Effects of simultaneous drought and heat stress on Ken

Scientia Horticulturae 115, 190-195 DOI: 10.1016/j.scienta.2007.08.003

Citation Report

#	Article	IF	CITATIONS
1	Cloning, expression and physiological analysis of broccoli catalase gene and Chinese cabbage ascorbate peroxidase gene under heat stress. Plant Cell Reports, 2010, 29, 575-593.	5.6	55
2	Interspecific hybrids between Chrysanthemum grandiflorum (Ramat.) Kitamura and C. indicum (L.) Des Moul. and their drought tolerance evaluation. Euphytica, 2010, 174, 51-60.	1.2	38
3	Abscopal Signals Mediated Bio-Effects in Low-Energy Ion Irradiated Medicago truncatula Seeds. Journal of Radiation Research, 2010, 51, 651-656.	1.6	13
4	Growth Inhibition and Seedling Injury in Response to UV Spectra and Irradiation Timing in Plug-transplants of Pepper (Capsicum annunm L.) and Tomato (Solanum lycopersicum). Japanese Society for Horticultural Science, 2010, 79, 40-46.	0.8	0

5 Antioxidant enzymes changes in response to drought stress in ten cultivars of oilseed rape (Brassica) Tj ETQq0 0 0 gBT /Overlock 10 Tf

6	Drought Stress Responses and Recovery of Texas × Kentucky Hybrids and Kentucky Bluegrass Genotypes in Temperate Climate Conditions. Agronomy Journal, 2010, 102, 258-268.	1.8	52
7	Proline induces heat tolerance in chickpea (Cicer arietinum L.) plants by protecting vital enzymes of carbon and antioxidative metabolism. Physiology and Molecular Biology of Plants, 2011, 17, 203-213.	3.1	150
8	Heat-stress induced inhibition in growth and chlorosis in mungbean (Phaseolus aureus Roxb.) is partly mitigated by ascorbic acid application and is related to reduction in oxidative stress. Acta Physiologiae Plantarum, 2011, 33, 2091-2101.	2.1	158
9	Silicon significantly alleviates the growth inhibitory effects of NaCl in salt-sensitive â€~Perfection' and â€~Midnight' Kentucky bluegrass (Poa pratensis L.). Horticulture Environment and Biotechnology, 2012, 53, 477-483.	2.1	9
10	Magnetic exposure improves tolerance of fig â€~Sabz' explants to drought stress induced in vitro. Scientia Horticulturae, 2012, 137, 95-99.	3.6	31
11	α-Tocopherol Application Modulates the Response of Wheat (Triticum aestivum L.) Seedlings to Elevated Temperatures by Mitigation of Stress Injury and Enhancement of Antioxidants. Journal of Plant Growth Regulation, 2013, 32, 307-314.	5.1	33
12	Heat-stress-induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Functional Plant Biology, 2013, 40, 1334.	2.1	179
13	Silicon Application Increases Drought Tolerance of Kentucky Bluegrass by Improving Plant Water Relations and Morphophysiological Functions. Scientific World Journal, The, 2014, 2014, 1-10.	2.1	143
14	Development of SCAR Marker Related to Summer Stress Tolerance in Tall Fescue (<i>Festuca) Tj ETQq1 1 0</i>	.784314 r 1.1	gBŢ /Overla
15	Triazole compounds alters the antioxidant and osmoprotectant status in drought stressed Helianthus annuus L. plants. Emirates Journal of Food and Agriculture, 2014, 26, 265.	1.0	13
16	Î ³ -Aminobutyric Acid (GABA) Imparts Partial Protection from Heat Stress Injury to Rice Seedlings by Improving Leaf Turgor and Upregulating Osmoprotectants and Antioxidants. Journal of Plant Growth Regulation, 2014, 33, 408-419.	5.1	139
17	Exogenous nitric oxide alleviates oxidative damage in turfgrasses under drought stress. South African Journal of Botany, 2014, 92, 78-82.	2.5	43
18	Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Functional Plant Biology, 2014, 41, 1148.	2.1	214

#	Article	IF	CITATIONS
19	Influence of trinexapac-ethyl in improving drought resistance of wheatgrass and tall fescue. Acta Physiologiae Plantarum, 2015, 37, 1.	2.1	11
20	Biochemical differences underlie varying drought tolerance in four Festuca arundinacea Schreb. genotypes subjected to short water scarcity. Acta Physiologiae Plantarum, 2015, 37, 1.	2.1	14
21	Ameliorating Drought-Induced Stress in Turfgrass through Genetic Manipulation. , 2016, , .		1
22	Changes in physiological and antioxidant activity of indica rice seedlings in response to mannitol-induced osmotic stress. Chilean Journal of Agricultural Research, 2016, 76, 455-462.	1.1	36
23	<i>Phaseolus vulgaris</i> L. Seedlings Exposed to Prometryn Herbicide Contaminated Soil Trigger an Oxidative Stress Response. Journal of Agricultural and Food Chemistry, 2016, 64, 3150-3160.	5.2	26
24	Silicate application increases the photosynthesis and its associated metabolic activities in Kentucky bluegrass under drought stress and post-drought recovery. Environmental Science and Pollution Research, 2016, 23, 17647-17655.	5.3	93
25	Prior exposure to freezing stress enhances the survival and recovery of <i>Poa pratensis</i> exposed to severe drought. American Journal of Botany, 2016, 103, 1890-1896.	1.7	11
26	Screening different crested wheatgrass (<i>Agropyron cristatum</i> (L.) Gaertner.) accessions for drought stress tolerance. Archives of Agronomy and Soil Science, 2016, 62, 769-780.	2.6	17
27	Arbuscular mycorrhizal fungi and Pseudomonas in reduce drought stress damage in flax (Linum) Tj ETQq0 0 0 rgf	3T /Qverloo 2 . 8	ck 10 Tf 50 4 64
28	Effects of Nitrogen Supply on Water Stress and Recovery Mechanisms in Kentucky Bluegrass Plants. Frontiers in Plant Science, 2017, 8, 983.	3.6	143
00	Effects of Drought, Heat and Their Interaction on the Growth, Yield and Photosynthetic Function of	9.6	100

29	Science, 2017, 8, 1776.	3.6	199
30	Silicon Pretreatment Alleviates Drought Stress and Increases Antioxidative Activity in Kentucky Bluegrass. Itsrj, 2017, 13, 591.	0.3	4
31	Effect of salinity on Brassica rapa var. toria (BRSRT) under selenium defence: A trial to assess the protective role of selenium. Acta Agriculturae Slovenica, 2017, 109, 577.	0.3	1
32	Comparison of some physiological aspects of drought stress resistance in two ground cover genus. Journal of Plant Nutrition, 2018, 41, 1215-1226.	1.9	3
33	Vulnerability of crops and croplands in the US Northern Plains to predicted climate change. Climatic Change, 2018, 146, 219-230.	3.6	26
34	Improving drought tolerance of two species of cover crop dichondra and lysimachia by spraying trinexapac-ethyl. Acta Horticulturae, 2018, , 163-170.	0.2	2
35	Association of SSR and Candidate Gene Markers with Genetic Variations in Summer Heat and Drought Performance for Creeping Bentgrass. Crop Science, 2018, 58, 2644-2656.	1.8	10
36	Intraspecific differences in long-term drought tolerance in perennial ryegrass. PLoS ONE, 2018, 13, e0194977.	2.5	28

ARTICLE

IF CITATIONS

37 Seed Antioxidants Interplay with Drought Stress Tolerance Indices in Chilli (<i>Capsicum annuum</i>) Tj ETQq0 0 0 rg BT /Overlock 10 T

38	Analysis of thermotolerance behaviour of five chickpea genotypes at early growth stages. Revista Brasileira De Botanica, 2018, 41, 551-565.	1.3	11
39	Physiological and Ascorbate -Glutathione pathway-related genes responses under drought and heat stress in crested wheatgrass. Scientia Horticulturae, 2018, 242, 195-206.	3.6	14
40	Soil-to-plant transfer of naphthalene and its effects on seedlings pea (<i>Pisum sativum</i> L.) grown on contaminated soil. Environmental Technology (United Kingdom), 2019, 40, 3713-3723.	2.2	7
41	Drought effects on growth, water status, proline content and antioxidant system in three Salvia nemorosa L. cultivars. Acta Physiologiae Plantarum, 2019, 41, 1.	2.1	21
42	Integration of Transcriptomics and Metabolomics for Pepper (Capsicum annuum L.) in Response to Heat Stress. International Journal of Molecular Sciences, 2019, 20, 5042.	4.1	47
43	Impact of Combined Heat and Drought Stress on the Potential Growth Responses of the Desert Grass Artemisia sieberi alba: Relation to Biochemical and Molecular Adaptation. Plants, 2019, 8, 416.	3.5	41
44	Oxidative damage and antioxidant mechanism in tomatoes responding to drought and heat stress. Acta Physiologiae Plantarum, 2019, 41, 1.	2.1	66
45	Impacts of abiotic stresses on the physiology and metabolism of coolâ€season grasses: A review. Food and Energy Security, 2019, 8, e00152.	4.3	25
46	Securing reproductive function in mungbean grown under high temperature environment with exogenous application of proline. Plant Physiology and Biochemistry, 2019, 140, 136-150.	5.8	21
47	Kentucky Bluegrass Performance Under Chronic Drought Stress. Crop, Forage and Turfgrass Management, 2019, 5, 180089.	0.6	6
48	Using Morphological and Physiological Traits to Evaluate Drought Tolerance of Pear Populations (Pyrus spp.). International Journal of Fruit Science, 2020, 20, 837-854.	2.4	8
49	Amelioration of high temperature stress by exogenously applied salicylic acid: Genotypeâ€specific response of physiological traits. Agronomy Journal, 2020, 112, 1573-1579.	1.8	6
50	Effect of Soil Water Deficits on Plant–Water Relationship: A Review. , 2021, , 1-98.		2
51	Drought Resistance and Recovery of Kentucky Bluegrass (Poa pratensis L.) Cultivars under Different Nitrogen Fertilisation Rates. Agronomy, 2021, 11, 1128.	3.0	3
52	A Review on Kentucky Bluegrass Responses and Tolerance to Drought Stress. , 0, , .		2
53	â€~Omics' approaches in developing combined drought and heat tolerance in food crops. Plant Cell Reports, 2022, 41, 699-739.	5.6	25
54	Sodium nitroprusside: its beneficial role in drought stress tolerance of "Mexican lime―(Citrus) Tj ETQq1 1 0.	784314 rg 2.1	BT /Overlo 16

		CITATION REPORT		
#	Article		IF	CITATIONS
55	Prolonged Drought and Recovery Responses of Kentucky Bluegrass and Ornamental Groundcovers Hortscience: A Publication of the American Society for Hortcultural Science, 2013, 48, 1209-1215.		1.0	11
56	Heat Tolerance and Flowering-heat-delay Sensitivity in Relation to Cell Membrane Thermostability i Chrysanthemum. Journal of the American Society for Horticultural Science, 2008, 133, 754-759.	n	1.0	7
57	Evaluation of antioxidant enzymes activity in canola under salt stress. Journal of Advances in Agriculture, 2014, 2, 88-92.		0.1	2
58	Evaluating Pre-silicon Treatment to Alleviate Drought Stress and Increases Antioxidative Activity in Zoysia japonica. Weed & Turfgrass Science, 2015, 4, 360-367.		0.1	2
59	Establishment, Growth and Irrigation Requirements of Kentucky Bluegrass and Tall Fescue as Influenced by Two Irrigation Water Sources. Research Journal of Environmental Sciences, 2010, 4, 443-451.		0.5	1
60	Salt Tolerance Assessment with NaCl of Stauntonia hexaphylla (Thunb.) Decene. and Raphiolepis ir var. umbellata (Thunb.) Ohashi. Horticultural Science and Technology, 2013, 31, 617-625.	dica	0.6	3
61	Assessment of selenium contribution to salt and water stress tolerance in hydroponically grown cotton (<i>Gossypium barbadense</i> L.). Journal of Plant Nutrition, 2022, 45, 2405-2421.		1.9	3
62	Selenium- and Silicon-Mediated Recovery of Satureja (Satureja mutica Fisch. & C.ÂA. Mey.) Chemotypes Subjected to Drought Stress Followed by Rewatering. Gesunde Pflanzen, 2022, 74, 73	37-757.	3.0	2
63	Evaluating coolâ€season grass species as potential perennial groundcover for maize production. Agronomy Journal, 0, , .		1.8	0
64	The Effects of Different Irrigation Levels and Nitrogen Doses on Growth, Quality and Physiological Parameters of Warm-Season Turfgrasses. Tarim Bilimleri Dergisi, 0, , .		0.4	0
65	Genotypic and phenotypic diversity of heat tolerance among and within perennial ryegrass (Lolium) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5

66	The Promising Bâ^Type Response Regulator hst1 Gene Provides Multiple High Temperature and Drought Stress Tolerance in Rice, International Journal of Molecular Sciences, 2024, 25, 2385	4.1	0	