoporous sensitized solar cells. Frontiers of Optoelectronics, 2013, 6, 373-385.	1.9	6
523	Metal-free organic dyes with benzothiadiazole as an internal acceptor for dye-sensitized solar cells. Tetrahedron, 2013, 69, 9175-9182.	1.0	11
524	Electron injection studies in TiO2 nanocrystalline films sensitized with fluorene dyes and photovoltaic characterization. The effect of co-adsorption of a bile acid derivative. Chemical Physics Letters, 2013, 563, 63-69.	1.2	13
525	Effect of thiourea incorporation in the electrolyte on the photovoltaic performance of the DSSC sensitized with pyridyl functionalized porphyrin. Electrochimica Acta, 2013, 102, 459-465.	2.6	29
526	Improved Nonaqueous Synthesis of TiO ₂ for Dye-Sensitized Solar Cells. ACS Nano, 2013, 7, 8981-8989.	7.3	52
527	Simultaneous enhancement of phonons modes with molecular vibrations due to Mg doping of a TiO2 substrate. RSC Advances, 2013, 3, 20891.	1.7	15
528	Face-Selective Etching of ZnO during Attachment of Dyes. Journal of Physical Chemistry C, 2013, 117, 18414-18422.	1.5	7
529	Comparison of Hemi-Squaraine Sensitized TiO ₂ and ZnO Photoanodes for DSSC Applications. Journal of Physical Chemistry C, 2013, 117, 22778-22783.	1.5	30
530	Visible light photocatalytic activity of aromatic polyamide dendrimer/TiO2 composites functionalized with spirolactam-based molecular switch. Journal of Colloid and Interface Science, 2013, 406, 178-185.	5.0	24
531	Tuning band structures of dyes for dye-sensitized solar cells: effect of different π-bridges on the performance of cells. RSC Advances, 2013, 3, 15734.	1.7	23
532	4,4′-Unsymmetrically substituted-2,2′-bipyridines: novel bidentate ligands on ruthenium(ii) [3 + 2 + 1] mixed ligand complexes for efficient sensitization of nanocrystalline TiO2 in dye solar cells. RSC Advances, 2013, 3, 26035.	1.7	9
533	Computational design of concomitant type-I and type-II porphyrin sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 18471.	1.3	44

#	Article	IF	CITATIONS
534	Improved performance of flexible dye-sensitized solar cells based on hierarchical TiO2 nanostructures with high surface area. RSC Advances, 2013, 3, 24560.	1.7	7
535	Vertically aligned anatase TiO2 nanotubes on transparent conducting substrates using polycarbonate membranes. RSC Advances, 2013, 3, 13681.	1.7	8
536	Construction of Hierarchically Structured TiO2 Nanotube Arrays for Efficient Dye-Sensitized Solar Cells. ECS Transactions, 2013, 58, 11-19.	0.3	0
537	Porphyrin-Sensitized Solar Cells. Handbook of Porphyrin Science, 2013, , 279-317.	0.3	0
538	Dye-sensitized solar cells using binary iodide-PVA gel electrolyte. , 2013, , .		4
539	Asymmetric ZnO Panel‣ike Hierarchical Architectures with Highly Interconnected Pathways for Freeâ€Electron Transport and Photovoltaic Improvements. Chemistry - A European Journal, 2013, 19, 282-287.	1.7	25
540	Novel pyrene-based donor–acceptor organic dyes for solar cell application. Organic Electronics, 2013, 14, 445-450.	1.4	41
541	Porphyrin-sensitized solar cells. Chemical Society Reviews, 2013, 42, 291-304.	18.7	1,233
542	Incompletely solvated ionic liquid mixtures as electrolyte solvents for highly stable dye-sensitized solar cells. RSC Advances, 2013, 3, 1896-1901.	1.7	30
543	Metalâ€Free Benzodithiopheneâ€Containing Organic Dyes for Dyeâ€&ensitized Solar Cells. European Journal of Organic Chemistry, 2013, 2013, 84-94.	1.2	36
544	New Ruthenium Sensitizers Featuring Bulky Ancillary Ligands Combined with a Dual Functioned Coadsorbent for High Efficiency Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 144-153.	4.0	39
545	Influence of the benzo[d]thiazole-derived π-bridges on the optical and photovoltaic performance of D–π–A dyes. Dyes and Pigments, 2013, 96, 619-625.	2.0	31
546	The effect of 4-tert-butylpyridine and Li+ on the thermal degradation of TiO2-bound ruthenium dye N719. Solar Energy, 2013, 88, 23-30.	2.9	14
547	Photoelectrocatalytic degradation of 3-nitrophenol at surface of Ti/TiO2 electrode. Journal of Solid State Electrochemistry, 2013, 17, 63-68.	1.2	15
548	Cosensitization of dye sensitized solar cells with a thiocyanate free Ru dye and a metal free dye containing thienylfluorene conjugation. RSC Advances, 2013, 3, 6036.	1.7	63
549	Self-aligned carbon nanotubes yarns (CNY) with efficient optoelectronic interface for microyarn shaped 3D photovoltaic cells. Solar Energy Materials and Solar Cells, 2013, 115, 166-171.	3.0	19
550	The research of a new polyoxometalates based photosensitizer on dye sensitized solar cell. Inorganic Chemistry Communication, 2013, 38, 78-82.	1.8	25
551	Synthesis and photovoltaic properties of new branchlike organic dyes containing benzothiadiazole or triphenylamine-linked consecutive vinylenes units. Dyes and Pigments, 2013, 97, 405-411.	2.0	5

#	Article	IF	CITATIONS
552	Modeling Materials and Processes in Dye-Sensitized Solar Cells: Understanding the Mechanism, Improving the Efficiency. Topics in Current Chemistry, 2013, 352, 151-236.	4.0	24
553	Improvement of Thiolate/Disulfide Mediated Dye-Sensitized Solar Cells through Supramolecular Lithium Cation Assembling of Crown Ether. Scientific Reports, 2013, 3, 2413.	1.6	8
554	Photovoltaic performance of ruthenium complex dye associated with number and position of carboxyl groups on bipyridine ligands. Materials Chemistry and Physics, 2013, 142, 420-427.	2.0	5
555	The synthesis and characterization of dinuclear ruthenium sensitizers and their applications in photocatalytic hydrogen production. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 105, 539-544.	2.0	17
556	Electron injection in TiO2 films and quasi-solid state solar cells sensitized with a dipolar fluorene organic dye. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 251, 18-24.	2.0	10
557	Dye sensitized solar cells prepared by flames stabilized on a rotating surface. Proceedings of the Combustion Institute, 2013, 34, 2171-2178.	2.4	8
558	Enhancement of dye-sensitized solar cells performances by improving electron density in conduction band of nanostructure TiO2 electrode with using a metalloporphyrin as additional dye. Electrochimica Acta, 2013, 92, 315-322.	2.6	54
559	Quinoid conjugated dye designed for efficient sensitizer in dye sensitized solar cells. Chemical Physics Letters, 2013, 586, 97-99.	1.2	20
560	Triarylamine‧ubstituted Imidazole―and Quinoxalineâ€Fused Push–Pull Porphyrins for Dye‧ensitized Solar Cells. ChemSusChem, 2013, 6, 508-517.	3.6	70
561	Light-trapping in dye-sensitized solar cells. Energy and Environmental Science, 2013, 6, 2972.	15.6	33
562	Highly efficient dye-sensitized solar cells: progress and future challenges. Energy and Environmental Science, 2013, 6, 1443.	15.6	596
564	Improvement of spectral response by co-sensitizers for high efficiency dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 4812.	5.2	76
565	A Siliconâ€based Imidazolium Ionic Liquid Iodide Source for Dyeâ€Sensitized Solar Cells. Chinese Journal of Chemistry, 2013, 31, 388-392.	2.6	4
566	Ruthenium complex dye with designed ligand capable of chelating triiodide anion for dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 3463.	5.2	16
567	Simulation and modelling of charge transport in dye-sensitized solar cells based on carbon nano-tube electrodes. Physica Scripta, 2013, 87, 035703.	1.2	14
568	Intermolecular Interactions in Dye-Sensitized Solar Cells: A Computational Modeling Perspective. Journal of Physical Chemistry Letters, 2013, 4, 956-974.	2.1	76
569	Electronic and optoelectronic materials and devices inspired by nature. Reports on Progress in Physics, 2013, 76, 034501.	8.1	174
570	Improved charge collection efficiency of hollow sphere/nanoparticle composite TiO2 electrodes for solid state dye sensitized solar cells. Current Applied Physics, 2013, 13, 371-376.	1.1	12

#	Article	IF	CITATIONS
571	A donor–acceptor type organic dye connected with a quinoidal thiophene for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 3227.	1.3	22
572	Angular response of photonic crystal based dye sensitized solar cells. Energy and Environmental Science, 2013, 6, 1260.	15.6	40
573	Role of Adsorption Structures of Zn-Porphyrin on TiO ₂ in Dye-Sensitized Solar Cells Studied by Sum Frequency Generation Vibrational Spectroscopy and Ultrafast Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 6066-6080.	1.5	137
574	Structural, electronic and computational studies of heteroleptic Cu(l) complexes of 6,6′-dimesityl-2,2′-bipyridine with sulfur-substituted dipyridophenazine ligands. Polyhedron, 2013, 52, 623-633.	1.0	22
575	Molecular Design Principle of Allâ€organic Dyes for Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2013, 19, 5220-5230.	1.7	284
576	Supramolecular Interactions of Chenodeoxycholic Acid Increase the Efficiency of Dye-Sensitized Solar Cells Based on a Cobalt Electrolyte. Journal of Physical Chemistry C, 2013, 117, 3874-3887.	1.5	82
577	Hydrothermally synthesized titania nanotubes as a promising electron transport medium in dye sensitized solar cells exhibiting a record efficiency of 7.6% for 1-D based devices. Journal of Materials Chemistry A, 2013, 1, 5377.	5.2	43
578	Enhanced Lightâ€Harvesting Capability of a Panchromatic Ru(II) Sensitizer Based on ï€â€Extended Terpyridine with a 4â€Methylstylryl Group for Dyeâ€Sensitized Solar Cells. Advanced Functional Materials, 2013, 23, 1817-1823.	7.8	82
579	Surface Patterning of Mesoporous Niobium Oxide Films for Solar Energy Conversion. ACS Applied Materials & Interfaces, 2013, 5, 3469-3474.	4.0	28
580	Highly efficient unsymmetrical squaraines for panchromatic dye-sensitized solar cells: A computational study. RSC Advances, 2013, 3, 5227.	1.7	37
581	Squaraine Dyes for Dye‧ensitized Solar Cells: Recent Advances and Future Challenges. Chemistry - an Asian Journal, 2013, 8, 1706-1719.	1.7	113
582	Novel Organic D-ï€-2A Sensitizer for Dye Sensitized Solar Cells and Its Electron Transfer Kinetics on TiO ₂ Surface. Journal of Physical Chemistry C, 2013, 117, 2041-2052.	1.5	37
583	Synthesis and Characterization of 2Dâ€Dâ€Ï€â€Aâ€Type Organic Dyes Bearing Bis(3,6â€diâ€ <i>tert</i> â€butylcarbazolâ€9â€ylphenyl)aniline as Donor Moiety for Dyeâ€Sensitized Solar Cells. European Journal of Organic Chemistry, 2013, 2013, 2608-2620.	1.2	40
584	Zinc Porphyrins with a Pyridineâ€Ringâ€Anchoring Group for Dyeâ€5ensitized Solar Cells. Chemistry - an Asian Journal, 2013, 8, 956-962.	1.7	67
585	Nanomaterials for Solar Energy Conversion: Dye-Sensitized Solar Cells Based on Ruthenium (II) Tris-Heteroleptic Compounds or Natural Dyes. , 2013, , 49-80.		4
586	Photoinduced polymerization: An innovative, powerful and environmentally friendly technique for the preparation of polymer electrolytes for dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013, 16, 1-21.	5.6	102
587	Efficient Synthesis of a Regioregular Oligothiophene Photovoltaic Dye Molecule, MKâ€2, and Related Compounds: A Cooperative Hypervalent Iodine and Metalâ€Catalyzed Synthetic Route. Chemistry - A European Journal, 2013, 19, 2067-2075.	1.7	18
588	Enhancing the Performance of Solidâ€State Dyeâ€Sensitized Solar Cells Using a Mesoporous Interfacial Titania Layer with a Bragg Stack. Advanced Functional Materials, 2013, 23, 2193-2200.	7.8	30

#	Article	IF	CITATIONS
589	Effect of the chemical modifications of thiophene-based N3 dyes on the performance of dye-sensitized solar cells: A density functional theory study. Computational and Theoretical Chemistry, 2013, 1015, 8-14.	1.1	21
590	Dye Sensitized Solar Cells for Economically Viable Photovoltaic Systems. Journal of Physical Chemistry Letters, 2013, 4, 1682-1693.	2.1	146
591	Growth of carbon nanotubes over transition metal loaded on Co-SBA-15 and its application for high performance dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 5070.	5.2	26
592	Efficient monolithic solid-state dye-sensitized solar cell with a low-cost mesoscopic carbon based screen printable counter electrode. Organic Electronics, 2013, 14, 628-634.	1.4	26
593	Quantum chemical study of the donor-bridge-acceptor triphenylamine based sensitizers. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 110, 60-66.	2.0	73
594	Porphyrin sensitizers with π-extended pull units for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 8409.	1.3	38
595	Effect of imidazole derivatives in triphenylamine-based organic dyes for dye-sensitized solar cells. Organic Electronics, 2013, 14, 1755-1762.	1.4	37
596	Graphene-embedded 3D TiO2 inverse opal electrodes for highly efficient dye-sensitized solar cells: morphological characteristics and photocurrent enhancement. Nanoscale, 2013, 5, 4200.	2.8	56
597	Synthesis and characterization of Y-shape electron donor–acceptor type organic dyes for dye-sensitized solar cells. Materials Chemistry and Physics, 2013, 139, 319-326.	2.0	8
598	Ru(ii) sensitizers bearing dianionic biazolate ancillaries: ligand synergy for high performance dye sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 7681.	5.2	26
599	Monitoring the dye impregnation time of nanostructured photoanodes for dye sensitized solar cells. Journal of Physics: Conference Series, 2013, 439, 012012.	0.3	8
600	Characterization and Application of Ru ²⁺ Complex with Square-Planar Quadridentate Ligand Containing Arylamines for Dye-Sensitized Solar Cells. Japanese Journal of Applied Physics, 2013, 52, 01AD07.	0.8	2
601	Multiple adsorption of tributyl phosphate molecule at the dyed-TiO2/electrolyte interface to suppress the charge recombination in dye-sensitized solar cell. Journal of Materials Chemistry A, 2013, 1, 4885.	5.2	27
602	Porphyrin-Sensitized Solar Cells: Effect of Carboxyl Anchor Group Orientation on the Cell Performance. ACS Applied Materials & Interfaces, 2013, 5, 5314-5323.	4.0	136
603	Study of the Anchoring Process of Tethered Unsymmetrical Zn-Phthalocyanines on TiO ₂ Nanostructured Thin Films. Journal of Physical Chemistry C, 2013, 117, 11176-11185.	1.5	22
604	Electronic and optical properties of the triphenylamine-based organic dye sensitized TiO2 semiconductor: insight from first principles calculations. Physical Chemistry Chemical Physics, 2013, 15, 13844.	1.3	32
605	Gold nanoparticles inlaid TiO2 photoanodes: a superior candidate for high-efficiency dye-sensitized solar cells. Energy and Environmental Science, 2013, 6, 2156.	15.6	181
606	Structural variations of D–π–A dyes influence on the photovoltaic performance of dye-sensitized solar cells. RSC Advances, 2013, 3, 7921.	1.7	27

#	Article	IF	CITATIONS
607	Aerosol OT/Water System Coupled with Triiodide/Iodide (I ₃ ^{â^`} /I ^{â^`}) Redox Electrolytes for Highly Efficient Dye‧ensitized Solar Cells. Advanced Energy Materials, 2013, 3, 1344-1350.	10.2	18
608	Constructing High-Efficiency D–Aâ°ï̃€â€"A-Featured Solar Cell Sensitizers: a Promising Building Block of 2,3-Diphenylquinoxaline for Antiaggregation and Photostability. ACS Applied Materials & Interfaces, 2013, 5, 4986-4995.	4.0	187
609	A new porphyrin bearing a pyridinylethynyl group as sensitizer for dye sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 253, 88-96.	2.0	49
610	Potassiumâ€Doped Zinc Oxide as Photocathode Material in Dyeâ€Sensitized Solar Cells. ChemSusChem, 2013, 6, 622-629.	3.6	34
611	Photoelectrochemical cells based on nanocrystalline TiO2 synthesized by high temperature hydrolysis of ammonium dihydroxodilactatotitanate(IV). Russian Journal of Electrochemistry, 2013, 49, 423-427.	0.3	1
612	Electrochemically Reduced Graphene Oxide Multilayer Films as Efficient Counter Electrode for Dye-Sensitized Solar Cells. Scientific Reports, 2013, 3, 1489.	1.6	130
613	APPLICATION OF COMPUTATIONAL METHODS TO PREDICT ABSORPTION MAXIMA OF ORGANIC DYES USED IN SOLAR CELLS. Journal of Theoretical and Computational Chemistry, 2013, 12, 1250114.	1.8	4
614	Structure–property relationship of extended π-conjugation of ancillary ligands with and without an electron donor of heteroleptic Ru(ii) bipyridyl complexes for high efficiency dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 8401.	1.3	44
615	Towards Compatibility between Ruthenium Sensitizers and Cobalt Electrolytes in Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2013, 52, 8731-8735.	7.2	61
616	Effect of Cations on the TiO ₂ /Acetonitrile Interface Structure: A Molecular Dynamics Study. Journal of Physical Chemistry C, 2013, 117, 10589-10596.	1.5	24
617	A novel compact DPP dye with enhanced light harvesting and charge transfer properties for highly efficient DSCs. Journal of Materials Chemistry A, 2013, 1, 4858.	5.2	47
618	Molecular Engineering of Organic Sensitizers with Planar Bridging Units for Efficient Dyeâ€ S ensitized Solar Cells. Chemistry - A European Journal, 2013, 19, 9442-9446.	1.7	26
619	Molecular engineering of organic sensitizers for highly efficient gel-state dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 8226.	5.2	19
620	Improving the performance of quantum dot-sensitized solar cells by using TiO2nanosheets with exposed highly reactive facets. Nanotechnology, 2013, 24, 245401.	1.3	23
621	A time resolved fluorescence and quantum chemical study of the solar cell sensitizer D149. Dyes and Pigments, 2013, 96, 304-312.	2.0	27
622	Surface passivation: The effects of CDCA co-adsorbent and dye bath solvent on the durability of dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2013, 108, 70-77.	3.0	33
623	Solid state dye-sensitized photovoltaic micro-wires (DSPMs) with carbon nanotubes yarns as counter electrode: Synthesis and characterization. Solar Energy Materials and Solar Cells, 2013, 108, 65-69.	3.0	24
624	Mixed Solvents Assisted Flame Spray Pyrolysis Synthesis of TiO ₂ Hierarchically Porous Hollow Spheres for Dye-Sensitized Solar Cells. Industrial & Engineering Chemistry Research, 2013, 52, 11029-11035.	1.8	32

#	Article	IF	CITATIONS
625	Reduced Graphene Oxide–TaON Composite As a High-Performance Counter Electrode for Co(bpy) ₃ ^{3+/2+} -Mediated Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 8217-8224.	4.0	48
626	Structure-property relationships for three indoline dyes used in dye-sensitized solar cells: TDDFT study of visible absorption and photoinduced charge-transfer processes. Journal of Molecular Modeling, 2013, 19, 5317-5325.	0.8	18
627	Comparison of Photoelectrochemical and Electrochemical Properties of TiO2Nanotube Arrays Crystallized by Hydrothermal and Annealing Methods. Journal of the Electrochemical Society, 2013, 160, H727-H732.	1.3	5
628	Metallic and plastic dye solar cells. Wiley Interdisciplinary Reviews: Energy and Environment, 2013, 2, 104-120.	1.9	45
629	A new ionic liquid organic redox electrolyte for high-efficiency iodine-free dye-sensitized solar cells. Journal of Power Sources, 2013, 221, 328-333.	4.0	23
630	Emission spectra and transient photovoltage in dye-sensitized solar cells under stress tests. Journal of Applied Electrochemistry, 2013, 43, 209-215.	1.5	13
631	Transparent bifacial dye-sensitized solar cells based on organic counter electrodes and iodine-free electrolyte. , 2013, , .		0
632	Ultradurable Dye-Sensitized Solar Cells under 120°C Using Cross-Linkage Dye and Ionic-Liquid Electrolyte. International Journal of Photoenergy, 2013, 2013, 1-9.	1.4	5
633	Optimization of black dye-sensitized solar cells by numerical simulation. Journal of Renewable and Sustainable Energy, 2013, 5, 041818.	0.8	1
634	Extraction and Characterization of Natural Dyes Applied to ZnO-based DSSC. Materials Research Society Symposia Proceedings, 2013, 1537, 1.	0.1	1
635	Organic Photovoltaics and Dye-Sensitized Solar Cells. , 2013, , 567-605.		2
636	Electrospun Microfibrous Membranes with Atmosphericâ€ <scp>P</scp> ressure Plasma Surface Modification for the Application in Dyeâ€ <scp>S</scp> ensitized Solar Cells. Plasma Processes and Polymers, 2013, 10, 938-947.	1.6	15
637	Efficient Natural Dye-Sensitized Solar Cells Based on Spin-Coated TiO ₂ Anode Materials. Chinese Physics Letters, 2013, 30, 118801.	1.3	3
638	Optimization of the scattering design in photoelectrode for dye-sensitized solar cells by theoretical simulation. Journal of Applied Physics, 2013, 114, .	1.1	11
639	Synthesis and photovoltaic properties of main chain polymeric metal complexes containing 8-hydroxyquinoline metal complexes conjugating alkyl fluorene or alkoxy benzene by CN bridge for dye-sensitized solar cells. Polymer Composites, 2013, 34, 1629-1639.	2.3	10
640	Tailoring the efficiency of 3D wire-shaped photovoltaic cells (WPVCs) by functionalization of solid-liquid interfacial properties. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2535-2541.	0.8	4
641	Hydrothermal preparation and visible light photocatalytic activity of Bi <inf>25</inf> FeO <inf>40</inf> -graphene nanocomposite. , 2013, , .		0
642	Synthesis and Photovoltaic Properties of Phenylethynyl-substituted Diazaporphyrin. Chemistry Letters, 2013, 42, 725-726.	0.7	11
#	Article	IF	CITATIONS
-----	---	------	-----------
643	Cosensitization of Ruthenium–Polypyridyl Dyes with Organic Dyes in Dye-sensitized Solar Cells. Chemistry Letters, 2013, 42, 1328-1335.	0.7	30
644	Synthesis and Characterization of a Novel Ruthenium Sensitizer with a Hexylthiophene-functionalized Terpyridine Ligand for Dye-sensitized Solar Cells. Chemistry Letters, 2013, 42, 897-899.	0.7	14
645	Cosensitization of Cyclometalated Ruthenium Complex and Organic Dyes for High-efficiency Dye-sensitized Solar Cells. Chemistry Letters, 2013, 42, 1371-1373.	0.7	9
647	Solid-State Ionic Liquid Based Electrolytes for Dye-Sensitized Solar Cells. , 0, , .		2
648	Enhancing the Light Harvesting Capacity of the Photoanode Films in Dye-Sensitized Solar Cells. , 0, , .		7
649	A Review on Current Status of Stability and Knowledge on Liquid Electrolyte-Based Dye-Sensitized Solar Cells. Advances in Chemistry, 2014, 2014, 1-23.	1.1	33
650	Material Selection for Dye Sensitized Solar Cells Using Multiple Attribute Decision Making Approach. Journal of Renewable Energy, 2014, 2014, 1-7.	2.1	3
651	Benzotriazole-based dyes containing a low band gap for dye-sensitised solar cells: a theoretical study. Molecular Physics, 2014, 112, 3120-3126.	0.8	1
652	Aggregation control of organic sensitizers for panchromatic dye co-sensitized solar cells. Japanese Journal of Applied Physics, 2014, 53, 08NC04.	0.8	7
653	Influence of Scattering Layer on the Performance of Solid-State Dye Sensitized Solar Cell. Applied Mechanics and Materials, 0, 521, 28-32.	0.2	0
654	Enhanced light-harvesting of the conical TiO 2 nanotube arrays used as the photoanodes in flexible dye-sensitized solar cells. Electrochimica Acta, 2014, 146, 838-844.	2.6	27
655	Numerical Procedure for Optimizing Dye-Sensitized Solar Cells. Journal of Nanomaterials, 2014, 2014, 1-6.	1.5	6
656	Synthesis and Characterization of 5′-Hexyl-2,2′-bithiophene Based on Organic Dyes for Dye-Sensitized Solar Cell Applications. Molecular Crystals and Liquid Crystals, 2014, 599, 157-162.	0.4	1
657	Investigating the influence of porosity on performance of dye-sensitized solar cells. , 2014, , .		3
658	Chemistry of Sensitizers for Dye-sensitized Solar Cells. RSC Energy and Environment Series, 2014, , 186-241.	0.2	3
659	Thiocyanateâ€Free versus Thiocyanate ontaining Dyes for TiO ₂ â€Based Dyeâ€Sensitized Solar Cells. ChemElectroChem, 2014, 1, 1656-1661.	1.7	1
660	Meso-Substituted Porphyrins for Dye-Sensitized Solar Cells. Chemical Reviews, 2014, 114, 12330-12396.	23.0	839
661		20.6	19

#	Article	IF	CITATIONS
662	A durable SWCNT/PET polymer foil based metal free counter electrode for flexible dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 19609-19615.	5.2	53
663	High Extinction Coefficient Ruâ€Sensitizers that Promote Hole Transfer on Nanocrystalline TiO ₂ . ChemPhysChem, 2014, 15, 1154-1163.	1.0	6
664	Organic Dyes Incorporating the Dithieno[3′,2′:3,4;2″,3″:5,6]benzo[1,2- <i>c</i>]furazan Moiety for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 22612-22621.	4.0	30
665	Regioisomeric Effects on the Electronic Features of Indenothiopheneâ€Bridged D–πâ€A′–A DSSC Sensitizers. Chemistry - A European Journal, 2014, 20, 16574-16582.	1.7	21
666	Diffractionâ€Gratingâ€Embedded Dyeâ€Sensitized Solar Cells with Good Light Harvesting. Advanced Energy Materials, 2014, 4, 1300978.	10.2	17
667	A Near-IR Organic Sensitizer with Squaraine and Phenothiazine Unit for Dye-Sensitized Solar Cells. Molecular Crystals and Liquid Crystals, 2014, 600, 116-122.	0.4	1
668	Low-temperature sintering for plastic dye-sensitized solar cells using conventional TiO2 paste containing organic binders. Applied Physics Letters, 2014, 104, .	1.5	6
669	New pyrido[3,4-b]pyrazine-based sensitizers for efficient and stable dye-sensitized solar cells. Chemical Science, 2014, 5, 206-214.	3.7	102
670	Synthesis, characterization and photoelectrochemical performance of a tris-heteroleptic ruthenium(II) complex having 4,7-dimethyl-1,10-phenanthroline. Inorganica Chimica Acta, 2014, 414, 145-152.	1.2	14
671	Enhance the performance of dye-sensitized solar cells by balancing the light harvesting and electron collecting efficiencies of scattering layer based photoanodes. Electrochimica Acta, 2014, 132, 25-30.	2.6	15
672	Design and development of cyclometalated ruthenium complexes containing thiophenyl-pyridine ligand for dye-sensitized solar cells. Dyes and Pigments, 2014, 100, 57-65.	2.0	37
673	Significance of TiCl4 post-treatment on the performance of hydrothermally synthesized titania nanotubes-based dye-sensitized solar cells. Applied Nanoscience (Switzerland), 2014, 4, 185-188.	1.6	12
674	3-D TiO ₂ nanoparticle/ITO nanowire nanocomposite antenna for efficient charge collection in solid state dye-sensitized solar cells. Nanoscale, 2014, 6, 6127-6132.	2.8	30
675	A flexible polypyrrole-coated fabric counter electrode for dye-sensitized solar cells. Journal of Power Sources, 2014, 257, 230-236.	4.0	66
677	Synthesis of N-doped TiO2 particles from aquaethylenediaminetitanium(IV) hydroxide complex and their optical properties on dye-sensitized solar cells. Journal of Sol-Gel Science and Technology, 2014, 69, 325-337.	1.1	3
678	Influence of the Donor Size in Dâ [~] π–A Organic Dyes for Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2014, 136, 5722-5730.	6.6	417
679	A structural study of 1-phenyl-1,2,3,4-tetrahydroquinoline-based dyes for solid-state DSSC applications. Dyes and Pigments, 2014, 104, 211-219.	2.0	18
680	Molecular Engineering of Push–Pull Porphyrin Dyes for Highly Efficient Dye‧ensitized Solar Cells: The Role of Benzene Spacers. Angewandte Chemie - International Edition, 2014, 53, 2973-2977.	7.2	458

#	Article	IF	CITATIONS
681	Synthesis of double D–A branched organic dyes employing indole and phenoxazine as donors for efficient DSSCs. Tetrahedron, 2014, 70, 6296-6302.	1.0	33
682	Low Resistance Transparent Graphene-Like Carbon Thin Film Substrates for High Performance Dye Sensitized Solar Cells. Electrochimica Acta, 2014, 115, 559-565.	2.6	20
683	New diketopyrrolopyrrole-based organic dyes for highly efficient dye-sensitized solar cells. Organic Electronics, 2014, 15, 1579-1585.	1.4	13
684	Effects of cyclodextrin complexes acting as barriers on TiO2 nanoparticles in DSSCs. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 283, 17-21.	2.0	6
685	A novel 3D structured reduced graphene oxide/TiO ₂ composite: synthesis and photocatalytic performance. Journal of Materials Chemistry A, 2014, 2, 3605-3612.	5.2	59
686	Phosphonic acid anchored ruthenium complexes for ZnO-based dye-sensitized solar cells. Dyes and Pigments, 2014, 104, 24-33.	2.0	26
687	Ionic Liquid–Sulfolane Composite Electrolytes for Highâ€Performance and Stable Dye‧ensitized Solar Cells. Advanced Energy Materials, 2014, 4, 1301235.	10.2	43
688	Luminescence quenching behavior of [Ru(bpy)2(dppz)]2+-DNA/CdS/ITO electrode controlled synchronically by copper(II) ion and external electric field. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 282, 25-32.	2.0	2
689	A Propellerâ€Shaped, Triazineâ€Linked Porphyrin Triad as Efficient Sensitizer for Dyeâ€Sensitized Solar Cells. European Journal of Inorganic Chemistry, 2014, 2014, 1020-1033.	1.0	43
690	First principle investigations to enhance the charge transfer properties by bridge elongation. Journal of Theoretical and Computational Chemistry, 2014, 13, 1450013.	1.8	14
691	Synthesis and photovoltaic properties of new [1,2,5]thiadiazolo[3,4-c]pyridine-based organic Broadly absorbing sensitizers for dye-sensitized solar cells. Tetrahedron, 2014, 70, 3901-3908.	1.0	25
692	A tetrahydropyrene-based organic dye for solar cell application. RSC Advances, 2014, 4, 22181.	1.7	4
693	Synthesis of TiO ₂ hollow spheres by selective etching of Au@TiO ₂ core–shell nanoparticles for dye sensitized solar cell applications. RSC Advances, 2014, 4, 3529-3535.	1.7	45
694	POSS with eight imidazolium iodide arms for efficient solid-state dye-sensitized solar cells. Chemical Communications, 2014, 50, 1685.	2.2	28
695	Synthesis of two tri-arylamine derivatives as sensitizers in dye-sensitized solar cells: Electron injection studies and photovoltaic characterization. Synthetic Metals, 2014, 188, 77-85.	2.1	8
696	Engineering of Ru(<scp>ii</scp>) dyes for interfacial and light-harvesting optimization. Dalton Transactions, 2014, 43, 2726-2732.	1.6	21
697	Porphyrins for efficient dye-sensitized solar cells covering the near-IR region. Journal of Materials Chemistry A, 2014, 2, 991-999.	5.2	72
698	A comparative study on properties of two phenoxazine-based dyes for dye-sensitized solar cells. Dyes and Pigments, 2014, 101, 67-73.	2.0	39

#	Article	IF	CITATIONS
699	Synthesis and photovoltaic property of new kind of organic dyes containing 2,2′-bithiophene unit with three electron-donors. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 278, 39-45.	2.0	12
700	Effect of solvent on dye-adsorption process and photovoltaic properties of dendritic organic dye on TiO2 electrode of dye-sensitized solar cells. Synthetic Metals, 2014, 188, 130-135.	2.1	11
701	Review on the development of natural dye photosensitizer for dye-sensitized solar cells. Renewable and Sustainable Energy Reviews, 2014, 31, 386-396.	8.2	316
702	Influence of different substituents linked on fluorene spacer in organic sensitizers on photovoltaic properties. Dyes and Pigments, 2014, 104, 8-14.	2.0	7
703	Theoretical design of organoimido-substituted hexamolybdates with different electron donors for dye-sensitized solar cells. Dyes and Pigments, 2014, 102, 6-12.	2.0	8
704	Influence of different electron acceptors in organic sensitizers on the performance of dye-sensitized solar cells. Dyes and Pigments, 2014, 102, 126-132.	2.0	20
705	Geometrical Isomerism of Ru ^{II} Dyeâ€Sensitized Solar Cell Sensitizers and Effects on Photophysical Properties and Device Performances. ChemPhysChem, 2014, 15, 1207-1215.	1.0	11
706	Efficiency improvement of CdS and CdSe quantum dot-sensitized solar cells by TiO2 surface treatment. Journal of Renewable and Sustainable Energy, 2014, 6, .	0.8	12
707	Two Redox Couples are Better Than One: Improved Current and Fill Factor from Cobaltâ€Based Electrolytes in Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2014, 4, 1301273.	10.2	17
708	3D Wireâ€Shaped Dyeâ€Sensitized Solar Cells in Solid State Using Carbon Nanotube Yarns with Hybrid Photovoltaic Structure. Advanced Materials Interfaces, 2014, 1, 1400075.	1.9	41
709	Effect on interfacial charge transfer resistance by hybrid co-sensitization in DSSC applications. Journal of Materials Science: Materials in Electronics, 2014, 25, 5296-5301.	1.1	34
710	Structural tuning of ancillary chelate in tri-carboxyterpyridine Ru(ii) sensitizers for dye sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 5418-5426.	5.2	25
711	Synthesis, structure, characterization and photophysical properties of copper(<scp>i</scp>) complexes containing polypyridyl ligands. RSC Advances, 2014, 4, 42624-42631.	1.7	17
712	Ruthenium sensitizers having an ortho-dicarboxyl group as an anchoring unit for dye-sensitized solar cells: synthesis, photo- and electrochemical properties, and adsorption behavior to the TiO ₂ surface. Dalton Transactions, 2014, 43, 13208-13218.	1.6	13
713	Synthesis of TiO ₂ hollow spheres using titanium tetraisopropoxide: fabrication of high efficiency dye sensitized solar cells with photoanodes of different nanocrystalline TiO ₂ sub-layers. RSC Advances, 2014, 4, 58064-58076.	1.7	21
714	Engineering diketopyrrolopyrrole sensitizers for highly efficient dye-sensitized solar cells: enhanced light harvesting and intramolecular charge transfer. RSC Advances, 2014, 4, 16906-16912.	1.7	11
715	New organic dyes based on a dibenzofulvene bridge for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 14181-14188.	5.2	31
716	Molecular engineering of panchromatic isoindigo sensitizers for dye-sensitized solar cell applications. Chemical Communications, 2014, 50, 4309.	2.2	36

ARTICLE IF CITATIONS # Dye-sensitized solar cells based on triazine-linked porphyrin dyads containing one or two carboxylic 717 3.0 21 acid anchoring groups. Inorganic Chemistry Frontiers, 2014, 1, 256-270. Promising ZnO-based DSSC performance using HMP molecular dyes of high extinction coefficients. Dalton Transactions, 2014, 43, 11305-11308. 718 1.6 Ultraslow recombination in AOT-capped TiO₂nanoparticles sensitized by protoporphyrin 719 1.6 10 IX. Dalton Transactions, 2014, 43, 15065-15074. Acetylene-bridged dyes with high open circuit potential for dye-sensitized solar cells. RSC Advances, 2014, 4, 35251. Monodisperse TiO2 mesoporous spheres with coreâ€"shell structure: candidate photoanode materials 721 1.7 18 for enhanced efficiency dye sensitized solar cells. RSC Advances, 2014, 4, 23396. Pyrazino[2,3-g]quinoxaline dyes for solar cell applications. Journal of Materials Chemistry A, 2014, 2, 14852-14857. 5.2 Structural design of ruthenium sensitizer compatible with cobalt electrolyte for a dye-sensitized 723 5.2 23 solar cell. Journal of Materials Chemistry A, 2014, 2, 17551-17560. Highly efficient light harvesting ruthenium sensitizers for dye-sensitized solar cells featuring 724 5.2 54 triphénylamine donor antennas. Journal of Materials Chemistry A, 2014, 2, 4945-4953. Femtosecond Transient Absorption Study of Supramolecularly Assembled Metal Tetrapyrrole–TiO2 725 1.5 25 Thin Films. Journal of Physical Chemistry Ć, 2014, 118, 1666Ó-16671. Photocatalytic and Dye-Sensitized Solar Cell Performances of {010}-Faceted and [111]-Faceted Anatase TiO₂ Nanocrystals Synthesized from Tetratitanate Nanoribbons. ACS Applied Materials & Interfaces, 2014, 6, 16007-16019. Panchromatic light harvesting by N719 with a porphyrin molecule for high-performance dye-sensitized 727 2.7 26 solar cells. Journal of Materials Chemistry C, 2014, 2, 3521. Photo-stable substituted dihydroindolo[2,3-b]carbazole-based organic dyes: tuning the photovoltaic 1.0 properties by optimizing theÂï€Âstructure for panchromatic DSSČs. Tetrahedron, 2014, 70, 8122-8128. Low-cost electrospun WC/C composite nanofiber as a powerful platinum-free counter electrode for 729 8.2 79 dye sensitized solar cell. Nano Energy, 2014, 9, 392-400. Recent Developments in Dyeâ€Sensitized Solar Cells. ChemPhysChem, 2014, 15, 3902-3927. 1.0 79 Eosin-Y sensitized tin oxide photoelectrode for dye sensitized solar cell application: Effect of dye 731 0.8 13 adsorption time. Journal of Renewable and Sustainable Energy, 2014, 6, 013132. Front-illuminated dye-sensitized solar cells with Ag nanoparticle-functionalized freestanding TiO 2 nanotube arrays. Chemical Physics Letters, 2014, 614, 78-81. Advances and challenges for flexible energy storage and conversion devices and systems. Energy and 733 15.6 767 Environmental Science, 2014, 7, 2101. A comparative study of Ru(<scp>ii</scp>) cyclometallated complexes versus thiocyanated heteroleptic 734 complexes: thermodynamic force for efficient dye regeneration in dye-sensitized solar cells and how 1.3 low could it be?. Physical Chemistry Chemical Physics, 2014, 16, 14874-14881.

#	Article	IF	CITATIONS
735	Effect of iodine intercalation in nanosized layered double hydroxides for the preparation of quasi-solid electrolyte in DSSC devices. Solar Energy, 2014, 107, 692-699.	2.9	15
736	Dyes for sensitized solar cells by using [2.2]paracyclophane as a bridging unit. Tetrahedron Letters, 2014, 55, 4938-4942.	0.7	16
737	Effect of a Long Alkyl Group on Cyclopentadithiophene as a Conjugated Bridge for D–Aâ^'ï€â€"A Organic Sensitizers: IPCE, Electron Diffusion Length, and Charge Recombination. ACS Applied Materials & Interfaces, 2014, 6, 14621-14630.	4.0	67
738	Synthesis of Cuboid-Shaped Single-Crystalline TiO ₂ Nanocrystals with High-Energy Facets {001} and Its Dye-Sensitized Solar Cell Application. Journal of Physical Chemistry C, 2014, 118, 16703-16709.	1.5	29
739	Photoinduced Electron Transfer Pathways in Hydrogen-Evolving Reduced Graphene Oxide-Boosted Hybrid Nano-Bio Catalyst. ACS Nano, 2014, 8, 7995-8002.	7.3	55
740	An overview on the spectrum of sensitizers: The heart of Dye Sensitized Solar Cells. Solar Energy, 2014, 108, 479-507.	2.9	73
741	Interface Stability of a TiO ₂ /3â€Methoxypropionitrileâ€Based Electrolyte: First Evidence for Solid Electrolyte Interphase Formation and Implications. ChemPhysChem, 2014, 15, 1126-1137.	1.0	26
742	Effect of Isomerism and Chain Length on Electronic Structure, Photophysics, and Sensitizer Efficiency in Quadrupolar (Donor) ₂ –Acceptor Systems for Application in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 5221-5227.	4.0	27
743	Branched and bulky substituted ruthenium sensitizers for dye-sensitized solar cells. Dalton Transactions, 2014, 43, 15085-15091.	1.6	14
744	Multiscale Modelling of Organic and Hybrid Photovoltaics. Topics in Current Chemistry, 2014, , .	4.0	24
745	Resonant Multiple Light Scattering for Enhanced Photon Harvesting in Dye‧ensitized Solar Cells. Advanced Materials, 2014, 26, 5192-5197.	11.1	31
746	List of Most-Cited Publications of Professor Michael GrÃæzel. Journal of Physical Chemistry C, 2014, 118, 16311-16318.	1.5	1
747	Characterization of high temperature polymer blends for specific applications: fuel cells and aerospace applications. , 2014, , 70-129.		4
748	Dye sensitized solar cells with cobalt and iodine-based electrolyte: the role of thiocyanate-free ruthenium sensitizers. Journal of Materials Chemistry A, 2014, 2, 19556-19565.	5.2	21
749	Recent advances in BiOX (X = Cl, Br and I) photocatalysts: synthesis, modification, facet effects and mechanisms. Environmental Science: Nano, 2014, 1, 90.	2.2	594
750	Organic Dyes with Hydrazone Moieties: A Study of Correlation between Structure and Performance in the Solid-State Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 7832-7843.	1.5	16
751	Near-infrared absorbing porphyrin dyes with perpendicularly extended π-conjugation for dye-sensitized solar cells. RSC Advances, 2014, 4, 50897-50905.	1.7	7
752	Theoretical studies on effective metal-to-ligand charge transfer characteristics of novel ruthenium dyes for dye sensitized solar cells. Journal of Computer-Aided Molecular Design, 2014, 28, 565-575.	1.3	5

ARTICLE IF CITATIONS # TiO₂ Nanospheres: A Facile Sizeâ€Tunable Synthesis and Effective Lightâ€Harvesting Layer for 753 1.7 28 Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2014, 20, 4916-4920. Enhanced performance of dye co-sensitized solar cells by panchromatic light harvesting. Journal of 754 0.3 9 the Korean Physical Society, 2014, 64, 904-909. Highly conjugated electron rich thiophene antennas on phenothiazine and phenoxazine-based 755 2.1 36 sensitizers for dye sensitized solar cells. Synthetic Metals, 2014, 195, 208-216. Organic Sensitizers with Pyridine Ring Anchoring Group for p-Type Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16433-16440. Adapting Ruthenium Sensitizers to Cobalt Electrolyte Systems. Journal of Physical Chemistry Letters, 757 2.1 15 2014, 5, 501-505. Electronic tuning effects via π-linkers in tetrathiafulvalene-based dyes. New Journal of Chemistry, 1.4 2014, 38, 3269. Bragg grating nanostructuring of the TiO2 layer in dye sensitized solar cells: an efficient method to 759 1.7 3 enhance light harvesting. RSC Advances, 2014, 4, 43828-43833. Tuning the electronic structures and related properties of phenothiazine-based donor-Ï€-acceptor dyes for dye-sensitized solar cells: a theoretical study. Monatshefte FÃ1/4r Chemie, 2014, 145, 1737-1744. 761 Simple NIR complexes and their applicability in dye-sensitized solar cells. Polyhedron, 2014, 81, 583-587. 1.0 10 Thermal stability of the DSC ruthenium dye C106 in robust electrolytes. Solar Energy, 2014, 110, 96-104. Electronic and Optical Properties of Dye-Sensitized TiO2 Interfaces. Topics in Current Chemistry, 2014, 763 4.018 347, 1-45. Effect of a pi-bridging unit in triphenylamine-benzothiadiazole based donor acceptor chromophores 764 2.6 for dye-sensitized solar cells. Electrochimica Acta, 2014, 147, 617-625. A 2,7-pyrene-based dye for solar cell application. New Journal of Chemistry, 2014, 38, 4404. 765 1.4 36 Benzo[1,2-b:4,5-bâ€2] dithiophene and benzo[1,2-b:4,5-bâ€2] difuran based organic dipolar compounds for 14 sensitized solar cells. Dyes and Pigments, 2014, 109, 81-89. Organic Sensitizers Featuring 9,10-Diaryl-Substituted Anthracene Unit. ACS Sustainable Chemistry and 767 3.2 24 Engineering, 2014, 2, 1776-1784. Oxidative fluorescence quenching of Mg-phthalocyanine by quinones. Journal of Molecular Liquids, 2014, 194, 188-192. Hierarchical multilayer-structured TiO2 electrode for dye-sensitized solar cells. Journal of 769 2.0 9 Photochemistry and Photobiology A: Chemistry, 2014, 279, 32-37. Effects of the acceptors in triphenylamine-based D–A′–΀–A dyes on photophysical, electrochemical, 770 and photovoltaic properties. Journal of Power Sources, 2014, 246, 831-839.

#	Article	IF	CITATIONS
771	Design of Ru(II) sensitizers endowed by three anchoring units for adsorption mode and light harvesting optimization. Thin Solid Films, 2014, 560, 86-93.	0.8	9
772	Design strategies of metal free-organic sensitizers for dye sensitized solar cells: Role of donor and acceptor monomers. Organic Electronics, 2014, 15, 1205-1214.	1.4	41
773	Printable Highly Catalytic Pt- and TCO-Free Counter Electrode for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 2224-2229.	4.0	32
774	2,6-Conjugated Bodipy sensitizers for high-performance dye-sensitized solar cells. Organic Electronics, 2014, 15, 2079-2090.	1.4	43
775	Novel D–D–π-A organic dyes based on triphenylamine and indole-derivatives for high performance dye-sensitized solar cells. Journal of Power Sources, 2014, 248, 400-406.	4.0	74
776	Effect of substituents moiety in organic sensitiser based on carbazole on the performance of nanostructure dye-sensitised solar cells. Pigment and Resin Technology, 2015, 44, 292-299.	0.5	2
777	Rational Improvement of Molar Absorptivity Guided by Oscillator Strength: A Case Study with Furoindolizineâ€Based Core Skeleton. Angewandte Chemie - International Edition, 2015, 54, 15689-15693.	7.2	21
778	Rational Improvement of Molar Absorptivity Guided by Oscillator Strength: A Case Study with Furoindolizineâ€Based Core Skeleton. Angewandte Chemie, 2015, 127, 15915-15919.	1.6	5
779	Push–Pull Bacteriochlorin: Panchromatic Sensitizer for Dye-sensitized Solar Cell. Chemistry Letters, 2015, 44, 1395-1397.	0.7	6
780	Imidazoleâ€Based Sensitizers Containing Double Anchors for Dye‣ensitized Solar Cells. European Journal of Organic Chemistry, 2015, 2015, 7367-7377.	1.2	30
781	Efficiency Records in Mesoscopic Dye ensitized Solar Cells. Chemical Record, 2015, 15, 803-828.	2.9	41
782	Tropolone as a Highâ€Performance Robust Anchoring Group for Dye‣ensitized Solar Cells. Angewandte Chemie - International Edition, 2015, 54, 9052-9056.	7.2	99
783	Isomer Dependence of Efficiency and Charge Recombination in Dye‣ensitized Solar Cells Using Ru Complex Dyes Bearing Halogen Substituents. European Journal of Inorganic Chemistry, 2015, 2015, 4878-4884.	1.0	7
784	Experimental determination of the light-trapping-induced absorption enhancement factor in DSSC photoanodes. Beilstein Journal of Nanotechnology, 2015, 6, 886-892.	1.5	5
785	New 1,3,4-Oxadiazole Based Photosensitizers for Dye Sensitized Solar Cells (DSSCs). International Journal of Photoenergy, 2015, 2015, 1-8.	1.4	13
786	Enhanced dye-sensitized solar cell photocurrent and efficiency using a Y-shaped, pyrazine-containing heteroaromatic sensitizer linkage. Physical Chemistry Chemical Physics, 2015, 17, 15788-15796.	1.3	14
787	Photocatalytic degradation of Congo red under visible light irradiation using Pd–Bi3.84W0.16O6.24 nanocomposite. Journal of Alloys and Compounds, 2015, 644, 1-6.	2.8	11
788	The effect of additional electron donating group on the photophysics and photovoltaic performance of two new metal free D-ï€-A sensitizers. Dyes and Pigments, 2015, 121, 316-327.	2.0	13

#	Article	IF	CITATIONS
789	A Metalâ€Free Nâ€Annulated Thienocyclopentaperylene Dye: Power Conversion Efficiency of 12 % for Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2015, 54, 5994-5998.	7.2	196
790	Organometallic Versus Organic Molecules for Energy Conversion in Organic Light-Emitting Diodes and Solar Cells. Green Chemistry and Sustainable Technology, 2015, , 1-28.	0.4	0
791	TiO2 nanotube structures for the enhancement of photon utilization in sensitized solar cells. Nanotechnology Reviews, 2015, 4, .	2.6	5
792	Highly efficient benzodifuran based ruthenium sensitizers forÂthin-film dye-sensitized solar cells. Dyes and Pigments, 2015, 121, 79-87.	2.0	17
793	Synthesis and performance of new quinoxaline-based dyes for dye sensitized solar cell. Dyes and Pigments, 2015, 121, 204-210.	2.0	35
794	Surface plasma resonance enhanced photocurrent generation in NiO photoanode based solar cells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 199, 1-8.	1.7	7
795	Ruthenium-Based Photosensitizers for Dye-Sensitized Solar Cells. Green Chemistry and Sustainable Technology, 2015, , 91-114.	0.4	9
796	Enhance the performance of co-sensitized solar cell by a series efficient pyridine-anchor co-adsorbents of N,N′-bis((pyridin-2-yl)methylene)-p-phenylenediimine and a ruthenium dye of N719. Journal of Power Sources, 2015, 293, 203-212.	4.0	15
797	Zinc-doped SnO ₂ nanocrystals as photoanode materials for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 8076-8082.	5.2	44
798	Effect of lodine Concentration in the Quasi-Solid State Electrolyte on the Photovoltaic Performance of Dye-Sensitized Solar Cells. Molecular Crystals and Liquid Crystals, 2015, 620, 123-131.	0.4	1
799	Dynamics of Interfacial Charge Transfer States and Carriers Separation in Dye-Sensitized Solar Cells: A Time-Resolved Terahertz Spectroscopy Study. Journal of Physical Chemistry C, 2015, 119, 26266-26274.	1.5	31
800	Computational Study on the Intramolecular Charge Separation of D-A-ï€-A Organic Sensitizers with Different Linker Groups. Journal of Physical Chemistry C, 2015, 119, 26355-26361.	1.5	12
801	Rational Molecular Engineering of Indoline-Based D-A-Ï€-A Organic Sensitizers for Long-Wavelength-Responsive Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 26802-26810.	4.0	48
802	Enhancing the efficiency of flexible dye-sensitized solar cells utilizing natural dye extracted from <i>Azadirachta indica</i> . Materials Research Express, 2015, 2, 105903.	0.8	16
803	The position effect of electron-deficient quinoxaline moiety in porphyrin based sensitizers. Journal of Power Sources, 2015, 279, 36-47.	4.0	27
804	Recent progress in organic sensitizers for dye-sensitized solar cells. RSC Advances, 2015, 5, 23810-23825.	1.7	207
805	Cyclic thiourea functionalized dyes with binary π-linkers: Influence of different π-conjugation segments on the performance of dye-sensitized solar cells. Dyes and Pigments, 2015, 116, 146-154.	2.0	25
806	Enhancement of power conversion efficiency of dye-sensitized solar cells by co-sensitization of Phloxine B and Bromophenol blue dyes on ZnO photoanode, Journal of Luminescence, 2015, 161, 426-430	1.5	19

#	Article	IF	CITATIONS
807	Nanocomposite coatings: thermal spray processing, microstructure and performance. International Materials Reviews, 2015, 60, 195-244.	9.4	55
808	Novel heteroleptic Ru(<scp>ii</scp>) complexes: synthesis, characterization and application in dye-sensitized solar cells. Dalton Transactions, 2015, 44, 5369-5378.	1.6	10
809	N-Annulated perylene-based metal-free organic sensitizers for dye-sensitized solar cells. Chemical Communications, 2015, 51, 4842-4845.	2.2	76
810	Thiophene-Functionalized Porphyrins: Synthesis, Photophysical Properties, and Photovoltaic Performance in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2015, 119, 5265-5273.	1.5	35
811	Electrolytes in Dye-Sensitized Solar Cells. Chemical Reviews, 2015, 115, 2136-2173.	23.0	852
812	Computational study of diketopyrrolopyrrole-based organic dyes for dye sensitized solar cell applications. Journal of Molecular Graphics and Modelling, 2015, 57, 62-69.	1.3	16
813	The effect of porphyrins suspended with different electronegative moieties on the photovoltaic performance of monolithic porphyrin-sensitized solar cells with carbon counter electrodes. New Journal of Chemistry, 2015, 39, 2889-2900.	1.4	11
814	Phenoxazine-based panchromatic organic sensitizers for dye-sensitized solar cells. Dyes and Pigments, 2015, 116, 58-64.	2.0	21
815	Effects of Number and Position of Meta and Para Carboxyphenyl Groups of Zinc Porphyrins in Dye-Sensitized Solar Cells: Structure–Performance Relationship. ACS Applied Materials & Interfaces, 2015, 7, 1879-1891.	4.0	38
816	Ruthenium Sensitizers with a Hexylthiophene-Modified Terpyridine Ligand for Dye-Sensitized Solar Cells: Synthesis, Photo- and Electrochemical Properties, and Adsorption Behavior to the TiO ₂ Surface. ACS Applied Materials & Interfaces, 2015, 7, 3152-3161.	4.0	26
817	Synthesis of push–pull porphyrin with two electron-donating and two electron-withdrawing groups and its application to dye-sensitized solar cell. Journal of Porphyrins and Phthalocyanines, 2015, 19, 140-149.	0.4	15
818	Improved durability of dye-sensitized solar cell with H2-reduced carbon counter electrode. Journal of Power Sources, 2015, 274, 1276-1282.	4.0	17
819	The effect of different alkyl chains on the photovoltaic performance of D–π–A porphyrin-sensitized solar cells. New Journal of Chemistry, 2015, 39, 3736-3746.	1.4	21
820	Design of organic dyes for dye-sensitized solar cells: Extending ï€-conjugation backbone via â€~Click' reaction to improve photovoltaic performances. Dyes and Pigments, 2015, 117, 108-115.	2.0	7
821	Screening donor groups of organic dyes for dye-sensitized solar cells. RSC Advances, 2015, 5, 22892-22898.	1.7	44
822	βâ€Functionalized Push–Pull Porphyrin Sensitizers in Dyeâ€Sensitized Solar Cells: Effect of Ï€â€Conjugated Spacers. ChemSusChem, 2015, 8, 2967-2977.	3.6	34
823	Organic dyes for the sensitization of nanostructured ZnO photoanodes: effect of the anchoring functions. RSC Advances, 2015, 5, 68929-68938.	1.7	7
824	Electrocatalytic properties of iron chalcogenides as low-cost counter electrode materials for dye-sensitized solar cells. RSC Advances, 2015, 5, 72553-72561.	1.7	20

#	Article	IF	CITATIONS
825	Modelling accelerated degradation test and shelf-life prediction of dye-sensitized solar cells with different types of solvents. Solar Energy, 2015, 118, 600-610.	2.9	9
826	Assemblies composed of oligothiophene–ruthenium complexes bound to CdSe nanoparticles. Journal of Luminescence, 2015, 158, 501-509.	1.5	1
827	Benzimidazole-functionalized ancillary ligands for heteroleptic Ru(<scp>ii</scp>) complexes: synthesis, characterization and dye-sensitized solar cell applications. Dalton Transactions, 2015, 44, 14697-14706.	1.6	26
828	A triazine di(carboxy)porphyrin dyad versus a triazine di(carboxy)porphyrin triad for sensitizers in DSSCs. Dalton Transactions, 2015, 44, 13550-13564.	1.6	16
829	Molecular design of new organic sensitizers based on thieno[1,4]benzothiazine for dye-sensitized solar cells. RSC Advances, 2015, 5, 56865-56871.	1.7	6
830	Porphyrin Sensitizers Bearing a Pyridine-Type Anchoring Group for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 14975-14982.	4.0	60
831	ZnO nanowires array grown on Ga-doped ZnO single crystal for dye-sensitized solar cells. Scientific Reports, 2015, 5, 11499.	1.6	18
832	In situ formation of ZnO scattering sites within a TiO2 nanoparticles film for improved dye-sensitized solar cells performance. Electrochimica Acta, 2015, 174, 438-445.	2.6	4
833	Co-sensitization of N719 with polyphenylenes from the Bergman cyclization of maleimide-based enediynes for dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 11607-11614.	5.2	17
834	Reactivity Diversification – Synthesis and Exchange Reactions of Cobalt and Iron 2â€Alkenylpyridine/â€pyrazine Complexes Obtained by Vinylic C(sp ²)–H Activation. European Journal of Inorganic Chemistry, 2015, 2015, 2543-2559.	1.0	9
835	Synthesis and evaluation of simple molecule as a co-adsorbent dye for highly efficient co-sensitized solar cells. Dyes and Pigments, 2015, 120, 85-92.	2.0	16
836	Recent Advancement of Nanostructured Carbon for Energy Applications. Chemical Reviews, 2015, 115, 5159-5223.	23.0	703
837	Tailored SrTiO ₃ /TiO ₂ heterostructures for dye-sensitized solar cells with enhanced photoelectric conversion performance. Journal of Materials Chemistry A, 2015, 3, 13390-13401.	5.2	76
838	Push–pull porphyrins with different anchoring group orientations for fully printable monolithic dye-sensitized solar cells with mesoscopic carbon counter electrodes. New Journal of Chemistry, 2015, 39, 5231-5239.	1.4	19
839	Organic sensitizers possessing carbazole donor and indeno[1,2-b] thiophene spacer for efficient dye sensitized solar cells. Dyes and Pigments, 2015, 119, 41-48.	2.0	20
840	A comparison of the optical and photovoltaic properties of novel double branched organic dyes in dye sensitized solar cells. Synthetic Metals, 2015, 203, 235-242.	2.1	16
841	In Situ Mapping of the Molecular Arrangement of Amphiphilic Dye Molecules at the TiO ₂ Surface of Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 10834-10842.	4.0	30
842	Beneficial Role of a Bulky Donor Moiety in π-Extended Organic Dyes for Mesoscopic TiO ₂ Sensitized Solar Cells. Journal of Physical Chemistry C, 2015, 119, 6956-6965.	1.5	7

#	Article	IF	CITATIONS
843	Exact analytical analysis of current density–voltage curves of dye-sensitized solar cells. Solar Energy, 2015, 115, 390-395.	2.9	14
844	Donor/Acceptor Indenoperylene Dye for Highly Efficient Organic Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2015, 137, 3799-3802.	6.6	528
845	Vegetable-based dye-sensitized solar cells. Chemical Society Reviews, 2015, 44, 3244-3294.	18.7	304
847	An Ironâ€Based Photosensitizer with Extended Excitedâ€State Lifetime: Photophysical and Photovoltaic Properties. European Journal of Inorganic Chemistry, 2015, 2015, 2469-2477.	1.0	124
848	Comparison of triphenylamine based single and double branched organic dyes in dye-sensitized solar cells. Electronic Materials Letters, 2015, 11, 822-827.	1.0	14
849	One-Dimensional Photonic Crystals for Light Management in Organic Solar Cells. , 2015, , 303-320.		2
850	Transition metal selenides as efficient counter-electrode materials for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2015, 17, 28985-28992.	1.3	59
851	A diminutive modification in arylamine electron donors: synthesis, photophysics and solvatochromic analysis – towards the understanding of dye sensitized solar cell performances. Physical Chemistry Chemical Physics, 2015, 17, 28647-28657.	1.3	20
852	Hierarchical TiO2 flower-spheres with large surface area and high scattering ability: an excellent candidate for high efficiency dye sensitized solar cells. Chemical Research in Chinese Universities, 2015, 31, 841-845.	1.3	4
853	Significant improvement of phenothiazine organic dye-sensitized solar cell performance using dithiafulvenyl unit as additional donor. Organic Electronics, 2015, 27, 107-113.	1.4	30
854	Fine Tuning of Nanocrystal and Pore Sizes of TiO ₂ Submicrospheres toward High Performance Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 22277-22283.	4.0	43
855	Elucidating the opto-electrical properties of solid and hollow titania scattering layers for improvement of dye-sensitized solar cells. Thin Solid Films, 2015, 594, 115-119.	0.8	1
856	Effects of Immersion Solvent on Photovoltaic and Photophysical Properties of Porphyrin-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 18689-18696.	4.0	18
858	Cost-Effective Anthryl Dyes for Dye-Sensitized Cells under One Sun and Dim Light. Journal of Physical Chemistry C, 2015, 119, 24282-24289.	1.5	60
859	Fabrication, Property, and Application of Lignin-Based Nanocomposites. Advanced Structured Materials, 2015, , 73-99.	0.3	8
860	Theoretical description of efficiency enhancement in DSSCs sensitized by newly synthesized heteroleptic Ru complexes. Physical Chemistry Chemical Physics, 2015, 17, 29574-29585.	1.3	20
861	Improving the efficiency of dye sensitized solar cells by TiO2-graphene nanocomposite photoanode. Photonics and Nanostructures - Fundamentals and Applications, 2015, 16, 34-42.	1.0	25
862	Effect of carboxyl anchoring groups in asymmetric zinc phthalocyanine with large steric hindrance on the dye-sensitized solar cell performance. Materials Chemistry and Physics, 2015, 163, 348-354.	2.0	17

#	Article	IF	CITATIONS
863	Nanocrystalline TiO2 micropillar arrays grafted on conductive glass supports: microscopic and spectroscopic studies. Thin Solid Films, 2015, 590, 200-206.	0.8	12
864	Multichromophoric di-anchoring sensitizers incorporating a ruthenium complex and an organic triphenyl amine dye for efficient dye-sensitized solar cells. Inorganic Chemistry Frontiers, 2015, 2, 1040-1044.	3.0	7
865	Relationship between measurement conditions and energy levels in the organic dyes used in dye-sensitized solar cells. RSC Advances, 2015, 5, 82859-82864.	1.7	4
866	Lead selenide quantum dots and carbon dots amplify solar conversion capability of a TiO ₂ /CdS photoanode. Journal of Materials Chemistry A, 2015, 3, 20715-20726.	5.2	32
867	High performance dye-sensitized solar cells with inkjet printed ionic liquid electrolyte. Nano Energy, 2015, 17, 206-215.	8.2	62
868	Effects of rubrene co-sensitized TiO2 photoanode on the performance of ruthenium dye N719 sensitized solar cells. Thin Solid Films, 2015, 592, 14-23.	0.8	8
869	Twenty-fold Enhancement of Gadolinium-Porphyrin Phosphorescence at Room Temperature by Free Gadolinium Ion in Liquid Phase. Journal of Physical Chemistry C, 2015, 119, 28111-28116.	1.5	15
870	Novel Ruthenium Sensitizers with a Phenothiazine Conjugated Bipyridyl Ligand for High-Efficiency Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 27831-27837.	4.0	45
871	Polymorphic phase study on nitrogen-doped TiO ₂ nanoparticles: effect on oxygen site occupancy, dye sensitized solar cells efficiency and hydrogen production. RSC Advances, 2015, 5, 101276-101286.	1.7	16
872	Concordantly fabricated heterojunction ZnO–TiO ₂ nanocomposite electrodes via a co-precipitation method for efficient stable quasi-solid-state dye-sensitized solar cells. RSC Advances, 2015, 5, 103095-103104.	1.7	33
873	Large Stokes shift downshifting Eu(III) films as efficiency enhancing UV blocking layers for dye sensitized solar cells. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 203-210.	0.8	22
874	Electrolytes Based on TEMPO–Co Tandem Redox Systems Outperform Single Redox Systems in Dyeâ€sensitized Solar Cells. ChemSusChem, 2015, 8, 264-268.	3.6	29
875	Organic dyes containing a hydrazone moiety as auxiliary donor for solid-state DSSC applications. Dyes and Pigments, 2015, 114, 175-183.	2.0	15
876	Trisâ€Heteroleptic Ruthenium–Dipyrrinate Chromophores in a Dye‣ensitized Solar Cell. Chemistry - A European Journal, 2015, 21, 2173-2181.	1.7	23
877	Enhanced visible light responsive photocatalytic activity of TiO2-based nanocrystallites: impact of doping sequence. RSC Advances, 2015, 5, 7363-7369.	1.7	20
878	A polymer gel electrolyte with an inverse opal structure and its effects on the performance of quasi-solid-state dye-sensitized solar cells. Journal of Power Sources, 2015, 277, 52-58.	4.0	17
879	Enhancing efficiency of perovskite solar cell via surface microstructuring: Superior grain growth and light harvesting effect. Solar Energy, 2015, 112, 12-19.	2.9	33
880	The construction of tandem dye-sensitized solar cells from chemically-derived nanoporous photoelectrodes. Journal of Power Sources, 2015, 274, 937-942.	4.0	37

#	Article	IF	CITATIONS
881	Synthesis of phenothiazine-based di-anchoring dyes containing fluorene linker and their photovoltaic performance. Dyes and Pigments, 2015, 114, 47-54.	2.0	47
882	Efficiency of ruthenium dye sensitized solar cells enhanced by 2,6-bis[1-(phenylimino)ethyl]pyridine as a co-sensitizer containing methyl substituents on its phenyl rings. Physical Chemistry Chemical Physics, 2015, 17, 1273-1280.	1.3	38
883	A Robust Organic Dye for Dye Sensitized Solar Cells Based on Iodine/Iodide Electrolytes Combining High Efficiency and Outstanding Stability. Scientific Reports, 2014, 4, 4033.	1.6	168
884	Functional titanium oxide nano-particles as electron lifetime, electrical conductance enhancer, and long-term performance booster in quasi-solid-state electrolyte for dye-sensitized solar cells. Journal of Power Sources, 2015, 274, 1283-1291.	4.0	24
885	Porphyrins as excellent dyes for dye-sensitized solar cells: recent developments and insights. Dalton Transactions, 2015, 44, 448-463.	1.6	529
886	In-situ fabrication of macroporous films for dye-sensitised solar cells: formation of the scattering layer and the gelation of electrolytes. Scientific Reports, 2014, 4, 5375.	1.6	14
887	Metal-free organic-dye-based flexible dye-sensitized solar textiles with panchromatic effect. Dyes and Pigments, 2015, 113, 378-389.	2.0	17
888	Nanocrystalline titanium dioxide sensitised with natural dyes for eco-friendly solar cell application. Journal of Experimental Nanoscience, 2015, 10, 1001-1011.	1.3	26
889	Trends, Challenges and Opportunities in Advanced Solar Cells Technologies and PV Market. Journal of Green Engineering (discontinued), 2016, 5, 157-186.	0.7	2
890	Optical Absorption Spectra and Electronic Properties of Symmetric and Asymmetric Squaraine Dyes for Use in DSSC Solar Cells: DFT and TD-DFT Studies. International Journal of Molecular Sciences, 2016, 17, 487.	1.8	26
891	BiOX (X = Cl, Br, and I) Photocatalysts. , 0, , .		6
892	Application of CBZ dimer, C343 and SQ dye as photosensitizers for pn-tandem DSCs. Electronic Materials Letters, 2016, 12, 524-529.	1.0	7
893	Screening <i>Ï€</i> -conjugated bridges of organic dyes for dye-sensitized solar cells with panchromatic visible light harvesting. Nanotechnology, 2016, 27, 265701.	1.3	23
894	Flower-like TiO2 with highly exposed {001} facets used as scattering layers for dye-sensitized solar cells. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 994-1001.	0.8	7
895	Our Expedition in Linear Neutral Platinum-Acetylide Complexes: The Preparation of Micro/nanostructure Materials, Complicated Topologies, and Dye-Sensitized Solar Cells. Chemical Record, 2016, 16, 1274-1297.	2.9	30
896	Solvent effects on adsorption kinetics, dye monolayer, and cell performance of porphyrin-sensitized solar cells. RSC Advances, 2016, 6, 114037-114045.	1.7	2
897	Aggregation property and photovoltaic performance optimization of symmetrical squaraine dye containing bis-anchoring groups for dye-sensitized solar cell. Molecular Crystals and Liquid Crystals, 2016, 635, 148-157.	0.4	5
898	Preparation and Photocatalytic Activity of Cu/BiVO ₄ by Solid State Grinding Method for Degradation of Methyl Orange. Key Engineering Materials, 0, 703, 321-325.	0.4	2

ARTICLE IF CITATIONS Hot-compression: An effective postdeposition treatment for electrophoretically deposited 899 2 dye-sensitized solar cell., 2016, , . A theoretical design and investigation on Zn-porphyrin-polyoxometalate hybrids with different 900 ï€-linkers for searching high performance sensitizers of p-type dye-sensitized solar cells. Dyes and Pigments, 2016, 130, 168-175. Two new bulky substituted Zn porphyrins bearing carboxylate anchoring groups as promising dyes for 901 1.4 12 DSSCs. New Journal of Chemistry, 2016, 40, 5930-5941. Efficiency improvement of new Tetrathienoacene-based dyes by enhancing donor, acceptor and bridge units, a theoretical study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2.0 2016, 167, 72-77. Impact of neutral and anion anchoring groups on the photovoltaic performance of triphenylamine 903 1.7 23 sensitizers for dye-sensitized solar cells. RSC Advances, 2016, 6, 26559-26567. Pulse-fitting – A novel method for the evaluation of pulse measurements, demonstrated for the low 904 4.0 frequency behavior of lithium-ion cells. Journal of Power Sources, 2016, 315, 316-323. Integrated plasmonic and upconversion starlike Y2O3:Er/Au@TiO2 composite for enhanced photon 905 4.0 30 harvesting in dye-sensitized solar cells. Journal of Power Sources, 2016, 316, 207-214. Influence of anchoring group numbers in an efficient pyridine-anchor co-adsorbent of pyridinecarboxaldimine substituted aminonaphthalene on the performance of N719 sensitized solar 906 1.7 cells. RSC Advances, 2016, 6, 39972-39981. Different Effect of the Additional Electron-Withdrawing Cyano Group in Different Conjugation 907 Bridge: The Adjusted Molecular Energy Levels and Largely Improved Photovoltaic Performance. ACS 4.0 28 Applied Materials & amp; Interfaces, 2016, 8, 12134-12140. Triphenylamine-based tri-anchoring organic dye with enhanced electron lifetime and long-term 908 2.1 stability for dye sensitized solar cells. Synthetic Metals, 2016, 217, 248-255. Ferrocenyl chalcones with phenolic and pyridyl anchors as potential sensitizers in dye-sensitized 909 1.7 28 solar cells. RSC Advances, 2016, 6, 97664-97675. Transition metal ferrocenyl dithiocarbamates functionalized dye-sensitized solar cells with hydroxy as an anchoring group. Optical Materials, 2016, 62, 176-183. Lithium salt–nonionic surfactant lyotropic liquid crystalline gel-electrolytes with redox couple for 911 1.7 12 dye sensitized solar cells. RSC Advańces, 2016, 6, 97430-97437. Harnessing Nature's Purple Solar1 Panels for Photoenergy Conversion. World Scientific Series in 0.1 Nanoscience and Nanotechnology, 2016, , 195-227. Influence of Ancillary Ligands in Dye-Sensitized Solar Cells. Chemical Reviews, 2016, 116, 9485-9564. 914 23.0 225 Optimizing the Photovoltaic Properties of CdTe Quantum Dot–Porphyrin Nanocomposites: A 24 Theoretical Study. Journal of Physical Chemistry C, 2016, 120, 17878-17886. Synthesis and Characterization of Diethylphosphonate and Carboxylate-appended Iridium Complexes 916 0.7 4 for the Application on Dye-Sensitized Solar Cells. ChemistrySelect, 2016, 1, 2842-2848. Low-Cost Electricity Production from Sunlight: Third-Generation Photovoltaics and the Dye-Sensitized Solar Cell., 2016, , 93-153.

#	Article	IF	Citations
918	Aggregation of metal-free organic sensitizers on TiO 2 (1 0 1) surface for use in dye-sensitized solar cells: A computational investigation. Computational and Theoretical Chemistry, 2016, 1093, 1-8.	1.1	10
919	Development of dye-sensitized solar cells based on naturally extracted dye from the maqui berry () Tj ETQq1 1 0	.784314 rş 1.7	gBT_{Overloc
920	Theoretical study of metalâ€free organic dyes based on different configurations for efficient dyeâ€sensitized solar cells. International Journal of Quantum Chemistry, 2016, 116, 1796-1801.	1.0	3
921	Parametric Optimization of Experimental Conditions for Dye-Sensitized Solar Cells based on Far-red Sensitive Squaraine Dye. Journal of Physics: Conference Series, 2016, 704, 012002.	0.3	1
922	Rose bengal-sensitized nanocrystalline ceria photoanode for dye-sensitized solar cell application. Bulletin of Materials Science, 2016, 39, 1381-1387.	0.8	27
923	Design, synthesis and DSSC performance of o-fluorine substituted phenylene spacer sensitizers: effect of TiO ₂ thickness variation. Physical Chemistry Chemical Physics, 2016, 18, 28485-28491.	1.3	22
924	Thiocyanate-free asymmetric ruthenium(II) dye sensitizers containing azole chromophores with near-IR light-harvesting capacity. Journal of Power Sources, 2016, 331, 100-111.	4.0	16
925	A Push–Pull Porphyrin Dimer with Multiple Electron-donating Groups for Dye-sensitized Solar Cells: Excellent Light-harvesting in Near-infrared Region. Chemistry Letters, 2016, 45, 1126-1128.	0.7	10
926	Novel D–A–Ĩ€â€"A organic dyes based on 3-dimensional triarylamine and benzothiadiazole derivatives for high-performance dye-sensitized solar cells. Journal of Power Sources, 2016, 326, 438-446.	4.0	33
927	Modified pyrene based organic sensitizers with thiophene-2-acetonitrile as π-spacer for dye sensitized solar cell applications. Organic Electronics, 2016, 37, 326-335.	1.4	11
928	Forthcoming perspectives of photoelectrochromic devices: a critical review. Energy and Environmental Science, 2016, 9, 2682-2719.	15.6	122
929	Significant Influences of Elaborately Modulating Electron Donors on Light Absorption and Multichannel Charge-Transfer Dynamics for 4-(Benzo[<i>c</i>][1,2,5]thiadiazol-4-ylethynyl)benzoic Acid Dyes. ACS Applied Materials & Interfaces, 2016, 8, 18292-18300.	4.0	20
930	Dye-sensitised solar cells: Development, structure, operation principles, electron kinetics, characterisation, synthesis materials and natural photosensitisers. Renewable and Sustainable Energy Reviews, 2016, 65, 183-213.	8.2	139
931	Plasmonic-resonance-based ternary composite complementary enhancement of the performance of dye-sensitized solar cells. Nanotechnology, 2016, 27, 415202.	1.3	9
932	Novel metal-free organic dyes possessing fused heterocyclic structural motifs for efficient molecular photovoltaics. Physical Chemistry Chemical Physics, 2016, 18, 30105-30116.	1.3	8
933	Influence of structural factors on the photovoltaic properties of dye-sensitized solar cells. Russian Chemical Reviews, 2016, 85, 1146-1183.	2.5	52
934	Performance analysis of electrophorically deposited ZnO-based dye-sensitized solar cells prepared using compression at elevated temperature along with postannealing. Japanese Journal of Applied Physics, 2016, 55, 01AA16.	0.8	7
935	Effects of Bulky Substituents of Push–Pull Porphyrins on Photovoltaic Properties of Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 15379-15390.	4.0	61

#	Article	IF	CITATIONS
936	Influence of zirconium dioxide and titanium dioxide binders on the photovoltaic performance of dye sensitized solar cell tungsten carbide nanorods based counter electrode. Electrochimica Acta, 2016, 211, 375-384.	2.6	19
937	Porous PbI ₂ films for the fabrication of efficient, stable perovskite solar cells via sequential deposition. Journal of Materials Chemistry A, 2016, 4, 10223-10230.	5.2	56
938	Ï€-Spacer effect in dithiafulvenyl-Ï€-phenothiazine dyes for dye-sensitized solar cells. Journal of Power Sources, 2016, 324, 484-491.	4.0	36
939	Dye-sensitized solar cells with inkjet-printed dyes. Energy and Environmental Science, 2016, 9, 2453-2462.	15.6	65
940	Study of Donor–Acceptor–π–Acceptor Architecture Sensitizers with Benzothiazole Acceptor for Dye‣ensitized Solar Cells. Energy Technology, 2016, 4, 458-468.	1.8	8
941	Metalâ€Free Indeno[2,1â€∢i>b]thiopheneâ€Based Sensitizers for Dyeâ€6ensitized Solar Cells. Asian Journal of Organic Chemistry, 2016, 5, 801-811.	1.3	2
942	Synthesis and characterization of simple cost-effective trans-A ₂ BC porphyrins with various donor groups for dye-sensitized solar cells. New Journal of Chemistry, 2016, 40, 5704-5713.	1.4	14
943	Enediyne as π linker in D–π–A dyes for dye-sensitized solar cells. RSC Advances, 2016, 6, 12124-12130.	1.7	2
944	Preparation of gold and gold–silver alloy nanoparticles for enhancement of plasmonic dye-sensitized solar cells performance. Solar Energy, 2016, 126, 93-104.	2.9	59
945	V-shaped organic dyes with triphenylamine core for dye-sensitized solar cells: Simple synthesis with enhanced open-circuit voltage. Synthetic Metals, 2016, 211, 19-24.	2.1	6
946	Hierarchically macro–mesoporous TiO2 film via self-assembled strategy for enhanced efficiency of dye sensitized solar cells. Materials Research Bulletin, 2016, 74, 380-386.	2.7	21
947	Synthesis and structural properties of 2-((10-alkyl-10H-phenothiazin-3-yl)methylene)malononitrile derivatives; a combined experimental and theoretical insight. Chemistry Central Journal, 2016, 10, 13.	2.6	14
948	The effect of deposition on electrochemical impedance properties of TiO2/FTO photoanodes. Journal of Electroceramics, 2016, 36, 102-111.	0.8	6
949	Effect of electron-donor ancillary ligands on the heteroleptic ruthenium complexes: synthesis, characterization, and application in high-performance dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2016, 18, 11213-11219.	1.3	11
950	Pyridyl vs. bipyridyl anchoring groups of porphyrin sensitizers for dye sensitized solar cells. RSC Advances, 2016, 6, 22187-22203.	1.7	18
951	Performance enhancement of aqueous dye-sensitized solar cells via introduction of a quasi-solid-state electrolyte with an inverse opal structure. Solar Energy, 2016, 127, 19-27.	2.9	23
952	Facile and rapid preparation of platinum counter electrodes for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 321, 122-127.	2.0	10
953	Naphtho[2,3- <i>c</i>][1,2,5]thiadiazole and 2 <i>H</i> -Naphtho[2,3- <i>d</i>][1,2,3]triazole-Containing D–Aâ^'l€â€"A Conjugated Organic Dyes for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 6117-6126.	4.0	38

#	Article	IF	CITATIONS
954	Effects of 2-hexylthiophene on the performance of triphenylamine based organic dye for dye-sensitized solar cells. Synthetic Metals, 2016, 214, 56-61.	2.1	9
955	Enhanced visible light photocatalytic activities of template free mesoporous nitrogen doped reduced graphene oxide/titania composite catalysts. Journal of Industrial and Engineering Chemistry, 2016, 36, 184-193.	2.9	56
956	Influence of alkoxy chain envelopes on the interfacial photoinduced processes in tetraarylporphyrin-sensitized solar cells. Physical Chemistry Chemical Physics, 2016, 18, 9577-9585.	1.3	29
957	High photo-currents with a zwitterionic thiocyanate-free dye in aqueous-based dye sensitized solar cells. Dalton Transactions, 2016, 45, 5622-5628.	1.6	15
958	Electrochemical investigation of Li+ ions in the electrolyte on the performance of dyed Mg2+-doped TiO2 solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 321, 19-23.	2.0	0
959	Enhancing Power Conversion Efficiency of Dye-Sensitized Solar Cell Using TiO ₂ -MWCNT Composite Photoanodes. IEEE Journal of Photovoltaics, 2016, 6, 486-490.	1.5	13
960	Influence of the non-conjugated 5-position substituent of 1,3,5-triaryl-2-pyrazoline-based photosensitizers on the photophysical properties and performance of a dye-sensitized solar cell. RSC Advances, 2016, 6, 13964-13970.	1.7	21
961	Transition Metal-Based Photofunctional Materials: Recent Advances and Potential Applications. Structure and Bonding, 2016, , 201-289.	1.0	1
962	Highly efficient dye-sensitized solar cells based on a ruthenium sensitizer bearing a hexylthiophene modified terpyridine ligand. Journal of Materials Chemistry A, 2016, 4, 1762-1770.	5.2	59
963	Cyanoacetic acid tethered thiophene for well-matched LUMO level in Ru(II)-terpyridine dye sensitized solar cells. Dyes and Pigments, 2016, 126, 270-278.	2.0	10
964	Polypyrrole-coated cotton fabrics prepared by electrochemical polymerization as textile counter electrode for dye-sensitized solar cells. Organic Electronics, 2016, 29, 107-113.	1.4	51
965	Near-infrared unsymmetrical blue and green squaraine sensitizers. Photochemical and Photobiological Sciences, 2016, 15, 287-296.	1.6	19
966	Unlocking the effects of ancillary electron-donors on light absorption and charge recombination in phenanthrocarbazole dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 519-528.	5.2	31
967	Effect of the co-sensitization sequence on the performance of dye-sensitized solar cells with porphyrin and organic dyes. Physical Chemistry Chemical Physics, 2016, 18, 932-938.	1.3	56
968	End-capped "thiophene-free―organic dye for dye-sensitized solar cell: Optimized donor, broadened spectra and enhanced open-circuit voltage. Dyes and Pigments, 2016, 124, 45-52.	2.0	9
969	Effect of conjugated side groups on the photovoltaic performances of triphenylamine-based dyes sensitized solar cells. Dyes and Pigments, 2016, 124, 222-231.	2.0	15
970	A new method for the synthesis of Î ² -cyano substituted porphyrins and their use as sensitizers in photoelectrochemical devices. Journal of Materials Chemistry A, 2016, 4, 2976-2985.	5.2	26
971	Enhanced Photovoltaic Performance of Dye-Sensitized Solar Cells Using TiO ₂ -Graphene Microplatelets Hybrid Photoanode. IEEE Journal of Photovoltaics, 2016, 6, 196-201.	1.5	21

#	Article	IF	CITATIONS
972	Synthesis, spectroscopic, and electrochemical studies of bis-ruthenium(II) polypyridyl complexes bridged by dipyrromethenes. Inorganica Chimica Acta, 2017, 454, 71-75.	1.2	1
973	Combined theoretical and experimental approaches for development of squaraine dyes with small energy barrier for electron injection. Solar Energy Materials and Solar Cells, 2017, 159, 625-632.	3.0	18
974	Use of organic materials in dye-sensitized solar cells. Materials Today, 2017, 20, 267-283.	8.3	231
975	The enhancement of photovoltaic properties of the DSSCs based on D–A–π–A organic dyes via tuning auxiliary acceptor. Dyes and Pigments, 2017, 140, 312-319.	2.0	27
976	A cockspur for the DSS cells: Erythrina crista-galli sensitizers. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 176, 91-98.	2.0	12
977	Pyrene based D–π–A architectures: synthesis, density functional theory, photophysics and electron transfer dynamics. Physical Chemistry Chemical Physics, 2017, 19, 3125-3135.	1.3	27
978	Spectroelectrochemistry of alternating ambipolar copolymers of 4,4′- and 2,2′-bipyridine isomers and quaterthiophene. Electrochimica Acta, 2017, 231, 437-452.	2.6	12
979	The role of ï€-linkers in tuning the optoelectronic properties of triphenylamine derivatives for solar cell applications – A DFT/TDDFT study. Physical Chemistry Chemical Physics, 2017, 19, 6153-6163.	1.3	60
980	Molecular design of porphyrin dyes for dye sensitized solar cells: A quantitative structure property relationship study. International Journal of Quantum Chemistry, 2017, 117, e25385.	1.0	9
981	The influence of the push-pull effect and a π-conjugated system in conversion efficiency of bis-chalcone compounds in a dye sensitized solar cell. Journal of Molecular Structure, 2017, 1143, 42-48.	1.8	36
982	Effect of anodisation time and thermal treatment temperature on the structural and photoelectrochemical properties of TiO 2 nanotubes. Journal of Solid State Chemistry, 2017, 251, 217-223.	1.4	6
983	New Acetyleneâ€Bridged 9,10 onjugated Anthracene Sensitizers: Application in Outdoor and Indoor Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2017, 7, 1700032.	10.2	137
984	Bioinspired study of energy and electron transfer in photovoltaic system. Journal of Experimental Nanoscience, 2017, 12, 285-296.	1.3	3
985	Spinach extract and Eosin-Y co-sensitized ceria photoanode for dye sensitized solar cell application: effect of dye adsorption time. Journal of Materials Science: Materials in Electronics, 2017, 28, 5075-5081.	1.1	11
987	Substituted and Anchoring Groups Improve the Efficiency of Dye-Sensitized Solar Cells. ChemistrySelect, 2017, 2, 4084-4091.	0.7	7
988	Artificial Photosynthesis Based on 1,10-Phenanthroline Complexes. , 2017, , 389-405.		Ο
989	A Peryleneâ€Based Polycyclic Aromatic Hydrocarbon Electron Donor for a Highly Efficient Solar Cell Dye. ChemSusChem, 2017, 10, 2962-2967.	3.6	28
990	Ferrocenyl benzimidazole with carboxylic and nitro anchors as potential sensitizers in dye-sensitized solar cells. New Journal of Chemistry, 2017, 41, 7312-7321.	1.4	21

#	Article	IF	CITATIONS
991	Impact of π-conjugation configurations on the photovoltaic performance of the quinoxaline-based organic dyes. Dyes and Pigments, 2017, 145, 126-135.	2.0	17
992	Synthesis of randomly directed inclined TiO 2 nanorods on the nanocrystalline TiO 2 layers and their optimized application in dye sensitized solar cells. Journal of Alloys and Compounds, 2017, 711, 603-610.	2.8	17
993	New organic dyes based on phenylenevinylene for solar cells: DFT and TD-DFT investigation. Karbala International Journal of Modern Science, 2017, 3, 75-82.	0.5	18
994	Extending spectrum response of squaraine-sensitized solar cell by Förster resonance energy transfer. Journal of Solid State Electrochemistry, 2017, 21, 2091-2098.	1.2	5
995	Development of simple and sensitive hydrogel based colorimetric sensor array for the real-time quantification of gaseous ammonia. Materials Science and Engineering C, 2017, 72, 583-589.	3.8	25
996	Harnessing Photovoltage: Effects of Film Thickness, TiO ₂ Nanoparticle Size, MgO and Surface Capping with DSCs. ACS Applied Materials & Interfaces, 2017, 9, 3050-3059.	4.0	15
997	Stability issues pertaining large area perovskite and dye-sensitized solar cells and modules. Journal Physics D: Applied Physics, 2017, 50, 033001.	1.3	42
998	Significant light absorption enhancement by a single heterocyclic unit change in the π-bridge moiety from thieno[3,2-b]benzothiophene to thieno[3,2-b]indole for high performance dye-sensitized and tandem solar cells. Journal of Materials Chemistry A, 2017, 5, 2297-2308.	5.2	200
999	Pushâ€Pull Nâ€Annulated Peryleneâ€Based Sensitizers for Dyeâ€Sensitized Solar Cells: Theoretical Property Tuning by DFT/TDDFT. ChemistrySelect, 2017, 2, 9829-9837.	0.7	21
1000	Reduced graphene oxide for Pt-free counter electrodes of dye-sensitized solar cells. Solar Energy, 2017, 158, 42-48.	2.9	28
1001	Ruthenium Bis(terpyridine) Complexes Based on D-P-A Functionalization: Experimental and Theoretical Evidences. ChemistrySelect, 2017, 2, 8751-8761.	0.7	4
1002	Comparative density functional theory–density functional tight binding study of fullerene derivatives: effects due to fullerene size, addends, and crystallinity on band structure, charge transport and optical properties. Physical Chemistry Chemical Physics, 2017, 19, 28330-28343.	1.3	23
1003	Polymer-Doped Molten Salt Mixtures as a New Concept for Electrolyte Systems in Dye-Sensitized Solar Cells. ACS Omega, 2017, 2, 6570-6575.	1.6	2
1004	Effect of Donor Groups on the Performance of Cyclometalated Ruthenium Sensitizers in Dye-Sensitized Solar Cells. Inorganic Chemistry, 2017, 56, 13437-13445.	1.9	14
1005	Photovoltaic Properties and Long-Term Durability of Porphyrin-Sensitized Solar Cells with Silicon-Based Anchoring Groups. ACS Omega, 2017, 2, 6958-6967.	1.6	22
1006	Novel D–Aâ~ï€â€"A-Type Organic Dyes Containing a Ladderlike Dithienocyclopentacarbazole Donor for Effective Dye-Sensitized Solar Cells. ACS Omega, 2017, 2, 7048-7056.	1.6	23
1007	Facile size-controllable synthesis process, bandgap blue shift, and enhanced photocatalytic performances of [111]-faceted anatase TiO ₂ nanocrystals. New Journal of Chemistry, 2017, 41, 10998-11008.	1.4	5
1008	Electrolyte containing lithium cation in squaraine-sensitized solar cells: interactions and consequences for performance and charge transfer dynamics. Physical Chemistry Chemical Physics, 2017, 19, 27670-27681.	1.3	11

#	Article	IF	CITATIONS
1009	<i>C_s</i> -Symmetric Triphenylamine-Linked Bisthiazole-Based Metal-Free Donor–Acceptor Organic Dye for Efficient ZnO Nanoparticles-Based Dye-Sensitized Solar Cells: Synthesis, Theoretical Studies, and Photovoltaic Properties. ACS Omega, 2017, 2, 5981-5991.	1.6	5
1010	Investigation on the Interface Modification of TiO ₂ Surfaces by Functional Coâ€Adsorbents for Highâ€Efficiency Dyeâ€Sensitized Solar Cells. ChemPhysChem, 2017, 18, 2724-2731.	1.0	26
1011	A Hydroxamic Acid Anchoring Group for Durable Dye‣ensitized Solar Cells Incorporating a Cobalt Redox Shuttle. ChemSusChem, 2017, 10, 3347-3351.	3.6	35
1012	Planar D–Dâ^'Ï€-A Organic Sensitizers for Thin-Film Photoanodes. ACS Energy Letters, 2017, 2, 1810-1817.	8.8	34
1013	Phosphorene quantum dot-fullerene nanocomposites for solar energy conversion: An unexplored inorganic-organic nanohybrid with novel photovoltaic properties. Chemical Physics Letters, 2017, 685, 16-22.	1.2	25
1014	Investigation of photovoltaic properties of nanostructure indoline dye-sensitised solar cells using changes in assembling materials. Pigment and Resin Technology, 2017, 46, 393-398.	0.5	2
1015	Mesoporous sub-microsphere assembly of TiO2 nanocubes with highly exposed (101) facets and improved photovoltaic performance. Journal of Materials Science: Materials in Electronics, 2017, 28, 16493-16503.	1.1	2
1016	A Comparative Study on Two RullComplexes with Thiophene-Based Ancillary Ligands for High-Efficiency Dye-Sensitized Solar Cells. European Journal of Inorganic Chemistry, 2017, 2017, 3690-3697.	1.0	18
1017	Effect of TiO2 Nanoparticle Layer and Dynamic Mechanisms on the Efficiency of Dye-Sensitized Solar Cells. IEEE Journal of Photovoltaics, 2017, 7, 1329-1337.	1.5	3
1018	A dual-functional NaLuF ₄ :Yb ³⁺ /Er ³⁺ material for enhancing photon harvesting in dye-sensitized solar cells. RSC Advances, 2017, 7, 38506-38511.	1.7	7
1019	Improved light harvest in diffraction grating-embedded TiO2 nanoparticle film. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	5
1020	Influence of a D–π–A system through a linked unit of double and triple bonds in a triarylene bridge for dye-sensitised solar cells. New Journal of Chemistry, 2017, 41, 8016-8025.	1.4	11
1021	Azafluorene Ornamented Thiazine Based Novel Fused Heterocyclic Organic Dyes for Competent Molecular Photovoltaics. Electrochimica Acta, 2017, 246, 1052-1064.	2.6	15
1022	Computational studies on optoelectronic and charge transfer properties of some perylene-based donor-i€-acceptor systems for dye sensitized solar cell applications. International Journal of Quantum Chemistry, 2017, 117, e25332.	1.0	21
1023	Study on dye-loading mode on TiO2 films and impact of co-sensitizers on highly efficient co-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2017, 28, 3962-3969.	1.1	7
1024	50 Years of Structure and Bonding $\hat{a} \in$ " The Anniversary Volume. Structure and Bonding, 2017, , .	1.0	2
1025	Photo-assisted deposition of Ag nanoparticles on branched TiO2 nanorod arrays for dye-sensitized solar cells with enhanced efficiency. Journal of Alloys and Compounds, 2017, 694, 653-661.	2.8	39
1026	Enhanced Photovoltaic Performance via Co-sensitization of Ruthenium (II)-Based Complex Sensitizers with Metal-Free Indoline Dye in Dye-Sensitized Solar Cells. Organic Photonics and Photovoltaics, 2017,	1.3	4

#	Article	IF	CITATIONS
1027	Nanostructured Semiconductor Materials for Dye-Sensitized Solar Cells. Journal of Nanomaterials, 2017, 2017, 1-31.	1.5	93
1028	Quantitative Analysis of Active Dopant Distribution and Estimation of Effective Diffusivity in Phosphorus- Implanted Emitter of Si Solar Cell Using Scanning Nonlinear Dielectric Microscopy. , 2017, , .		0
1029	Modelling of perovskite/InGaAs tandem solar cells. , 2017, , .		0
1030	Parametric Optimization of Dye-Sensitized Solar Cells Using Far red Sensitizing Dye with Cobalt Electrolyte. Journal of Physics: Conference Series, 2017, 924, 012001.	0.3	1
1031	Synthesis and photovoltaic characterization of triarylamine-substituted quinoxaline push-pull dyes to improve the performance of dye-sensitized solar cells. Turkish Journal of Chemistry, 2017, 41, 309-322.	0.5	4
1032	Free-Base and Metal Complexes of 5,10,15,20-Tetrakis(NMethyl Pyridinium L)Porphyrin: Catalytic and Therapeutic Properties. , 0, , .		4
1033	Solid-State Thin-Film Dye-Sensitized Solar Cell Co-Sensitized with Methylammonium Lead Bromide Perovskite. Bulletin of the Chemical Society of Japan, 2018, 91, 754-760.	2.0	14
1034	Fabrication of Visible-light Responsive N-doped TiO ₂ Nanothin Films via a Top–down Sol–gel Deposition Method Using NH ₄ TiOF ₃ Single Crystals. Chemistry Letters, 2018, 47, 628-631.	0.7	4
1035	Organic dyes festooned with fluorene and fused thiazine for efficient dye-sensitized solar cells. Electrochimica Acta, 2018, 268, 347-357.	2.6	11
1036	Effect of outdoor temperature on the power-conversion efficiency of newly synthesized organic photosensitizer based dye-sensitized solar cells. Materials Letters, 2018, 220, 222-225.	1.3	10
1037	1,1′-Bis(diphenylphosphino)ferrocene-appended nickel(<scp>ii</scp>) dithiolates as sensitizers in dye-sensitized solar cells. New Journal of Chemistry, 2018, 42, 9306-9316.	1.4	18
1038	Molecular Engineering of D–Dâ^"i€â€"A-Based Organic Sensitizers for Enhanced Dye-Sensitized Solar Cell Performance. ACS Omega, 2018, 3, 3819-3829.	1.6	32
1039	Enhanced Donor–ï€â€"Acceptor Character of a Porphyrin Dye Incorporating Naphthobisthiadiazole for Efficient Nearâ€Infrared Light Absorption. European Journal of Organic Chemistry, 2018, 2018, 2537-2547.	1.2	16
1040	The improved photovoltaic performance of phenothiazine-dithienopyrrole based dyes with auxiliary acceptors. Journal of Power Sources, 2018, 387, 117-125.	4.0	60
1041	A Lowâ€Energyâ€Gap Thienochrysenocarbazole Dye for Highly Efficient Mesoscopic Titania Solar Cells: Understanding the Excited State and Charge Carrier Dynamics. ChemSusChem, 2018, 11, 1460-1466.	3.6	12
1043	Enhancement of quantum efficiency by co-adsorbing small julolidine dye and bulky triphenylamine dye in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356, 403-410.	2.0	7
1044	C2N/WS2 van der Waals type-II heterostructure as a promising water splitting photocatalyst. Journal of Catalysis, 2018, 359, 143-150.	3.1	229
1045	Design of butterfly type organic dye sensitizers with double electron donors: The first principle study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 196, 385-391.	2.0	9

щ			CITATIONS
# 1046	Enhancing the Photovoltaic Performance of Dye-Sensitized Solar Cells with Rare-Earth Metal Oxide Nanoparticles. Journal of the Electrochemical Society, 2018, 165, H52-H56.	1.3	23
1047	Spaced Titania Nanotube Arrays Allow the Construction of an Efficient Nâ€Doped Hierarchical Structure for Visibleâ€Light Harvesting. ChemistryOpen, 2018, 7, 131-135.	0.9	5
1048	Metalâ€Free Sensitizers with a Perfluorohexyl Side Chain for Dyeâ€5ensitized Solar Cells: Properties Alien to Alkyl Chains. Asian Journal of Organic Chemistry, 2018, 7, 819-828.	1.3	1
1049	Effect of carbon nano tube working electrode thickness on charge transport kinetics and photo-electrochemical characteristics of dye-sensitized solar cells. Materials Research Express, 2018, 5, 025513.	0.8	1
1050	Nanoarchitectures in dye-sensitized solar cells: metal oxides, oxide perovskites and carbon-based materials. Nanoscale, 2018, 10, 4987-5034.	2.8	108
1051	Tuning the Photovoltaic Performance of DSSCs by Appending Various Donor Groups on <i>trans</i> -Dimesityl Porphyrin Backbone. ACS Applied Energy Materials, 2018, 1, 2793-2801.	2.5	25
1052	Polymer electrolyte integrated dye sensitized solar cells endow enhanced stability: Photoanode thickness and light intensity on cell performance. Solar Energy, 2018, 169, 159-166.	2.9	6
1053	Wide-Range Near-Infrared Sensitizing 1 <i>H</i> -Benzo[<i>c</i> , <i>d</i>]indol-2-ylidene-Based Squaraine Dyes for Dye-Sensitized Solar Cells. Journal of Organic Chemistry, 2018, 83, 4389-4401.	1.7	20
1054	Heterostructured TiO ₂ /NiTiO ₃ Nanorod Arrays for Inorganic Sensitized Solar Cells with Significantly Enhanced Photovoltaic Performance and Stability. ACS Applied Materials & Interfaces, 2018, 10, 11580-11586.	4.0	33
1055	Liquid-crystalline coumarin derivatives: contribution to the tailoring of metal-free sensitizers for solar cells. Liquid Crystals, 2018, 45, 310-322.	0.9	31
1056	Propping the optical and electronic properties of potential photo-sensitizers with different π-spacers: TD-DFT insights. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 188, 237-243.	2.0	27
1057	Fabrication of green dye-sensitized solar cell based on ZnO nanoparticles as a photoanode and graphene quantum dots as a photo-sensitizer. Journal of Colloid and Interface Science, 2018, 511, 318-324.	5.0	43
1058	Co-sensitization of metal free organic dyes in flexible dye sensitized solar cells. Organic Electronics, 2018, 52, 103-109.	1.4	45
1059	Nanomaterials for Solar Energy Conversion: Dye-Sensitized Solar Cells Based on Ruthenium(II) tris-Heteroleptic Compounds or Natural Dyes. , 2018, , 69-106.		9
1060	A large, ultra-black, efficient and cost-effective dye-sensitized solar module approaching 12% overall efficiency under 1000 lux indoor light. Journal of Materials Chemistry A, 2018, 6, 1995-2003.	5.2	71
1061	Plasmonic enhancement of light-harvesting efficiency in tandem dye-sensitized solar cells using multiplexed gold core/silica shell nanorods. Journal of Power Sources, 2018, 376, 26-32.	4.0	20
1062	Ultrafast interfacial charge transfer from the LUMO+1 in ruthenium(<scp>ii</scp>) polypyridyl quinoxaline-sensitized solar cells. Dalton Transactions, 2018, 47, 561-576.	1.6	12
1063	Molecular Design of Efficient Organic D–A––A Dye Featuring Triphenylamine as Donor Fragment for Application in Dye‣ensitized Solar Cells. ChemSusChem, 2018, 11, 494-502.	3.6	45

#	Article	IF	CITATIONS
1064	Carbon nanotubes: A potential material for energy conversion and storage. Progress in Energy and Combustion Science, 2018, 64, 219-253.	15.8	184
1065	Correlating the Photoelectrode Thickness with the Performance and Stability of Dye-sensitized Solar Cells. , 2018, , .		0
1066	Push-Pull Zinc Porphyrins as Light-Harvesters for Efficient Dye-Sensitized Solar Cells. Frontiers in Chemistry, 2018, 6, 541.	1.8	59
1067	Synthesis and investigation of anchoring unit effect in blue-colored isoindigo-based D–A–π–A organic dyes for dye-sensitized solar cells. Japanese Journal of Applied Physics, 2018, 57, 122302.	0.8	5
1068	Dye-Sensitized Solar Cells: Fundamentals and Current Status. Nanoscale Research Letters, 2018, 13, 381.	3.1	639
1069	Aggregation induced light harvesting of molecularly engineered D-A-ï€-A carbazole dyes for dye-sensitized solar cells. Solar Energy, 2018, 174, 1085-1096.	2.9	31
1070	Photovoltaic cells based on the use of natural pigments: Phycoerythrin from red-antarctic algae as sensitizers for DSSC. MRS Advances, 2018, 3, 3557-3562.	0.5	7
1071	Research Progress on Photosensitizers for DSSC. Frontiers in Chemistry, 2018, 6, 481.	1.8	202
1072	Data on the porphyrin effect and influence of dopant ions on Thaumatococcus daniellii dye as sensitizer in dye-sensitized solar cells. Data in Brief, 2018, 20, 2020-2026.	0.5	5
1073	Tuning of some novel triphenylamine-based organic dyes for their potential application in dye-sensitized solar cells: A theoretical study. Computational and Theoretical Chemistry, 2018, 1142, 39-44.	1.1	13
1074	Electron Bombardment Induced Photoconductivity and High Gain in a Flat Panel Photodetector Based on a ZnS Photoconductor and ZnO Nanowire Field Emitters. ACS Photonics, 2018, 5, 4147-4155.	3.2	34
1075	Suppressing the negative effect of UV light on perovskite solar cells via photon management. Solar Energy, 2018, 173, 1216-1224.	2.9	17
1076	The effect of <i>cis</i> – <i>trans</i> configurational difference on the performance of pyridylimine-based ruthenium sensitizers. Dalton Transactions, 2018, 47, 8356-8363.	1.6	2
1077	Design of novel phenanthrocarbazole dyes for efficient applications in dye-sensitized solar cells. Computational Materials Science, 2018, 151, 34-40.	1.4	15
1078	Solar Energy Conversion. , 2018, , 881-918.		7
1079	Long-term stability of dye-sensitized solar cells using a facile gel polymer electrolyte. New Journal of Chemistry, 2018, 42, 13256-13262.	1.4	28
1080	Facile one-pot synthesis of multi-shaped silver nanoparticles with tunable ultra-broadband absorption for efficient light harvesting in dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2018, 185, 104-110.	3.0	17
1081	Factor Optimization in the Manufacturing Process of Dye-Sensitized Solar Cells Based on Naturally Extracted Dye from a Maqui and Blackberry Mixture (Aristotelia Chilensis and Rubus Glaucus). Journal of Electronic Materials, 2018, 47, 6136-6143.	1.0	13

#	Article	IF	CITATIONS
1082	Recent theoretical progress in the organic/metal-organic sensitizers as the free dyes, dye/TiO2 and dye/electrolyte systems; Structural modifications and solvent effects on their performance. Renewable and Sustainable Energy Reviews, 2018, 94, 609-655.	8.2	26
1083	Regulation of energy levels and kinetics in dye-sensitized solar cells: Synergistic effect of N,N-bis(9,9-dimethyl-fluoren-2-yl)-aniline and 3,4-ethylenedioxythiophene. Journal of Power Sources, 2018, 397, 196-203.	4.0	3
1084	Ruthenium Complexes as Sensitizers in Dye-Sensitized Solar Cells. Inorganics, 2018, 6, 52.	1.2	98
1085	Synthesis of new di-anchoring organic sensitizer based on quinoxaline acceptor for dye-sensitized solar cells. Tetrahedron Letters, 2018, 59, 3322-3325.	0.7	8
1086	A weak-light-responsive TiO2/g-C3N4 composite film: photocatalytic activity under low-intensity light irradiation. Environmental Science and Pollution Research, 2018, 25, 20206-20216.	2.7	10
1087	Comparison of the performance of dye sensitized solar cells fabricated with ruthenium based dye sensitizers: Di-tetrabutylammonium cis-bis(isothiocyanato)bis(2,2′-bipyridyl-4,4′-dicarboxylato)ruthenium(II) (N719) and tris(bipyridine)ruthenium(II) chloride (Ru-BPY), Inorganica Chimica Acta, 2018, 482, 943-950.	1.2	16
1088	A five-fold efficiency enhancement in dye sensitized solar cells fabricated with AlCl3 treated, SnO2 nanoparticle/nanofibre/nanoparticle triple layered photoanode. Journal of Applied Electrochemistry, 2018, 48, 1255-1264.	1.5	8
1089	Effect of substitution position on photoelectronic properties of indolo[3,2-b]carbazole-based metal-free organic dyes. Solar Energy, 2018, 173, 825-833.	2.9	9
1090	Dye sensitized solar cells based on Antarctic Hymenobacter sp. UV11 dyes. Environmental Sustainability, 2018, 1, 89-97.	1.4	24
1091	Dye-Sensitized Solar Cells. , 2018, , 183-239.		6
1092	Three-component one-pot reaction for molecular engineering of novel cost-effective highly rigid quinoxaline-based photosensitizers for highly efficient DSSCs application: Remarkable photovoltage. Dyes and Pigments, 2019, 171, 107683.	2.0	17
1093	Function of Tetrabutylammonium on High-Efficiency Ruthenium Sensitizers for Both Outdoor and Indoor DSC Application. ACS Omega, 2019, 4, 11414-11423.	1.6	11
1094	Cyanoborates. European Journal of Inorganic Chemistry, 2019, 2019, 3539-3560.	1.0	32
1095	Sized dependence and microstructural defects on highly photocatalytic activity based on multisized CdTe quantum dots sensitized TiO ₂ . Surface and Interface Analysis, 2019, 51, 968-981.	0.8	15
1096	Enhancing the triiodide reduction activity of a perovskite-based electrocatalyst for dye-sensitized solar cells through exsolved silver nanoparticles. Journal of Materials Chemistry A, 2019, 7, 17489-17497.	5.2	35
1097	Influence of the electron donor properties of hypericin on its sensitizing ability in DSSCs. Photochemical and Photobiological Sciences, 2019, 18, 2023-2030.	1.6	3
1098	Syntheses and Characterization of a Pair of Isomers of Heteroleptic Bis(Bidentate) Ruthenium(II) Complexes with Two Different Monodentate Ligands. Chemistry - A European Journal, 2019, 25, 16582-16590.	1.7	1
1099	Preparation, Characterization and Photosensitizing Activities of Homoleptic Cu(II) Dithiocarbamates in TiO ₂ â€Based DSSC. ChemistrySelect, 2019, 4, 11140-11148.	0.7	5

		CITATION REPORT		
#	Article		IF	CITATIONS
1100	Long-term QoE Optimization in IoV Based on Cross-layer Resource Management. , 201	9, , .		1
1101	Chlorine-Doped Perovskite Oxide: A Platinum-Free Cathode for Dye-Sensitized Solar Ce Materials & Interfaces, 2019, 11, 35641-35652.	lls. ACS Applied	4.0	15
1102	Novel metal-free organic dyes containing linear planar 11,12-dihydroindolo[2,3-a]carba dye-sensitized solar cells: Effects of ï€ spacer and alkyl chain. Dyes and Pigments, 2019	1201e donor for 9, 164, 213-221.	2.0	30
1103	Synthesis of near-infrared absorbing and fluorescing thiophene-fused BODIPY dyes witl electron-donating groups and their application in dye-sensitised solar cells. New Journa Chemistry, 2019, 43, 1156-1165.	n strong l of	1.4	28
1104	ZnO-based dye-sensitized solar cells. , 2019, , 145-204.			4
1105	Assessment of characteristics and cytotoxic effects of 316L stainless steel coated with oxide nano-structure coating method. Dental Materials Journal, 2019, 38, 604-610.	a new titanium	0.8	2
1106	Triple bond rigidified anthracene-triphenylamine sensitizers for dye-sensitized solar cell Energy, 2019, 188, 55-65.	s. Solar	2.9	20
1107	Highâ€Performance Organic Dyes with Electronâ€Deficient Quinoxalinoid Heterocycle Solar Cells under One Sun and Indoor Light. ChemSusChem, 2019, 12, 3654-3665.	s for Dyeâ€ S ensitized	3.6	51
1108	Energyâ€Loss Reduction as a Strategy to Improve the Efficiency of Dyeâ€Sensitized Sc 2019, 3, 1900253.	ılar Cells. Solar Rrl,	3.1	14
1109	Thiazolocatechol: Electronâ€Withdrawing Catechol Anchoring Group for Dyeâ€Sensiti. ChemPhysChem, 2019, 20, 2689-2695.	zed Solar Cells.	1.0	5
1110	An Intrinsically Conductive Phosphorusâ€Doped Perovskite Oxide as a New Cathode fo Highâ€Performance Dye‧ensitized Solar Cells by Providing Internal Conducting Path 2019, 3, 1900108.	ər ıways. Solar Rrl,	3.1	18
1111	Jahn–Teller Distorted Effects To Promote Nitrogen Reduction over Keggin-Type Phos Catalysts: Insight from Density Functional Theory Calculations. Inorganic Chemistry, 20 7852-7862.	photungstic Acid)19, 58,	1.9	16
1112	Renaissance of Fused Porphyrins: Substituted Methylene-Bridged Thiophene-Fused Stra High-Performance Dye-Sensitized Solar Cells. Journal of the American Chemical Society 9910-9919.	ategy for ', 2019, 141,	6.6	176
1113	Theoretical investigation on ï€-spacer effect of the D‑ï€â€"A organic dyes for dye-se applications: a DFT and TD-BHandH study. Journal of Molecular Modeling, 2019, 25, 92	nsitized solar cell 	0.8	23
1114	Theoretical Design of Dâ^'ï€â€"A–A Sensitizers with Narrow Band Gap and Broad Spe on Boron Dipyrromethene for Dye-Sensitized Solar Cells. Journal of Chemical Informatio Modeling, 2019, 59, 2248-2256.	ectral Response Based on and	2.5	23
1115	Synergic degradation of 2,4,6-trichlorophenol in microbial fuel cells with intimately couphotocatalytic-electrogenic anode. Water Research, 2019, 156, 125-135.	ıpled	5.3	66
1116	Photovoltaic Materials. , 2019, , 1033-1054.			0
1117	A carbon doped anatase TiO2 as a promising semiconducting layer in Ru-dyes based dy cells. Inorganica Chimica Acta, 2019, 489, 263-268.	e-sensitized solar	1.2	19

#	Article	IF	CITATIONS
1118	Triazine-branched mono- and dianchoring organic dyes: Effect of acceptor arms on optical and photovoltaic properties. Dyes and Pigments, 2019, 165, 182-192.	2.0	7
1119	Why the thin film form of a photocatalyst is better than the particulate form for direct solar-to-hydrogen conversion: a poor man's approach. RSC Advances, 2019, 9, 6094-6100.	1.7	65
1120	Numerical Monte Carlo simulations of charge transport across the surface of dye and cocatalyst modified spherical nanoparticles under conditions of pulsed or continuous illumination. Sustainable Energy and Fuels, 2019, 3, 1573-1587.	2.5	3
1121	Ferrocenylethenyl-substituted oxadiazoles with phenolic and nitro anchors as sensitizers in dye sensitized solar cells. New Journal of Chemistry, 2019, 43, 4745-4756.	1.4	13
1122	Effect of regioisomeric substitution patterns on the performance of quinoxaline-based dye-sensitized solar cells. Electrochimica Acta, 2019, 298, 650-662.	2.6	14
1123	Internal path investigation of the acting electrons during the photocatalysis of panchromatic ruthenium dyes in dye-sensitized solar cells. Comptes Rendus Chimie, 2019, 22, 34-45.	0.2	3
1124	Structure-property relationships: "Double-tail versus double-flap―ruthenium complex structures for high efficiency dye-sensitized solar cells. Solar Energy, 2019, 177, 724-736.	2.9	15
1125	Advances in Solar Energy: Solar Cells and Their Applications. Energy, Environment, and Sustainability, 2019, , 75-127.	0.6	1
1126	Novel rod-shaped organic sensitizers for liquid and quasi-solid-state dye-sensitized solar cells. Electrochimica Acta, 2019, 295, 934-941.	2.6	24
1127	Emerging Nanotechnology for Third Generation Photovoltaic Cells. , 2019, , 99-133.		1
1128	Geometrical structure, electronic and nonlinear optical properties of squareâ€planar heteroleptic complexes containing bypridine and pyrazine dithiolate derivatives as dyeâ€sensitized solar cell: A DFT study. Applied Organometallic Chemistry, 2019, 33, e4626.	1.7	11
1129	Phthalocyanines for dye-sensitized solar cells. Coordination Chemistry Reviews, 2019, 381, 1-64.	9.5	269
1130	Fluorine doped TiO2/mesocellular foams with an efficient photocatalytic activity. Catalysis Today, 2019, 327, 340-346.	2.2	38
1131	Blue-colored dyes featuring a diketopyrrolopyrrole spacer for translucent dye-sensitized solar cells. Dyes and Pigments, 2020, 173, 107840.	2.0	18
1132	Influence of carbonyl group on photocurrent density of novel fluorene based D-ï€-A photosensitizers: Synthesis, photophysical and photovoltaic studies. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 387, 112133.	2.0	18
1133	The photovoltaic performance of highly asymmetric phthalocyanine-sensitized brookite-based solar cells. Optik, 2020, 200, 163413.	1.4	8
1134	Photo-induced water oxidation via cascade charge transfer on nanostructured BiVO4/TiO2 modified with dye and co-catalyst molecules. Inorganica Chimica Acta, 2020, 500, 119223.	1.2	7
1135	DFT characterization and design of anthracene-based molecules for improving spectra and charge transfer. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 227, 117627.	2.0	5

#	Article	IF	CITATIONS
1136	Photosensitizing role of R-phycoerythrin red protein and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1960" altimg="si92.svg"><mml:mi>î²</mml:mi>-carboline alkaloids in Dye sensitized solar cell. Electrochemical and spectroscopic characterization. Energy Reports, 2020, 6, 25-36.</mml:math 	2.5	14
1137	Theoretical design of new triphenylamine based dyes for the fabrication of DSSCs: A DFT/TD-DFT study. Materials Today Communications, 2020, 22, 100731.	0.9	23
1138	Fabrication of optimized eco-friendly dye-sensitized solar cells by extracting pigments from low-cost native wild plants. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 388, 112191.	2.0	19
1139	Theoretical Study on Factors Influencing the Efficiency of Dâ€‴i€â€²â€"A′–ïE–A Isoindigo-Based Sensitizer Dye-Sensitized Solar Cells. Journal of Electronic Materials, 2020, 49, 318-332.	for 1.0	11
1140	Electrocatalytic activity of disulfide/thiolate with graphene nanosheets as an efficient counter electrode for DSSCs: A DFT study. Materials Today Communications, 2020, 22, 100742.	0.9	7
1141	Molecular Engineering of Simple Metalâ€Free Organic Dyes Derived from Triphenylamine for Dyeâ€Sensitized Solar Cell Applications. ChemSusChem, 2020, 13, 212-220.	3.6	31
1142	Influence of Oxidized Graphene Quantum Dots as Photosensitizers. Journal of Nanoscience and Nanotechnology, 2020, 20, 3432-3436.	0.9	5
1143	Revolution of Perovskite. Materials Horizons, 2020, , .	0.3	10
1144	A review on spectral converting nanomaterials as a photoanode layer in dyeâ€sensitized solar cells with implementation in energy storage devices. Energy Storage, 2020, 2, e120.	2.3	14
1145	Alkyl-Group-Wrapped Unsymmetrical Squaraine Dyes for Dye-Sensitized Solar Cells: Branched Alkyl Chains Modulate the Aggregation of Dyes and Charge Recombination Processes. ACS Applied Materials & Interfaces, 2020, 12, 2555-2565.	4.0	31
1146	The effect of bis-carboxylic groups of squarylium dyes on the efficiency of dye-sensitized solar cells. Chemical Papers, 2020, 74, 1769-1778.	1.0	2
1147	Electrocatalytic activity of disulfide/thiolate with graphene nanosheets as an efficient counter electrode for DSSCs: A DFT study. Materials Today Communications, 2020, 22, 100740.	0.9	2
1148	Ionic Liquids Roles and Perspectives in Electrolyte for Dye-Sensitized Solar Cells. Sustainability, 2020, 12, 7598.	1.6	40
1149	New tetrazole based dyes as efficient co-sensitizers for dsscs: Structure-properties relationship. Organic Electronics, 2020, 87, 105964.	1.4	14
1150	Fine-Tuning by Triple Bond of Carbazole Derivative Dyes to Obtain High Efficiency for Dye-Sensitized Solar Cells with Copper Electrolyte. ACS Applied Materials & Interfaces, 2020, 12, 46397-46405.	4.0	27
1151	Phenothiazine (or phenoxazine) based (D–π–A)-L2-(A–π–D–π–A)2-type organic dyes with five anch for efficient dye-sensitized solar cells. Solar Energy, 2020, 212, 220-230.	ors 2.9	17
1152	Unsymmetrical Squaraine Dyes for Dye-Sensitized Solar Cells: Position of the Anchoring Group Controls the Orientation and Self-Assembly of Sensitizers on the TiO ₂ Surface and Modulates Its Flat Band Potential. Journal of Physical Chemistry C, 2020, 124, 18436-18451.	1.5	14
1153	Optical and photovoltaic properties of substituted alizarin dyes for dye-sensitized solar cells application. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-14.	1.2	3

#	Article	IF	CITATIONS
1154	Effect of Multidonor and Insertion Position of a Chromophore on the Photovoltaic Properties of Phenoxazine Dyes. ACS Omega, 2020, 5, 22621-22630.	1.6	7
1155	Regulating Back Electron Transfer through Donor and Ï€â€Spacer Alterations in Benzothieno[3,2â€b]indoleâ€based Dyeâ€sensitized Solar Cells. Chemistry - an Asian Journal, 2020, 15, 3503-3512.	1.7	14
1156	Ligands and Coordination Compounds Used as New Photosensitized Materials for the Construction of Solar Cells. , 2020, , .		2
1157	N-methylferrocenyl-N-ethylhydroxy ammonium nitrate: synthesis, characterization, and sensitizer in dye-sensitized solar cells. Transition Metal Chemistry, 2020, 45, 457-465.	0.7	3
1158	Anthracene Organic Sensitizer with Dual Anchors for Efficient and Robust Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2020, 3, 5479-5486.	2.5	14
1159	Mini review on the performance of Schiff base and their metal complexes as photosensitizers in dye-sensitized solar cells. Synthetic Communications, 2020, 50, 2237-2249.	1.1	27
1160	Thioalkyl-Functionalized Bithiophene (SBT)-Based Organic Sensitizers for High-Performance Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 15071-15079.	4.0	27
1161	A Blue Photosensitizer Realizing Efficient and Stable Green Solar Cells via Color Tuning by the Electrolyte. Advanced Materials, 2020, 32, 2000193.	11.1	24
1162	Modification of Physical and Chemical Properties of Titanium Dioxide (TiO2) by Ion Implantation for Dye Sensitized Solar Cells. , 2020, , .		5
1163	Influence of Different Molecular Design Strategies on Photovoltaic Properties of a Series of Triphenylamine-Based Organic Dyes for Dye-Sensitized Solar Cells: Insights from Theoretical Investigations. Journal of Physical Chemistry C, 2020, 124, 15036-15044.	1.5	17
1164	Modulating the molecular configuration by varying linking bridge for double-anchored dye-sensitized solar cells. Journal of Chemical Physics, 2020, 152, 244708.	1.2	5
1165	Ruthenium complexes based dye sensitized solar cells: Fundamentals and research trends. Solar Energy, 2020, 207, 59-76.	2.9	90
1166	Synthesis, properties and photovoltaic performance in dye-sensitized solar cells of three meso-diphenylbacteriochlorins bearing a dual-function electron-donor. RSC Advances, 2020, 10, 6172-6178.	1.7	5
1167	Computational studies of Ni(II) photosensitizers complexes containing 1,1′-bis(diphenylphosphino)ferrocene and dithio ligands. Canadian Journal of Chemistry, 2020, 98, 194-203.	0.6	4
1168	Efficient Anthryl Dye Enhanced by an Additional Ethynyl Bridge for Dye-Sensitized Module with Large Active Area to Drive Indoor Appliances. ACS Applied Energy Materials, 2020, 3, 2744-2754.	2.5	9
1169	Organic-Inorganic Hybrid Materials for Room Temperature Light-Activated Sub-ppm NO Detection. Nanomaterials, 2020, 10, 70.	1.9	11
1170	Synthesis and characterization of novel tetra anchoring A2-D-D-D-A2 architecture sensitizers for efficient dye-sensitized solar cells. Solar Energy, 2020, 198, 25-35.	2.9	28
1171	Significance of five membered heterocycles in fine tuning of HOMO-LUMO gap of simple donor-acceptor system as organic solar cell material: A DFT approach. Materials Today: Proceedings, 2020. 33. 1229-1233.	0.9	5

		CITATION REPORT		
#	Article		IF	Citations
1172	Efficient phenothiazine-ruthenium sensitizers with high open-circuit voltage (Voc) for h performance dye-sensitized solar cells. Dyes and Pigments, 2020, 180, 108454.	igh	2.0	8
1173	Rational Design of Phenothiazine-Based Organic Dyes for Dye-Sensitized Solar Cells: Th ï€-Spacers and Intermolecular Aggregation on Their Photovoltaic Performances. Journa Chemistry C, 2020, 124, 9233-9242.	e Influence of of Physical	1.5	50
1174	2-Hexylthiophene-substituted Alizarin-based (D–Ĩ€â€"A) Organic Dyes for Dye-sensit Applications: Density Functional Theory and UV–Vis Studies. Journal of Chemical Res 13-20.	ized Solar Cell earch, 2021, 45,	0.6	2
1175	Tuning the donating strength of dye sensitizers using molecular electrostatic potential Journal of Chemistry, 2021, 45, 2496-2507.	analysis. New	1.4	5
1176	Hybrid photoanode of TiO2-ZnO synthesized by co-precipitation route for dye-sensitize using phyllanthus reticulatas pigment sensitizer. Solar Energy, 2021, 214, 517-530.	d solar cell?	2.9	20
1177	Development of dye sensitized solar cells. E3S Web of Conferences, 2021, 261, 01046		0.2	Ο
1178	Theoretical and experimental study of solar cells based on nanostructured films of TiO sensitized with natural dyes extracted from <i>Zea mays</i> and <i>Bixa orellana</i> . I 2021, 11, 9086-9097.	:sub>2 RSC Advances,	1.7	7
1179	A novel multifunctional polymer ionic liquid as an additive in iodide electrolyte combine mirror coating counter electrodes for quasi-solid-state dye-sensitized solar cells. Journa Materials Chemistry A, 2021, 9, 4907-4921.	ed with silver l of	5.2	17
1180	Insight into the effects of the anchoring groups on the photovoltaic performance of ur phthalocyanine based dye-sensitized solar cells. Dalton Transactions, 2021, 50, 2981-2	isymmetrical 996.	1.6	13
1181	A Review on Natural Dye Sensitized Solar Cells: Dye Extraction, Application and Compa Performance. Advanced Engineering Forum, 0, 39, 63-73.	ring the	0.3	3
1182	Improving the Efficiency of Dye-Sensitized Solar Cells via the Impact of Triphenylamine Organic Additives on Biodegradable Cellulose Polymer Gel Electrolytes. Energy & F 4273-4282.	Based Inventive Fuels, 2021, 35,	2.5	17
1183	Isomeric Pyrene–Porphyrins for Efficient Dye-Sensitized Solar Cells: An Unexpected E the Photovoltaic Performance upon Structural Modification. ACS Applied Materials &ar 2021, 13, 7152-7160.	nhancement of np; Interfaces,	4.0	13
1184	Comparative Studies on the Structure–Performance Relationships of Phenothiazine- Dyes for Dye-Sensitized Solar Cells. ACS Omega, 2021, 6, 6817-6823.	3ased Organic	1.6	16
1185	Structural Engineering of Organic D–Aâ~ï€â€"A Dyes Incorporated with a Dibutyl-Flu High-Performance Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2 23513-23522.	orene Moiety for 2021, 13,	4.0	30
1186	Thiophene-fused carbazole derivative dyes for high-performance dye-sensitized solar ce Tetrahedron, 2021, 88, 132124.	lls.	1.0	5
1187	The novel approach of stability aspect in organic oligoene dye for dye-sensitized solar c applications. Journal of Solid State Electrochemistry, 2021, 25, 1949-1958.	ell	1.2	1
1188	Enhancement of Near-Infrared Singlet–Triplet Absorption of Ru(II) Sensitizers for Imp Conversion Efficiency of Solar Cells. ACS Applied Energy Materials, 2021, 4, 7052-7063	roving	2.5	11
1189	Synthesis of high polydispersity index polylactic acid and its application as gel electroly fabrication of dye-sensitized solar cells. Journal of Polymer Research, 2021, 28, 1.	te towards	1.2	9

#	Article	IF	CITATIONS
1190	Effect of triptycene unit on the performance of porphyrin-based dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 416, 113325.	2.0	7
1191	A Molecular Engineering Strategy of Phenylamine-Based Zinc-Porphyrin Dyes for Dye-Sensitized Solar Cells: Synthesis, Characteristics, and Structure–Performance Relationships. ACS Applied Energy Materials, 2021, 4, 9267-9275.	2.5	17
1192	Exploring the screening of perylene based organic sensitizers with different lengths and functional groups of acceptors via computational spectroscopic analysis. Chemical Data Collections, 2021, 34, 100729.	1.1	5
1193	Plasmonic Dye‧ensitized Solar Cells: Fundamentals, Recent Developments, and Future Perspectives. ChemistrySelect, 2021, 6, 9337-9350.	0.7	6
1194	Recent advances of organometallic complexes in emerging photovoltaics. Journal of Polymer Science, 2022, 60, 865-916.	2.0	23
1195	Nanostructured perovskite oxides for dye-sensitized solar cells. Journal Physics D: Applied Physics, 2021, 54, 493001.	1.3	6
1196	Optimal Dye Sensitized Solar Cell and Photocapacitor Performance with Efficient Electrocatalytic SWCNH Assisted Carbon Electrode. ACS Applied Energy Materials, 2021, 4, 11225-11233.	2.5	14
1197	Dual-channel D-(Ï€-A)2 phenoxazine/phenothiazine dyes with an auxiliary N-alkoxy benzoic acid anchor for fabrication of dye-sensitized solar cells. Solar Energy, 2021, 225, 173-183.	2.9	9
1198	Kinetics process of room temperature phosphorescence and fluorescence of gadolinium porphyrin in aqueous solution. Journal of Rare Earths, 2021, 39, 1187-1193.	2.5	4
1199	Electrolytes, Dyes, and Perovskite Materials in Third Generation Photovoltaic Cells. , 2022, , 621-634.		7
1200	Recent improvements in dye-sensitized solar cells. , 2021, , 509-544.		2
1201	Design, Engineering, and Evaluation of Porphyrins for Dye-Sensitized Solar Cells. , 2019, , 351-381.		4
1202	Performance evaluation of natural native dyes as photosensitizer in dye-sensitized solar cells. Optical Materials, 2020, 110, 110441.	1.7	34
1203	The use of main-group elements to mimic catalytic behavior of transition metals I: reduction of dinitrogen to ammonia catalyzed by bis(Lewis base)borylenium diradicals. Physical Chemistry Chemical Physics, 2020, 22, 28423-28433.	1.3	5
1204	Application of Multiporphyrin Arrays to Solar Energy Conversion. , 2012, , 439-498.		1
1205	Towards the Development of Functionalized PolypyridineLigands for Ru(II) Complexes as Photosensitizers inDye-Sensitized Solar Cells (DSSCs). Molecules, 2014, 19, 12421-12460.	1.7	58
1206	Organic Solar Cells Modeling and Simulation. Advances in Chemical and Materials Engineering Book Series, 0, , 120-137.	0.2	1
1207	The Abuse Potential of α-Piperidinopropiophenone (PIPP) and α-Piperidinopentiothiophenone (PIVT), Two New Synthetic Cathinones with Piperidine Ring Substituent. Biomolecules and Therapeutics, 2017, 25, 122-129.	1.1	10

#	Article	IF	CITATIONS
1208	Properties of Blocking Layer with Ag Nano Powder in a Dye Sensitized Solar Cell. Journal of the Korean Ceramic Society, 2016, 53, 105-109.	1.1	7
1209	Properties of Working Electrodes with Nano YBO3:Eu3+ Phosphor in a Dye Sensitized Solar Cell. Journal of the Korean Ceramic Society, 2016, 53, 253-257.	1.1	3
1210	Photocatalytic Degradation of Organic Contaminants by BiVO4/Graphene Oxide Nanocomposite. Walailak Journal of Science and Technology, 2018, 15, 787-792.	0.5	7
1211	Density Functional Theory Study on Triphenylamine-based Dye Sensitizers Containing Different Donor Moieties. Bulletin of the Korean Chemical Society, 2010, 31, 2531-2536.	1.0	15
1212	Influence of Lithium Ions on the Ion-coordinating Ruthenium Sensitizers for Nanocrystalline Dye-sensitized Solar Cells. Bulletin of the Korean Chemical Society, 2011, 32, 3031-3038.	1.0	2
1213	Density Functional Theory Study on D-Ï€-A-type Organic Dyes Containing Different Electron-Donors for Dye-Sensitized Solar Cells. Bulletin of the Korean Chemical Society, 2013, 34, 3211-3217.	1.0	15
1214	Improved Energy Conversion Efficiency of Dye-sensitized Solar Cells Fabricated using Open-ended TiO ₂ Nanotube Arrays with Scattering Layer. Bulletin of the Korean Chemical Society, 2014, 35, 1165-1168.	1.0	11
1215	Blocking Layers Deposited on TCO Substrate and Their Effects on Photovoltaic Properties in Dye-Sensitized Solar Cells. Journal of Electrochemical Science and Technology, 2011, 2, 68-75.	0.9	7
1216	Isotopic Substitution as a Strategy to Control Non-Adiabatic Dynamics in Photoelectrochemical Cells: Surface Complexes between TiO2and Dicyanomethylene Compounds. Japanese Journal of Applied Physics, 2012, 51, 10NE03.	0.8	4
1217	Carbazole Dyes with Ether Groups for Dye-Sensitized Solar Cells: Effect of Negative Charges in Dye Molecules on Electron Lifetime. Japanese Journal of Applied Physics, 2012, 51, 10NE14.	0.8	3
1218	Rationalization of excited state energy transfer in D–π–A porphyrin sensitizers enhancing efficiency in dye-sensitized solar cells. Materials Advances, 0, , .	2.6	2
1219	Preparation of lamina-shape TiO2 nanoarray electrode and its electron transport in dye-sensitized solar cells. Wuli Xuebao/Acta Physica Sinica, 2011, 60, 088101.	0.2	2
1220	Preparation and photoelectrochemical properties of multilayer TiO2/CdSe structures. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 108201.	0.2	2
1221	Research of fluorescent properties of photo-induced electron transfer of 5(6)-carboxyfluorescein dye-sensitized TiO2 nanoparticles. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 090505.	0.2	0
1222	Synthesis, Processing, and Application of Nanostructures. , 2012, , 1-50.		0
1223	A theoretical study on third generation photovoltaic technology: dye-sensitized Solar Cells. Renewable Energy and Power Quality Journal, 0, , 157-160.	0.2	3
1224	Synthesis, Processing, and Application of Nanostructures. , 2012, , 16-65.		0
1225	Passivating the Surface of TiO2 Photoelectrodes with Nb2O5 and Al2O3 for High-Efficiency Dye-Sensitized Solar Cells. Nanostructure Science and Technology, 2014, , 201-210.	0.1	0

	C	tation Report	
#	Article	IF	Citations
1229	Electrical Characteristics of Dye Sensitized Solar Cell According to Condition of Dye Adsorption. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2015, 28, 737-742.	0.0	0
1230	Dye Sensitized Solar Cells. , 2016, , 873-873.		95
1231	Buckypaper-Cored Novel Photovoltaic Sensors for In-Situ Structural Health Monitoring of Composite Materials Using Hybrid Quantum Dots. Conference Proceedings of the Society for Experimental Mechanics, 2016, , 73-79.	0.3	1
1232	A Study on the TCO-less Dye-Sensitized Solar Cell Fabricated with Using Conductive Sputtering Carbon Electrodes. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2016, 29, 725-728.	0.0	0
1233	Sustainable Design of Photovoltaics. , 2017, , 416-493.		0
1234	Sustainable Design of Photovoltaics. Advances in Chemical and Materials Engineering Book Series, 2017, , 412-489.	0.2	2
1235	Photovoltaic Materials. , 2018, , 1-22.		0
1236	Photosynthesis: Miracle of Organic Life and Its Technologies. Journal of Materials Science and Engineering B, 2017, 7, .	0.2	0
1238	Perovskite Materials in Photovoltaics. Materials Horizons, 2020, , 175-207.	0.3	1
1239	Improving of Safranin-O Characteristics as a Photosynthesis Through Adjusting pH Value in Dye-sensitized Solar Cells. ECS Journal of Solid State Science and Technology, 2020, 9, 065022.	0.9	9
1240	Ferrocene Appended Asymmetric Sensitizers with Azine Spacers with phenolic/nitro anchors for Dye-Sensitized Solar Cells. Journal of Molecular Structure, 2022, 1249, 131630.	1.8	7
1241	Quercetin-based donor-ï€-acceptor organic dyes for a dye-sensitized solar cell: A DFT and TD-DFT stud AlP Conference Proceedings, 2020, , .	ly. 0.3	0
1242	A Bioprinted Tubular Intestine Model Using a Colonâ€ S pecific Extracellular Matrix Bioink. Advanced Healthcare Materials, 2022, 11, e2101768.	3.9	15
1243	Molecular engineering of the fused azacycle donors in the D-A-Ï€-A metal-free organic dyes for efficient dye-sensitized solar cells. Dyes and Pigments, 2022, 197, 109922.	2.0	20
1244	Organic Solar Cells Modeling and Simulation. , 0, , 1934-1951.		0
1245	Synthesis, characterization and application of Ru(II) complexes containing pyridil ligands for dye-sensitized solar cells. Materials Science-Poland, 2020, 38, 450-458.	0.4	2
1246	Construction of Ni doped MoO3 nanostructures and their application as counter electrode in dye-sensitized solar cells. Inorganic Chemistry Communication, 2022, 135, 109079.	1.8	14
1247	The hybrid halide perovskite: Synthesis strategies, fabrications, and modern applications. Ceramics International, 2022, 48, 7325-7343.	2.3	17

#	Article	IF	CITATIONS
1248	Enhanced performance of dye-sensitized solar cells by co-sensitization of metal-complex and organic dye. Solar Energy, 2021, 230, 1133-1140.	2.9	13
1249	Molecular engineering of ruthenium-based photosensitizers with superior photovoltaic performance in DSSCs: novel N-alkyl 2-phenylindole-based ancillary ligands. New Journal of Chemistry, 2022, 46, 2739-2746.	1.4	1
1250	Molecular modeling and simulation for the design of dye sensitizers with mono- and di-substituted donor moieties. Journal of Computational Electronics, 2022, 21, 52-60.	1.3	3
1251	Advancements, frontiers and analysis of metal oxide semiconductor, dye, electrolyte and counter electrode of dye sensitized solar cell. Solar Energy, 2022, 233, 378-407.	2.9	52
1252	Pyridine enhances the efficiency of 1D-CdS nanowire solar cells fabricated using novel organic dyes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640, 128500.	2.3	8
1253	Perspective on the rational design strategies of quinoxaline derived organic sensitizers for dye-sensitized solar cells (DSSC). Dyes and Pigments, 2022, 199, 110093.	2.0	18
1254	Synthesis and solar cell power conversion efficiency improvement of π-extended triphenylamine dyes for indoor light-based applications. Applied Nanoscience (Switzerland), 2023, 13, 2271-2276.	1.6	0
1256	Passivating the interface between halide perovskite and SnO2 by capsaicin to accelerate charge transfer and retard recombination. Applied Physics Letters, 2022, 120, .	1.5	4
1257	Ionic liquids on oxide surfaces. Journal of Physics Condensed Matter, 2022, 34, 213002.	0.7	4
1258	In2O3 Based Hybrid Materials: Interplay between Microstructure, Photoelectrical and Light Activated NO2 Sensor Properties. Chemosensors, 2022, 10, 135.	1.8	6
1259	Recent developments on green synthesised nanomaterials and their application in dye-sensitised solar cells. International Journal of Ambient Energy, 2022, 43, 7133-7149.	1.4	4
1260	Improved Light Harvesting of Fiber-Shaped Dye-Sensitized Solar Cells by Using a Bacteriophage Doping Method. Nanomaterials, 2021, 11, 3421.	1.9	3
1261	CHAPTER 8. Dye-sensitised Solar Cells. RSC Nanoscience and Nanotechnology, 0, , 268-297.	0.2	0
1264	Fucoxanthin from the Antarctic Himantothallus grandifollius as a sensitizer in DSSC. Journal of the Iranian Chemical Society, 0, , 1.	1.2	2
1265	The improved performance of dyeâ€sensitized solar cells using coâ€sensitization and polymer gel electrolyte. International Journal of Energy Research, 2022, 46, 12974-12987.	2.2	7
1266	Dithienylnaphthalenes and quaterthiophenes substituted with electron-withdrawing groups as n-type organic semiconductors for organic field-effect transistors. Journal of Materials Chemistry C, 2022, 10, 10058-10074.	2.7	3
1267	Nile red based dye D–π–A as a promising material for solar cell applications. Chemical Papers, 0, , .	1.0	0
1268	Efficient Solar Cells Sensitized by Organic Concerted Companion Dyes Suitable for Indoor Lamps. ChemSusChem, 2022, 15, .	3.6	5

ARTICLE IF CITATIONS Photocatalytic and optical properties of (Mg:La) CaTiO3: Insights from first principles studies. Journal 1269 1.9 6 of Physics and Chemistry of Solids, 2022, 169, 110830. Novel D-A-Ï€-A1 Type Organic Sensitizers from 4,7-Dibromobenzo[d][1,2,3]thiadiazole and Indoline 1270 1.7 Donors for Dye-Sensitized Solar Cells. Molecules, 2022, 27, 4197 Efficient and Stable Fiber Dye-Sensitized Solar Cells Based on Solid-State Li-TFSI Electrolytes with 1271 1.9 4 4-Oxo-TEMPO Derivatives. Nanomaterials, 2022, 12, 2309. On the Morphology of Nanostructured TiO2 for Energy Applications: The Shape of the Ubiquitous 1.9 Nanomaterial. Nanomaterials, 2022, 12, 2608. BODIPY Dyes in Solar Energy. Impact of Meat Consumption on Health and Environmental Sustainability, 1273 0.4 0 2022, , 119-142. Effect of Iodide-Based Organic Salts and Ionic Liquid Additives in Dye-Sensitized Solar Cell Performance. Nanomaterials, 2022, 12, 2988. 1274 Modified Hagfeldt Donor for Organic Dyes That Are Compatible with Copper Electrolytes in Efficient 1275 2.5 2 Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2022, 5, 13544-13553. Near-infrared light harvesting of upconverting Y2O3:Er3+ nanoparticles and their photovoltaic 2.6 application. Electrochimica Acta, 2022, 436, 141407. Green light harvester by porphyrin derivative complexes: The influence of metal in photovoltaic on 1277 0.9 3 Dye-Sensitized Solar Célls. Results in Chemistry, 2022, 4, 100646. Solvent-Dependent Functional Aggregates of Unsymmetrical Squaraine Dyes on TiO₂ 1278 1.6 Surface for Dye-Sensitized Solar Cells. Langmuir, 2022, 38, 14808-14818. Energy level tuning of push-pull porphyrin sensitizer by trifluoromethyl group for dye-sensitized 1279 0.4 1 solar cells. Journal of Porphyrins and Phthalocyanines, 2023, 27, 145-156. Optimal processing methodology for futuristic natural dye-sensitized solar cells and novel 1280 2.0 18 applications. Dyes and Pigments, 2023, 210, 110997. Visibleâ€Lightâ€Active Unsymmetrical Squaraine Dyes with 1â€...V of Openâ€Circuit Voltage for Dyeâ€Sensitized $_{1.5}$ 1281 4 Solar Cells. ChemPhotoChem, 2023, 7, . Insight on the choice of sensitizers/dyes for dye sensitized solar cells: A review. Dyes and Pigments, 2023, 213, 111087. 34 Enhancement of photovoltaic performance in ferrocenyl π-extended multi donorâ€"Ĩ€â€"acceptor (D–Dâ€2–π–A) dyes using chenodeoxycholic acid as a dye co-adsorbent for dye sensitized solar cells. RSC 1.7 1283 6 Advances, 2023, 13, 9761-9772. Novel triphenylamine-based porphyrins: Synthesis, structural characterization, and theoretical investigation for dye-sensitized solar cell applications. Journal of Molecular Structure, 2023, 1281, 1284 1.8 135147 Quantum chemistry simulations in an undergraduate project: tellurophenes as narrow bandgap 1285 0.3 1 semiconductor materials. European Journal of Physics, 2023, 44, 025401. Exploration of Diverse Interactions of <scp>l</scp>-Methionine in Aqueous Ionic Liquid Solutions: 1.6 Insights from Experimental and Theoretical Studies. ACS Omega, 2023, 8, 12098-12123.

		CITATION REPORT		
#	Article		IF	CITATIONS
1288	Potency Complex Compound Mn(II)-TMPyP as a Dye Sensitizer on DSSC. , 2023, , 222	-231.		0
1295	Ionic Liquid-Based Electrolyte for Application in Photoelectrochemical cells: A Future Ir 326-353.	nsight. , 2023, ,		0
1300	Panchromatic porphyrin-based dye-sensitized solar cells: from cosensitization to conce companion dye approaches. Materials Chemistry Frontiers, 0, , .	erted	3.2	0
1307	Metal oxides for dye-sensitized solar cells. , 2024, , 543-576.			0