Vaccinia viruses with mutations in the E3L gene as pote attenuated vaccines: Intra-nasal vaccination

Vaccine

26, 664-676

DOI: 10.1016/j.vaccine.2007.11.045

Citation Report

#	Article	IF	CITATIONS
1	Vaccinia virus entry/fusion complex subunit A28 is a target of neutralizing and protective antibodies. Virology, 2008, 380, 394-401.	1.1	32
2	Vaccinia viruses with mutations in the E3L gene as potential replication-competent, attenuated vaccines: Scarification vaccination. Vaccine, 2008, 26, 2860-2872.	1.7	41
3	Vaccinia Virus Subverts a Mitochondrial Antiviral Signaling Protein-Dependent Innate Immune Response in Keratinocytes through Its Double-Stranded RNA Binding Protein, E3. Journal of Virology, 2008, 82, 10735-10746.	1.5	49
4	Disparity between Levels of In Vitro Neutralization of Vaccinia Virus by Antibody to the A27 Protein and Protection of Mice against Intranasal Challenge. Journal of Virology, 2008, 82, 8022-8029.	1.5	29
5	Vaccinia Virus K1L and C7L Inhibit Antiviral Activities Induced by Type I Interferons. Journal of Virology, 2009, 83, 10627-10636.	1.5	60
6	Modified vaccinia virus Ankara can activate NF-κB transcription factors through a double-stranded RNA-activated protein kinase (PKR)-dependent pathway during the early phase of virus replication. Virology, 2009, 391, 177-186.	1.1	19
7	Vaccinia virus vaccines: Past, present and future. Antiviral Research, 2009, 84, 1-13.	1.9	211
8	Smallpox vaccines for biodefense. Vaccine, 2009, 27, D73-D79.	1.7	50
9	Recombinant Vectors as Influenza Vaccines. Current Topics in Microbiology and Immunology, 2009, 333, 243-267.	0.7	17
11	Vaccinia virus A35R inhibits MHC class II antigen presentation. Virology, 2010, 397, 176-186.	1.1	41
12	The Poxvirus A35 Protein Is an Immunoregulator. Journal of Virology, 2010, 84, 418-425.	1.5	18
13	Genomic Expression Libraries for the Identification of Cross-Reactive Orthopoxvirus Antigens. PLoS ONE, 2011, 6, e21950.	1.1	8
14	Host-Range Restriction of Vaccinia Virus E3L Deletion Mutant Can Be Overcome In Vitro, but Not In Vivo, by Expression of the Influenza Virus NS1 Protein. PLoS ONE, 2011, 6, e28677.	1.1	13
15	Smallpox vaccines: targets of protective immunity. Immunological Reviews, 2011, 239, 8-26.	2.8	178
16	Roles of Vaccinia Virus Genes E3L and K3L and Host Genes PKR and RNase L during Intratracheal Infection of C57BL/6 Mice. Journal of Virology, 2011, 85, 550-567.	1.5	49
17	Comparative Analysis of Poxvirus Orthologues of the Vaccinia Virus E3 Protein: Modulation of Protein Kinase R Activity, Cytokine Responses, and Virus Pathogenicity. Journal of Virology, 2011, 85, 12280-12291.	1.5	38
18	The Amino Terminus of the Vaccinia Virus E3 Protein Is Necessary To Inhibit the Interferon Response. Journal of Virology, 2012, 86, 5895-5904.	1.5	37
19	Characterization of an attenuated TE3L-deficient vaccinia virus Tian Tan strain. Antiviral Research, 2012, 96, 324-332.	1.9	10

#	ARTICLE	IF	Citations
20	Deletion of the vaccinia virus F13L gene results in a highly attenuated virus that mounts a protective immune response against subsequent vaccinia virus challenge. Antiviral Research, 2012, 93, 160-166.	1.9	16
21	Evolution of New Variants/Mutants of JE Virus, Its Effect on Neurovirulence, Antigenicity, Host Immune Responses and Disease Transmission in Endemic Areas. Journal of Viruses, 2014, 2014, 1-35.	0.4	3
22	Enhancing poxvirus vectors vaccine immunogenicity. Human Vaccines and Immunotherapeutics, 2014, 10, 2235-2244.	1.4	73
23	Raccoonpoxvirus safety in immunocompromised and pregnant mouse models. Vaccine, 2014, 32, 3977-3981.	1.7	13
24	Immunogenicity and virulence of attenuated vaccinia virus Tian Tan encoding HIV-1 muti-epitope genes, p24 and cholera toxin B subunit in mice. Journal of Virological Methods, 2015, 219, 1-9.	1.0	3
25	Vaccination with a Live Attenuated Cytomegalovirus Devoid of a Protein Kinase R Inhibitory Gene Results in Reduced Maternal Viremia and Improved Pregnancy Outcome in a Guinea Pig Congenital Infection Model. Journal of Virology, 2015, 89, 9727-9738.	1.5	27
26	Seven major genomic deletions of vaccinia virus Tiantan strain are sufficient to decrease pathogenicity. Antiviral Research, 2016, 129, 1-12.	1.9	9
27	HIV/AIDS Vaccine Candidates Based on Replication-Competent Recombinant Poxvirus NYVAC-C-KC Expressing Trimeric gp140 and Gag-Derived Virus-Like Particles or Lacking the Viral Molecule B19 That Inhibits Type I Interferon Activate Relevant HIV-1-Specific B and T Cell Immune Functions in Nonhuman Primates. Journal of Virology, 2017, 91	1.5	26
28	Generation of an Attenuated Tiantan Vaccinia Virus Strain by Deletion of Multiple Genes. Frontiers in Cellular and Infection Microbiology, 2017, 7, 462.	1.8	7
29	Immunization of Pigs by DNA Prime and Recombinant Vaccinia Virus Boost To Identify and Rank African Swine Fever Virus Immunogenic and Protective Proteins. Journal of Virology, 2018, 92, .	1.5	75
30	Immunogenicity of recombinant vaccinia virus vaccines co-expressing GP3/GP5 of European PRRSV and Cap protein of PCV2 in pigs. Applied Microbiology and Biotechnology, 2018, 102, 1145-1154.	1.7	4
31	Modulating Vaccinia Virus Immunomodulators to Improve Immunological Memory. Viruses, 2018, 10, 101.	1.5	51
32	Poxviral E3L ortholog (Viral Interferon resistance gene) of orf viruses of sheep and goats indicates species-specific clustering with heterogeneity among parapoxviruses. Cytokine, 2019, 120, 15-21.	1.4	8
33	Myxoma Virus-Encoded Host Range Protein M029: A Multifunctional Antagonist Targeting Multiple Host Antiviral and Innate Immune Pathways. Vaccines, 2020, 8, 244.	2.1	9
34	Construction and Immunogenicity of Recombinant Vaccinia Virus Vaccine Against Japanese Encephalitis and Chikungunya Viruses Infection in Mice. Vector-Borne and Zoonotic Diseases, 2020, 20, 788-796.	0.6	5
35	Single Immunization of a Vaccine Vectored by a Novel Recombinant Vaccinia Virus Affords Effective Protection Against Respiratory Syncytial Virus Infection in Cotton Rats. Frontiers in Immunology, 2021, 12, 747866.	2.2	7
36	Third-generation smallpox vaccine strain-based recombinant vaccines for viral hemorrhagic fevers. Vaccine, 2021, 39, 6174-6181.	1.7	9
37	Insertion of Vaccinia Virus C7L Host Range Gene into NYVAC-B Genome Potentiates Immune Responses against HIV-1 Antigens. PLoS ONE, 2010, 5, e11406.	1.1	59

#	Article	IF	CITATION
38	Attenuation of Vaccinia Virus. Acta Naturae, 2015, 7, 113-121.	1.7	21
39	Attenuation of Vaccinia Virus. Acta Naturae, 2015, 7, 113-21.	1.7	8
41	Single Immunization with Recombinant ACAM2000 Vaccinia Viruses Expressing the Spike and the Nucleocapsid Proteins Protects Hamsters against SARS-CoV-2-Caused Clinical Disease. Journal of Virology, 2022, 96, e0038922.	1.5	5
42	Oil-in-ionic liquid nanoemulsion-based intranasal delivery system for influenza split-virus vaccine. Journal of Controlled Release, 2022, 346, 380-391.	4.8	9
43	A little less aggregation a little more replication: Viral manipulation of stress granules. Wiley Interdisciplinary Reviews RNA, 2023, 14 , .	3.2	7
44	The Mpox, serious menace, or paper tiger?. Iranian Journal of Microbiology, 0, , .	0.8	O
45	Chrysanthemum sporopollenin: A novel vaccine delivery system for nasal mucosal immunity. Frontiers in Immunology, 0, 14, .	2.2	0